Generalized Type Specification for

Database Systems

David W. Stemple
Computer and Information Science Department
University of Massachusetts
Amherst, Mass. 01003
82-15

Generalized Type Specification for Database Systems

i

Abstract

A generalized type specification (GTS) technique for defining database sytems
is presented. The purpose of GTS is to provide a unified treatment of operation
and data type definition in order to specify well-constrained database systems
clearly and in a manner which leads to well-structured implementation
techniques.

Examples of GTS definitions of data and operation types from both relational
and Codasyl models are given. In the process, various concepts of semantic data
models are expressed in GIS terms. Among the more complex of these are convoys,
cover aggregations, Codasyl sets, and mandatory set membership. It is shown how
the concept of a database type leads to explicit statements of such diverse
constraints as referential integrity and the global uniqueness of Codasyl
database keys.

Operation types are introduced as a means of specifying both transition
constraints and the composite operations involved in automatic set maintenance
and triggers. The treatment of operation types demonstrates the validity of
viewing triggers and certain aspects of Codasyl schemas, such as set occurrence
selection, as operation type definition. Though the implementation aspects of
GTS are beyond the scope of this paper, it is suggested that GIS offers an
approach to data and operation type definition which can lead to the effective
implementation of well-constrained database systems.

Generalized Type Specification for Database Systems

Introduction

The goal of this paper is to describe an approach ;o type definition which
facilitates the clear specification and effective implementation of complex
database sytems. A specification technique is presented which is based on first
order predicate logic and sets. The technique is not limited to any data model
and is applied to both the data and operation types in a system being defined.
For this reason, the technique is called generalized type specification (GTS).

There are three basic ideas behind generalized type specification. The first
is that a type is composed of a set and a defining collection of properties.

The collection of type-defining properties can be expressed by a type-defining
predicate which must be true for every instance of the type and false for
everything else. The second idea is that operations, being functions, are
definable as subsets of Cartesian products, and thus should be amenable to a
specification technique capable of defining arbitrarily constrained relations.
The third idea is that all constraints on a database system, whether in the data
model, or specified explicitly as semantic constraints, existence conditions,
operational constraints, relational dependencies, automatic set maintenance, or
even triggers, should be specifiable as type-defining predicates of the types
which constitute the system.

In the following, type will be formally defined and four methods of type
construction will be identified and described. The four kinds of construction
will then be applied to data type definition, showing in the process how a wide
variety of semantic constraints can be incorporated easily into GTS type

definitions.

Among the examples is the construction of types which'capture the structure
of convoys and cover aggregation [CODD79]. Aspects of the Codasyl system are
also specified. This leads to a discussion of operation types with examples
from both Codasyl and relational models.

Finally, relational dependencies and normal forms are placed in the context
of GTS, and it is shown that while dependencies are type defining properties of
relation types, normal forms can only be expressed either as predicates on the
set of all legal instances of a relation type (not as predicates evaluatable on
individual relations) or as theorems involving type definitions, essentially

predicates on predicates.

Types

A type is defined as a pair consisting of a set and a predicate of one free
variable. The set is called the value set of the type and contains exactly
those elements in the universe for which the predicate is true. The predicate
is called the type~defining predicate or intension of the type. We denote the
type-defining predicate of T by the clause
typelt] is T

Thus type T is defined by
T ::= <VS, typelt] is T> where t ¢ VS iff typelt] is T

VS is used in the following as a function on a type, and is defined by
VS(T) ::= {t:typelt] is T}

A member of the value set of a type is called an instance of the type.

This definition is not significantly different from that given by Deutsch

[(DEUT801.

Type construction

Type definition: in GTS uses four kinds of type construction. The first

construction is simple classification. A type T is defined by simple

classification whenever the type definition is of the form

Define typelt] is T by: t ¢ X
where X is an enumerated set or the value set of a previously defined type. 1In
the following we will often leave some types undefined, such as INTEGERS,
POSINTS (positive integers), and NATNUMS (natural numbers), and define new types
in terms of the undefined types by use of classification and the other
constructors defined below.

The second construction is composition/decomposition. Composition refers to

forming tuples, and decomposition refers to extracting parts of tuples. A type
T is defined by composition when the type definition is of the form:

Define typelt] is T by:
t ¢ VS(A1) X...X VS(An) where Ai is a type for i = 1,n.

In the following, COMP(A1,..., An) will mean VS(A1) X...X VS(An), and
t IS A TUPLE IN COMP(A1,...,An)

will stand for the type-defining predicate of composition, t € COMP(A1,...,An).
Composition is equivalent to Smith and Smith's aggregation [SMIT77], except for
certain instance level assumptions in the aggregation concept. See the
treatment of specialization below for a discussion of these assumptions.

It will sometimes be useful to associate variables with the elements of a
tuple. This will be written

t IS A TUPLE(al,...,an) IN S defined as t ¢ S and t = <al,...,an>

Other useful notation for tuples and sets of tuples is defined by

For t and Al,...,An defined as above,
Ai(t) ::= ai

If X = {Aj1,...,Ajm} & {A1,...,An} and the ji values ascend with i,
X(t) ::= <Aj1(E),...,Ajn(t)>

i
If X is as above and ts & COMP(A1,...,An), then
X(ts) ::= {X(t):t € ts} E

The last form, X(ts), is relational%ﬁrojection.

Decomposition refers to the use of projection on the value set of one type to
form the value set of another type. A type D is defined by decomposition of
type T, defined above by composition, if D's definition is of the form

Define typeld] is D by:
d IS A TUPLE IN X(VS(T))
where X = {Aj1,...,Ajn} as above.

