AN OFFICE PROCEDURE FORMALISM
USED FOR AN INTELLIGENT INTERFACE

COINS Technical Report 82-0k

W. Bruce Croft
Lawrence S. Lefkowitz .

Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01003

Abstract

A formalism for representing office procedures is presented.
The emphasis in developing this formalism was on providing a
representation which would enable the office information system
to act as an intelligent assistant to the people carrying out the
procedures. Two examples of the use of the formalism are
described. The examples show that even common office procedures

require sophisticated representations.

1. Introduction

A major issue in the design of an office information system
(0IS) is the representation and use of routine office procedures.
The tools commonly provided with the OIS software, such as the
editor, electronic mail and electronic +filing, implement and
support the basic office tasks of information gathering, storage,
communication, retrieval and analysis. These tasks are common to
all organizations,. An OIS, however, should also be wused to
support the more complex tasks that are the unique functions of a
particular office. An example of this type of task would be the
processing of an order form for a specific company. The steps
involved in carrying out a task such as this can be called an
office procedure. These procedures will be described using the
procédure specification tool provided by the O0IS. Using the
information in the procedure descriptions. the OIS will be able
to support and, to some extent, automate complex tasks in
different environments.

The emphasis in this paper is on develbping a formalism for
representing office procedures that is flexible and powerful
enough to enable the OIS to act as an intelligent assistant.
This means that, amongst other things, the OIS should be able to
recognize actions as being parts of procedures, carry out some
steps automatically, suggest reasonable plans of action and warn
the user of possible errors. This use of an office procedure
formalism is to be contrasted with its use in the analysis and
redesign of an office [ELLIBOIJ.

In the next section we shall describe in more detail how

office procedures can be wused in the implementation of an
intelligent interface. We shall then present, in outline, a
formalism which was developed for this purpose and show two
examples of its wuse in describing office procedures. These
examples also point out some of the complexities which are
encountered in a common office procedure such as arranging
meetings. A more detailed explanation of the formalism and its

use appears in [CROFS82].

2. The OIS as an intelligent assistant

The descriptions of the procedures in the OIS will be used
for two related purposes - interpretation and planning.
Interpretation is the process of recognizing and wunderstanding
users’ actions in the context of the office procedures. The
abilitq to do interpretation allows the system to do the
following:

1. Abstracting behavior. The procedures rtepresented in

the system will form hierarchies in which procedures

located further up in a hierarchy represent more abstract

tasks. The system will then be able to recognize a

low—level action as being part of a procedure and describe

the action in a more abstract fashion. For example, if a

user filled out form 204A in a particular company, the

system could recognize that this was part of processing an
order.

2. Administrative functions. The system could keep

track. over a number of terminal sessions, of a user’s

activities. At any time, the users could ask for agendas
of their activities which the system would present as
partially completed procedures. The system could also
monitor the progress of a procedure that a number of
people may be working on and report its status to a

manager.

Planning can be described as defining a sequence of actions
that will get the system from an initial state to a goal state
CFIKE72]. If an OIS has the ability to plan using the office
procedure formalism, then it can:

1. Describe alternative plans of action to a user who is

uncertain of what actions to perform for a particular

procedure.

2. Carry out some parts of the procedures automatically.

Most procedures require human interaction, but some

actions in procedures such as filing copies of forms or

calculating average sales figures could be carried out
entirely by the system.

3. Follow the implications of a user’s actions through a

procedure and issue warning messages if the actions are

inappropriate. A user may, for example, forget a step 1in

a procedure or remove something that will be needed later.

4. Provide a higher—level interface. Because the

representation contains a hierarchy of procedures at

different levels of abstraction, the wuser may interact
with the OIS at various levels. For example, the user may

invoke abstract tasks, such as scheduling a meeting or

processing an order. These tasks consist of actions which

may be carried out automatically by the system.

Interpretation and planning are related in that each
requires the other in order to function efficiently. For
example, interpretation requires a planning ability to help
recognize the procedure to which a particular action belongs. A
number of procedures may be initial candidates, but based on the
user‘s obgjectives and the current context, the planner would
indicate which candidates are more likely.

