POISE: AN INTELLIGENT INTERFACE
FOR PROFESSION-BASED SYSTEMS

W. Bruce Croft
Lawrence S. Lefkowitz
Victor R. Lesser
Karen E. Huff

Computer and Information Science Department
University of Massachusetts, Amherst, MA 01003

TR 82-19

This research was supported by a Digital Equipment Corporation Extermal
Research Grant.

ABSTRACT

POISE is an interface designed for systems which provide a set of tools to
aid professionals in the execution of their tasks. 1In particular, POISE
provides a means of defining the goals of typical tasks (or procedures) and
how tasks can be carried out using the tools. The procedure descriptions are
used both to interpret user actions and to execute tasks. The combination of
interpretation and goal-based planning gives POISE the following capabilities:
maintaining agendas of activities, proposing alternative courses of action,
automating tasks, correcting local and global errors, abstracting user actions
and invoking high-level tasks. The current implementation of POISE is described

using an example from an office environment.

POISE: An Intelligent Interface 2

INTRCDUCTION

Many systems currently available or being developed provide their users with a
set of tools designed to help them accomplish tasks in their particular environment.
The tools provided and the type of users involved will depend heavily on the
particular profession supported by the system. Some examples of these
profession-based systems are office information systems, software development
environments and medical information systems. The tools differ widely in their
sophistication, from simple electronic mail facilities to ‘expert systems which can
provide information on very specialized topics (for example, a medical diagnosis tool).
A common feature of current systems is that tools only deal directly with very
primitive tasks. Higher level tasks that may be more relevant to the professional’s
functions and which may require a number of tools cannot be supported by the
system. For example, office systems provide tools such as editors and mail systems
whereas the office worker is more concerned with tasks such as decision making or
processing orders in a specific way.

We propose that an interface for a profession-based system should include a
model of how the tasks in a particular environment can be carried out using the
tools. This model would include standard ways of accomplishing various goals as
well as methods used by individual users. This paper describes the design and current
implementation of a profession-based system interface called POISE (Procedure
Oriented Interface for Supportive Environments) that includes task models. This
approach to the design of an interface has the additional advantage of providing a
common framework within which the user can be introduced to a large variety of
tools.

POISE interprets a user’s actions in the context of a model of possible
actions represented as a hierarchy of procedure descriptions (or plans). The procedure
descriptions specify typical combinations of tool instantiations and the goals of the
actions carried out by the tools. The ability to combine interpretation (or recognition)
of actions using procedure descriptions, and planning using the descriptions and goals
gives POISE great flexibility.

The POISE approach can be used in any environment that includes standard or
typical procedures for carrying out tasks. A good example of this type of
environment is the office where much work has been done on the analysis of
standard procedures and on systems designed to support these procedures [ELLISO,
ZISM77). POISE is currently being used in an office information system and in the
less structured environment of software development [HUFF82]. A system based on
a similar approach was used as in interface to an operating system [SHRAS2].

The approach to interface design used in this project is related to the Consul
system [MARKSI] and the Programmers Apprentice [WATES2]. However, in contrast
to these systems, POISE contains descriptions of user tasks that involve complex
sequences of actions that may require a number of the available tools, and it
attempts to recognize and act on partial instantiations of the appropriate plans. A

POISE: An Intelligent Interface 3

central theme of the POISE approach is to combine the efficiency of a
procedure-based representation with the flexibility of a goal-based representation.

The basic POISE architecture is shown in Figure 1. The semantic database
contains descriptions of the tools and the objects referred to by the procedures. The
model of a user’s state includes partial instantiations of procedure descriptions with
parameters derived from specific user actions and instantiations of the database

objects.

Being able to do interpretatibn and planning in the context of the semantic
database and the partially instantiated set of hierarchically related procedure
descriptions gives POISE the following capabilities:

a.

Planning used to propose actions. By using the goals and sequences of
actions specified in the procedure library, POISE can describe alternative
courses of action to a user who is uncertain of how to carry out a task.
It can also provide default values for incompletely specified actions.

Planning used for task automation. Whereas some procedures require human
interaction, other tool instantiations in procedures can be invoked by the
system.