X(VS(T)) is defined since VS(T) is a set of tuples. X(VS(T)) will be written
DCOMP(T,X), and if X is enumerated, the set brackets will be dropped. For
example,

DCOMP(T,X) ::= DCOMP(T,Aj1,...,Ajn)

The third construction is grouping. This is basically the same as Brodie's
association [BROD81]. A type T is defined using grouping when the type-defining
predicate is of the form

Define typelt] is T by:
t & VS(T')
where T' is a previously defined type.

VS(T) is thus the power set of VS(T'). In other words, the value set of T,
formed by grouping instances of T', consists of all the subsets of the value set
of T'. The following notation is used for the above predicate

t IS A SET IN SETS-OF(T')
SETS-OF is a function on a type and is defined as the power set of the type's

value set.

The fourth construction is-derivation. It is used to define types whose value
sets are subsets, intersections, unions, and differences of the #alue sets of
previously defined types. A type T is defined by derivation wheh its

specification is of the form

Define typelt] is T by: Pred

where

1. Pred is equivalent to a well formed formula of the first order
predicate logic,

2. quantifiers may only be over instances of types defined using SETS-OF,
and

3. predicates and functions defined on the instances of referenced,
predefined types may appear in Pred. (This includes set predicates
(€,=) and set functions (U,N,-) for types defined using SETS-OF, and
arithmetic operators (+,-,%,/) and relational predicates (<,>) for
types defined using numbers.)

Derivation may be used to define subtypes. Type S is defined to be a subtype
of T (or type T to be a supertype of S) if and only if PS, the type-defining
predicate of S, implies PT, the type-defining predicate of T. A sufficient
condition for S to be a subtype of T is for PS to be equivalent to PT A P, for
some predicate P. Subtype and supertype are obviously related to specialization
and generalization [SMIT77], but are not the same (see below).

Derivation predicates will often be combined with composition and grouping
predicates to avoid defining intermediate types when only the resulting type is
of interest. The LIST example in the next section uses a combination of
composition, grouping, and derivation, all in one predicate.

This set of four kinds of construction is based on Brodie's conjecture that

his three constructors, aggregation, generalization, and association, may be

sufficient to the task of defining any interesting semantic data model [BROD811].

Examples of GTS applied to data

The use of GTS constructions to define data types will now be illustrated by

' examples.

(The clause "IS IN S" is synonomous with "¢ S" if S is a set or

" meVS(S)" if S is a type.)

I. Classification

1.

2.

Define typel je] is JOBCLASS by: je IS IN {'SEC', 'TRUCKER'}

Define type[d] is DISTANCE by: d IS IN NATNUMS

II. Composition/decomposition

1.

III.

Define typelet] is EMPTUPLE by:
et IS A TUPLE IN COMP(ENO,DNO,ENAME,SALARY,JCLASS)

The value set of EMPTUPLE is a set of tuples. An instance of the type
is a tuple not a relation.

Define typelen] is ENONAME by:
en IS A TUPLE IN DCOMP(EMPTUPLE,ENO,ENAME)

The difference between DCOMP(EMPTUPLE,ENO,ENAME) and COMP(ENO,ENAME) is
that the DCOMP set is a subset of EMPTUPLE's value set which may have
been restricted by derivation predicates. For example, EMPTUPLE's ENO
may have to be above 500 for names starting with "Z". ENONAME as
defined would inherit this constraint, but would not if defined simply
with COMP(ENO,ENAME). However, ENONAME need not have any instance
level association with EMPTUPLE (or with EMPS defined below), since
ENONAME could be used to form a relation of numbers and names for
retired employees who are no longer recorded in the EMPS relation.

Grouping

Define typelr] is EMPS by: r IS A SET IN SETS-OF (EMPTUPLE)

This defines the relation type EMPS, each instance of which is a
relation of EMPTUPLE tuples. The value set of EMPS is a set of
relations, i.e., a set of sets.

Define typellist] is LIST by:

list IS A SET IN SETS-OF (COMP(POSINTS,ELEMENT,POSINTS))
AND 3 le1l SUCH THAT 1le1 IS A TUPLE(1,ell,n) IN list

AND 3 lem SUCH THAT lem IS A TUPLE(m,elm,m) IN list

AND ((le IS A TUPLE(i,eli,j) IN list) IMPLIES

(((i # j) IMPLIES (3 EXACTLY ONE TUPLE(j,elj,k) IN 1le))

AND ((i # 1) IMPLIES (3 EXACTLY ONE TUPLE(k,elk,i) IN 1le))))

This defines a list type, adapted from [FLEC71]. The first existential
quantification clause guarantees a first element, the second, a last
element, the third, exactly one successor for all elements but the last
(i = j in the last), and the fourth specifies exactly one predecessor
for all but the.first element.

IV, Derivation

1. Define typelal is AGE by: a IS IN POSINTS AND a < 200

2. Define typelt] is TRUCKERS by: t IS IN EMPS AND JCLASS(t) IS
{'"TRUCKER '}

3. Define typelul] is UNIONEMPS by: u IS IN TRUCKERS OR u IS IN SECRETARIES

Constraints

Nearly all constraints of the various database management systems and
semantic data models can be expressed as type-defining predicates which specify
the types of a database system. Those which cannot be captured in this way
inelude type naming rules, normal forms, and other "meta-constraints". 1In
relational systems, there are four levels of data type definitions, and two of
operation type definitions, each of which has a kind of constraint associated
with it. In the following, the data constraints of each of the four levels are
discussed. The operational constraints are left to the section below on
operation types.

