®

PROOF'TECHNIQUES FOR RESOURCE CONTROLLER PROCESSES

Krithivasan Ramamritham

Department of Computer and Information Science
University of Massachusetts
Amherst MA 01003

June 1982
82-18

This material is based upon work supported by the National Science
Foundation under grant MCS 82-02586.

ABSTRACT

Shared resources and the processes that control them play a critical
role in the functioning of concurrent systems. A shared resource is
viewed as an abstract data type consisting of the definition of the
resource and the operations on it with additional synchronization
constraints. An abstract model is introduced for expressing the
behavior of resource controller processes. The model sheds light on
various aspects of resource control that need to be specified. Based on
this model, we present techniques for verifying resource controllers
using the formalism of temporal logic. Properties of the operations on
a given shared resource are first verified. This is followed by the
verification of invariant and temporal properties of the controller.
Using the verified properties of the resource controller, we prove the
properties of the processes sharing the resources. The techniques are
jllustrated by their application to resource sharing tasks in Ada. As a
prerequisite for achieving this, the semantics of Ada tasking primitives
are defined along with associated proof rules.

Note for the Printer

symbol ¥ stands for "for all" and should be printed as V.
symbol 4 stands for "there exists" and should be printed as 3.

symbol € stands for "belongs to" and should be printed as €.

symbol [] should be printed as [J.

symbol <> should be printed as <.

1. INTRODUCTION

The problem of analyzing concurrent systems can be alleviated by
viewing a system as being made up of a set of resources, and processes
that use these resources. A shared resource would be managed by a
controller process which is made responsible for the correct use of the
resource. Our interest is in the verification of concurrent systems by
first verifying the behavior of resource controller processes and then,
using their specifications, verifying the behavior of the resource

sharing processes.

A resource can be considered to be an abstract data type consisting
of the resource definition and the access operations on the resource
[6]. A shared resource has the added restriction that the operations be
executed such that the shared resource is always in a consistent state.
To ensure this, use of a shared resource is controlled by employing
mechanisms such as monitors (8], serializers [2], sentinels [12] and the
Ada tasking facility employing the rendezvous mechanism [4]. In this

paper, wWe refer to such mechanisms as resource controllers. Given the

crucial role played by resource controllers, it is essential that they
be guaranteed to function correctly. This paper presents techniques for

proving the correctness of resource controllers.

We accomplish this task by first introducing an abstract model for

resource controller behavior. In this model an access operation goes
through four phases: request, service, active and termination. The
model takes into account the temporal ordering of the phases of
operations when users make concurrent requests. It is also possible to
model the execution context of a phase, i.e., whether the phase is

executed by the process which makes the request, the resource

Page 2

controller, or some third process. We develop techniques for the
verification of resource controllers in light of this model.
Recognizing that a resource controller exercises all its control during
the service phase of each operation, we translate the specifications of
the invariant properties of the resource and its controller into
constraints on the service of individual operations and then verify that
the resource controller services each operation according to these
constraints. Verification of fairness of the controller necessitates
taking into account the control flow properties of resource controller

code.

A number of methods have been proposed>for proving properties of
synchronization mechanisms [2, 9] but unified methods for handling both
safety and liveness properties have started receiving attention only
recently. To state the properties of a particular resource control
mechanism and reason about the interactions of concurrent processes
through resource sharing, properties of a resource controller throughout

its execution should be specified. Thus standard axiomatic techniques
will not suffice. Techniques based on temporal logic [17], on the other
hand, lend themselves to specifying individual properties of interest
without specifying the complete behavior. Using temporal logic Owicki
and Lamport present a proof method for the 1liveness properties of
concurrent programs synchronized through semaphores [16]. They
acknowledge the need for further research in order to be able to handle
more sophisticated language features. Our work is intended to be a step
in that direction. Application of temporal 1logic to proofs of
concurrent programs is also reported in [14] and [3]. While both

utilize semaphores for synchronization, the former uses a programming

Page 3

language with assignments and GO TOs, whereas the latter utilizes a
flowchart model of concurrent programs. Our techniques on the other
hand, are applicable to programming languages such as Ada which have
high-level synchronization primitives. They grew out of our efforts to

prove properties of sentinel processes [191l.

In this paper, we illustrate our proof techniques by applying it to
resource control in the context of Ada. In Ada, tasks are the program
units for concurrent programming. A shared resource manifests itself as
an Ada package containing the resource being accessed, the operations on
the resource and the controller. Our model paves the way for specifying
the semantics of resource controller tasks in Ada. The formal
denotational semantics of Ada given in [11] does not include the
semantics of tasking primitives. Also, since we include fairness within
the class of properties to be verified, the denotational approach will
not be suitable [16]. Therefore, we provide a temporal semantics for
Ada tasking primitives by specifying their behavior as predicate

transformers as well as by specifying their liveness properties.

This paper is organized as follows. We start with a brief
introduction to temporal logic in section two. The proposed model for
shared resource access is explicated in Section three. In Section four,
examination of Ada's rendezvous mechanism in the context of our model
leads to the formal definition of the behavior of resource controller
tasks in Ada. The proof technique is developed in Section five. (A
case study involving the application of the proof technique is presented
in the appendix.) Proof of a system of concurrent resource sharing
processes is the subject of Section six. Section seven is devoted to

concluding remarks.

Page 4

2. TEMPORAL LOGIC

Pnueli first applied temporal logic for reasoning about invariant
and time-dependent properties of concurrent programs [17, 18].
Following along those lines, concurrency is modeled by a
nondeterministic interleaving of computations of individual processes.
Each computation changes the system state which consists of values
assigned to program variables and the instruction pointer of each of the
processes. Using temporal logic operators, one can specify and reason
about the properties of the sequence of states that results from the

execution of the concurrent processes.

Since temporal logic is an extension of predicate calculus, a
temporal logic statement can involve the usual logical operators V (or),
& (and), ~ (not) and => (implication) besides the temporal operators [1],
<> and UNTIL. The operator [] is pronounced "always". []P states that
P is true now and will remain true throughout the future. The operator
<> is pronounced "eventually" and is the dual of [] in that

<>P IFF ~[]1°P.
Thus, <>P if P is true now or will be true sometime in the future. A
requirement such as "every request Eill be serviced" can be specified as
[1{"request for service exists" =z> <>'"request serviced"}.
The operator UNTIL has the following interpretation:

(P UNTIL Q) IFF as long as Q is false, P will be true.
(The truth value of P once Q becomes true is not indicated by UNTIL.)
The UNTIL operator is typically used for expressing temporal orderings.
For example, the fact that a service can not be provided until there is

a request for that service can be stated as

~("request serviced") UNTIL ("request for service exists")

Page 5

In addition to these three primitive operators, we have a derived
operator to state that a predicate P can Dbecome true only after
predicate Q does:

(P ONLYAFTER Q) <=> (~P UNTIL Q).
The semantics of [] and <> are identical to those of the corresponding
linear time logic operators of [13] whereas UNTIL is related to
Lamport's binary [] operator (read AS LONG AS) in the following manner:

(A UNTIL B) = (“B[JA)

Temporal Logic Theorems:

Following are some of the theorems of temporal logic that will be
employed in this sequel. |

T1: [JA => {A & <A & <OLIA & [10]A}

T2: <OLJA => [J<OA

T3: [J(A VB) => ([JA V ©OB)

T4: [1(A => B) => {[1(OA => OB & <>(A & B)) &
[J(A => B UNTIL "A)}

T5: [JA & [IB => [J(A & B)
T6: {(A UNTIL B) & [17B} => []A
T7: {[A UNTIL (B&A)] & A & <>B} => (B & A)
T8: {[A ONLYAFTER B & B ONLYAFTER C] => [A ONLYAFTER C]}
T9: {[J(A => (B UNTIL C)) & [1(C => (B UNTIL D))}

=> [J(A => B UNTIL D)
T10: {[1(A => (B UNTIL C)) & (D ONLYAFTER A) &

(C ONLYAFTER (“C & D))} => [1(D => B)

Page 6

3. A MODEL FOR RESOURCE SHARING IN CONCURRENT SYSTEMS

A shared resource comprises of the following:

- the resource being shared,

the operations used to access the resource, and

- the associated resource controller.
We refer to each distinct type of access operation as an operation
class. Each instance of a class is referred to as an operation in that
class. Thus, for example, two different Read accesses to a shared
database will correspond to two distinct Read operations. All accesses
to a shared resource are through the execution of one of the operations

defined on the resource and occur when permitted by the controller for

that resource.

