RELIABLE TEST DATA SELECTION STRATEGIES --
AN INTEGRATED APPROACH*¥*

Lori A, Clarke
Debra J. Richardson

COINS Technical Report 82-13
July 1982

Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

¥This paper appears in the Fourth Israel Conference on
Quality Assurance, 1982.

This research was funded in part by the National Science
Foundation under grant NSFMCS 81-04202.

procedure TRIANGLE(A, B, C: in natural;
CLASS: out integer: AREA: out real) is
ASQRD, BSQRD, CSQRD: integer: S: real:
s begin)
1 if (A < B) or (B < C) then
—— illegal input
CLASS :=z -1
AREA := 0.0;
else -—- A >= B >= C
— legal input
if (A /= B) and (B /= C) then
— triangle is scalene
ASQRD := A%A;
BSQRD := B¥B;
CSQRD := C*C;
if (ASQRD = BSQRD + CSQRD) then
-- right triangle
CLASS := 3;
0 AREA :=B % C / 2.0;
else -~ ASQRD /= BSQRD + CSQRD
— not right triangle

o=~y owum & w

- \D

1 S:=(A+B+C)/2.0;
12 AREA := sqrt(S*(S-A)¥(S-B)%®(S-C)):
13 if (ASQRD < BSQRD + CSQRD) then
-— acute triangle
14 CLASS := Uu;

else -— ASQRD > BSQRD + CSQRD
— obtuse triangle
15 CLASS := 5
endif;
endif;
16 elsif (A = B) and (B = C) then
-- equilateral triangle
17 CLASS := 1;
18 AREA := A%A*sqrt(3.0)/u4.0;
else —— (A /= B) or (B /= C)
-- isosceles triangle

19 CLASS := 2;
20 if (A = B) then
21 AREA = C ¥ sqrt(U®A%B-C*C) / 4,0;
else -- B =C
22 AREA := A ® sqrt(4%B%EC.A¥A) / 4.0;
endif;
endif;

endif;
f end TRIANGLE;

Figure 1. Procedure TRIANGLE

to 4 is the ccmpliment of the condition at nocde 1.
This evaluated branch predicate is first simplified and
then conjoined to the previously generated path
condition, resulting in the path condition

true and ~((a<b) or (b<e)) = (a>b) and (bde).

Symbolic interpretation of the statements on a
path P, orovides a symbolic representation of the path
computagion and path domain. The path computation

ClP;1 consists of the symbolic representation of the
output values. The symbolic representation of the path

domain D[P;] {s provided by the path condition. Note
that only ghe input values that satisfy the path
condition could cause execution of the path. Figure 2

shows the symbolic representations of the path domains
and path computations resulting from symbolic
evaluation of all paths in TRIANGLE.

Unlike the TRIANGLE example, most programs contain
loops. A symbolic representation of all executable
paths through such a program {s usually unreasonable
since there may be a large, or even infinite, number of
executable paths. One approach to this problem 1is to
replace cach 1loop with a closed form expression that
captures the effect of that loopz' . Using this
technique, a path may then represent a class of paths
that differ only by thelr number of loop iterations.
While this s a powerful technique, it is not always

Pl: s,1,4,16,19,20,22,f
DIP;J: (a-b>0)and (b-cz0)
ClPy1: cLass = 2
AREA = a * sqrt(U4.0%%*c - a%*2) / 4.0
P%: s,1,4,16,19,20,21,f
DIP,y: (a-b=0)and (b-c>0)

ClP5): CLASS = 2

AREA = ¢ * sqrt(4.0%a%b - c¥#2) / 4.0

?: $,1,4,16,17,18,f

D P3]: (a~b=0)and (b-c=0)

CIP3): CLASS = 1

AREA = a%'®#2#¥sqrt(3.0)/4.0
P?: $,1,4,5,6,7,8,11,12,13,15,f
DIP4): (a - b > 0) and (b - ¢ > 0) and
(a%*2 - b*¥2 - c%%2 > 0)
ClPyJ: CLASS =5
AREA = sqrt((-a%%y . 2#aR¥puapasp
QU MERCRND _ pEEY

. 25pUE2ECHED _ oY) / 16.0)