The first level of constraint is contained in the domain definitions. Domain
definitions in the relational model are of the form

Define typeld] is D by:
d IS IN PRIMITIVE AND DOMAIN-CONSTRAINT

where DOMAIN-CONSTRAINT is a derivation predicate on the free variable d, and
PRIMITIVE is one of the primitive simple types of the system being used.
The next level of constraining is in the form of tuple constraints, which are

parts of a tuple type definition. Tuple type definitions are of the form

Define typelt] is T by:
t IS A TUPLE IN COMP(A1,...,An)
AND TUPLE-CONSTRAINT
where TUPLE-CONSTRAINT is a derivation prediqéte of the free variable ¢t.
Relation constraints are clauses in relation type definitions. Relation type
definitions are of the form
Define typelr] is R by:
r IS A SET IN SETS-OF (COMP(A1,...,An))
AND RELATION-CONSTRAINT
where RELATION-CONSTRAINT is a derivation predicate on the free variable r.
One important relation constraint is that certain columns be a key of a
relation type. For example, suppose that ENO is to be a key of type EMPS
defined above. First, for r IN SETS-OF(COMP(A1,...,An)) and K = {Aj1,...,Ajm}

as above, define the clause

KISAKEYOF r ::
FOR ALL ti,tj IN r ((K(ti) = K(tj)) IMPLIES (ti = tj))

This defines KEY as a property of a relation. (If K consists of one member, the
set brackets will be dropped.) To impose the key constraint on a relation type,
the clause must be included in a type definition. For example, the definition
of EMPS may be amended to read
Define typeles] is EMPS by:
es IS A SET IN SETS-OF (EMPTUPLE) AND ENO IS A KEY OF es
The key constraint cannot be specified as a type-defining property of the
tuple type. Functional (and other) dependencies can be specified in the same
manner and will be discussed separately.
Aggregate constraints are another form of relation constraints. They are
simply predicates which use functions on sets of tuples, such as average or

count, to refine a relation type.

Interrelational constraints require a type constructed by forming Puples
composed of relations. This is the fourth level of data type definition needed
for a well-constrained set of relational types.

Consider interrelation constraints wherein certain values in one relation (an
instance of one relation type) are constrained to be in some relationship to
certain values in a simultaneously occurring instance of another relation type.
There is really no way to define such constraints as type-defining properties of
either of the two relation types, since such constraints need not have any
effect on the value set of either type. As discussed by Hammer and McLeod
(HAMM761, a derived relation could be formed, say by a join, and constrained in
the manner in which any other relation could be constrained. Sharman [SHART76]
constructs a multilevel graph to facilitate the expression of interrelational
constraints. In the following, an approach similar to Sharman's is taken, but
no new type constructors are required.

Take, for example, the case in which EMPS is the relation type defined above
and DEPTS is defined by

Define typeld] is DEPTTUPLE by:

d IS A TUPLE IN COMP(DNO,DNAME,LOC,NUMEMPS)

Define typelds] is DEPTS by:
ds IS A SET IN SETS-OF (DEPTTUPLE)

In order to express the interrelation constraint that the departments
referred to in EMPS be exactly those in DEPTS, the following specification may

be written

Define typelecdb] is COMPANY-DBASE BY:
cdb IS A TUPLE (ds,es) IN COMP(DEPTS,EMPS) AND DNO(es) = DNO(ds)

Each instance of COMPANY-DBASE is a tuple containing one relation each of

10

types EMPS and DEPTS. An instance of COMPANY-DBASE is what is normally called a
staté of the database. Any type-defining property of such types, which will be
calléd relational database types, is a constraint on legal states of the
dataﬁase. Those constraints which cannot be expressed in the type~defining
predicates of the constituent types are interrelational constraints and in GTS
become database constraints, parts of the database type definition.

Many of the semantic constraints of various semantic data models are easily
expressed by clauses in database type-defining predicates. For example, the
clause, DNO(es) = DNO(ds), specifies a referential integrity constraint
[CODD79]. Existence constraints are similar and are illustrated by a simple
example, .

Suppose the following two type definitions are added to the company database.

Define typeld] is DEPENDENT by:
d IS A TUPLE IN COMP(ENO,NAME, AGE)

Define typeldr] is DEPENDENTS by:
dr IS A SET IN SETS-OF (DEPENDENT)

Suppose further that a DEPENDENT tuple is not to be allowed in the database
unless there is an EMPS tuple with a matching ENO component currently in the
EMPS part of the database. This is specified in the database type definition

Define typelecdb] is COMPANY-DBASE by:
cdb IS A TUPLE(ds,es,dr) IN COMP(DEPTS,EMPS,DEPENDENTS)

AND DNO(es) = DNO(ds)
AND ENO(dr) € ENO(es)

The last clause expresses an existence dependence of dependents on employees.
Note that such a constraint could only be expressed in the type definition of

DEPENDENTS if there were implicit instance level interdependencies already

assumed. The difference between aggregation and composition referred to above,

1

and the difference between specialization and subtype lies in the existence of
such interdependencies, absent ib GTS composition and subtypes, present in
aggregation and specialization., :

Suppose, for example, SECRETARIES is specified by

Define typelss] is SECRETARIES by:
ss IS A SET IN EMPS AND JCLASS(ss) IS {'SEC'}

SECRETARIES is a subtype of EMPS but not a specialization, since in GTS there is
no impliecit assumption about the coexistence of instances of related types. In
order to make SECRETARIES a specialization of EMPS, the database type
COMPANY-DBASE could be specified by

Define typelcdb] is COMPANY-DBASE by:

edb IS A TUPLE(ds,es,ss) IN COMP(DEPTS,EMPS,SECRETARIES)

AND ss ¢ es

Generalization, of course, requires a similar interpretation, although both

it and specialization need the application of DCOMP if the general type is

composed from less constituent types than the specialized type.