Execution of an operation goes through the Request, Initiation,

Active and Termination phases. The request phase for an operation

begins after a resource controller recognizes that a user program
requests the execution of that operation. The request phase ends when
the controller's internal data structures reflect the fact that a
request 1is waiting for service. The time at which the controller
permits execution depends on the state of the shared resource, priority
associated with the request, invariant properties of the resource, etc.

These determine the necessary conditions for executing an operation.

The service phase begins when and if the necessary conditions hold and

the resource controller decides to permit the execution of the
operation. In this manner, the resource controller guarantees that the
specified invariant properties are maintained. At the end of the
service phase, the resource controller's internal data structures

reflect the fact that permission has been granted for the execution of

Page 7

the operation. Thus the term "service" is equivalent to "granting of

permission". The active phase begins after the service phase ends. It

is in this phase that the resource access defined by the operation takes
place. The active phase ends when access is complete. The termination
phase begins after the active phase ends. At the end of the termination
phase the resource controller's internal data structures reflect the

fact that the operation has completed execution.

Temporal ordering of the phases in an operation:

The notation
piop
will be used to refer to phase p of operation op. To precisely define
the model, we introduce some additional notation. Since each phase is
executed by some process, a phase can be associated with‘ specific
statements in the code for that process. Given a statement S that is
executed by some process,

at(s) IFF control of that process is at the beginning of S,
i.e., the process's instruction pointer points to S.

in(S) IFF control is within S, i.e., the process's instruction
pointer is pointing to some component of S.

after(S) IFF control is immediately following S, i.e., the
instruction pointer is pointing to the statement
following S. Thus, given a statement sequence ST,
after(S) <=> at(T)
These three predicates are mutually exclusive and become true in the
above order. The formal definition of the language construct

corresponding to S would specify how its component statements are

affected by the execution of S (see section four).

Page 8

Now we define the temporal ordering of the phases. In what
follows, the variable "a" is universally quantified over the set of all
operations. The four phases associated with an operation "a" are
totally ordered in time as follows:

at(service_phaseia) ONLYAFTER after(req_phase|a)
at(active_phaseia) ONLYAFTER after(service_phase|a)
at(term_phaseia) ONLYAFTER after(active_phaseia)
The use of ONLYAFTER (instead of IFF) in the above statements reflects
the possibility of delays between the execution of two consecutive
phases. The above statements, in addition to the fact that
after(pia) ONLYAFTER at(p!a)
for all phases p of operation a, define the sequential ordering of the

phases of any operation a.

To precisely specify the state of each operation we introduce some
predicates whose truth values are depicted in the following figure.

Their formal definitions follow.

req_phase

<-req(a)

y . _service(a)
[service_phase
L

<-wait_active(a)

\ SR
active_phase g4- active(a)

mm—— ot

« -wait_term(a)

N

term_phase

“term(a)

Page 9

When a request is present for‘operation a, the predicate IES&El is
true. A request for an operation can be said to be present only after
the request phase for that operation begins.

req(a) ONLYAFTER at(req_phase|a)
req(a) is true at the end of the request phase and remains true until
after the service phase has begun.

after(req_phasela) => {req(a) UNTIL [at(service phaseja) & req(a)l}
A request ceases to exist at the end of the service phase.

after(service_phaseja) => [17req(a)

Thus it is not possible to determine the truth value of req(a) when
control is within the request phase or the service phase since requests
come into existence during the request phase and cease to exist during

the service phase.

The predicate service(a) is true if and only if control is at the
beginning of the service phase for a.

service(a) <=> at(service_phaseia)
Also, service(a) cannot be true unless the appropriate request is
present,

service(a) => req(a)

When a serviced operation is waiting to become active,
wait_active(a) is true.
wait_active(a) ONLYAFTER after(service_phaseia)

after(service_phase|a)
=> {wait_active(a) UNTIL [at(active_phaseia) & wait_active(a)]}

[in(active_phasela) V after(active_phaseia)] => []17wait_active(a)

Page 10

The predicate active(a) is true when the access actually takes

place. Therefore,
active(a) ONLYAFTER at(active_phaseia)
at(active_phaseia) => [active(a) UNTIL after(active_phaseja)l

after(active_phaseia) => []7active(a)

The predicate wait_term(a) is true when access a 1is complete and
termination phase has not begun. Its definition is similar to that of

wait_active(a).

The predicate term(a) is true if and only if control is at the end

of the termination phase.

term(a) <=> after(term_phase|a)

We use the model for specifying and verifying the behavior of
resource contrdller processes. To do so, it is necessary to delimit the
phases of access operations as well as define the relationship between
the phases of different operations. Delimiting the phases involves
identifying when at(pia) and after(pia) hold for each phase p of every
access operation a. That in turn will define when the predicates
associated with an operation are true. Now we introduce some
terminology which will aid in defining the relationship between phases,

and between phases and processes that execute the phases.

Execution Context of the phases: In order to specify the processes

that execute the phases of an operation, we make use of the following
function:

execution_context: SOC x SPH -> SPR

where

SOC = Set of Operation Classes,

Page 11

SPH
SPR

{req_phase, service_phase, active_phase, term_phasel,
{requesting_process, controller_process, temporary_process}.

execution_context(OPC,p) = pr
if and only if
phase p of operations in class OPC are executed by process pr.

Ordering relationships between phases:

A resource controller is a sequential process in that it can take
only one step at a time. Hence from the beginning to the end of
execution of phase p1 executed by a controller, control cannot reach the

beginning of any other phase p2 executed by the same controller.
at(p1) => ¥p2#p1, at(p2) ONLYAFTER after(p1)

We then say that p1 is uninterruptible. The notion of

uninterruptibility is essentially an abstraction and is included because
there is no logical necessity for a controller to start executing a new
phase before a previbus one is completed. Thus, at any given time, the
controller can be in at most one phase of some unique operation. We

identify this operation by specifying what the current operation is.

For any phase p executed by a controller, the value of current_operation
is defined as follows:
{at(p) & current_operation=c}

=>
{current_operation=c UNTIL [current_operation=zec & after(p)I}

Page 12

4. SEMANTICS OF RESQURCE CONTROLLER TASKS IN ADA

In Ada, tasks are the program units for concurrent programming. We

define the resource being accessed, the operations on it and the
controller task within a package. An entry definition within the task
can be thought of as an operation on the resource. A call on an entry
within a task can be executed only when there is a Ready ACCEPT
statement corresponding to that entry. The call is ACCEPTed when a
rendezvous occurs. A rendezvous consists of executing statements
between a DO and an END following the ACCEPT statement. Thus it is
during a rendezvous for an entry that the corresponding access operation
is executed. A condition can be associated with each ACCEPT statement.
These can be viewed as the conditions that a controller imposes on
servicing an operation. To reason about resource controllers, we
formally specify the semantics of Ada tasking constructs, namely Entry
calls, ACCEPT and SELECT statements. For further deatils of Ada's

tasking facility, the reader is referred to [4, 10].

To illustrate tasking in Ada and to serve as a running example, the
following resource control problem is introduced.

