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I. INTRODUCT 10N

The goal of the VISIONS project is to develop a system that
can  interpret static color images of outdoor scenes. LHAN78a., b1
The interpretation task consists of labeling the various objects in
an image and describing the relationships among them. This task is
difficult, given the complexity and variety inherent in the domain.
The set of obgects and possiblie relations is large, lighting
varies, exact camera models are often not available, shadows and
occlusion obscure the shapes of objects, and seasonal changes
introduce spectral and textural variety. A great deal of knowledge

must be brought to bear in understanding images of cutdoor scenes.

A large part of this knowledge concerns the set of ob jects
that can and do appear in these images and the possible and
probable relations among them. In order to understand the images,
detailed information about the distinguishing characteristics of
each object class must also be available. This paper presents
preliminary rvesults showing how various strategies uvtilizing four
types of simple features—-size, shupe, color, and location——-can be
usad to recognize objects and form the basis of a simple

interpretation system.

The size of an object can aid in its recognition. Howeves, in
images absolute sizes are rarely available and furthermore members

of an object class often appear in a range of sizes. Thus size 1is
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most important in relative terms: objects can be Tecognized using

the sizes of reference objects that have been located in the image.

Characteristics of an object’s (2-D) shape provide recognition

cues. Curvature, compactness. height--to—width ratio,
rectangularity—— these are a few shape features that may help to
distinguish ob jects. For exampie, certain man—-made objects
(windows, doors, shutters) exhibit high rectangularity. little

curvature, and a vertical orientation (greater height than width).
However, representing and recovering complex shape characteristics

is very difficult. CYORB811 [KENBO:

Color or spectral features are especially vseful in
identification, particularly for “natural® oh Jjects such as grass,
sky, and foliage whose color tends to be more predictable than that
of man-made obgjects such as cars and houses. Spectral features
include the red, green, and blue components of an image element’s
intensity, color transfrrms, and simple texture measures. Sets of
these features can be used to characterize different objects. Sky,
for example, tends +to have & high blue component value but a low
saturation value. Foliage:. on the other hand, tendes to be quite
saturated. in this case, saturatiaon is used in recognizing foliage
because it not only CHARACTERIZES aw aspect of all foliage but alsco

DISCRIMINATES foliage from other obytcts

Location plays a part in object recognition. The location of
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certain objects can often be predicted: sky often appears at the
top of an image:; grass, Troad. er ground often appear at the
bottom. As was the case with size, these object lucation features

can be used not only to identifg possible object classes but also
to eliminate other object classes {vom consideration. l.ocation can
alse be characterized in relative terms, providing identification
information via expected spatial relations among objects. In
general, the information characterized by the four types of
features—-— size, shape, color, locotion—— is important net only in
absolute but also in relative terms (in the form of relations).
Objects are often identified wu<ing other objects as references

This qbservation implies that object recognition can be carried out
in at 1least two  ways: simply by listing the expected feature
values of an object class and searching for a match (a local
approach) OR within a context using some kind of strategy that
operates on the feature values (a global approach). Matching alone
does not seem to be sufficient for most recognition tasks. Thus it
is clear that the process of obgject identification should consist
of a variety of strategies operating on the types of feature

information outlined above.

The experiments presented below demonstrate the wvutility of
various strategies operating on [feature information in developing
an image interpretation. The strategies are simple; each can be
"fooled" in certain cases. Used tougether. however. they provide a

fairly robust foundation for a firat pass interpretation system.
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I1. EXPERIMENTS

The four 128 x 128 images of house scenes wused in the
experiments are shown in Figure . Three of the images are
different views of the same house. the information gathered during

the interpretation of one of these three images could be used to
guide the interpretation of either or bath of the other images.,
assuming similar or identical 1lighting conditions. Such an
approach would be especially useful in motion processing. In the
experiments presented below. however, interpretation strategies

have been applied independently to each of the images.

The domain of house scenes it fairly complex, yet it is
manageable in that the set of commonly occurring object types is
not too large (less than 20), and there are a variety of structural
and relational constraints that can be exploited in object
recognition. For example, with many houses, windows are
constrained to be loceated between two shutters. This type of
constraint generates predictions about the existence and location
of certain objects based upon a partial interpretation and can be
incorporated into strategies for both hypothesis formation and

hypothesis verification.

Certain assumptions have been miade in  the experiments. The
system assumes a camera position that is approximately level so

that the horizon is expected to be near the center of the image;
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Figure 1. The four 128x128 images used in the experiments. Label
them 1-4 starting in the upper left and proceeding clock-
wise. Image 1 is used in most of the other figures.