Incorporating the objectives of procedures into the
representation formalism is essential for planning and for making
the representation flexible enough to deal with rteal office
procedures. The planner wuses the objectives to determine the
desirability of executing a particular procedure in order to
satisfy a goal [SACE7%?1. Also, as Fikes pointed out [FIKE8BO1, it
would be unreasonable to expect that every possible way of
carrying out a task <could be specified in the system. The
inclusion of objectives provides a means of TtTecognizing that a
task 1is complete even if the actual procedure used had not

previously been specified.

3. The formalism and its use

The formalism selected must provide a convient means of
describing procedures, their inter-relationships and their

relationships to the information they manipulate. Work done on

an Event Description Language [BATES82] provides a basis for the
desired formalism. A procedure is described in terms of
primative operations carried out by tools in the basic OIS
software (e.g. text editors, electronic mail, etc.) and in terms
of other procedures. Thus, a hierarchy of procedures 1is
developed with more complex ones based upon simpler ones. For
example, a task such as preparing a letter may involve the use of
a text editor, a spelling corrector and, finally, a text
formatter. It is also possible to define abstract or generic
procedures and then, by adding constraints. specific instances of
a generic procedure. Using electronic mail may be considered a
generic procedure, whereas using it to respond to an inquiry may

be a more specific instance of the task.

The procedure description contains several distinct
sections. The first section is the definition of the procedure
in terms of other procedures. This portion, the IS clause,

specifies the sequence of constituent procedures wusing the
operators catenation (), alternation (!), shuffle (#), plus (+)
and star (%), Catenation indicates that the occurence of the
left operand procedure temporally procedes the right one.
Alternation means that either the 1left or the right (but not
both) operand procedure occurs. Shuffle allows the interleaving
of the two operand procedures with their ordering being
irrelevant. Plus means that the 1left (and only) operand
procedure occures one or mare times. Star is the closure of Plus
and indicates zero or more occurrences of the procedure.

The second section of the description, the COND clause,

contains constraints placed on attributes of the constituent

procedures specified in the IS clause. This allows a refinement
of the procedural definition by specifying the conditions that
must hold true if the procedure occurs.

The next section, the WITH clause, defines attributes of the
procedure in terms of attributes of its constituent precedures,
These attributes may then be referred to by other procedures by
appending the attribute name to the procedure name. Hence,
“procx. attriby" refers to the attribute "attriby" defined in the
WITH clause of procedure “procx".

The PRECONDITION clause specifies a set of conditions, based
on the attributes of entities in the 0IS’s database, that must be
true in order for the procedure to begin. This is' used by the
recognition section of the system to determine if a particular
procedure can be instantiated at a given time and by the planning
section to ascertain what must be done in order to reach a state
that would allow a desired procedure to occur.

The SATISFACTION section provides a means of recognizing the
completion of a procedure. It contains a set of conditions that
must hold if the procedure has finished. While similar to the
COND clause: this section refers to attributes of entities in the
OIS database and is meant to be independent of the method used to
carry out the task. This enables the recognition of ¢the
completion of a procedure even it was executed by a means not
specified 1in the IS clause of its definition. For instance, a
procedure may define a typical means of acquiring a piece of
information, but the information may be entered into the database
because the user knows it a priori. The SATISFACTION clause

would enable the system to recognize the "acquisition" task as

being completed even though the usual steps wefe not carried ovut.
This section may also be used by the planner to determine what
effects the execution of a procedure will have on the state of
the entities in the database. If a SATISFACTION clause is empty,
the completion of the procedure is dependent upon the completion

of the sequence of constituent procedures in the IS clause.

4. Examples

Two examples of the use of the office, . procedure formalism
are presented in this section. The first example is the journal
editing process described by Zisman [ZISM781]. The second
involves the task of arranging a meeting. The journal editing
process is relatively straight-forward with few alternative
methods provided for accomplishing the objectives. The second
example presents the greater challange because of the inherently
greater flexibility of the task.

In order to simplify ¢the writing of complex task
descriptions, it is desirable to create a collection of
relatively simple procedures commonly wused in the particular
application domain. A subset of such useful procedures for an
OIS is presented in Appendix A. These Troutines describe, in the
previously discussed formalism: some basic means of storing.
retrieving, transmitting and receiving information. They form a
basis for many of the higher—level tasks to be performed in an
avtomated office environment.