Pe, s,1,4,5,6,7,8,11,12,13, 14,f

glJ: (a~b>0)and (b-c>0) and

(ak%2 - b¥E#2 . k%2 ¢ 0)

CLASS = 5 ’

AREA = sqrt((-—a%¥y o 2¥ge¥p8p%sp
2884200 NND _ pry
28pRERQRED _ oEEN) / 16,0)

P?: - s5,1,4,5,6,7,8,9,10,f

DIPg]: (a=-b> 0)and (b-c > 0) and -

(a%#2 — pH#2 _ ok¥2 = ()

ClPgy: cLASS = 3

AREA = b * ¢ / 2.0
P $,1,2,3.F
DIP7): ((a - b < 0)or (b=-c<0)

C[P7]§ CLASS = -1
AREA = 0.0
Figure 2. Paths of TRIANGLE

of a, subset of _paths such as data

nutation analysis!/, and blindness testing 1 are
currently being explored but are not discussed further
here. 1In the next section, it is assumed that a
reasonably powerful method of path selection is being
applied and the test data selection strategies are thus
described for a selected set of paths.

successful. Other methods that guide in the Sﬁlegti n
flow'l+ 1 '1?.

Test Data Selection Strategies

A test data selection strategy should provide
guidance in the selection of test data for a program.
Ideally, executing the program on the selected data
reveals errors in the program or provides confidence in
the program's correctness. In general, program testing
detects an error by discovering the effect of that
error. It is possible, however, that an error on an
executed path may not produce erroneous results for
some selected test data; this is referred to as
coincidental correctness. For example, suppose that a
computation zza%*2 is incorrect and should be zza*¥*2;
if no test data other than az0 or a=z=2 are selected, the
error will not be detected. Although this appears to
be a contrived example, coincidental correctness is a
very real phenomenon. Test data selection strategies
must address this problem.

The testing literature has classified errors into’
two types according to their effect on the path domains
and path computations. If an incorrect path
computation exists, a computation error is said to have
occured. Such an error may be caused by an
inappropriate or missing assignment statement that
affects the function computed by the path. If a path
domain 1s incorrect, a domain error is said to have
occured. Domain errors can be further divided into
path selection errors and missing path errors. A path

1 3

takes on
a) nonextremal values
typical structures)
a) extremal values (erroneous processing of atypical
structures or insufficient storage);
5) a compound structure referenced in C[P] takes on
a) an empty value (erroneous initialization or
processing of underflow)
b) a.full value (erroneous processing of overflow)
-These guidelines are not applicable to the path
computations in TRIANGLE, since they do not contain
data manipulations.) '

A path computation may contain both arithmetic and
data manipulations, in which case all applicable
guidelines should be considered. It is important to
note that the guidelines may not all be satisfiable due
to the condition defining D[PJ] or the representation
of CIP;]. In selecting test data for pat: P of
TRIANGLg. for example, several guidelines could rat be
satisfied due to the constraints that a, b, ard ¢ be
positive and that b=c. These computation t=sting
guidelines subsume those proposed by Howden12 for
special values testing and extremal output vilues
testing, as well as the error-sensitive test case
analysis proposed by Foster9.

When the path computations fall into specialized
categories, the general computation testing guidelines
can be tuned to guide in the selection of an even more
comprehensive set of test data. For example, if a path
computation involves trigonometric functions, then
guidelines dependent upon their properties should be
exploited. Polynomial functions are another category
for which the guidelines can be refined. Under certain
assumptions, it is possible to demonstrate the
correctness of a polynomial path computation by means
of .testing. This is called polynomial testing and is
based on algebraic results, applicable only when an
upper bound on the algebraic complexity of the
feorrect" path computation is known. If the path
computation C[P;} should be a wnivariate polynomial of
naximal degree T-1, the selection of T 1linearly
independent test points is sufficient to determine
whether C[P;) is correct. If the path computaton C(P;]
should be a multivariate polynomial in K input values
of maximal degree T-1, C[P,] must be tested for
linearly independent test poin S in order to determine
that it is correct!l. The practicaltiy of polynomial
testing is limited to polynomials in few variables and
of low degree since the number of test points required
to determine correctness increases rapidly with the
number of variables and the degree.