A set of processes communicate through a Single Slot Buffer
(SSB). A message is Deposited in the buffer by some process,
Read by others, and Removed by some process. A new message
cannot be deposited unless the previous message has been
removed. Obviously, Deposit and Remove operations should
exclude each other as well as Read operations. To keep the
contents of the buffer current, Deposit and Remove operations
have priority over Read operations.

Now we specify formally the properties of the Single Slot Buffer, its
controller, and operations on the buffer. A variable "status" is used
to denote whether the buffer is full or empty. Its value is modified by

Deposit and Remove operations. Our fairness requirements are that if

Page 13

the buffer is full repeatedly, that is infinitely often, then a Remove
operation should be eventually serviced. A similar fairness is required
for Deposit operations. Due to the priority for Deposit and Remove

operations over Read, Read requests are not expected to be serviced with

fairness.

SPECIFICATION OF RESOURCE STATE CHANGE
Vd4Deposit, [J{after(term phaseid) => status=full}
¥méRemove, [l{after(term phaseim) => status=empty}

SPECIFICATION OF CONSTRAINTS ON RESOURCE ACCESS
Vd{Deposit, V¥méRemove, Vr<{Read,

[1(service(d) => status=empty)

[1(service(m) => status=full)

[1(service(r) => status=full)

SPECIFICATION OF MUTUAL EXCLUSION OF OPERATIONS
Vd1,d24Deposit, d1#d2, []~{active(d1) & active(d2)}
¥m1,m24Remove, mi1#m2, [1~{active(ml) & active(m2)}
¥m{Remove, ¥d<{Deposit, [1~{active(m) & active(d)}
¥d{Deposit, ¥r4Read, []1~{active(d) & active(r)}
¥m{Remove, ¥r<Read, []~{active(m) & active(r)}

SPECIFICATION OF INVARIANT PROPERTY OF THE RESOURCE
{1 (status=full V status=empty)

SPECIFICATION OF PRIORITY

Vr{Read, V¥m{Remove, Vd<Deposit,

[1{[req(r) & req(d)] => service(r) ONLYAFTER service(d)}
[J{lreq(r) & req(m)] => service(r) ONLYAFTER service(m)}
SPECIFICATION OF FAIRNESS

¥m{Remove, Vd<{Deposit,

{req(m) & [1<>(status=full)} => <service(m)
{req(d) & [J<>(status=zempty)} => <>service(d)

Ada code for the SSB problem is given on the following page. A call on
the procedure Deposit (Remove) translates into a call on the entry
corresponding to Deposit (Remove) whereas in order to allow for
concurrent Reads, a call on the procedure Read translates into two entry
calls with the actual access occurring between the calls. (This is

necessitated by the restrictions placed on the specifications of entries

in Ada.)

PACKAGE ssb IS
PROCEDURE Read (m: OUT INTEGER):
PROCEDURE Deposit (m: 1IN INTEGER);
PROCEDURE Remove;
END ssb;
PACKAGE BODY ssb IS
TASK ssb_controller IS
buffercontents : INTEGER;
ENTRY start_read;
ENTRY end_read;
ENTRY Deposit (m: 1IN INTEGER);
ENTRY Remove;
END ssb_controller;

TASK BODY ssb_controller IS

TYPE state IS (full, empty);

status : state := empty;

#active_reads : INTEGER := 0;

BEGIN
LL: LOOP
LS: SELECT

WHEN Deposit'COUNT=0 & Remove'COUNT=0
& status=full =>

LRS1: ACCEPT start_read
LRS2: DO #active_reads := #active_reads+1; END
OR
WHEN true =>
LRT1: ACCEPT end_read
LRT2: DO #active_reads := #active_reads-1; END
OR
WHEN #active_reads=0 & statussempty =>
LDS: ACCEPT wee(m: IN INTEGER)
DO - g ST
LDA: buffercontents := m;
END;
LDT: status := full;
OR
WHEN #active_reads=0 & status=full =>
LMS: ACCEPT Remove;
LMT: status := empty;
END SELECT;
END LOOP;

END ssb_controller;
PROCEDURE Read (m: OUT INTEGER) IS
BEGIN
ssb_controller.start_read;
LRA: m:=buffercontents;
ssb_controller.end_read;
END;
PROCEDURE Deposit(m: IN INTEGER) IS
BEGIN ssb_controller.Deposit (m) END;
PROCEDURE Remove IS
BEGIN ssb_controller.Remove END;
END ssb;

Page 14

Page 15

Henceforth we will say that "a Deposit (Remove) operation is
executed through an entry call" and that "3 Read operation is executed
through a procedure call". To keep track of concurrent Read operations,
a counter, #active reads, is utilized.' The attribute "count" of an

entry is used to determine the number of waiting entry calls.

In Ada, the request phase is kept hidden from the user, 1i.e., in
the code for a controller task there are no statements corresponding to
the request phase. The other phases, however, are present in the code.
For example, statements LDS, LDA and LDT correspond to ;ervice.
activation and termination phases of Deposit operations. (Later in this
section, wWe will be discussing how statement-phase correspondences can
be made.)

4,1 Semantics of Language Constructs for Tasking in Ada

Sequential Programming Constructs

We will be utilizing the following sequential- programming
constructs: assignment, LOOP and BEGIN..END statements. For an
assignment statement

L: Xize;

at(L) => {at(L) UNTIL after(L)}

{at(L) & P(X,e)} => {<after(L) & [I(after(L) => P)}
where P(X,e) is a predicate derived by substituting expression e for
every occurrence of variable X in predicate P. Thus an assignment
statement has no control points within it and hence in(L) is never true.
(A null statement also has no control points within it.)

L: BEGIN

L1: <executable statement>;

L2: <executable statement>;

eese

Ln: <executable statement>
END

Page 16

at(L) <=> at(L1)
in(L) <=> {3j 1<j<n, in(Lj) V 3j 2<j<n, at(Lj)}
after(L) <=> after(Ln)

at(L) => {at(L) UNTIL (in(L) V after(L))} & <>{in(L) V after(L)}

in(L) => {in(L) UNTIL after(L)}

¥i 1<i<n, after(Li) <=> at(Li+1)

Vi,j, j#i, [17{[at(Li) V in(Li)] & [at(Lj) V in(Lj)1}
The last two statements indicate the sequential execution of statements
within a BEGIN..END block. Semantics of the DO..END construct is the

same as the BEGIN..END construct. Semantics of the LOOP..END construct
is the same as the BEGIN..END construct with the following addition:

after(L) => at(L)

Concurrent Programming Constructs

There are three basic language constructs for tasking in Ada:
ACCEPT and SELECT statements, and entry calls. An ACCEPT statement is
executed in response to an entry call, at which time a rendezvous
between the called task and the calling task occurs. A SELECT statement
allows for a nondeterministic selection from a number of possible
executions of ACCEPT statements. We first consider ACCEPT and SELECT
statements. Entry calls are considered later in the context of calls on

operations.

ACCEPT statement

An ACCEPT statement takes the following form:

L1: ACCEPT A
L2: DO <executable statement> END;

When control reaches L1, it remains there until an entry call on A

Page 17

occurs, after which the first element in the queue for A is removed and
L2 is executed. Thus, the behavior of the Accept statement is as

follows:

at(L1) => [at(L1) UNTIL (at(L1) & A'COUNT>0)]

I I1Z

{C & at(L1) & A_q'first=a & A_q'rest=Q1}
<;?C & after(L1) & A_q=Q1)}

A3: at(L1) => {at(L1) UNTIL after(L1)}

Al: after(L1) <=> at(L2)

where Q1 belongs to the domain of queues, a is an instance of type A,
A q is the queue allocated for entry A, A_gq'first refers to the first
element in A_q and A_g'rest refers to A_q without the first element. c
is an arbitrary predicate that does not refer to any queue. A2 states

that the truth value of such a predicate is not modified by an ACCEPT

statement.