The journal editing procedure consists of, in brief,

Teceiving a paper, acknowledging its receipt, asking (and
reminding, if necessary) the editor to select referees, asking
(and reminding) the referees to review the paper, replacing the
referees 1if they cannot review it, collecting the reviews
(reminding the referees,; if necessary):, asking {(and reminding)
the editor to make a decision when all the reviews are in, and
informing the author and the executive editor of the decision.
The description of the top level procedure to carry out this task
appears as Figure 1. The lower level procedures rtequired are
contained in Appendix B and in the basic office procedures in
Appendix A.

The task of arranging a meeting requires that the user (i.e.
the person requesting the meeting) select the people s/he wishes
to attend, the possible time—-slots in which the meeting may occur
and, if desired, the set of rooms in which it may be held. Then
the desired attendees must be surveyed to find out when, in the
selected time—slots, they are available. If there 1is no
time—-slot in which all attendees are free, then the wuser must
reconsider her/his «choice of attendees and/or time—-slots. When
one or more mutually acceptable time—slots are available, a
suitable (and available) room must be selected. Once this 1is
done, the attendees are informed of the meeting place and time
and asked (with reminders, if necessary) to confirm that they can
attend. If they cannot, the time—-slot/room selection process is
repeated wuntil a suitable time and location are found or until
all available choices have been exhausted. If the latter occurs,
the wuser will again be asked to reconsider her/his choice of

attendees and/or time—siats and the selection process rTepeats.

When

suitable choice 1is found, final notice is sent to the

attendees and the room reservation is confirmed.

meeting,

Figure 2 provides the top level procedure for arranging a

with the supporting procedures in Appendices A and C.

Note that while the task is considerably more complex than the

Journal

editing procedure, the rtepresentation in the office

procedure formalism., though somewhat more intricate than the

first example, is still fairly straight-forward.

Description of a Journal Editing Process

PROC Journal_editing
description The process of editing a journal paper as described
by Zisman. ‘
IS Receive_paper ‘ [{ (Acknowledgement_to_author
. # Get_referees_from_editor)
‘ Referees_review_paper
* Get_decision_from_editor
‘ (Inform_author # Inform_exec_editor)
> | Author_withdraws 1]
COND Receive_paper. Author = Acknowledgement_to_author. author
= Inform_author. Author
OR = Author_withdraws. Author
PRECONDITIONS -

SATISFACTION Author. decision NOT NIL

WITH

OR
Author. withdraws IS TRUE

Inform_executive_editor. Exec
Get_decision_from_editor. Decision

Executive
Decision

Author = Receive_paper. Author

Paper = Receive_paper. Content

Referees = FOR ALL i: Referees_review_paper. Referee(i)
Reviews = FOR ALL i: Referees_review_paper. Report(i)
Editor = Get_referees_from_editor. Editor

Figure 1

Description of a Meeting Arrangement Process

PROC Arrange_meeting

description Organize a meeting at a time and place acceptable to
the person requesting the meeting and the attendees.

IS (Get_attendees # Get_vooms # Get_times)
’ Get_attendee_availability
‘ [Modify—choices “

(Select_room ‘ Check_with_attendees)+ 1+

* (Confirm_room # Confirm_attendees)

COND Get_pttendees_availibilitg.Attendees
= Get_attendees. Attendees
Select_room. Selected-room = Confirm_room. Room
= Check_with_attendees. Room
Select_room. Selected—time = Confirm_room. Time
= Check_with_attendees. Time

PRECONDITIONS

SATISFACTION * Meeting. Arranged IS COMPLETE

WITH Room = Confirm_room. Info. Room
Time = Confirm_room. Info. Time
Attendees = Confirm_attendees. Attendees

Figure 2

S. Conclusion

The examples show that the formalism presented in this paper
can conveniently represent complex office procedures. It also
provides information for planning and interpretation.
Incorporating procedures described in this way into an office
information system will enable it to act as an intelligent

assistant in the execution of office tasks.

Acknowledgement

This work is part of a larger research effort examining
Procedure Oriented Interfaces for Supportive Environments
(PCISE). Also involved in the project are Victor Lesser and
Karen Huff, who are applying this approach to the software

development environment.