Convoys, cover aggregrations, and partitions

To build types which faithfully represent convoys, cover aggregations
[CODD79], associations [BROD81] (different from Schmid's associations
[SHMIT71), and aggregates [HAMM78] (different from Smith and Smith's aggregates
[SMIT77]) no additional constructors are needed. The following illustrates the
use of GTS constructions to define types which capture the semantics of ships
and convoys. The existence of definitions for the simple types, SHIPID, STYPE,
NAME, CONVOYID, FLAGSHIPID(=SHIPID), and NUM(=NATNUMS) is assumed.

Define typels] is SHIP by: s IS A TUPLE IN COMP(SHIPID,STYPE,NAME)

Define typelss] is SHIPS by: ss IS A SET IN SETS-OF (SHIP)
AND SHIPID IS A KEY OF ss

12

Define typele] is CONVOY by: ¢ IS A TUPLE(cid,fsid,ss,n) IN
COMP(CONVOYID,FLAGSHPID,SHIPS,NUM) AND fsid IS IN SHIPID(ss)
AND n IS COUNT(ss) i

Define typelcs] is CONVOYS by: c¢s IS A SET IN SETS-OF (CONVOY)
AND CONVOYID IS A KEY OF cs

This defines two relation types, SHIPS and CONVOfS, whose tuples represent
ships and convoys, respectively. Each convoy tuple contains as one component a
set of ship tuples. Thus, CONVOYS relations are not in first normal form.
CONVOY tuples are different from Hammer and McLeod's aggregates [HAMMT78] in
that they have attributes, Attributes such as NUM are tied to sets of ships in
a manner totally consistent with that used in defining any tuple type.

Another difference between Hammer and McLeod's aggrégates and this use of GTS
SETS-0OF types is that aggregates seem to imply some instance level connection
between the aggregate type and its base type. For example, in Hammer and
McLeod's SHIPS/CONVOY example there appears to be the implicit assumption that
aggregates at any state will be formed from ships in existence in that state.
In GTS this must be made explicit.

In the following database type definition, the explicit relationship between
'instances is defined. First, for S a set and SS a set of sets, define the
predicate

SS PARTITIONS S ::=
S = UNION(SS) AND
FOR ALL si,sj IN SS ((si # sj) IMPLIES (siNn sj = @))
Using this predicate
Define type[ndb] is NAVYDATABASE by:
ndb IS A TUPLE(ss,cs) IN COMP(SHIPS,CONVOYS)
AND SHIPS(cs) PARTITIONS ss
In this way the instance level semantic connection between convoys and ships is

expressed explicitly. This definition represents the fact that a ship may be in

only one convoy, and that every ship must be in a convoy.

13

It should be clear that a similar treatment could be given cover aggregation
in which the partition predicate is replaced by a simple existence constréint as
in the EMPS, DEPENDENTS example above.

The CONVOYS relation is clearly not in first normal form. It may be
desirable, indeed in some implementations it could be required, that there be a
set of "simple"™ types in any system which constitutes a basis for all component
types in the system. A basis is a set of types, the instances of which may be
used to derive the simultaneously occurring instances of all other types in the
system. In some implementations simple might mean first normal form relations.

If such were a requirement the SHIP type could be amended to

Define typels] is SHIP by:
s IS A TUPLE IN COMP(SHIPID,STYPE,NAME,CONVOYID)

and CONVOY to
Define typelc] is CONVOY by:
¢ IS A TUPLE(cid,fsid,ss,n) IN COMP(CONVOYID,FLAGSHIPID,SHIPS,NUM)
AND fsid IS IN SHIPID(ss) AND n IS COUNT(ss) AND CONVOYID(ss) = {cid}

The last clause in this definition requires that only ships having the
correct convoy id may be in the set of ships of a convoy.

Decomposition (DCOMP) may now be used on the CONVOY type to produce a first
normal form relation SCONVOYS which still maintains the semantic integrity of
the more complex CONVOYS. SCONVOYS is specified by

Define typelscs] is SCONVOYS by:
scs IS A SET IN.SETS-OF (DCOMP(CONVOY,CONVOYID,FLAGSHIPID,NUM))

This defines SCONVOYS to be equivalent, as a type, to CONVOYS without the
ship set column. In order to constrain SCONVOYS to the same instance level
semantics as CONVOYS, the database type NAVYDATABASE must be specified by

Define typelndb] is NAVYDATABASE by:
ndb IS A TUPLE(ss,cs,scs) IN COMP(SHIPS,CONVOYS,SCONVOYS)

14

AND SHIPS(cs) PARTITIONS ss AND SCSATTRS(cs) = scs
where SCSATTRS = {CONVOYID,FLAGSHIPID, NUM}.

The laét clause requires that the simple relation SCONVOYS be linked
semanticaily to CONVOYS at every state of the database. Thus, CONVOYS could be
used to derive SCONVOYS, or more importantly, SCONVOYS could be used to derive
CONVOYS. The two simple relation types SHIPS and SCONVOYS form a basis for the
database type.

It is often convenient to deal in an implementation with simple base types,
but use the more robust types to express complex integrity constraints. This is
an alternative to the technique of the semantic data model of Hammer and McCleod
[HAMM76] in which constraints are expressed by using a query facility to
identify sets of constrained data and constraining data. Which of these
approaches is better will be determined by their software and human engineering
aspects.

Though it will not be discussed here, it should be reasonably clear from this
brief discussion, that view definition can be accomplished in GTS by use of
decompositions and derivations from database types (and associated operation

types).