SELECT statement The SELECT construct allows for a combination of

waiting for and selection from one or more alternatives. Selection can
be controlled by conditions associated with each alternative of the
selective wait statement. We now present the semantics for the basic
form of the SELECT statement.
L: SELECT
WHEN G1 =>

L11: ACCEPT A1
L12: DO <executable statement> END;

L13: <executable statement>;
OR
OR
WHEN Gm =>

Lm1: ACCEPT Am
Lm2: DO <executable statement> END;

Lm3: <executable statement>;
END SELECT;

(For any j, Lj2, Lj3 or both could be null.) When control reaches a

Page 18

SELECT statement, all guards {Gi, i=1..m} are evaluated to determine
which alternatives are candidates for selection. These are known as

open alternatives. If Gj is true, Lj1 may be executed if an entry call

has been made on Aj. If several entries have been called, one of the

open alternatives is selected arbitrarily.

The guards associated with the ACCEPT statements are boolean
expressions. We distinguish between two types of guards: a guard is
internal to a task if its truth value can change only due to some
activity within the task. Otherwise, it is termed external. For
instance, if a guard involves a global variable it would be external, in
which case, it could become false soon after it is evaluated to be true.
In this sequel, we confine our attention to guards that do not involve
global variables. Even in such a case, the truth value of a guard could
change after it is evaluated. Suppose for some i, one of the terms in
Gi is Aj'COUNT=c for some j and c. We say that Gi "depends on a
specific request count". It is possible that when Gi is evaluated,
Aj'COUNT=c and Gi evaluates to true. However an entry call on Aj could
be made after Gi is evaluated thereby making Gi false. In such cases,
we derive Gi', called the "count_free_component" of Gi, by substituting

"true" for every occurrence of Aj'COUNT=c in Gi.

Now we formally define the behavior of the above SELECT statement.
Let N stand for the set of natural numbers starting from 1 and let M
stand for the set {1,2,..,m} where m is the number of SELECT
alternatives. Once control is at the beginning of the SELECT statement,
guards G1 to Gm are evaluated to determine the open alternatives, at
which time the predicate OAD, which stands for

Open_Alternatives_Determined, becomes true. The set open_alternatives

Page 19

(closed_alternatives) consists of names of the entries corresponding to

the true (false) guards.

S1: If control is at the beginning of a SELECT statement, and if none

of the guards are true, then the predicate SELECT_ERROR becomes true.
[at(L) & ¥j4éM "Gj & ~OAD] => SELECT_ERROR

S2: Otherwise, the open alternatives are determined.

[at(L) & 3j4M, Gj & ~OAD]
=> :
[at(L) & OAD & ¥j4M, {[Gj => Ajéopen_alternatives] &
[“Gj => Rj4closed_alternativesl}]

S3: Selection is postponed until one of the entries for the open
alternatives has been called.

{at(L) & OAD}

{E:t(L) & OAD] UNTIL 3Aj4open_alternatives, Aj'COUNT>0}
S4: Once at least one of the entries for open alternatives has been

called, control will reach the beginning of an ACCEPT statement for one
such entry. The other open alternatives are not executed.

{{at(L) & OAD & JAj{open_alternatives, Aj'COUNT>0}

4Z;4open_ﬁlternatives.

{¢at(Lj1) & [1{at(Lj1 => (TOAD & Gj' & Aj'COUNT>0)}

& VKkéM, k#j, ~at(Lk1) UNTIL after(L)}

Notice that the count_free_component of the guard of the selected
alternative is true at the beginning of the first statement of that
alternative. In general, if condition C holds when at(L), then the
count_free_component of C will hold at the beginning of the selected
alternative.
S5: Control is after the SELECT statement when execution of one of the

SELECT alternatives is completed.

after(L) <=> J3j¢M after(Lj3)

Page 20

86: The following expresses the sequential nature of the SELECT

statement.

¥j€M, ¥S€{Lj1, Lj2, Lj3},
[17{at(L) & [at(S) V in(S) V after(S)]}

S7: The following statement specifies what it means for control to be

within a SELECT statement.

in(L) <=> 3j4M, [at(Lj1) V at(Lj2) V in(L3j2) V at(L3j3) V in(Lj3)]

S8: Inference Rule for the SELECT Statement

From the above semantics, we can derive the following inference
rule for SELECT statements. For a cyclic SELECT statement with label L,
that is, for a SELECT statement within a loop

[gakéM. Gk & ¥j€M, [J{at(Lj1) => <after(Lj3)}

E]<>{at(L) & T“OAD}
The hypothesis states that one of the guards is always true and that

once an alternative is chosen, the statement corresponding to that

alternative will terminate. Thus control will always return to the

beginning of the LOOP.

To accommodate for the possibility of absence of open alternatives
and entry calls, ADA provides an ELSE clause within a SELECT statement.
Its semantics can be specified in a similar manner. In addition to the
ACCEPT statement, Ada allows DELAY and TERMINATE statements as
alternatives within a SELECT statement. Also, ADA permits timed entry

calls whereby an entry call is made only if it can be accepted within a

specified period. We do not consider these possibilities in this paper.

Page 21

4,2 Semantics of Operations on Shared Resources

Corresponding to each operation on a shared resource, we can define
an entry within the resource controller task. Each operation on a
shared resource can then be executed by the controller task through an
entry call which would result in a rendezvous. Since Ada has a built-in
eiclusion mechanism for performing a rendezvous, all operations would
then be executed in exclusion. Thus to permit concurrent executions of
operations in a class, for example Read operations in the SSB problem,
the code for that class should be programmed as a procedure with
appropriate synchronizing entry calls before and after the . actual

operation.

Semantics of operations executed concurrently

To be concrete, let us assume a class of operations C. If operations in
class C can execute concurrently, then the code for C would be
implemented as a procedure and will have the following form.

PROCEDURE C
BEGIN
start_C;

LA: <code for C>
stop_C;
END;

Within the task body, the code for entries start_C and stop C will be

defined as follows:

LS1: ACCEPT start_C
LS2: DO <modify internal variables to reflect service> END;

LT1: ACCEPT stop C '
LT2: DO <modify internal variables to reflect termination> END;

a

Page 22

What constitutes the service, active and termination phases is
specified below. Recall that the request phase is not visible in Ada
resource controllers. If start_C_q (stop_C_q) is the queue for waiting
calls on entry start_C (stop_C), then,

{at(LS1) & start_C_q'first=c} <=>
{at(service_phaseic) & current_operation=c}

{current_operation=c & [at(LS2) V in(LS2)]} <=>
in(service_phaseic)

{current_operation=c & after(LS2)} <=> after(service_phaseic)
after(service_phaseic) => <>at(LA)

at(LA) <=> dJc4C, at(active_phasejc)

after(LA) <=> Jc4C, after(active_phaseic)

{at (LT1) & stop_C_q'first=c} <=>
{at(term_phaseic) & current_operation=c}

{current_operation=c & [at(LT2) V in(LT2)]} <=> in(term_phaseic)

{current_operation=c & after(LT2)} <=> after(term_phasejc)

These define the phases of an operation implemented as a procedure. The
execution context of these phases is specified by the following

statements.

execution_context(C,req_phase)=controller_process
execution eontext(C service_phase)=controller_process
execution context(C active phase) calling_process
executlon_context(c term phase)=controller_process
Hence the request, service and termination phases of operations executed

as procedures cannot be interrupted.

Semantics of operations executed in exclusion

Now we consider the case when an operation is executed through an entry
call. In this case, the code for the operation takes the following

form:

Page 23

L31: ACCEPT C
DO

LS2: <modify internal variables to reflect service>;
LA: <perform operation>;
END;

LT: <modify internal variables to reflect termination>;
Here LS1 and LS2 correspond to the service phase of operations in C,
whereas LA and LT correspond to active and termination phases
respectively. These can be formally defined as before. The execution
context of all these phases is the controller process and hence their
executions cannot be interrupted. This case essentially differs from

the previous one in the uninterruptibility of the active phase which in

turn leads to the mutual exclusion of execution of operations.