References

(BATEB2]1 Bates, P.C.; Wileden, J.C. “EDL: A basis for
distributed system debugging tools. " Hawaii Conference; 1982.
CCROFB21 Croft, W.B.; Huff, K. E.; Lefkowitz, L.S.;
Lesser, V.R. “POISE technical report" (to appear).

LELLIBO] Ellis, C.A.i Nutt., G.u. "Office information systems

and computer science." ACM Camputing Surveys, 12: 27-60; 1980.

CFIKE72] Fikes, R.E.; Hart, P.E.; Nilsson, N. J. "Some new
directions in robot problem solving." In Machine Intelligence, .
7: 405-430; Edinburgh University Press, 1972.

(FIKEBO] Fikes, R.E.; Henderson, D.A. "On supporting the use of
procedures in office work." Proceedings of the First AAAI
Conference, Stanford University, 1980.

[(SACE791 Sacerdoti, E.D. “Problem Solving Tactics. " Sixth
International Joint Conference on Artificial Intelligence. Tokyo,
1979.

CZISM781 Zisman, M. D. "Use of production systems for modeling
asynchronous, concurrent processes. In Pattern—Directed
Inference Systems, Academic Press, 1978.

PROC

PROC

PROC

PROC

APPENDIX A

BASIC OFFICE PROCEDURES

Record_information

description Places information into a database.

IS primative

WITH Info = information placed into the database
Topic = a brief description of the information

Look_up_information

description Retrieves information from a database.

I8 primative

WITH Info = information retrieved from the database
Topic = a brief description of the information

Send_a_message

description Transfers information from the user.

IS primative

WITH Recipient = the person to whom the message is sent
Topic = a brief description of the message
Content = the body of the message

Receive_a_message

description Transfers information to the user.

IS primative

WITH Sender = the person from whom the message is received
Topic = & brief description of the message
Content = the body of the message

PROC Tell_information

description Conveys information that resides in the
user’s database to someone else.

I8 Look_up_information * Send_a_message
COND Look_up_information. Info = Send_a_message. Content
PRECONDITIONS : Info NOT NIL
SATISFACTION Informed. Info NOT NIL
WITH Info = Look_up_information. Info
Informed = Send_a_message. Recipient
Topic = Send_a_message. Topic
PROC Be_told_infaormation
description Receives information and stores it in

the user‘’s database.

I8 Receive_a_message ‘ Record_information
COND Receive_a_message. Content = Record_information. Info
PRECONDITIONS -

SATISFACTION Info NOT NIL

WITH Infa = Record_information. Info
Informer = Receive_a_message. Sender
Topic = Receive_a_message. Topic

PROC Request_information

description Asks for and receives information.
IS Send_a_message ‘ Receive_a_message
COND Send_a_message. Topic = Receive_a_message. Topic

Send_a_message. Recipient = Receive_a_message. Sender

PRECONDITIONS -

SATISFACTION -

WITH Requestee = Send_a_message. Recipient
Topic = Send_a_message. Topic
Query = Send_a_message. Content

Reply Receive_a_message. Content

PROC

PROC

PROC

Remind

description

IS

COND

PRECONDITIONS
SATISFACTION

WITH

Sends information regarding a previously

mentioned topic.

Send_a_message

Send_a_message. Topic. Creation—time <
Send_a_message. Start-time

Topic NOT NIL

Recipient

Send_a_message. Recipient

Topic = Send_a_message. Topic

Content

Find_out_information

description
IS

COND
PRECONDITIONS
SATISFACTION

WITH

Send_a_message. Content

Asks for, obtains and stores information.

Request_information ’ Record_information

Request_information. Repl
Info NOT NIL
Requestee

Query
Reply

Supply_information

description
I8

COND

PRECONDITIONS
SATISFACTION

WITH

y

= Record_information. Info

= Request_information. Requestee
Topic = Request_information. Topic

= Request_information. Query

= Request_information. Reply

Ansuwers a request for information.