(erronecus processing of

Domain Testing

Domain testing is based on. the observation that
points satisfying boundary «conditions are most
sensitive to domain errors. A path selection error is
manifested by a shift in some section of a path domain
boundary. A missing path error typically corresponds
to a missing path domain along some section of the
boundary of an existing path domain. Missing path
errors are particularly insidious, however, since it is
possible that only one point in a path domain should be
in the missing path domain. In this case the error
will not be detected unless that point happens to be
selected for ‘testing. Missing path errors cannot be
found systematically unless a specification is employed
by the test data selection strategy, as is done by the
partition analysis method'a-

The domain testing strategy5-2° selects test data
on- and near the boundaries of each path domain. The
boundary of a path domain is composed of borders with
adjacent path domains. For

strategy selects "on" test points, which 1lie on the

border and thus in the path domain being tested, and
"off" test points, which lie on the open side of the_
border and thus in an adjacent path domain. In such a

each closed border, the_

Figure 4. Border Shift Detected by Domain Testing

way, domain testing attempts to detect border shifts,
which occur when the border being tested is incorrect
-- that is, it differs from the correct border. If the
correct results are produced for each of the on and off
test points, the border must be "close™ to the correct
border. An undetected border shift can only occur |if
the on test points and the off test points lie on
opposite sides of the correct border. The undetectable
border shifts are kept "small™ by choosing the off test

. points as close,to the border being tested as possible.

In fact, with the proper selection of on and off test
points, a quantified error bound measuring the set of
elements placed in the wrong domain by an undetected
border shift can be provided. Figure 4 illustrates a
border _shift, where G is the border being tested, C is
the correct border, and the set of elements placed in
the wrong domain is shaded. This border shift is
revealed by testing the on points P and Q and the off
points U and V, since the off point V is in the wrong
domain. For a path domain border resulting from an
inequality predicate in two-dimensions (two input
values), the selection of four test data points (two on
points and two off points 1is most effective for
detecting border shifts. For an inequality border in
higher dimensions, 2*¥V (where V 1is the number of
vertices of the border) test data points (V on points
and V off points) must be selected for best results.
For an equality border, twice as many off points,
divided between the two sides of the border, must be
selected. A thorough description of the domain testing
strategy and its effectiveness is provided in3. Figurg
3 shows the test data selected for path Pl to satisfy
the domain testing strategy. The only closed border of
the path domain is (b-c=0), which has three vertices.
The figure indicates whether each datum is an onpoint
or an offpoint (above or below the equality border),
Notice that several of the points selected reveal the

missing path error, which is also detected by
computation testing.
The basic domain testing strategy described f{s

useful for testing path domain borders that involve
both arithemetic manipulations and data manipulations
in which the values of component selectors are known.
Complications in applying the strategy arise when the
values of component selectors depend on input values.
Due to the dependencies among components of a compound
structure and the component selectors, it may not be
possible to find good on and off test points for a
particular border. The intuitive concepts underlying
domain testing can be used as heuristics to test the
borders of a path domain. For instance, If a path
domain border refercnces a component of a compound
structure with a selector of unknown value it is

lmportant to test values both Inside and Just outside
the domain for both the selector and the component.
With the application of such heuristics, however, a
bound on the error cannot be quantified.

The domain testing stategy subsumes both the
boundary value testing and condition coverage
guidelines proposed by Myers15 as well as the extremal

input values testing proposed by Howden'2. Domain
testing is a relatively new tést data selection
strategy for which much further research is needed.
The strategy has been well defined for domains that are
continuous, linear convex polyhedra. This assumes that
the input space is continous and that none of the

interpreted branch predicates contain a disjunction and

all relational expressions are linear. Adequate
modifications have been proposed for both nonconvex and
discrete domains, although several problems remain to
be addressed®: 6. As yet, however, the strategy has
only been sufficiently defined for linear borders.
Modifications have been proposed that require the
selection of on and off test points near each of the
local minima and maxima of a nonlinear border.
Unfortunately, the practical applicability of domain

testing 1is limited to interpreted branch predicates of
low degree.