Codaysl constructs

Models which use constructs equivalent to Codasyl sets (cosets) can be

specified in a straightforward manner using GTS constructions. Consider the two

record types and coset in the data structure diagram

15

DEPT-REC

SALES-VOL

SALES-REC

The following type definitions capture the essential structure of a Codasyl
treatment of this diagram.

Define typeld] is DEPT-REC by:
d IS A TUPLE IN COMP(DBKEY,DNO,DNAME)

Define typeldf] is DEPT-FILE by:
df IS A SET IN SETS-OF(DEPT-REC) AND DBKEY IS A KEY OF df
AND DNO IS A KEY OF df

Define typels] is SALES-REC by:
s IS A TUPLE IN COMP(DBKEY,DNO,ITEM,VOL)

Define typelsf] is SALES-FILE by:
sf IS A SET IN SETS-OF (SALES-REC) AND DBKEY IS A KEY OF sf

Define typelsol] is SVSETOCC by:
so IS A TUPLE IN COMP(DEPT-REC,SALES-FILE)

The last definition specifies the structure of coset occurrences relating
department records and sets of sales records. Sets of sales records are defined
by the SALES-FILE type definition, thus the type appears as an argument to the
COMP function., The SVSETOCC definition does not stipulate that the sales
records' DNO match the DNO of the department owner. For purposes of
illustration, this is left to the definition of the insert type definition in
the next section.

To define the type of coset occurrence collections, the following is

specified

16

Define typelsvs] is SALES-VOL by:
svs IS A SET IN SETS-OF (SVSETOCC) AND DEPT-REC IS A KEY IN svs
AND SALES-FILE(svs) PARTITIONS UNION(SALES-FILE(svs))

1
The last two clauses express the properties which are poSsessed by any coset,
namely that each member occurrence may be related to onlf«one owner occurrence.

Again, - a database type is needed to express more complex constraints such as
the global keyness of database keys (DBKEY), and mandatory membership of sales
records in sales volume cosets.

Define typelds] is type DEPTSTORE by:

ds IS A TUPLE(df,sf,svs) IN COMP (DEPT-FILE, SALES-FILE, SALES-VOL)
AND {DBKEY(df),DBKEY(sf)} PARTITIONS UNION(DBKEY(df),DBKEY(sf))
AND SALES-FILE(svs) PARTITIONS sf.

The next to last clause expresses the property of database keys that they be
unique across the complete database. The last clause asserts that sales records
are mandatory members of the SALES-VOL set.

In order to use the Codasyl set structure as a primitive to avoid the
detailed specification each time it is required, a predicate involving the
function COSET (a composite constructor) could be defined by

es IS IN COSET(OWNERTYPE,MEMBERTYPE) ::=

cs IS A SET IN SETS-OF (COMP (OWNERTYPE ,MEMBERTYPEFILE))

AND OWNERTYPE IS A KEY OF cs

AND VS(MEMBERTYPEFILE) IS SETS-OF (MEMBERTYPE)

AND MEMBERTYPEFILE(cs) PARTITIONS UNION(MEMBERTYPEFILE (cs)).
Then the definitions of SVSETOCC and SALES-VOL could be replaced by

Define typelsvs] is SALES-VOL by:
svs IS A SET IN COSET(DEPT-REC,SALES-REC)
Similar treatment could be used to define mandatory membership and other
primitives of the Codasyl model. This approach to extending the type
constructors is an alternative to splitting types into high-level types of a

data model and low-level specifiable types, or type concepts and types[LOCKT79].

17

In order to specify automatic coset membership, GTS needs to be applied to
operation types. In the next section, definitions of operation types will be
discussed and the automatic membership of sales records will be specified using
the composition of Codasyl operations store and insert. This is the same view
used in the implementation of Codasyl schemas reported in [STEM76], where it was
shown that Codasyl schemas could be used to generate tailored operation
implementations which were, in effect, implementations of composed operation

types.

Operation types

As stated by Deutsch [DEUT80], type systems may be defined for procedures as
well as for data. In the following, GTS is applied to database operations. The
motivation for this is twofold. First, it is necessary to build type
definitions for operations in order to express operational or state transition
constraints [HAMM75] as type-defining properties. Second, certain capabilities
of existing schema languages entail, in effect, the specification of augmented
operation types. Most notable among these is the automatic set membership
feature of Codasyl schemas. In the following, it will be demonstrated that
these two kinds of constraining facilities can be specified through use of
derivation and composition in the definition of operation types.

Before turning to the more complex case of Codasyl set maintenance, the
operation type for inserting tuples into EMPS relations, as defined above, will
be specified.

Inserting a tuple into a relation is a function of two variables, the domains

of which are the value sets of the relation type and its tuple type. The range

18

of the function is the relation type's value set. This is normally expressed by
a statement of the form

INSEMP : EMPS % EMPTUPLE -> EMPS
This, of course, st@tes that INSEMP is a functional subset of the product
EMPS X EMPTUPLE X ﬁﬁPS where the variables EMPS and EMPTUPLE stand for what, in
GTS, would be called the value sets of the types EMPS and EMPTUPLE. If an
algebraic/axiomatic approach [LOCK79] were being used, further statements
specifying the interrelationships between INSEMP and other operations (types)
would be written as axioms. In GTS these two kinds of specification are
replaced by a definition of the operation type in set-theoretic terms.

Thus, INSEMP can be specified

Define typelins] is INSEMP by:
ins IS A TUPLE(eri,et,ero) IN COMP(EMPS,EMPTUPLE,EMPS)
AND ero = eri U {et}

This states that an insert-into-EMPS operation is a tuple consisting of an
input relation, a tuple to be inserted, and an output relation, the latter
defined in the last clause as the union of the former two. The value set of the
type consists of all such operations.