Receive_a_message ‘ Look_up_information ’ Send_a_message

Receive_a_message. Topic

Receive_a_message. Sender

Informed. Info NOT NIL

Informed
Info

Topic

=

Look_up_information. Topic
Send_a_message. Topic

Send_a_message. Recipient

= Send_a_message. Recipient
= Send_a_message. Content

Request = Receive_a_message. Content
= Receive_a_message. Topic

PROC Request _with_reminder (reminder—time)

description Asks for information and sends reminders every
“reminder~time" until the information is received.

IS Send_a_message ‘ Remind# ’ Receive_a_message

COND Remind(1). Time D= Send_a_message. Time + Reminder—time
Remind(i+1). Time >= Remind(i). Time + Reminder—time
Remind. Topic = Send_a_message. Topic
Remind. Recipient = Send_a_message. Recipient

PRECONDITIONS -

SATISFACTION Info IS RECEIVED

WITH Requestee = Send_a_message. Recipient
Topic = Send_a_message. Topic
Query = Send_a_message. Content
Reply = Receive_a_message. Content
PRGC Canfirm
description Confirms previously transferred information.
'IS Tell_information
COND Tell_information. Topic = "Confirmation"

PRECONDITIONS Confirmed. Info NOT NIL
SATISFACTION Message IS SENT

WITH Infa = Tell_information. Info
Confirmed = Tell_information. Informed

PROC Task_complete

description Gets told that the execution of task is completed.
This is useful for determining the termination of any
of a class of open-ended tasks (such as adding an
unspecified amount of information to a database).

IS Be_told_information

COND Be_told_information.Topic = "“"Completion"

PRECONDITIONS Task NOT NIL

SATISFACTION Task IS COMPLETE

WITH Task
Informer

Be_told_information. Info
Be_told_information. Informer

I

PROC

PROC

PROC

Obtain_information

description

IS

COND
PRECONDITIONS
SATISFACTION

WITH

Sellect_choices

description

IS

COND
PRECONDITIONS
SATISFACTION

WITH

Obtains (with or without asking for) and stores
information.

Find_out_information ! Be_told_information

Info NOT NIL

Info = Find_out_information. Reply
or
Be_told_information. Info
Topic = Find_out_information. Tapic

or
Be_told_information. Topic

Gets information by having someone select one or
more of a set of options presented to him/her.

Find_out_information
Find_out_information. Query. Type = "Choose~from"

Choices NOT NIL

Requestee = Find_out_information. Requestee
Topic = Find_out_information. Topic
Query = Find_out_information. Query
Reply = Find_out_information. Reply

Update_information

description
IS

COND

PRECONDITIONS
SATISFACTION

WITH

Obtains information about an already existing entity.
Obtain_information

Obtain_information. Topic. Creation—time <
Obtain_information. Start-time

Info NOT NIL
Info IS MODIFIED

Info = Obtain_information. Info
Topic = Obtain_information. Topic

APPENDIX B

JOURNAL EDITING PROCEDURES

PROC Receive_paper
description Obtains and stores a potential journal paper.
IS Be_told_information
COND Be_told_information. Topic = "Jaurnal Paper"
PRECONDITIONS -

SATISFACTION Author. Paper NOT NIL

WITH Content = Be_told_information. Info
Author = Be_told_information. Informer

PROC Acknowledgement_to_author

description Sends a message to an author acknowledging the
receipt of a paper.

IS Send_a_message

COND Send_a_message. Topic = "Acknowledgement"

PRECONDITIONS (Author. Paper NOT NIL) AND (Author. Acknowledged IS NIL)
SATISFACTION Author. Acknowledge NOT NIL

WITH Author = Send_a_message. Recipient

PROC

PROC

Get_referees_from_editor

description

IS

COND

PRECONDITIONS
SATISFACTION

WITH

Asks the editor for a list of referees to review
a paper. A reminder is sent every two weeks until
the editor responds.

Request_with_reminder (2 weeks)

Request_with_reminder. Topic = "Referee request”
Request_with_reminder. Requestee. Title = “Editor"

Author. Referees NOT COMPLETE
Author. Referees 15 COMPLETE

Editor = Request_with_reminder. Requestee
Referees = Request_with_reminder. Reply

Referees_review_paper

description

IS

COND

PRECONDITIONS
SATISFACTION

WITH

Asks the referees to review a paper and then gets their
reports. If a referee cannot assist, obtains a
Treplacement referee from the editor.

