PROTECTING OBJECTS THROUGH THE USE OF PORTS -

Stephen Vinter
Krithi Ramamritham

David Stemple

COINS Techinal Report 82-23

Department of Computer and Information Science
University of Massachusets, Amherst
Amherst, Massachusetts 01003

Abstract

In several systems, ports have been utilized as communication channels
between eooperating processes. We extend the wuse of ports for
achieving protection of shared objects. For this purpose, a port is
viewed as an abstract data type and protection 1is achieved by
restricting the operations that are available to processes for
manipulating ports. Further, we equate ownership of a port with
possession of a capability to request operations on an object. In
this paper, we examine the design issues involved in such a paradigm
of communication and protection. In particular, we investigate
primitive port operations, port connection establishment,
synchronization and cooperation among processes mediated by ports, and
message structure. This investigation reveals those questions that
need to be answered during the design of systems which wuse ports to
achieve communication and protection.

Page 1

1. Introduction

The primary purposes of an interprocess communication facility
are process synchronization and interprocess data transfer. Both
goals are achieved by the transfer of messages between- processes.
Data sharing 1is an efficient alternative to message transfer in a
computer system, but is difficult to achieve 1in a distributed
computing environment. This paper addresses port-based interprocess
communication mechanisms in the context of distributed systems. In
particular, it presents a taxonomy of various aspects of port-based
communication, including addressing, connection topologies, primitive
operations on ports, and message buffering techniques. After a brief
survey of current protection mechanisms, the paper concludes by
proposing ports as a means to implement capabilities. The thrust of
this paper is to investigate the use of ports for protecting shared

objects in an object-oriented system.

Port-based communication has a number of characteristics that
distinguish it from other communication models. A port constitutes a
communication path between sets of communicating, cooperating
processes. In connecting communicating processes, a port can mask the
identity of the processes involved in the communication. This
feature, termed functional addressing, distinguishes port-based
communication from communication mechanisms wusing other forms of
addressing. The Connection Establishment section of +this paper
discusses attributes of communication "connections that must be
considered when the paths are formed, including addressing,
restrictions placed on paths, and alternative topologigs for

communication connections.

Page 2

Messages are placed in ports by a process with send access to the
port. Messages are removed from ports by a process with receive
access to the port. The section on Synchronization and Concurrency
investigates alternative primitive operations on ports for placing

messages in and removing messages from ports.

Ports provide a message buffering capability, queueing messages
when communications are asynchronous. The Message Delivery section
investigates topics related to the queueing of messages on ports.
Issues discussed include message buffering, message prioritization and'
categorization, and aging. The section on Message Structure discusses

the typing of data passed through ports.

A port is recognized by a system as an entity that is independent
of the processes which wuse it. Ports are abstract data types, and
hence, can only be manipulated by a predefined set of operations. In
object-oriented systems, all data is represented by a set of objects,
each object representing an instance of an abstract data type. Also,
associated with each object is a manager process which controls the
execution of operatioﬁs on the object. Here we unite the notions of
port-based communication, object-based systems and protection of
objects by proposing ports not only for communication purposes but
also as a mechanism for protecting objects. The capability of a user
process to access a port that is connected to the manager of an object
signifies the right to perform a particular set of operations on that
object. Thus, ports are pregented as an implementation of the concept-
of capabilities. Port-based protection is the sﬁbject of the final

section.

Page 3

2. Connection Establishment

The examination of the establishment of a communication
connection requires investigating three issues: the addressing of
processes involved in the communication connection, the restrictions
imposed on the use of the communication path, and the topology of the

communication path.

2.1 Addressing

Addressing denotes the method that a process uses to select other
processes with which it desires to communicate. It is possible to
address processes in a number of ways. We have chosen to categorize

addressing as implicit, explicit, indirect, or functional.

The simplest form of connection establishment is implicit

addressing, where a process can only communicate with one other

process in the system. This is usually the case for processes created
to perform a single service, and only communicate with their parent
process. The communication path can then be established a process
creation time. Hence, no process or communication path needs to be
specified in the other communication primitives for passing messages.
Such a model 1is appealing in its simplicity and can be useful when
such restrictive communication is desired. However, it 1is not
powerful enough to allow any pair of processes to communicate, a

minimal requirement of a general communication facility.

Explicit addressing is characterized by the explicit naming of

the process with which communication is desired. This is proposed in
many systems, including Hoare's CSP model [HOAR78] and SUPPOSE

[BRITS80]. A specific primitive may be provided for connection

Page 4

establishment or the process ID can be includéd in the message passing
primitives. The only advantage in providing a separate primitive for
connection establishment is in allowing an option to restrict future

communications.