PAGE O

this assumption allows the system to predict the extents of sky and

ground Tegions. The second asc<umption 1is that the spectral
attributes of objects are fairly typicali for example, grass is
green rtather than brouwn. This assumption allows reasonable

hypotheses of object identities to be developed using expected
spectral attributes of objects. Finallu, the system assumes that a
good segmentation  has been  provided for establishing a

correspondence between regions and object surfaces.

I1.1 IMAGE~INDEPENDENT SPECTRAL ATTRIBUTE MATCHING

s mcmessmecn

Spectral .attributes can Bé used _to characterize certain
"natural® obJects——bush: grass. skg, tree—~mhose features are
fairly predictable. Thefe_are also certéin classes of man--made
objects whose color and textufn afe predictable, such as roads,
sidewalks:, fire hydrants, and stop éigné. The simplest use of
color and texture attributes consists of matching the expected
feature values of an object class with those of image regions to
form hypotheses of object identity. The technique of object to
region matching of attributes that is presented below has been vused

previously and is described only bviefluy here. (See C[WILBLI.)

Given a set of features and sct of training images of outdoor
scenes, the mean, standard deviation, maximum valuve, and minimum
value of each feature were computed wusing hand-selected Tegions

known to represent the "natural" objects mentioned above. These
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statistics were used to form prototype templates of the ranges of
feature values for each object class. The mstching process
consists of forming a confidence by comparing the feature values of
a region to the feature values of each of the templates. The
confidence value obtained symbolizes a hypothesis that a certain
region represents a certain ob ject or object part. Maximum
confidence is assigned to a region whose mean feature value is
within one standard deviation of the expected mean for an object.
The confidence decreases linearly to zero at the minimum and

maximum values.

The results of spectral attribute matching in the four images
are summarized in Table 1. Trvee, grass, and sky regions are
identified fairly accurately. hush vregions were most often
misclassified as tree, accounting for six of the eight bush regions
incorrectly labeled and generating six false alarms for tree. It
is not wunreasonable for a system to make errors between different
classes of foliage when the classification is based purely on local
features. Grouping tree and bush under a category of "foliage"
produces better rvesults, with 234 of 26 target regions being
correctly identified. The portions of the image that are correctly

labeled are shown in white in Figure 2.

Because this matching strategy only deals with a restricted
subset of the objects commonly occurring in outdoor scenes, regions

representing objects mnot in the subset are always labeled
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Attribute Matching Results (large regions from 4 images)

Bush

Grass

Sky

Tree

Foliage

TOTAL
(using foliage)

Actual Correctly Identified False Alarms
12 4 1
6 5 3
5 5 0
14 12 7
26 23 -
37 33
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Figure 2. Portions of Image 1 correctly labeled by spectral attribute
matching alone are shown in white.
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incorrectly. In many cases tho confidence assigned to this

erroneous labeling is sufficiertly low <(compared to expected

values) that the labeling <can be rejected; in other cases the
contfidence is relatively high and a labeling error rvesults. For
example, in the images of Figure 1, the white house walls

"acquired" many of the spectral characteristics of sky and hence
are often interpreted as shy. In cases such as this it is
unreasonable to expect the system to distinguish between high match
value non—-target regions whose <color and texture attributes are
similar to those of the target object prototypes and actuval target
regions. While it is _possible that better results could be
achieved by formulating the targét vs. 'noﬁ—target problem as a
classical statistical hqpothesis.testiﬁg problem, it is conjectured
that many of the érronedus labcls ‘may be eliminated by the
application of labeling‘tonstréints derived from fhe relationships
between objects and the strutturallpropértieé of objects appearing
in the scene. Experiments described later are a first attempt to

show how this may be actomplished.

Spectral attribute matching i+ computationally inexpensive if#
the object +training data has bheen analyzed previously. 1+ one
ignores the errors invoelving confusion of foliage categories and
the problem; of high match value non—-target regions., then the
approach has yielded excellent results. It might bé made still
moTe powerful in several ways. Collecting object attributes across

a larger set of images might strenagthen the predictive abilities of
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the prototype templates. On the other hand, further data
collection might pollute the statictics already computed. In +¢this
tase it might be necessary to add new object sub-classes such as
“tree-in-winter" and "tree—in-spring". Adding new features and
read yjusting the importance of each feature used in matching might
improve the prototype templates’ «characterizations of object

classes and thus yield a better labeling performance.