4.3 Semantics of Queues

As mentioned earlier, Ada tasks utilize queues for waiting entry
calls. We will first consider the queues necessary for operations in
class C executed through procedure calls.

Q1: The request phase for an operation in C ends when the queue of the

entry start_C has an element corresponding to that request. During the

service phase of the operation, this element is removed from the queue.

Req(aj is true if a request is present for operation a, i.e., there is

an element in start_C_gq. Hence we have the following équivalences:
¥c4C, {req(c) <=> JIn4N, start_C_glnl=c

In¢N, Je4C, start_C_glnl=c <=> start_C'COUNT>O
Similarly, a queue named stop C_q is wutilized for operations in C
waiting to be terminated. Q[i] is the i-th element from the front of
the queue.

Q2: The queues in Ada are FIFO. Hence operatipns in C are serviced

(terminated) in the order in which calls to start_C (stop_C) enter the

Page 24

queues., Thus

¥a,b4C, Vi, j4N [start_C_g[il=a & start_C_q[jl=b & i<j]

=>

[at(service_phasei!b) ONLYAFTER at(service phaseia)]
¥a,b4C, Wi,j4N [stop_C_qlil=a & stop_C_q[jl=b & i<j]

=>

[at(term_phase{b) ONLYAFTER at(term_phase}a)]
Now we consider operations executed through entry calls. In this

case, one queue is associated with each operation and the following are

true.

Q3: ¥e4C, {req(e) <=> 3Ji4N, C_qlil=c}
Ji4N, Je4C, C_g[i]:c <=> C'COUNT>0

QU Va,b4C, ¥i,j4N [C_q[il=a & C_q[jl=b & i<j]

=>
[at(service_phaseib) ONLYAFTER at(service_ phase}a)]

4.4 Semantics of Counters

The internal data structure for keeping track of concurrent active
operations is a counter. Typically one counter exists per operation
class. A counter is incremented by one during the service phase and is
decremented by one in the termination phase.
C1: A counter always has a zero or positive value.

[1(#active_C > 0)
€2: When an operation in a class is waiting for activation, active, or
waiting for termination, the counter for that class has a positive
value.

de4C, {wait_active(c) V active(e) V wait_term(c)} => #active C>0
C3: More precisely, a counter of operations has a positive value only

if some operation in that class is in its service, active or termination

phases.

. , Page 25
#active C > 0 => Jc4C, (in(service_phaseic) V

wait_active(e) V
active(e) V
wait_term(e) V
in(term_phaseic)]

Note that counters are used only for operations that can be executed

concurrently.

4.5 Semantics of Calls on Operations

A task accessing a resource through an entry call waits until the
rendezvous is complete, after which it proceeds with the execution of
the statement following the call. Hence the calling task can execute
concurrently with the termination phase of the called operation. Thus,
if R is the label of the entry call on C,
CT1: at(R) => Jc4C, {[<Oreqle) & (at(R) UNTIL service(e))] &
after (R) ONLYAFTER after(active_phaseic) &
[1{after(active_phaselc) => after(R)} 1}
On the other hand, the following is true when the access is through a
procedure call.
CT2: at(R) => Jc4C, {[<Oreq(e) & (at(R) UNTIL service(e))] &
after (R) ONLYAFTER after(term_phaseic) &
[J{after(term_phaseic) => after(R)}
Here the statement following the call can execute only after the

termination phase is completed.

Page 26

5. VERIFICATION OF RESOURCE CONTROLLER TASKS

Our motivation behind proving resource controller processes is to
be able to prove properties of concurrent systems that use shared
resources. In this regard, we show that given the specifications for a
shared resource and its controller, it is possible to verify properties
of a set of processes sharing the resource. This scheme will succeed if
and only if the code for the resource controller meets the

specifications.

Verification of a resource controller is performed in three steps.
Step one involves showing that the code for each operation performs the
changes to the resource as specified. Step two concerns invariant
Properties whereas step three concerns temporal properties. Now we give
the details of these steps. In the appendix we apply this proof

technique to the Single Slot Buffer Problem.

Step-1:
Since this step focusses on individual operations only, reasoning
here is confined to sequential pieces of code. Hence standard axiomatic

techniques suffice [5,7].

Step-2:

We saw earlier that a resource controller decides when an access
operation should be serviced and that once an operation has been
serviced, its active and termination phases follow. Thus any control
over resource access should be exercised at the time of service. 1In
other words, prior to service of an operation, it should be ascertained
that the execution of the operation will maintain the invariant

properties specified. This 1is carried out in step two via three

Page 27

substeps.

Substep-2.1: Here we derive the constraints imposed by the
resource controller on servicing requests for access. These constraints
arise due to the uninterruptible nature of phases executed by the
controller task as well as due to the explicit constraints that appear

in the WHEN clauses of the SELECT statement.

Due to our stipulation that any phase executed by the controller is
uninterruptible, if phase p 1is being executed by a controller, the
controller cannot be executing any other phase. Thus we have the
following inference rule.

Inference-Rule-1

¥p1,p2, pl1#p2,
{execution_context(p1)=controller_process &
execution_context(p2)=controller_process}
{E:t(p1) V in(p1)] => [Tat(p2) & ~in(p2)1}
For instance, since the execution context of the active phase of Deposit
operations and the service phase of Read operations is the controller
process, using the above inference rule and the semantics of the
predicate "active" we have,
V¥d{Deposit, active(d)
?:t(activq_phase{d) V in(active_phaseid)]
;:4Read. [~at(service_phaseir)] => “service(r)
and so,
Vr{Read, ¥d{Deposit, [l{service(r) => Tactive(d)}.
This constrains read operations to be serviced only when no deposit
operations are active. Constraints resulting from the application of

this rule along with those explicitly stated in the WHEN clauses, result

in the overall constraints imposed by the resource controller.

Page 28

Substep-2.2: In this substep we derive constraints imposed by the

specifications of mutual exclusion, priority and others that affect
service. For this we use the following transformation rules:

Mutual exclusion Transformation Rule

This rule specifies sufficient conditions for servicing operations in
order to satisfy mutual exclusion requirements.
Vop1,0p2,
{ [Jiservice(op1) => ~[active(op2) V wait_active(op2)]} &
[Jiservice(op2) => ~[active(op1) V wait_active(op1)1} }
=>
[] = {active(op1) & active(op2)}
Note that the consequent of this rule expresses the exclusion between

op1 and op2. The correctness of this rule is shown in the appendix.

Priority Transformation Rule

This rule (also proved in the appendix) aids in the translation of
priority specifications into necessary conditions. Accordingly,
priority specifications will be satisfied if an operation is serviced
only when no requests for operations of higher priority are present.

Vop1,0p2,0p 1#op2,

[1{service(op1) => “req(op2)}

[]??req(op1) & req(op2)] => [service(op1) ONLYAFTER service(op2)]}

Recall that the consequent of this rule expresses the priority for op2

over opl.

Resource State Invariance Transformation Rule

With the invariance as the post condition, using the
specification of changes to the resource state, derive the
weakest precondition for operations in each operation class.

The weakest preconditions become the constraints for executing

operations in the respective operation classes. It should be verified

Page 29

that operations which change the resource state exclude each other and
that if an operation is serviced when the precondition is true, the

invariance will hold during the active phase of the operation.

The constraints on servicing an operation is the conjunction of (1)
the constraints derived by the application of the above rules, (2) the
implicit requirement that

Vop [1{service(op) => req(op)}

and (3) the specifications of constraints on resource access.

Substep-2.3: Here it is verified that the conditions derived in
substep 2.1 imply those derived in substep 2.2, thereby showing that the
controller services requests so that the invariant specifications are

maintained.