Propagating constraints to correct local and global errors. Specific user
actions apply constraints to the general procedure descriptions. By
following the implications of a user’s actions through a procedure, the
system can recognize actions that, though syntactically correct, appear
inappropriate in the context of what the user is trying to do. A user
may, for example, destroy some entity that will be needed to complete the
task. POISE could warn the user of such potential problems before an
actual error occurs. '

PROCEDURE USER SEMANTIC
LIBRARY MODEL DATABASE

I 1T

INTELLIGENT INTERFACE

USER <,.L::_':_'.'> TOOLS

Figure 1: The POISE system.

4

d. Abstracting user actions. Since the procedures represented in POISE are
specified hierarchically (i.e. procedures located further up in a hierarchy
represent more abstract tasks), the system is mot only able to recognize a
user’s action, but is also able to interpret it as being a part of some
higher level procedure and thus understand the action at a more abstract
level. This capability is used in summarizing and predicting activities.

. Agenda maintenance. The system can keep track, over a number of terminal
sessions, of a user’s activities. At any time, the users can ask for agendas
of their activities which. the system will present as partially completed
procedures.

f. Providing a higher-level interface. Because POISE contains a hierarchy of
procedures at different levels of abstraction, the user can interact with the
system at various levels. For example, the user can invoke abstract tasks
which do not correspond to actual tools.

The features mentioned above will use a natural lénguage interface that is currently
under development. This interface will be for user requests to POISE and for
generating natural language descriptions of the current state [MCDOSs1].

PROCEDURE DEFINTTION

In order to represent the pcssible sequences of concurrent actions in a
procedure, we are using a modified version of an Event Description Language
[BATES2). Figure 2 presents an example of a procedure description. The
algorithmic syntax of the procedure is specified by the IS clause, refined by the
COND clause and has its parameters defined by the WITH clause. The conditions.
required for a procedure to begin are specified by the PRECONDITION clause
while the goals satisfied by a procedure are contained in the SATISFACTION clause.

The IS clause of the procedure definition provides a very precise way of
describing the standard algorithm for accomplishing a task in terms of other
procedures: and primitive operations (tool invocations). The sequence of
constituent procedures is specified using the operators. Catenation (),
Alternation (I), Shuffle (#), Optional ({}), Plus (+) and Star (*). The Catenation
operators specify the exact temporal ordering of two procedures. If only one of
two procedures is to occur, the Alternation operator is used. Shuffle permits the
interleaving of the components of two procedures in any order. The Optional
operator. is used to specify that a procedure may or may not occur. Plus operators
allow procedures to occur one or more times, while Star, the closure of Plus,
indicates zero or more occurrences.

Constraints may be placed upon the values and relationships of attributes of
procedures. These constraints are specified by conditions that must be met in order
to have a valid instantiation of the procedure. The COND clause is. used to

POISE: An Intelligent Interface 5

PROC Purchase_kems

!

DESC (Procedure for purchasing tems wih non-state funds.)

s (Receive_purchase_request
* (Procesa_purchasa_order | Process_purchase.requisition)
* Complete_purchase)

COND (and (or (eq Procesa purchase_orderAmount Receive_purchase_request.Amount)
{eq Process_purchase._requislionAmount Receive_purchasa_request Amount))

(or (eq Procesa_purchase_order.Vendor Receive_purchase._request.Vendor)

(eq Process_purchasa_requisiion.Vendor Receive_purchasa._request.Vendor))
(or (eq Procesa_purchase_orderAmount Compiete_purchass Amount)

(eq Process_purchase_requiskionAmount Compiete_purchase.Amount))

(eq Pmosaa_pudm.mmmvm Ooupbto_pudnsoVondor)))

WITH {(Purchaser Receive_purchasa_request.Purchaser)
(Amount Receive_purchase_request. Amount)
(tems Receive_purchasa.request.items)
(Vendor Recelve_purchase_requsst.Vendor))

Figure 2: An external procedure specification.

describe these constraints.

Attributes of a procedure are defined in terms of attributes of its constituent
procedures. This information, in turn, may be used by (or provided by) higher
level procedures. These attributes of a procedure are defined by the WITH clause.

The POISE formalism also contains a description of the state of the
environment that must exist in order for the procedure to begin. The
PRECONDITION clause specifies the set of conditions that must be true to start a
procedure.

Upon completion of a procedure, certain conditions must be satisfied. This
information serves both as an aid to the planner and as an alternate means of
recognizing the completion of a procedure. The SATISFACTION clause specifies
these conditions.