Suppose that at some point in the life of the system it is decided that new
employees must be hired at salaries less than the average of existing employees'
salaries. At this point the INSEMP definition could be amended to

Define typelins] is INSEMP by:
ins IS A TUPLE(esi,et,eso) IN COMP(EMPS,EMPTUPLE,EMPS)
AND eso = esi U {et}
AND SALARY(et) < AVERAGE (SALARY(esi))
This is the way in which operational or transition constraints are specified in

GTS, namely as derivation predicates in operation type definitions;

In the case of Codasyl automatic set membership, a store of a member type

19

record occurrence is redefined to be a store followed by an insert of the record
occurrence into the appropriate set occurrence. Using the SALES record type
defined above, a store—sales—record-into-saies-file operation type could be
defined in essentially the same manner as IﬁSEMP. However, the augmented store
operation involves another type, namely, tﬁ; coset type SALES-VOL. Thus the
augmented store is best defined as an operation on the database type. 1In the
following, the coset insert operation is defined first as an insert into a coset
occurrence, then as an insert into a collection of cosets, and finally as a
database operation. Then, the augmented store is specified. The ordering of
coset members is not specified so that the level of detail can be kept
manageable.

Suppose that a sales record occurrence must be placed into a set occurrence

whose owner DEPT-REC occurrence matches the sales DNO. Then the insert of a

sales record into a set occurrence is specified by

Define typelso] is INS-SAL-IN-SVOCC by:

so IS A TUPLE(soceci,s,socco) IN COMP(SVSETOCC,SALES-REC,SVSETOCC)
AND DNO(s) = DNO(DEPT (soceci))

AND socco = <DEPT-REC(socci),SALES-FILE(soceci) U {s}>

If <socci,s,socco> is in INS-SAL-IN-SVOCC then, in the traditional manner, we
define INS-SAL-IN-SVOCC(socei,s) ::= socco
From this, inserts into a set of cosets, INS-SAL-IN-SVSET, can be specified

by

Define typelins] is INS-SAL-IN-SVSET by:

ins IS A TUPLE(svsi,s,svso) IN COMP(SALES-VOL,SALES-REC,SALES-VOL)

AND svso = svsi - {socc~0ld} U {socc-new}

where socc-o0ld IS IN svsi and DNO(DEPT (socc-0ld)) = DNO(s)

and socc-new = INS-SAL-IN-SVOCC(socc-o0ld,s)
And this can be transformed into an operation on the database type DEPTSTORE by

Define typelins] is INS-SVOL by:

ins IS A TUPLE(di,s,do) IN COMP(DEPTSTORE,SALES-RECORD,DEPTSTORE)
AND di = <df,sf,svs> AND do = <df,sf,INS-SAL-IN-SVSET(svs,s)>

20

The store sales operation type is specified as a database operation type by
Define typelst] is STORE-SALES by:
st IS A TUPLE(di,s,do) IN COMP(DEPTSTORE,SALES~-REC, DEPTSTORE)
AND di = <df,sf,svs> AND do = <df,sf U {s},svs>
Although the effect of automatic set selection in Codasyl -schemas is to
redefine the store verb, in the following, a new operation ENTER-SALES with the
semantics of the augmented store is defined. Arguments for the appropriateness
of this approach, even in the Codasyl environment, involve the inadvisability of
visible side-effects and are beyond the scope of this paper.
The augmented store, ENTER-SALES, can be specified by
Define typeles] is ENTER-SALES by:
es IS A TUPLE(di1,s1,do1,di2,s2,do2) IN COMP(STORE-SALES,INS-SVOL)
AND s1 = s2 AND dol = di2
A simpler ENTER-SALES type which associates an input state dil with an output
state do2 in the same way as this definition, but is less explicit in its uée of
composition, is given by
Define typeles] is ENTER-SALES by:
es IS A TUPLE(di1,s,do2) IN COMP(DEPTSTORE,SALES-REC,DEPTSTORE)

AND di1 <df,sf,svs>
AND do2 <df,STORE~SALES(sf,s),INS-SAL-IN-SVSET(svs,s)>

This is equivalent to (and could be specified as) the decomposition of the
previously defined ENTER-SALES on the first, second, and last domains.

This demonstrates the validity of viewing certain Codasyl schema facilities
as parts of operation type definitions. Triggers [CHAM76] can be interpreted in
a similar manner.

To demonstrate the equivalence of triggers to operation type composition, a
composite database operation type MOVE-EMP is defined. This type models the

event (type) of moving employees from one department to another. The semantic

21

integrity to be preserved is the value of the NUMEMPS column in the DEPTS
relation, defined above, as EMPS changes from one instance to another. Triggers
have been given as one implementation of this integrity constraint [CHAM76]. In
the following, MOVE-EMP will be defined on the database type COMPANY-DBASE
specified above using COMP(DEPTS,EMPS).
As in the case of the coset operations above, a number of primitive operation
types are defined before the database operations.
Define typel[upet] IS UPDATE-DNO-T by:
upet IS A TUPLE(ei,dno,eo) IN COMP(EMPTUPLE,DNO,EMPTUPLE)
AND ei = <eno,dno!',ename,sal,jc>
AND eo = <eno,dno,ename,sal,jc>
This defines the tuple update which takes an EMPS tuple and changes its DNO
component to a new value dno. UPDATE-DNO-T is very specific, the very opposite
of a generic procedure [BARO81]. The specificity of this definition is for the
purposes of illustration and should not be taken as a recommendation for the
style of GTS operation type definition. Generic operation types can and should
be defined in the same manner as the generic COSET predicate in the previous
section.
UPDATE-DNO-T can be used to define an update on EMPS.
Define typeluper] is UPDATE-DNO-R by:
uper IS A TUPLE(eri,eno,dno,ero) IN COMP(EMPS,ENO,DNO,EMPS)
AND ero = (eri -{old-tuple}) U {new-tuple}
AND old-tuple IS IN eri AND ENO(old-tuple) = eno
AND new-tuple = UPDATE-DNO-T(old-tuple,dno)
In a similar manner, the relation update UPDATE-NUMEMPS of the NUMEMPS column
of a DEPTS relation can be defined. MOVE-EMP will now be defined in terms of

UPDATE-DNO-R and UPDATE-NUMEMPS.