Step-3:

In general, at any given time, a number of operations may have
satisfied their necessary conditions. However, since a resource
controller task takes one step at a time, it has to choose one of these
operations to be serviced next. We have to show that this choice is
made with the specified fairness. This is the purpose of step three and

requires the examination of control flow aspects of the code.

Fairness specifications, as we detailed earlier, express the
requirement that requests be serviced if appropriate conditions hold.
The resource controller should choose the next operation to be serviced
in accordance with the fairness specifications. In ADA, this choice
manifests itself as the choice made among the open alternatives within a
SELECT statement. Recall that in ADA if more than one open alternative

is eligible for service, this choice is made arbitrarily. Our strategy

Page 30

for proving fairness properties in spite of this arbitrariness in
selection can be summarized as follows:
Step-3.1: Using the predicates that appear in the guards of the
SELECT loop, derive the set of disjoint conditions that can occur
at the beginning of the SELECT statement.
Our proof of eventual service for a request is by contradiction, i.e.,
we assume that a request is never serviced and then show that this
request has to be eventually serviced. For this purpose, the following

steps are performed for each condition.

Step-3.2: Determine the alternatives that can be open when that
condition holds.

Step-3.3: Show that there will be an entry call corresponding
to at least one open alternative.

Step-3.4: Consider each of the open alternatives. Show that the
specified request will be serviced.

Thus, irrespective of the condition that holds and the selection made,

the specific request will be serviced.

Page 31

6. VERIFICATION OF RESOURCE SHARING PROCESSES

So far we have focused on the processes that control access to
shared resources. Now we give an example of proving properties of the
processes sharing the resources from the code for these processes and
the specifications of the shared resources and their controllers.
Typically, this involves utilizing the semantics of entry calls and the

specifications of fairness.

Let us consider two processes that access the single slot buffer, a

process that deposits messages and another that removes messages. Their

code is as follows:

—Depositing process --Removing process
L1: LOOP L2: LOOP
m:=<{create next message>; LM: SSB.Remove
LD: SSB.Deposit(m) END;
END;

The processes that Read the contents of the buffer are not shown
here. We would like to prove that every deposit and remove request is
serviced.

[1{at(LD) => <after(LD)}

[1{at(LM) => <after(LM)}

It can be formally shown that

[1<> 3d{Deposit req(d).

[1<> JdméRemove, req(m)
that is, each process generates requests repeatedly. Now we invoke the

fairness specification of the controller to prove that every request

will be serviced.

e

Page 32

The following is a tautology by T3.

[1<>(status=empty) V ~[I<>(status=empty)
which by the specification of invariance of resource state and the
duality of [] and <> is

[1<>(status=empty) V <>[J(status=full)
Let us consider the second possibility first. Consider a remove request

m. If <>[](status=full) then by T2 and the specification of fairness to

remove operations
<{>service(m)

and since remove operations terminate
<term(m)

which by the specification of changes to resources results in
<>(status=empty).

Since remove requests occur repeatedly, that is, [J<req(m), the

tautology above reduces to []<>(status=empty).

Now we prove that at(LD) => <>after(LD). Assume at(LD). Then
dd4Deposit, <>req(d). If []<O(status=empty), by the fairness
specifications of the Deposit operations, <>service(d). By the liveness
properties of the controller, <>(after(active_phaseid)), which by the
semantics of calls on operations implies <>after(LD). Thus

[J{at(LD) => <after(LD)}

The corresponding statement for the removing process can be proven in
the same manner. This example demonstrates that very often it suffices
to focus on the resource controller process and then by using the
specifications of this process alone properties of the processes sharing

the resources can be proven.

Page 33
7. CONCLUSIONS

This paper presents techniques for the verification of resource
controller tasks in Ada. As the first step towards achieving this, we
introduced a model for expressing the behavior of shared resource
controllers. It recognizes the following:

- Every access operation is executed as a result of a request from
a user process.
- After determining that the conditions are appropriate for an
access to proceed, a controller services the access request.
- The code for an access operation is executed only after the
controller has serviced the operation.
- On completion of an access operation, certain clean-up actions
are required.
The model intuitively conforms with the notion of resource access. To
be able to utilize the model for the purpose of specification and
verification, we formalized it by introducing predicates, and related

their truth values to the execution of the phases. The relationships

between phases was specified through temporal logic statements.

We have found the model to be general enough to be applicable to
monitors [8], Ada Tasks [4], serializers [2] and sentinels [12]. In
this paper, we dealt with Ada tasks. These mechanisms differ from one
another not in their adherence to the model but in the restrictions that
they impose on the execution of the phases. Using our formalism it is
possible to explicitly specify these restrictions. The specifications
of these restrictions along with the specifications of the semantics of
the language constructs for tasking resulted in the semantics of
resource controller tasks in Ada. Given that the denotational semantics
of Ada presented in [11] does not include semantics of tasking
constructs, this is a significant step. In ADA the open alternatives
are first determined and then the selection 1is made from the open
alternatives, Hence the semantics of the SELECT statement 1is more

involved than the guarded selection in CSP [1]. Here we have focused on

Page 34

the primary features in Ada for tasking. Later, features such as task

priorities and DELAY statements will be brought under consideration.

Of the four phases that occur during the execution of an operation,
a resource controller has explicit control over only the service phase.

The specification for a resource control problem should state how such

control should be exercised. Our techniques for the verification of
resource controllers were developed in the context of these
specifications. Both invariant properties such as exclusion, and
temporal properties such as fairness were included in our analysis of
resource control. Proof of properties of individual operations required
only a sequential reasoning. Invariant properties of the resource and
the controller were transformed into conditions that held when
operations are serviced, thus localizing the reasoning required.
Verification of fairness properties necessitated arguments concerning
flow of control during the selection of the next request to be serviced.
Thus our proof techniques cover all properties of interest to resource
control in a concurrent environment and are applicable to high-level
resource control mechanisms.

Confining synchronization information for a given shared resource
within a controller process makes it possible to first prove the
properties of the controller process and then utilize its specifications
for proving the properties of resource sharing processes. Thus, in such
situations, proofs of "non-interference" between processes [15, 1] ecan
be avoided. We plan to extend this work with additional proof
techniques required for a system of concurrent processes sharing

multiple resources.

Page 35

REFERENCES

[1] Apt, K.R., Francez, N. and De Roever W.P., "A Proof System for
Communicating Sequential Processes", ACM Transactions on Programming
Languages and Systems 2, 3, Jul 1980, 359-385.

[2] Atkinson, R.R. and Hewitt, C.E., "Specification and Proof
Techniques for Serializers", IEEE Transactions on Software Engineering
SE-5, Jan 1979, 10-23.

{3] Ben-Ari, M., and Pnueli, A., "Temporal Logic Proofs of Concurrent
Programs", Technical Report, Tel Aviv University, Nov 1980.

[4] "Reference Manual for the Ada Programming Language", U.S.
Department of Defense, July 1980.

{5] Floyd, R.W., "Assigning Meanings to Programs", in Proc. Symposium
in Applied MAthematics, Schwartz, J.T. (ed.) 19-32, 1967.

[6] Guttag, V., Horowitz, E., and Musser, D., nAbstract Data Types and
Software Validation", Communications of the ACM 21, 1048-1064, Dec 1978.

[7) Hoare, C.A.R., "AN Axiomatic Basis for Computer Programming", Comm.
of the ACM, 12, 576-580, 1969.

(8] Hoare, C.A.R. "Monitors: An Operating System Structuring Concept",
Comm. of the ACM, 17, 540-557, Oct 1974.

[9] Howard, J.H., "Proving Monitors", Communications of the ACM 19,
549-557, May 1976.

[10] Ichbiah, J.D., et al., "Rationale for the Design of the Ada
Programming Language", Sigplan Notices 14, 6, June 1979.

[11] Gouge, V.D., Kahn, G. and Lang, B., "On the Formal Definition of
Ada", Rivista di Informatica X n, Mar 1980, 5-14,

[(12] Keller, R.M., T"Sentinels: A Concept for Multiprocess
Coordination", June 1978, UUCS-78-104, University of Utah.