[Request_with_reminder—-1 (2 weeks)
‘ (Get_replacement_referee ! nil)
’ Request_with_reminder-2 (2 weeks)

’ Thank_referee J1#

Request_with_reminder—-1(i). Requestee
= (Request_with_reminder—2(i). Requestee

OR
Get_replacement_referee(i). Referee)
Request_with_reminder-1. Topic = "Review request”
IF (Request_with_reminder—1(i).Reply = "No")
THEN (Get_replacement_referee(i). Referee NOT NIL)
Request_with_reminder-2. Topic = "Report request"

Request_with_reminder-2(i). Requestee
= Thank_referee(i). Referee

Author. Referees IS COMPLETE
Author. Reports IS COMPLETE

Referee(i) = Request_with_reminder—-2(i). Requestee
Report(i) = Request_with_reminder—-2(i).Reply

PROC

'ROC

ROC

Cet_replacementmreferee

description

1s
COND
PRECONDITIONS
SATISFACTION

WITH

Asks the editor for a new referee if a previously
selected one is unable to review the paper.

Get_referees_from_editor

SIZE (Get_referees_from_editor. Referees) = 1
Author. Referee(i) NOT AVAILABLE

Author. Referee(i) IS AVAILABLE

Referee = Get_referees_from_editor. Referees

Get_decision_from_editor

description

I8

-COND

PRECONDITIONS
SATISFACTION

WITH

Inform_author
description
IS

COND
PRECONDITIONS
SATISFACTION

WITH

Asks the editor to accept or reject a paper after
all the reviews are in.

Request_with_reminder (2 weeks)

Request_with_reminder. Topic = "Decision"
Request_with_reminder. Requestee. Title = "Editor"

Author. Reviews IS COMPLETE
Author. Decision NOT NIL |

Editor = Request_with_reminder. Requestee !
Decision = Request_with_reminder. Reply

Tells the avthor if the paper was accepted or rejected.

Tell_information
Tell_information. Topic = "Decision"
Author. Decision NOT NIL

Author. Informed IS TRUE

Author = Tell_information. Informed
Decision = Tell_information. Info

PROC

PROC

PROC

Inform_executive_editor

description

IS

COND

PRECONDITIONS
SATISFACTION

WITH

Thank_referee
description
IS

COND
PRECONDITIONS
SATISFACTION

WITH

Author_withdraws

description

IS

COND
PRECDNDITIPNS
SATISFACTION

WITH

Tells the executive editor if the paper was accepted
or rejected.

Tell_information

Tell_information. Topic = "Decision”
Tell_information. Informed. Title = "Executive Editor"

Avthor. Decision NOT NIL
Author. Exec. Informed IS TRUE

Tell_information. Informed
Tell_information. Info

Exec
Decision

nu

Thanks the referee for reviewing the paper.
Send_a_message

Send_a_message. Topic = "Thanks"

Author. Referee(i). Review NOT NIL

Author. Referee(i). Thanked IS TRUE

Referee = Send_a_message. Recipient

Recieves notification from the author that
s/he wishes to withdraw a paper.

Be_told_information
Be_told_information. Topic = "Withdrawal"
Author. Paper NOT NIL

Author. Withdrew IS TRUE

Author = Be_told_information. Informer

’ROC

‘ROC

APPENDIX C

MEETING ARRANGMENT PROCEDURES

Get_user_specification

description
IS

COND

PRECONDITIONS
SATISFACTION

WITH

Get_attendees
description
IS

COND
PRECONDITIONS
SATISFACTION

WITH

Obtains a collection of information from the user.
Obtain_information ‘ Update_information# ’ Task_complete

Obtain_information. Topic
= FOR ALL i: Update_information(i). Topic

Info IS NIL
Info IS COMPLETE
Topic Obtain_information. Topic

Info = UNION (Obtain_information. Info, ;
FOR ALL i: Update_information(i). Info)

Obtains the list of attendees desired at a meeting.
Get_user_specification
Get_user_specification. Topic = "Attendees"
Attendees IS COMPLETE