An Integrated Approach

Combining the computation and domain testing
strategies results in the selection of data that more
rigorously test a path than other strategies proposed
to date, There are two major drawbacks, however,
associated with this approach. First, these strategies
often produce a prohibitively excessive number of test
points. Second, selecting data to satisfy these
strategies is often a complex process. This section

- discusses the need to integrate these strategies so
that the overall number of test points is reduced; and
explores the possibility of providing automated support
for the test data selection process.

When considering the number of ° test points
associated with either strategy, it is important to
note that many of the test data that satisfy one
selection criterion also satisfy others. This overlap
occurs within a strategy as well as between the two
strategies. For instance, it commonly cccurs that data
chosen to test all the borders of a path domain also
‘'satisfy the polynomial testing criterion for a path
computation. For path P, in TRIANGLE, many of the data
points selected for domain testing satisfied
computation testing criteria.

Although the guidelines outlined for both
computation and domain testing are fairly well-defined,
a systematic procedure for actually selecting the data
needs to be derived. Such a procedure could be
designed so as to maximize the number of criteria
satisfied by each selected data point, thereby
ninimizing the total number of selected test points.
It is improbable, however, that the cost of finding a
ninimal set of test data would be cost-effective in the
long run. A heuristic approach, which exploits the
overlap among the criteria in an attempt to reduce the
number of selected points, should certainly be
developed. The domain testing criteria are generally
very explicit about the test data, whereas some of the
computation criteria can be satisfied by a number of
different data points. Thus, domain testing criteria
should probably be satisfied before the computation
testing criteria are applied.

Another consideration for reducing the number of
test points is to provide various levels of testing.
Only the highest level of testing would require that
all the test data selection criteria be satisfied.
Life eritical software would utilize this testing level
but less critical software could utilize lower levels.
In developing these testing levels, some of the more

-could be weakened for the lower levels.

combining computation

costly criteria would

only be associated with t
higher testing levels. i

Moreover, some of the criteria
For example,
probabilist’ic arguments have been made for greatly
reducing the number of test points that must be
selected for polynomial testing without sacrificing too
much reliability7. Similarly, a weaker version of
domain testing, requiring considerably fewer test
points, has also been evaluated®. The development of
testing levels must consider the cost and cost benefits
associated with each test data selection criteria.
Moreover, these testing levels should also be
associated with appropriate path selection strategies.
It is not reasonable to pair a weak path selection
criterion, such as statement coverage, with the highest
level of test data selection.

Even if well defined procedures are available for
satisfying a testing level, automated support for the
testing process is required. Evidence supports this
need, since even a weak testing criterion such as
statement coverage is difficult to achieve without a
tool to monitor program coverage. Symbolic evaluation
tools provide a symbolic representation of the program,
but. automatic support for path selection and test data
selection are needed as well. While these tasks can
not always be completely automated, the need for human
interaction can be minimized. Moreover, bookkeeping
support tools are .needed to keep track of all the
information, such as stubs, drivers, input/output
pairs, and test results, associated with a large
testing endeavor. In some instances, specifications
describing the expected output can be utilized so that
the results from testing a program can be automatically
verified. As is evident by the guidelines provided for
computation and domain testing, reliable testing is a
complex process. It is wunrealistic to expect to
achieve a reliable level of testing without providing
programmers with appropriate evaluation and bookkeeping
tools to support this process.

In addition to investigating the integration and
automation of test data selection, some theoretical and
experimental evaluations should be undertaken. While
some of the test data selection criteria have been
carefully investigated, others are only heuristics.
Some criteria may subsume others and the interaction
among some criteria is not well wunderstood. As with
polynomial testing, more reliable criteria can be
developed for other well defined classes of
computations, such as boolean expressions.
Experimental studies evaluating the actual
‘effectiveness of these strategies for detecting errors
are also needed. -Intuitively, it can be argued that by
and domain testing, all classes
of errors, including coincidental correctness, can
almost be eliminated. Because of the large number of
test data selected for a path and because these data
points are scattered throughout the path domain, even
missing path errors are unlikely. It would be
beneficial to experimentally evaluate the different
levels of testing so that reliability measures can be
associated with each level. For example, the expected

meantime between failures or expected ratio of
remaining errors to statements would be wuseful
statistics that would help managers choose the

appropriate testing level for a program.