Spectral attribute matching, as it is currently implemented,
can often provide an accurate initial set of hypotheses upon which

to base the rest of the interpretation.

I1.2 IMAGE-DEPENDENT ATTRIBUTI. MATCHING VIA OBJECT EXEMPLARS

The process of matching spectral attributes described in the
previous section involves a comparison of feature values of regions
to image—independent feature values of object prototypes. Another
approach that might prove more rohust and context-sensitive is the
use of a partial interpretation of the image. Assuming a region in
an image has been identified as a particular object using some
interpretation strategy, the feature values of  that region can
serve &as an image~specific object template. These feature values
can bhe used in finding similar regions that most 1likely rehresent
instances of the same object class, using the same matching process

described in Section II.1.
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Consider the example in Figure 3. Suppose shutter Ttegions
have been identified using shape characteristics. Knowledge about
the structure of houses suggests theat regions of significant size
that surround the shutter rtegions will represent house wall or
windows. Figure 3a shows the identified shutter regions and Figure
3b the neighboring regions hypothesized to represent house'wall or
window, Here region neighbors are strictly adjacent; this
requirement could be relaxed so that nearby regions that are not
strictly adjacent would be included. A house wall template region
was selected from among these regions by searching for the first
region that mag larger than a minimum size and had greater than a
minimum value on a color transform feature. The "Q" value of the
YIQ television color transform was used because house rtegions had
consistent values on this feature across several images. Other
features such as intensity and simple texture measures were not as

useful in this respect.

The house wall temp.ate region was used in a matching. process
in attempting to identify other house regions. Utilizing the level
camera assumption, the knowledge that house wall regions will
appear in a horizontal band of the image can be used to constrain
the processing. Matching was restricted to those regions that
overlapped a horizontal band defined by the upper and lower extents
of the template region. This simple spatial constraint limits the
matching and reduces the number of false alarms that would

otherwise occur.
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Figure 3. (a) Identified shutter regions. (b) House wall surround
regions. (c) House template in white with matching regions.



PACE 10

The strategy labelsﬁséme regions inéorrectlg. . In Figure 3c
the iigh%fcﬁibfed,region is the sclected template and the slightly
darker regioﬁé';rg those that matched. Nﬁte the errors in the sky
region and tree :ﬁighiight regions, The houses in the images are
thte; they tend to exhibit characteristics of the incident
illumination;“ Highlights are smooth surface reflections and hence
- also {exhibit characteristics of incident - illumination. The
sfrafégg h‘aisb> fails' to identify all house wall regions,
pérﬁiéuiﬁrlg fhoge regions that represent shadowed house wall. In
this case, internal contfast tends to be lower:, affecting the
texture measures used, and the spectral components are distributed
over lower ranges, resulﬁing in a poor ﬁafch between these feature
values and those of the selected exemplar. Both of these kinds of
errors are reasonable given the overall goals of the approach: the
formation of label hypotheses based on a loose notion of feature

similarity.

As is the case with many of these simplified strategies, there
are many plausible ways for achicving improvement in performance.
The process might be made more powerful bg' incorporating stricter
spatial constraiﬁts based on world knowledge. For example,
matching éight be restrictéd to thouse regions strictly adjacent +to
the template region or to those regions whose centroids lie within
the horizontal band defined by the template region’s upper and
lower extents. Also, the features used in matching can be tailored

to the object type being identified. Finding these characteristic



PAGE 11

features involves studying the consistencies of appearance of an
object across many images. Only the features which tend to be
invariant for an object class would be used in matching., thereby

reducing the cost and hopefully producing better results.

While image-specific region *templating avoids some of the
problems faced in wusing an image-independent attribute matcher
(e. g. lighting variations), the «choice of a template remains
crucial and is dependent upon the power and variety of the other
interpretation strategies. For example, the houseAwall templating
strategy described above depends directly on a strategy for
locating shoutters. Within the general structure of VISIONS,
strategies are applied and intcrpreted in an environment of
cooperation and competition among the various hypotheses develaped
[HAN78b1 [PARS01 ([WIL771; labeling conflicts arising from the
partial evidence available to esach strategy are rTesolved in the
context of more global information. Thus, although the region
templating strategy is dependent wupon correct identification of
some of the image, it still serves as a powerful mechanism for

extending a partial interpretation.

II.3 SKY/GROUND FILTERING

The techniques described so far have relied on color features
alone in attempting to label the regions in an image. A strategy

that incorporates the expected locations of two obyects~—sky and
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ground——can be used to eliminatec or “"filter out" erroneous
hypotheses or to rteduce <conflicts between labels generated by

separate processes.