22

Define type[m]l is MOVE-EMP by:
m IS A TUPLE(dbi,eno,dno,dbo) IN
COMP(COMPANY-DBASE.ENO,DNO,COMPANY—DBASE)

AND dbi = <dsi,esi> AND dbo = <dso,eso>
AND eso = UPDATE-DNO-R(esi,eno,dno)
AND dso = UPDATE-NUMEMPS(dso',olddno,NUMEMPS(old-dtuple)-1)

AND dso' = UPDATE-NUMEMPS(dsi,dno,NUMEMPS(new-dtuple)+1)
where olddno = DNO(old-dtuple),

old-dtuple IS IN dsi and DNO(old-dtuple)
etuple IS IN esi and ENO(etuple) = eno,
new-dtuple IS IN dsi and DNO(new-dtuple)

DNO(etuple),

dno
This specifies MOVE-EMP operations as chénging the dno of an EMPS tuple and
updating the number of employees in both o0ld and new DEPTS tuples.

Two aspects of this definition are apparent. One is that it seems unduly
complex in comparison with the trigger specification. There are two reasons for
this., The first is that this specification is more complete than the trigger
version, in that it specifies the EMPS update and the "old" and "new" semantics
which are defined outside the trigger description.

The second reason for the apparent trigger simplicity is its procedural form.
At a certain level of complexity, a procedural style of specification becomes
simpler to write and understand than a non-procedural style of comparable
abstractness. (See [WELT81] for a discussion of this issue in the context of
relational query languages.) For specifying complex operation types, a
procedural sublanguage should be used in conjunction with the GTS language used
in this paper. Such a procedural adjunct would be defined in GTS terms in
exactly the way the relational algebra is defined in terms of the relational
calculus [CODD71]. Note that this process has already started by using the
algebraic operators of set union and difference in operation type definitions.

A language combining the GTS language as used here and a well-designed
procedural extension would allow database types and all their admissible

operations to be defined succintly and with sufficient abstractness.

23

It is not the procedurality of‘triggers which is the essential difference
between them and the GIS approach to operational integrity maintenance. It is
the difference between producing side effects to primitgve operations (the
primitive update of EMPS in this example) and defining new higher level
operation types (eg., MOVE-EMP) which can carry the augmented semantics required
for integrity. The Codasyl example of coset selection and insertion above shows
a similar difference between schema-produced side effects (the Codasyl approach)
and high level operation type definition in GTS (eg., ENTER-SALES).

It should not be thought that a GTS definition of a database system using the
operation type approach to data abstraction would be too difficult to implement
efficiently. On the contrary, using a method which compiles tailored database
managers which implement all of the integrity logic peculiar to a specific
application [STEM76], GTS can lead to efficient implementations with a minimum
of run-time interpretation. Exploration of the implementation aspects of GTS

are beyond the scope of this paper.

Functional dependencies and normal forms

Functional dependencies can be used as type-defining properties of relation
types. For example, consider R defined as a relation type by

Define typelr] is R by:
r IS A SET IN SETS-OF(COMP(A,B,C))

A functional dependency from A to C in the type R (written FD(A,C) IN R) is
specified by appending the following clause to the definition

AND (FOR ALL ti,tj IN r ((A(ti) = A(tj)) IMPLIES (C(ti) = C(tj)))
This clause, without the initial AND, will be used as the definition of FD(A,C)
IN r, where r is a relation. The definitions of both FD predicates are valid

when A and C are sets of column domains.

24

Note that FD IN r is a predicate on a potential instance of a type. To say
that the FD holds for the type is to say that it holds for each and every
instance of the type. Thus FDs can be parts of type-defining predicaées. There
are, however, properties of a type which are not properties of individpal
instances. A trivial instance of such a property is the cardinality of a type's
value set.

The various normal forms of relations [DATE81] are properties of types in the
above sense and are not type-defining properties of relation types. For
example, first normal form refers to an absence of composition and grouping in
the definition of the constituent types of a relation's tuple type. Second,
third, Boyce-Codd (BCNF),fourth, and fifth normal forms are defined by asserting
the presence and/or absence of certain patterns or implications in a relation's
type-defining predicate. This will be illustrated below in a definition of
BCNF.

Much of the difficulty in understanding normal forms has been due to the lack
of distinction between type and instance in the literature dealing with
functional dependencies. This lack of distinction leads to little difficulty
when asserting FDs, since an FD in the type means an FD in each and every
instance of the type. This is not the case when asserting that there is not an
FD between columns subsets. For example, if it is asserted that there is not an
FD between A and B in the relation type above, this does not mean that the
clause

AND NOT FD(A,B) IN r
should be appended to the type definition. This clause would require that no
relation in the type could have the FD(A,B) present. This is clearly not what

is meant. In fact, such a requirement would preclude every one-tuple relation

25

from being a legal instance of the type.

What is meant by the lack of an FD in the type is that there exists at least
one relation in the value set of the type.in which the FD does not hold. This
is not specifiable by a predicate which is evaluatable on potential instances of
the type. The absence of an FD in the type is specifiable in two ways. The
first way is illustrated by the following predicate, in which an existential
quantification is made over the value set of the relation type.