In sum, this paper provides a description of test
data selection strategies aimed at detection of
computation and domain errors. Combined they provide a
strong basis for a reliable testing strategy. There
still remain several unanswered questions on how to
refine, integrate, automate, and evaluate the test data
selection process.

- . .

10.

1.

12.

13.
14,

15.
16.

17.

18.

19.

20.

References

R.S. Boyer, B. Elspas, and K.N. Levitt, "SELECT~-A
Formal System for Testing and Debugging Programs
by Symbolic Execution,” Proceedings of the
International Conference on Reliable Software,
April 1975, 23u-244,
T.E. Cheatham, G.H. Holloway, and J.A. Townley,
nSymbolic Evaluation and the Analysis of
Programs," IEEE Transactions on Software
Engineering, SE-S,4, July 1979, 402-%17. —
L.A. Clarke, "Automatic Test Data Selection
Techniques,” Infotech State of the Art Report on
Software Testing, 2, September 1978, u3-64.

L.A. Clarke and D.J. Richardson, "Symbolic
Evaluation Methods -- Implementations and
Applications," Computer Program Testing,
North-Holland Publishing Co., B.Chandrasekaran and
S.Radicchi (eds.), 1981, 65-102.

L.A. Clarke, J, Hassell, and D.J. Richardson, ™A
Close Look at Domain Testing," IEEE Transactions
on Software Engineering, SE-8, 4, July 1982,
380-390.

M. Davis, "Hilbert's Tenth Problem is Unsolvable,®
American Mathematics Monthly, 80, March 1973,
233-269.

R.A. DeMillo and R.J. Lipton, "A Probablistic
Remark on Algebraic Program Testing,” Information
Processing Letters, 7, June 1978.

R.A. DeMillo, F.G. Sayward, and R.J. Lipton,
"Program Mutation: A New Approach to Program
Testing ,® State of the Art Report on Program
Testing, 1979, Infotech International.

K.A. Foster, "Error Sensitive Test Case Analysis
(ESTCA)," IEEE Transactions on Software
Engineering, SE-6, 3, May 1980, 258-264.
W.E. Howden, "Methodology for the Generation of
Program Test Data," IEEE Transactions on Computer,
C-24,5, May 1975, 55u4-559.

W.E. Howden, "Algebraic Program Testing," ACTA
Informatica, 10, 1978.

W.E. Howden, "Functional Program Testing," IEEE
Transactions on Software Engineering, SE-6,2,
March 1980, 162-169. ’
J.C. Huang, "An Approach to Program Testing," ACM
Computing Surveys, 7,3, September 1975, 113-128.
J.W. Laski, "A Hierarchical Approach to Program
Testing," Department of Systems Design, University
of HWaterloo, Waterloo, Ontario, Canada, Technical
Report No .55CFW130779.

G.J. Myers, The Art of Software Testing, John
Wiley & SOns. New Yo York New York, 1979.

S.C. Ntafos, "On Testing With Required Elements,"
Proceedings of COMPSAC '81, November 1981,
132-139.

S. Rapps and E.J. Weyuker, "Data Flow Analysis
Techniques for Test Data Selection," Computer
Science Department, New York University, New York,
New York, Technical Report No.023, December 1981.
D.J. Richardson and L.A. Clarke, "A Partition
Analysis Method to Increase Program Reliability,"
Fifth International Conferene on Software
Engineering, March 1981, 244-253.

E.J. Weyuker, ™An Error-Based Testing Strategy,"
Computer Science Department, New York University,
New York, MNew York, Technical Report No.027,
January 1981.

L.J. White and E.I. Cohen, "A Domain Strategy for
Computer Program Testing,"” IEEE Transactions on
Software Engineering, SE-6, May 1980, 2u7-257.
S.J. Zell and L.J. White, 9"Sufficient Test Sets
for Path Analysis Testing Strategies," Proceedings
of the Fifth International Conference on Software

Enginecring, 1981, 184-191,