In order to implement this stretegy a sky template region and
a grass template region must be selected. The sky template is
chosen based on size, color, and leocation near the top of the
image. The grass template is chocen based on color and location
near the bottom of the image. The cpatial extents of these regions
are used to mark the probable lower limit of sky and the upper
limit of ground. Figure 4 shows the sky 1line and ground line

selected.

These two lines provide a rough approximation to the location
of theb horizon in thg image. This information is used to filter
the results of spectral attribute matching. For example, a rmegion
hypothesized to represent grass that appears above the sky line
would have to be rtelabeled. This +1rplabeling is accomplished by
setting the confidence value for gress to the lowest possible value
of —-99.99. By doing this the next highest confidence value becomes

the highest, and the region has a new object label.

The filtering process is helpful but, liké'region templating.,
is dependent upon careful selecticn of the sky and grass template
regions. The selection of a low sky lins or a high ground line

does not provide wmuch information but neither does it cause
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Figure 4. sky and ground lines.
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accurately labeled regions to be relabeled incorrectlu. On the
other hand, a high sky line or a low ground line imposes strict
constraints on the region labels and can cause the +tiltering

process to eliminate correct label ings.

Better strategies for templato selection might eliminate this
problem. Having a model of the camera would provide the actual
location of the horizon and furnish more accurate information about
the actual extents of sky and ground. Finally, the groundplane can
sometimes be approximately located by searching for the bottom

edges of vertically oriented surfaces.
I11.4 RECTANGLE FINDING

Rectangularity is a shape fceature that chafacterizes many
man—-made objects. Doors, windows, and shutéers that appear in a
house image are usually rectangular or nearly so. Even rectangular
objects that bhave been ?oreshortened by thelcamera angle can be
identified by locating regions of high rectangularity in the image.
These regions can be identified by applying a function that checks
each Tegion’s &eviation from rectangularity and saves those regions
that survive a threshold. The deviation is a percentage calculated
as follows:

(area of euclosing rectangle —~ actual area)
deviation = 10O, O o m e e e e e e e e e e e e e e -

area of enclosing rectangle
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Figure 5 shows those image regions that survived a threshold of

25%.

Adding height—-to-width ratie and size constraints to the
rectangle finding strategy resuits in a shutter identification
procedure. Figure & shows those image regions that were labeled as
shutters. These regions have a hcight--to-width ratio greater than
.3, a deviation from rectangularity of no more than 254, and an area
of ‘at least 26 pixels (assumes a certain scéle). Figure 7 shows
image regions that were selected based on the height-to-width ratio

constraint alone.

The parameters for the shutter identification procedure were
set so as to give good results in the images under consideration.
The size constraint helps to eliminate small regions that really
have no significance in the intefpretation. However., in images
where a house is located far from the camera. the shutters will
appear small and the procedure willAFail to label them correctly.
Also the strategy is likely to contfuse doors, windows, and shutters

since these objects have similar shespes and sizes.

Tailoring the height—-to-wid+h ratio to the object being
searched for might eliminate some of the confusion. Shutters and
doors often exhibit high <contrast with respect to house wall;
perhaps this information could also be emploued. Finalluy, some

shutters have not been rtecognized because the segmentation
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Figure 5. Regions with deviation from Figure 6. Identified shutter regions.
rectangularity of £ 25%.

Figure 7. Regions with height-to-width
ratios:s = 53
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processes have divided them into two or more Tegions that are less
rectangular. Improving the results of the segmentation processes,
possibly through a merging process, would 1likely yield better

performances.

I1.5 INFERENCING USING SPATIA| RELATIONS

Within the domain of house <cenes, shufters. windows, and
doors can serve as landmarks for locating a house. A house 1is a
structure; its subparts are objects that exhibit certain typicsal
spatial relations (e.g. windows fall between shutters). (See
[WEYB11. ) The location of an identified obyect (the 1landmark)
together with some épatial relatiion allows the inference of the
location of another object. [GAR761 For example, shutters are
usually surrounded (the spatial relation) by house wall. House
wall can be identified by finding « shutter region (the landmark)
and then labeling those regions tﬁat surround the shutter. This is
the same idea that was used to identify "house-part" regions in the
region templating example described earlier. Information about the
structure of objects and the relations between ob jects and object
subparts is currently built into various strategies. Work is in
progress to develop a consistent, structured database that will
store and provide this type of information to the strategies that

need it.