[13] Lamport, L., "'Sometime' is Sometimes 'Not Never'", Proc. Seventh
Annual Symposium on POPL, Jan 1980, 174-185.

[14] Manna, Z., and Pnueli, A., "Verification of Concurrent Programs:
Temporal Proof Principles", Technical Report, Stanford University, Sep,
1981.

[15) Owicki, S. and Gries, D., "Verifying Properties of Parallel
Programs: An Axiomatic Approach", Communications of the ACM 19, May
1976, 279-284.

{161 Owicki, S. and Lamport, L., "Proving Liveness Properties of
Concurrent Programs"™, ACM Transactions on Programming Languages and
Systems, 4, u455-u495, July 1982.

Page 36

[(17]) Pnueli, A., "The Temporal Semantics of Concurrent Programs", in
"Semantics of Concurrent Computation", Springer Lecture Notes in
Computer Science 70, June 1979, Springer-Verlag, 1-20.

(18] Pnueli, A., "On the Temporal Analysis of Fairness", Proc. Seventh
Annual Symposium on POPL, Jan 1980, 163-173.

{19] Ramamritham, K. and Keller, R.M., "Specifying and Proving
Properties of Sentinel Processes", Proc. 5th International Conference
on Software Engineering, 374-382, March 1981,
[20] Ramamritham, K. "Proof Techniques for Resource Controller
Processes™, COINS Technical Report, University of Massachusetts, June
1982.

APPENDIX

Proof of Correctness of Mutual Exclusion Translation Rule

The rule is as follows:

Vop1,0p2,

{ [J{service(op1) => ~[active(op2) V wait_active(op2)]} &

[1{service(op2) => ~[active(op1) V wait_active(op1)1} }

=i] ~ {active(op1) & active(op2)}
Proof: Since all service phases are uninterruptible, for any op1,0p2,
oplfop2,

[l{service(op1) => ~service(op2) UNTIL after(service phaselop1)}.
However,

[l{after(service_phasejop1) => wait_active(op1)}
which by the hypothesis and the definition of wait-active,

[Jafter(service_phaselop1) => “service(op2) UNTIL active(op1)}.
Again using the hypothesis,

[1{active(op1) => “service(op2) UNTIL after(active_phaseiop1)}

Using T9 and the above statements,

(10) [l{service(op1)
=> “service(op2) UNTIL after(active_phaseiop1)}

By the hypothesis,

[1{service(op1) => ~active(op2)}

Page 37

which by the definition of the predicate active gives
[1{service(op1) => [Tactive(op2) UNTIL service(op2)}
Thus, using (10) and T8,
[J{service(op1) => ~active(op2) UNTIL after(active_phaseiop1)}
Thus by T10 and the above statements,

[1{active(op1) => “active(op2)}

Proof of Correctness of the Priority Translation Rule

This rule states that

[J{service(op1) => “req(op2)}

[];Ereq(0p1) & req(op2)] => [service(op1) ONLYAFTER service(op2)1}
Proof: Assume the hypothesis. By T4

[1{req(op2) => [~service(op1) UNTIL ~“req(op2)1]}
By definition of req,

[1{req(op2) => req(op2) UNTIL service(op2)}
Thus, if

req(op1) & req(op2),
then by T8 and the above statements,

~service(op1) UNTIL service(op2)

that is

service(op1) ONLYAFTER service(op2).

Proof of the Single Slot Buffer Controller

For the sake of brevity, not all steps in the proof are shown.
Reference will be made to the appropriate parts of the semantics of
resource controller tasks in Ada (see section four). The reader is

referred to [20] for the complete proof. Before we start with the

Page 38

proof, using the semantics of the operations in section four, we
identify the code corresponding to individual phases of operations.

{at(LRS1) & start_read_q'first=r} <=>
{current_operation=r & at(service _phaseir)}

{current_operation=r & after(LRS2)} <=> after(service phaseir)
at(LRA) <=> Jr{Read, at(active phase!r)
after (LRA) <=> Jr{Read, after(active_phaseir)

{at(LRT1) & end_read q'first=r} <=>
{current_operation=r & at(term _phaseir)}

{current_operation=r & after(LRT2)} <=> after(term_phase!r)

Thus statement LRA corresponds to the active phase of Read operations.
Similarly, LDS, LDA and LDT correspond to the service, active and
termination phases of Deposit operations respectively. LMS and LMT
correspond to the service and termination phases of Remove operations.

Remove operations have a null active phase.

The execution context of all phases except the active phase of Read
operations 1is the controller process and hence the execution of these

phases cannot be interrupted.

Following are some liveness properties concerning each alternative
within the SELECT statement.

(11) {at(LRS1) & start_read'COUNT>0 & status=full}
=>
O{at(LS) & #active_reads>0 & status=full}

{at(LRT1) & end_read'COUNT>0 & status=full & #active_reads=c}
=>
O{at(LS) & #active_reads=e-1 & status=full}

{at (LDS) & Deposit'COUNT>0 & status=empty & #active_reads=0}
=>
<>{at(LS) & factive_reads=0 & status=full}

{at(LMS) & Remove'COUNT>0 & status=full & #active_reads=0}
=>

Page 39

<O>{at(LS) & f#active_reads=0 & status=empty}
These follow from the semantics of ACCEPT, assignment, DO..END, and LOOP
statements. Also, by applying (S4), we have the following implications:
(12) after(LRS1) => (status=full)

after(LDS) => ({status=empty & f#active_reads=0}

after (LMS) => {status=full & #active_reads=0}

Step-1: Verification of Resource State Changes

Applying standard axiomatic techniques, it is trivial to prove the
following:

Vm{Remove, ¥d<{Deposit,

after(term_phaseld) <=> after(LDT) => (status=full)

after(term_phaseim) <=> after(LMT) => (status=empty)

Step-2: Verification of Invariant Properties

Substep-1: In this substep, we derive the constraints imposed by
the resource controller on servicing requests for access. By applying
Inference-Rule-I to Deposit, Remove and Read operations, we can derive
the following constraints imposed by the controller.

(13) ¥r<{Read, ¥d<Deposit, service(r) => Tactive(d)

¥r£Read, ¥méRemove, service(r) => “active(m)

¥d1,d24Deposit,d1#d2, service(dl) => “active(d2)

¥d4Deposit, ¥m¢Remove, service(d) => Tactive(m)
The WHEN clauses associated with individual ACCEPT statements are also
utilized to derive additional constraints imposed by the controller on
the service of operations. From the semantics of operations executed in
exclusion, for a Deposit operation d,

service(d) <=> {at(LDS) & Deposit_q'first=d}

By (S4) in the semantics of the SELECT statement,

at(LDS) => {#active_reads=0 & status=empty}

Page 40

Thus we have
¥d{Deposit, service(d)
;:posit_q'first=d & #active_reads=0 & status=empty

Including the conditions derived from (13) above, we get the overall
conditions imposed by the SSB controller on servicing deposit
operations,
(14) ¥d4Deposit, service(d) =>

{Deposit_q'first=d & #active reads=0 &

status=empty &

¥d1£Deposit, d#d1, “active(dl) &
¥méRemove, “active(m)}

Substep-2: In this substep we derive constraints imposed by the
specifications of mutual exclusion, priority and others that affect
operation service. Applying the translation rules presented in section
five,

(15) ¥d4Deposit,
service(d) =>
{req(d) &
status=empty &
¥d14{Deposit, d#d1, “active(dl) & ~wait_active(d1) &
¥m{Remove, “active(m) & “wait_active(m) &
¥r<{Read, “active(r) & “wait_active(r)}

Substep-3 This substep involves showing that conditions derived
in substep one imply those derived in substep two. At this point we
resort to the relationships between predicates on counters and queues
and the abstract predicates "req" and "“active".