AN EXAMPLE

To demonstrate the functionality of the current version of POISE, this section
describes the system being used for processing a purchase order. Figure 3 presents
a portion of the procedural hierarchy for this task. Figure 4 shows part of POISE’s
interpretation of a set of user actions in this domain.

POISE: An Intelligent Interface 6

F3 Ou

Form

Receive

Recoive
- Information

Figure 4: Interpretation of user actions.

First, the external representation of the procedure descriptions is presented to
POISE. (See Figure 2 for a description of the "Purchase_Items” procedure.) POISE
generates an internal form of the descriptions, verifying the existence of constituent

POISE: An Intelligent Interface 7

procedure descriptions and generating rules to enable the propagation of procedure
attributes. (Figure 5 shows part of the rule set for “Purchase_Items”.)

When a user action occurs, POISE creates an instantiation of the procedure
type(s) that correspond to that action. If the user receives information (e.g. via
electronic mail), POISE creates a Receive_Information instantiation and fills in any
available attributes of the procedure (e.g. source of the information, format,
description, etc.). This monitoring facility is being developed to interact with an
existing set of office tools. Currently, it is simulated by entering the user actions
interactively from a file.

Upon creation of an instantiation, POISE attempts to integrate it into its
existing model of the user’s actions and goals. The instantiated procedure may be a
part of a higher level task. If the procedure can begin a task (i.e. is the first step
in some other procedure), the Abstractor wil create an instantiation of this higher
level procedure. For instance, if the user receives information of the type “message”
with a description ”purchase request” (and POISE creates a corresponding
instantiation of Receive_Information), the .Abstractor recognizes that this is a
legitimate first step in the Receive_Purchase_Request procedure. Thus, an
instantiation of Receive_Purchase_Request may be created and any available attributes
will be propagated up to it using the rules generated earlier.

Some of the constituent procedures of an instantiated procedure may have
completed while other constituents are not yet finished. Processing a purchase order,
for example, consists of filling out a purchase order form and sending information
(the form) to the purchasing department. If the form has been filled out but not
yet sent, POISE will contain a pending instantiation of the Process_Purchase_Order

(¥ (selector Process_purchase_ordor Amount)
(set Recsive_purchass_request Amount
(selector Process_purchasa_order Amount)))
(¥ (sslector Roceive_purchasa_request Amount)
(set Procesa_purchase_order Amount
(selector Receive_purchasa_requsst Amount)))

(¥ (selector Receive_purchasa request Purchaser)
(sot solf Purchaser
(sslector Receive_purchase_request Purchaser)))
(8 (selector Receive_purchase_request Amount)
(sst se¥ Amount
(selector Receive_purchase_request Amount)))
((selector Receive_purchase_request tems)
(st so¥ ltems
(selector Receive_purchase_request Rtems)))
(f (selector Recelve_purchase_requeat Vendor)
(set se¥ Vendor
(selector Recelve_purchase_request Vendor)))

Figure 5: Constraint propagation rules.

POISE: An Intelligent Interface | 8

procedure. If the user sends information (with the appropriate attribute values), the
Connector portion of the system will attach the resultant Send_Information
instantiation to the Process_Purchase_Order instantiation that is expecting it.

Alternatively, POISE may make predictions from pending procedure
instantiations. The expectations of pending instantiations (here, the
Process_Purchase_Order expects a Send_Information) may be used to create predicted
instantiations which may, in turn, be used to focus the system’s processing.

There are errors that POISE can detect (and sometimes correct) based on its
model of the user’s state. If, for instance, the user receives a purchase request and
proceeds to fill out a purchase order form corresponding to the request but fills in
an incorrect value on the form (such as a different amount for the purchase than
was stated in the request), POISE can warn the user of this discrepency.

Occasionally, the user will carry out a task in a way that POISE does not
expect. For example, if the purchase request was received in person rather than by
electronic mail, the system would not be able to monitor this action. However, by
utilizing the information provided bu the Satisfaction clause of the procedure
description to check if the objectives of the apparently missing action have been
. satisfied, POISE may infer that the action has occurred.

CURRENT IMPLEMENTATION STATUS

An initial version of the POISE system has been implemented and is running
in CLISP under VAX/VMS. The current system is capable of interpreting a user’s
actions in the context of a collection of procedure descriptions. The procedure
descriptions are presented to the POISE system in an augmented Event Description
Language format. The procedure reader translates these into an internal
representation and generates constraint propagation and checking rules from the
information provided by the WITH and COND clauses of the procedure descriptions.
These rules are used by the constraint propagation mechanism to pass information
around the procedure instantiation hierarchy and by the abstraction and prediction
modules to assist in the interpretation process.