Attendees = Get_user_specification. Info

PROC Get_rooms

description Obtains the list of possible rooms for a meeting.
IS Get_user_specification

COND Get_user_specification. Topic = "Rooms"
PRECONDITIONS -

SATISFACTION Rooms IS COMPLETE

WITH Rooms = Get_user_specification. Info

PROC Get_times

description Obtains the list of possible time slots for a meeting.
Is Get_user_specification

COND Get_user_specification. Topic = “"Times"

PRECONDITIONS -

SATISFACTION Times IS COMPLETE

WITH Times = Get_user_specification. Info

PROC Get_attendee_availablity

description Finds out when the attendees are available.
IS Select_choices#
COND Select_choices. Topic = "Avaliablity"

FOR ALL i: SAME (Select_choices. Query)
PRECONDITIONS (Meeting. Times NOT NIL) AND (Meeting. Attendees NOT NIL)
SATISFACTION Attendee. Availability IS COMPLETE

WITH Attendee(i)
Attendees
Time_slots
Free_time(i)
Free_times

Select_choices(i). Requestee
UNION (FOR ALL i: Attendee(i))
Select_choices. Query
Select_choices(i). Reply

UNION (FOR ALL i: Free_time(i))

PROC

'ROC

Modify_choices

description

IS

COND

PRECONDITIONS
SATISFACTION

WITH

Select_room
description
IS

COND

PRECONDITIONS

SATISFACTION

WITH

Has the user update her/his choices of attendees and/or
time—-slots until at least one common time is found.

(Update_information+ * Get_attendee_availability)#

Update_information. Topic = "Times" OR "Attendees"
IF Update_information(i). Topic = "Times"
THEN Get_attendee_availablity(i). Time_slots
= Update_information(i). Info
IF Update_information(i). Topic = "Attendees"
THEN Get_attendee_availablity(i). Attendees
= Update_information(i). Info

(Meeting. Times NOT NIL) AND (Meeting. Attendees NOT NIL)
Meeting. Common—times NOT NIL
Attendees = Get_attendee_availability. Attendees

Common-times INTERSECTION
(Get_attendee_availability. Free—times)

Chooses a suitable (and available) room and time.
Select_choices
Select_choices. Topic “Room"

(Meeting. Rooms NOT NIL) AND
(Meeting. Common—times NOT NIL)

Meeting. Selected—room NOT NIL
Possible-room/times Select_choices. Query

Selected-room = Select_choices. Reply. Room
Selected—time = Select_choices. Reply. Time

PROC

PROC

PROC

Check_with_attendees

description

IS

COND

PRECONDITIONS
SATISFACTION

WITH

Confirm_room
description
IS

COND

 PRECONDITIONS

SATISFACTION

WITH

Verifies that the attendees can attend a meeting
at the selected time and place.

(Request_with_reminder (1 day))#

FOR ALL i: Request_with_reminder. Topic = "Verify"
SAME (Request_with_reminder. Query)

Meeting. Selected—room NOT NIL

Meeting. Attendees. Verified COMPLETE

Attendees = UNION
(FOR ALL i: Request_with_reminder. Requestee)
Room = Request_with_reminder. Query. Room
Time = Request_with_reminder. Query. Time
Verify(i) = Request_with_reminder(i).Reply
Success = LOGICAL-AND (FOR ALL i: Verify(i))

Confirms the reservation of the selected room and time.
Tell_information

Tell_information. Topic = “"Confirm"
Tell_information. Informed. Title = "Room scheduler”

Meeting. Attendees. Verified IS SUCCESSFUL
Meeting. Selected—room. Confirmed IS TRUE

Tell_information. Info. Room
Tell_information. Info. Time

Room
Time

-
=
—
=

Confirm_attendees

description

IS

COND

PRECONDITIONS
SATISFACTION

WITH

Sends final notice to the attendees of the meeting
time and place.

Tell_information*

FOR ALL i: Tell_information(i). Topic = "Final Notice"
SAME (Tell_information(i). Info)

Meeting. Attendees. Verified IS SUCCESSFUL
Meeting. Attendees. Confirmed 1S TRUE
Attendees UNION (Tell_information. Informed)

Room = Tell_information. Info. Room
Time = Tell_information. Info. Time