From Q3 (in section four) we can infer that
¥d<Deposit, [Deposit_q'first=d] <=> req(d)
Deposit_q'COUNT=0 => ~3d{Deposit, req(d)

From C2 (in section four),

#active_reads=0 => “dr{Read, [wait_active(r) V active(r)l.

Page 41

Applying the above implications, the constraints imposed by the resource
controller on servicing Deposit operations becomes
¥d£Deposit,
service(d) =>
{req(d) &
status=empty &
¥d14{Deposit, d#d1, ~active(dl) & “wait_active(dl) &
¥m{Remove, “active(m) & “wait_active(m) &
¥r{Read, Tactive(r) & "wait_active(r)}
which is equivalent to the necessary conditions derived in substep two

for Deposit operations (15).

Proceeding in a similar manner, we find that for read operations
priority specifications may not hold at all times. After simplifying
the constraints derived in substeps one and two, the following remains
to be shown:

V¥r{Read, service(r) => [¥m{Remove, “req(m) & ¥d<Deposit, “req(d)]
This constraint was derived from the priority specifications. Notice
that

Deposit 'COUNT=0 & Remove'COUNT=0
is among the conditions attached to the "ACCEPT Read" statement.
However, by (S4) in the semantics of the SELECT statement, this
condition may not hold when a Read operation is serviced. Thus,
priority specifications may not be satisfied at all times. (One could
say that priority specifications may not be satisfied for atmost one
execution of the SELECT loop. We do not consider this issue any

further.)

Page 42

Step-3: Verification of Fairness Criteria

The first step in the verification of fairness is to derive the set
of disjoint conditions that can hold at the beginning of the SELECT
statement. The distinct conditions appearing in the guards are

(status=zempty),

(status=full),

(#active_reads=0), and

(Deposit'COUNT=0 & Remove'COUNT=0).
Each branch of the following tree depicts one element of the set of
disjoint conditions existing at the beginning of the SELECT statement.

N

status=empty status=ful

/ S
ffactive_reads=0 \\\\ #activq_keads=6\\\\\

~ #active_reads=0 // ~ #active_reads=0
“(Deposit'COUNT=0 & Remove'COUNT=0)
(Deposit 'COUNT=0 & Remove'COUNT=0)
~“(Deposit 'COUNT=0 & Remove'COUNT=0)

(Deposit 'COUNT=0 & Remove'COUNT=0)

(Note that by C1, “#active_reads=0 is equivalent to #active_reads>0.)
Applying S2 to each of these conditions, we have six possible
combinations of open alternatives and the conditions under which they
occur, for example, when (status=empty) and (#active_reads=0), Deposit
and end_read alternatives are the only ones open. Let us name the six

conditions, E1 to E6. Thus, we have

[1{at(LS) => {E1 VE2 VE3 V E4 V E5 V E6}}
By (11), whichever alternative is chosen, control comes back to LS.
Also, one of the guards (namely, for end_read) is always true. Thus by
inference rule (S8) and T4,

[1<>{at(LS) & ~OAD & (E1 V E2 VE3 V E4 V E5 V E6)}

Page U3

Proof of Fairness to Deposit Operations

The fairness required for Deposit operations is
¥d4Deposit, {req(d) & []<>(status=zempty)} => <>service(d)
i.e. if the buffer becomes empty repeatedly, then a Deposit request

should be serviced.

We will make use of the following lemma which ensures that if
always the first request in a queue is serviced, every request in that
queue will be serviced.

Yop, [1(op=OPC_q'first) => <>service(op)

=>

¥op, [J(op=OPC_q[il]) => <>service(op)

This can be proven by induction on the length of the queue and follows
from the semantics of the ACCEPT statement. By the above lemma, it is
sufficient to show that the first request in Deposit_q will indeed be

serviced.

Assume
req(d) & [1<>(status=empty)
where d 1is deposit_q'first. Suppose d is never serviced, i.e.,
[17service(d). Since
req(d) => [req(d) UNTIL service(d)]
by T6, [Ilreq(d), which by the definition of queues (Q3) results in
[JDeposit 'COUNT>0.
Combining the above using T5 we have
(16) [1{Deposit'COUNT>0 & ~service(d)}.
Applying steps 3.2 through 3.4 of section five, to each of the six
conditions, we prove that request d will be serviced irrespective of the

condition that holds at the beginning of the SELECT statement. This is

Page 44

the required contradiction,

Condition-E1: open_alternatives={deposit,end read}
& status=zempty & #active_reads=0

By (16), [ldeposit'COUNT>0 and so there is a waiting entry call for
deposit.

Case-1.1: at(LDS) & status=empty & #active_reads=0 &
Deposit'COUNT>0

Using the definition of operations executed in exclusion,
service(d)
where d is Deposit_q'first. This contradicts (16).

Case-1.2: at(LRT1) & status=empty & #active_reads=0 &
end_read'COUNT>0

which by (11) results in
<>(at(LS) & #factive_reads=-1)
contradicting the definition of counters (C1) that
[l(#active_reads>0).
Hence this case cannot arise. (Notice that for end read'COUNT to be

positive, ffactive_reads should be positive too.)

Condition-E2: open_alternatives={end read}
& (status=zempty) & (#active_reads>0)

It is shown in [20] that (a) if ffactive_reads>0 then <>end_read'COUNT>0

and (b) by inducing on #active reads and by using the semantics of the

SELECT loop,
<O>{at(LS) & #active_reads=0}

which using the tree constructed earlier gives
<>{at(LS) & #active_reads=0)}
=> O{(at(LS) & #active_reads=0 & (E1 V E5 V E6)}

Consideration of E1 resulted in a contradiction. ES5 and E6 will be

discussed later.

Condition-E3: after(LRT1) & (status=full) & (f#active_reads>0) &
~(Deposit 'COUNT=0 & Remove'COUNT=0)

Page U5

The analysis is similar to condition 2. (Note that the predicates on
the counts were not utilized in the analysis of condition 2.)
Condition-E#: after(LRS1) & after (LRT1) &

status=full & #active_reads>0 &
(Deposit'COUNT=0 & Remove'COUNT=0)

By (16), since [ldeposit'COUNT>0, this condition cannot oceur.

Condition-E5: after(LMS) & after(LRT1) &
status=full & #active_reads=0 &
~(Deposit'COUNT=0 & Remove'COUNT=0)

If [JRemove'COUNT=0, then [Jlstatus=full, contradicting the premise of
the fairness statement for deposit. Hence eventually, there will be a
remove request.

Case-5.1: at(LMS) & status=full & #active_reads=0 &
Remove 'COUNT >0

By (11),

<>{at(LS) & status=empty & #active_reads=0}
which will result in condition E1 considered earlier.
Case-5.2: at(LRT1) & status=full &

#active_reads=0 & end_read'COUNT>0

As in Case-1.1, this will lead to a contradiction with
[J(#active_reads>0).
Condition-E6: after(LMS) & after(LRS1) & after(LRT1) &

(status=full) & (#active_reads=0) &
(Deposit'COUNT=0 & Remove'COUNT=0)

By (16), since [ldeposit"COUNT>0, this condition cannot occur.

Under each applicable condition, we showed that at least one of the
open alternatives will have an entry call. Also, we proved that
whichever possible open alternative is chosen from each condition, there

is a contradiction with (16) or [Il(#active_reads>0). Thus our

Page 46

assumption []™service(d) was wrong and hence by T3, <>service(d), i.e.,

the first request in Deposit_q will be serviced. The proof of the fact
that every deposit request will eventually be serviced follows from the

lemma.

Proof of fairness for Remove operations is along the same lines as

for Deposit operations and is hence omitted.

In general, we would also be interested in showing that every
operation will terminate. Statements in (11) prove this for Deposit and
Remove operations. The Same can be proven for Read operations through

an analysis similar to the proof of fairness above.