(THERE EXISTS r IN VS(R)) SUCH THAT (NOT FD(A,B) IN r)
This asserts a property of the type much like the value set cardinality, and
clearly cannot be used to determine if a particular relation is an instance of
the type.

The second method is to state‘a theorem involving the type-defining
predicate. The theorem is basically a predicate on the intension of the type.
This technique is used in the following definition of BCNF.

Definition of BCNF:

Let Z = {A1,...,An} be a set of types
and R be a relation type specified by
Define typelr] is R by:

r IS A SET IN SETS-OF(COMP(A1,...,An)) AND P
where P is a derivation predicate.

R is in BCNF if and only if
R is in first normal form and
FOR ALL X,Ye Z
(P IMPLIES FD(X,Y) IN R) IMPLIES (P IMPLIES FD(X,Z) IN R)
Note that this defines the normal form as local to the relation type. A
better approach might be to define it in the context of a database type which

could involve interrelational dependencies. In this case, P in the BCNF

defining predicate would be replaced by P AND PD where PD is the database

26

type-defining predicate. In fact, a full definition should probably take into
account the definition of operations which are used in forming the instances of
R. Transition constraints in the iésert, delete, and update type definitions
could imply FDs in all “reachable" instances of R. The reachable instances in a
constrained database type constitute the effective value sets of the constituent
types, and thus should be the context in which well-formed types are to be

strived for.

Summary

A generalized type specification (GTS) technique for defining database sytems
has been presented. The purpose of GIS is to provide a unified treatment of
operation and data type definition in order to specify well-constrained database
systems clearly and in a manner which leads to well-structured implementation
techniques.

Examples of GTS definitions of data and operation types from both relational
and Codasyl models were given. In the process, various concepts of semantic
data models were expressed in GTS terms. Among the more complex of these were
convoys, cover aggregations, Codasyl sets, and mandatory set membership. It was
shown how the concept of a database type leads to explicit statements of such
diverse constraints as referential integrity and the global uniqueness of
Codasyl database keys.

Operation types were introduced as a means of specifying both transition
constraints and the composite operations involved in automatic set maintenance
and triggers. The treatment of operation types demonstrated the validity of

viewing triggers and certain aspects of Codasyl schemas, such as set occurrence

27

selection, as operation type definition. Though the implementation aspects of
GTS were beyond the scope of this paper, it was suggested that, GTS offers an
approach to data and operation type definition which can lead to the effective

implementation of well-constrained database systems.

28
REFERENCES

]

[BAROS81] BAROODY, A.J. and DeWITT, D.J. An Opject Oriented Approach to
Database System Implementation. ACM Trans. Database Syst.
6, 4 (Dec. 1981), 576-601. ‘

{BROD81] BRODIE, M.L. Association: A Databasei Abstraction for Semantic
Modeling. In Entity-Relationship Approach to Information
Modeling and Analysis, P.P. Chen, Ed., 1981.

[CHAMT76] CHAMBERLIN, D.D., et al. SEQUEL 2: A Unified Approach to Data
Definition, Manipulation and Control. IBM J. Res Dev. 20, 6
(Nov. 1976), 560-575.)

{copD71] coDD, E.F. A Database Sublanguage Founded on the Relational
Calculus. In Proc. 1971 ACM SIGFIDET Workshop on Data
Description, Access and Control, San Diego, Calif., 1971,
35-68.

[coDD79] coDD, E.F. Extending the Database Relational Model to Capture
More Meaning. ACM Trans. Database Syst. 4, 4 (Dec. 1979),
397-434.

[DATES81] DATE, C.J. An Introduction to Database Systems, 3rd ed.
Addison-Wesley, Reading, Mass. 1981.

[DEUT80] DEUTSCH, L.P. Constraints: A Uniform Model for Data and
Control. SIGMOD Record. 11, 2 (Feb. 1981), 118-120.

[FLEC71] FLECK, A.C. Towards a Theory of Data Structures. J. of Comp.
and Sys. Sci. 5, 5 (Oct. T1), 475-504.

[HAMMT75] HAMMER, M. and McCLEOD, D.J. Semantic Integrity in a
Relational Database System. In VLDB 1975.

[HAMM78] HAMMER, M. and McCLEOD, D.J. The Semantic Data Model: a
Modeling Mechanism for Database Applications. In Proc. ACM
SIGMOD Conf., Austin, Tex., May 31 - June 2, 1978.

[LOCK79] LOCKEMANN,P.C., et al. Data Abstractions for Database Systems.
ACM Trans. Database Syst. 4, 4 (Mar. 1979), 30-59.

[SHAR76] SHARMAN, G.C.H. A Constructive Definition of Third Normal
Form. In Proc. 1976 ACM - SIGMOD Int. Conf. on Management
of Data, Washington, D. C., June 1976, 91-99.

[SHMI77] SCHMID, H.A. An Analysis of Some Constructs for Conceptual
Models. 1In Architecture and Models in Data Base Management
Systems, G.M. Nijssen, Ed., 1977. _

(SMIT77] SMITH, J.M. and SMITH, D.C.P. Database Abstractions:
Aggregations and Generalizations. ACM Trans. Database Syst.
2, 2 (June 1977), 105-133.

[STEM76] STEMPLE, D.W. A Database Management Facility for Automatic
Generation of Database Managers. ACM Trans. Database Syst.
1, 1 (March 1976), T79-94.

[WELT81] WELTY, C. and STEMPLE, D.W. Human Factors Comparison of a
Procedural and Nonprocedural Query Language. ACM Trans.
Database Syst. 6, 4 (Dec 1981), 626-650.