Figure 8 shows the results of Finding shutters and then
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Figure 8. House wall regions from shutter surround.
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labeling neighboring regions as "huuse-part. " Since the strategy is

based solely on spatial relations, tshadowed and unshadowed regions

alike are labeled as "house-part”, even though they differ greatly
in their spectral attributes. This behavior can result in
incorrect labelings when parts of the house are occluded. For

example: a tree in front of the house might have parts located in
proximity to the shutters and be labeled as "house-part. " Also., the
segmentation processes often produce small, thin harizontal or
vertical regions that surround th. shutter Tegions. These are the
regions that are located by the strategy, while other larger, more

significant regions are missed.

Expanding the neighbor idea to include "nearby” regions as
well as those that are strictiy adjacent might produce better
results. Alsa, the merging and high contrast ideas mentioned in
the previous section are applicable in this case, %too. FFinally,
much work remains to be done in cupturing the spatial relations
that commonly occur between obgects in natural scenes and

structuring them for use by the interpretation strategies.

II.&6 INFERENCING USING SIZE R}‘LATIONS

The sizes of objects tend to vary a great deal, even within a
single object class. This wvariability makes it difficult to
characterize an object class based solely on size in absolute

terms. Instead an object is often described or recognized in terms
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of its size Telative to the size of some other object. For
example, the actual height of a persuon is often less imporﬁant than
the relationship between the person’. height and +the heights of
other people or objects in the environment. This observation
suggests that object recognition can be based in part on relative

size relations.

Given the ability to identify some object with rteasonable
accuracy, that object’s size can be used to predict sizes for other
objects that are located nearby in the scene. The relation of the
region size to the object size caw also provide some information

about distance, elevation, and the perspective transformation.

Several tools were developed tu investigate the wuse of size

relations in image interpretation. An object size database was
built; it contains the expected sirye ranges for the heights and
widths of commonly occurring object:. A perspective module relates
the camera model and image Tegiwuns to real world surface

characteristics such as orientation. range. elevation, height, and
width. A strategy that uses both these tools was developed. The
strategy <consisted of labeling some tegion based on other features
such as color and shape and then accwessing the object size database
to +find the expected dimensions for the object label assiagned to
the region. These dimensions were passed to the perspective module

which calculated the range and elevation of the object.
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The strategy did not work well. One problem was the basic
inability to label any region with great accuracy. Ancther was the

variability of expected dimensions ctored as ranges of values in

the object size database; it was unclear whether to use the
minimum value, the maximum valuve, the mean value, or something
else. Also, the perspective mudule requires a camers model and
these details were only available ior one image. The perspective

module has never been extensively tested, so the validity of the
values 1t returned were usually in question. For these Treasons,

the strategy was not included in the interpretation process.

As further evidence of the ifficulties involved in using
object size information in interpretation, the sizes of house and
shutter were compared in the four images. Two different measures
of house size were used: the avea of the rectangle that bounded
those regions labeled as “"house—pavt" and the summed areas of those
same regions. The area of the shutter was simply thé area of the
shutter region. The ratios of houve to shutter are presented in
Table II. The variability exhibited precludes the reliable use of
size relations in obgject recognition in this context. Furthermore,
probleme with segmentation errors aﬁd occlusion make the recovery

of accurate size information very difficult.

The processes that develop the image segmentation and the
strategies for object recognition must be improved before object

size relations can be effe:tively exploited in image
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Object Extents

"Region Areas

Image 1 Image 2 Image 3 Image 4
324:1 270:1 327:1 816:1
60:1 82:1 66:1 " 80:1

(based on

Expected Area Ratio

stored values for expected heights and widths)
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interpretation. Some method of determining the camera parameters
would be helpful. Even when strategies for wusing size relations
have been developed they most likely will be used only as a means

of verifying hypotheses formulated by other strategies.

III. COMBINING THE STRATEGIES: INTERPRETATION

The strategies outlined above rely on color, size, shape, and
location Fe;tures to identify objyocts in a scene. Combining these
strategies with a simple blackboard-like hypothesis space [ERM80]
and a scheme for conflict resolution based on strateqy reliability
yields a fairly powerful image interpretation system. Frocessing
is serial, control is hardwired, and all thresholds and parameters

are set avtomatically.