Upon recognizing a user’s action, POISE creates an instantiation of the
procedure template corresponding to it and fills in any information provided by the
action. System actions based on this instantiation, such as connecting it to a more
abstract procedure instantiation or making a prediction from it, are enqueued.

The scheduler module implements a focusing scheme. It is used to control the
selection of system activities from the agenda of pending actions. The scheduler
may be tuned to emphasize certain types of actions or to concentrate on particular
_ areas of the procedure hierarchy.

POISE: An Intelligent Interface 9

The interpretation mechanism abstracts upwards in the procedure hierarchy
from an instantiation as well as predicting the next (lower level) steps in an
instantiation. The abstraction process consists of determining what higher level
procedures an instantiation can be part of and connecting the instantiation to them.
The constraints are checked (using the rules generated by the procedure reader) to
verify that the interpretation is semantically valid. If the instantiation is the first
step in the higher level procedure, the system will first create an new higher level
instantiation and then connect up to that. For prediction, POISE determines the set
of possible next constituent procedures for an instantiation and generates the
necessary predictions. Using constraint propagation, attribute values are filled in on
the predicted instantiations.

The objects manipulated by the procedures (as well as those objects that do
the manipulating) are described in a KLONE-like semantic database. The
development of this database and its integration into the POISE system is currently
underway.

A simple debugging facility exists and is used to examine the state of the
interpretation. It provides a view on particular instantiations, their connections to
other instantiations, and the scheduling agenda.

CONCLUSION AND FUTURE RESEARCH ISSUES

The current version of POISE demonstrates that in an environment such as the
office where many of the actions in procedures can be readily identified, the user’s
goals can be quickly inferred from a partial sequence of actions. This is
accomplished by focusing on likely interpretations using domain-independent heuristics.
By propagating constraints derived from the user’s actions, the system can then
provide significant assistance in the execution of tasks and the correction of errors.
It remains to be seen whether more domain-specific knowledge will be required in
other environments. For example, in the software development environment, the
actions tend to be more ambiguous and the number of potential interpretations can
grow very rapidly.

Another major issue for a future version of POISE is to provide an interface
for user creation and modification of procedures. This interface will be a crucial
part of dealing with the changing environments typical of nrofession-based systems.
Two possible approaches to this problem are constrained example generation [RISS80]
and planning. Users may be able to modify procedures by modifying examples of
procedures. A planning mechanism which is independent of procedure hierarchy may
be able to construct new procedures using the preconditions and goals of basic
procedures and by interacting with the user to fill in gaps.

POISE: An Intelligent Interface 10

Acknowledgement

The authors wish to acknowledge the work of Norman Carver, Dan McCue and
Susan Lander on the implementation of the POISE system.

References

BATES82 Bates, P.C.; Wileden, JC. ”EDL: A basis for distributed system debugging
tools”. [International Conference on Systems Science; Hawaii, 1982.

ELLIS0 Elis, CA.; Nutt, GJ. "Office information systems and computer science”.
ACM Computing Surveys, 12: 27-60; 1980.

HUFF82 Huff, KE.; Lesser, VR. “Knowledge-Based Command Understanding: An
Example for the Software Development Environment”. COINS Technical
Report 82-6, University of Massachusetts; 1982.

MARKS1 Mark, W. "Representation and Inference in the Consul System”. [JCAI-7,
1981.

MCDOS81 McDonald, DD. "Natural Language Generation as a .Computational
Problem: an introduction”. in Compuwtational Models of Discourse, The MIT
Press, Cambridge, Massachusetts, 1983.

RISS80 Rissland, EL.; Soloway, E. “Overview of an Example Generation System”.
Proceedings of the AAAI, Stanford, CA; 1980.

SHRAS82 Shrager, J.; Finin T. "An Expert System that Volunteers Advice”.
Proceedings of the AAAI, Pittsburgh, PA; 1982.

WATES2 Waters, Richard "The Programmers Apprentice: Knowledge Based Program
Editing”, IEEE Transactions on Software Engineering, Vol. SE-8, No. 1,
January 1982.

ZISM77 Zisman, MJD. Representation, Specification and Automation of Office
Procedures, Ph.D. Dissertation, Wharton School, University of Pennsylvania,
1977.