The interpretation process proceeds as follows. The
segmentation routines produce a set of labels that divides the
image into regions. After initializing the hypothesis space and a
few parameters, the system extracts features for every region,
storing the calculated values in arrauys that can be accessed by
other procedures. (The values are also stored by region in the
hypothesis space. Each process/strategy invocation adds new
hypotheses to the space.) Next, spectral attribute matching is
performed and the resﬁlting hypotheses filtered after locating the
approximate bounds of sky and ground. Object exemplars are chosen

based on the preceding results and used to carry out region
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templating. Next a simple foliage f{inder locates regions likely to
represent foliage by thresholding saturation values. The system
then tries to locate shuttore based on rectangularity.,
height—-to-width ratio, and significant size. I+ shutters are
found, the surrounding regions are hypothesized to represént house
wall (or windows). One of the surrcunding regions is chosen as an
exemplar of house wall and other wail regions located using region
templating. The roof 1is identified wusing expectations about
rawblue and saturation values and size. Finally, regions are
grouped by object type and conflicts resolved based on the
reliability of the processes that generated the hypotheses

involved.

The results of applying this system to the four images are
shown in Figures 9-12. l.abels have been compressed into foliage.
house—~part, grass, sky, road. In general, the system performs
well. Sky., grass, and foliage +vegions are labeled accurately.
Most of the house has ' 2en recognized. There are many small
mistakes: house shadow is labeled 3s foliage: some tree highlight
and sky regions are labeled as hbusv, and so on. Some regions are

not labeled at all.

What can be done to improve the results? Many suggestions for
improving the individual strategies have been . outlined in the
previous sections. Other stratecgies need to be developed,

especially in the areas of space anid size relations. As these new
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Figure 9 Figure 10

Figure 12

Figure 11

Figures 9 - 12. Interpretation results for Images 1-4. Labels in
order of decreasing brightness: sky, house, foliage,
grass, road, unknown. (Some labels may be difficult

to distinguish due to flaws in reproduction.)
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strategiess are included control will become wmore important. The
system must wmove from a fixsd control flow to a flexible control
architecture that can decide where to focus the system’s attention
and which éfrategies to apﬁlg. [W4UB2a] [WEYSB21 Finally., many more
experiments must be designed and vun, in different domains and on
different images. The results aof these experiments will provide
the best suggestions for designing new strategies and improving

those already in use.
IV, CONCLUSIGNS

Experience with the simples sysctem described above and 1its
performance on several images provides some insights into the
process bfiimage interpretation. " ‘The most obvious of theée is that
any imageh interpretation' system must incorporate a great deal of
kno&ledge. This knowledge base must include information about the
entities and relations that canm and do occur in static images of
outdoor scenes, structured so that it can be efficiently accessed
and ~updated by the system. The cnmpleiitq of this information and
tﬁe‘structure inherent in the world of oUtdoor scenes suggest la
repfegéntation compoéed of different levels of abstraction, ranging
from simple edge elements "up" to nore abstract schemas (structures
that embody or aggregate knowledge about scenes and their
constitueﬁt objects and relations). Future research will help to
indicate tﬁe point at which suth knowledge should move from the

daclarative (e, g. object descriptions) to the procedural (e.g.
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processes that identify objects:. Lfforts to develop a robust,

consistent representation are currently underway. LWESS82b 1]

The experiments described in this paper have also demonstrated
the wutility of four types of features——size, shape, color, and
location——in abgject identification. Features of these tupes can be
used in a knowledge base to descrihe objects and in procedures that
implement generally—applicable strategies for recognizing objects
in scenes. Further Tesearch will be aimed at developing
finer—grained strategies and featuves to be used in identifying a

larger set of objects.

Finally, the workings of the cimple interpretation system have
shown that features and relations become most important after
having been incorporated within a variety of identification and
verification strategies: descriptions alone do not constitute an
interpretation system. Variety is the key word. Since all of the
strategies are error-prone, redundancy is required to achieve any

sort of sucess; strategies must compete, cooperate, and interact.

The strategies presented are simple and strengthened by
several assumptions and yet each strategy seems fairly powerful and
robust. Future work in different domains will test the validity of

this claim.

Strategies are control mechanisms. They correspond Toughly to
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the coordinated application of knowledge sources in a Hearsay
architecture CERMBO1, to meta-rules L[DAV791 or control rules
[AIKB0O] in a production system %o the processes attached to frames
[MIN751. While some commitments have been made to incorporating
both bottom—up and top-down procescing and parallel techniques for
employing alternative models , much work remains to be done in
choosing or developing an architecture of control that is powerful
enough to guide the interpretation process and handle such problems
as focus of attention, inferencing, and conflict resolution.
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