Explicit addressing requires a global knowledge source containing
the identity of each process in the system. Some systems have
predefined names for processes providing system services and a user
accessible table of wuser process "ID's. A communication mechanism
dependent on explicit addressing is an adequate basis for a complete
communication system, as evidenced by its use in the Thoth system
[CHER79]. However, explicit addressing is not flexible enough to
effectively handle such common circumstances as process migration in

distributed systems and multiple processes providing a single service.

The UNIX pipes [RITC74] are an example of an interprocess
communication facility wusing a limited form of explicit addressing.
Only processes with a common ancestor may communicate via pipes.
Thus, interprocess communication in the original UNIX system is very
‘limited. Extensions of the original UNIX facilities are proposed in

[RASH80] and [SUNS77], each using functional addressing (see below).

Path-based addressing associates global names with local message

receptacles, or 'mailboxes'. A process can declare a local mailbox
into which messages can be received. A process specifies a
destination mailbox when sending a message. Since a process can send
a message at any time if it knows another's mailbox and the mailbox is
in existence, communication paths do not need to be preestablished,

and hence are transient. This kind of addressing was introduced by

Page 5

Balzer [BALZ71] and expanded in work by Walden [WALD72]. The RIG
system [BALL76] combines explicit and path-based addressing by

requiring the specificétion of the destination port ID and process ID.

Functional addressing establishes a connection based on the need

to serve or request a service. In this case the communication path is
itself a named entity of the system. The identity of the process or
processes on the other end of the communication path need not be in
either the requestor's or the server's view. This kind of addressing
is very flexible because an individual process is not necessarily
associated with a communication path, and paths themselves may be
passed within messages. Functional addressing 1is the underlying
concept used in many current message-based systems, notably Accent
[RASH81] with 'port' denoting a path, and DEMOS [BASK77], with 'link'
denoting a path. Communication paths established wusing . functional
addressing may have a number of characteristics that change over time,
including the set of proceéses with access to them. We will restrict
use of the term port ¢to communication» paths established wusing

functional addressing.

2.2 Port Types

Typing involves the restrictions placed on the use of a path
declared when the path 1is created. The primary restrictions of
concern in connection establishment are directionality, ownership,
frequency of use, and transference rights. Additionally, a section to
follow is devoted to investigating the restrictions placed on the type

of messages that may be passed on a port.

Page 6

Directionality concerns whether or ﬂot a single process has both
send and receive access to a single communication path. If so, the
path is bidirectional (or duplex, as used in TRIX [WARD791). Most
systems provide only wunidirectional (or simplex) paths, on which
processes may send or receive messages, but not both, for the lifetime
of the path. Bidirectional communication requires a pair of paths in

systems providing only unidirectional paths.

Ownership deals- with the capability to destroy a port and
terminate communication without the consent of ail processes with
access to the path. Ownership can be associated with the
directionality of communication, as in the Accent system where the
allocator of a path automatically has ownership and receive access ¢to

the path.

Frequency of use deals with the limitations on the frequency a
path can be used. The DEMOS and Roscoe [SOLO79] systems have a
'reply' path, created for the sole purpése of returning a single
message. Such a path 1is automatically destroyed after it is used

once,.

Transference rights concern the ability to duplicate a port, or
pass access and/or ownership rights of an established path to another
process. For example, a process with ownership rights to a path can
send that privilege to a receiving process, allowing it to destroy the
path or change the path's characteristics. Transferring access rights
can; " but does not necessarily, imply loss of the transferred right.
Transference rights are relevant to the protection of objects and can

also affect the topology of the communication path. Both of these

Page 7
issues are addressed below.

2.3 Topology

The topology of a communication path is the interrelationship of
communicating processes wusing the path. Topology can take four
general forms: one-to-one, one-to-many, many-to-one, and
many-to-many. Communication paths that are not one-to-one can often
be functionally equivalent to a set of one-to-one pathé, an important
" issue in examining topologically complex path structures. The Process
Control Language (PCL) [LESS79] provides a complete specification of a
wide variety of topological structures of unidirectional communication

paths. The terms used below are introduced in the PCL description.

The simple path is provided for a one-to-one connection. A
single queue 1is maintained to hold all messages. The broadcast and

multiple read connections are one-to-many connections, associating a

set of receivers with each sender. Every message sent on a broadcast
communication path is received by every receiver; any message sent on
a multiple read path is received by the first process requesting it.
The broadcast path can be easily simulated by a set of simple paths
from the sending process to the set of receivers. The multiple read
path is useful when a set of servers provide a service, and the
service is perfofmed equally well by any of the servers. A
multiple-read path cannot be simulated with one-to-one paths without
additional management control within the processes performing the

service,.

Page 8

Many-to-one connections are provided in the multiple-write and

concentration communication paths. A multiple-write mapping is the

converse of the multiple-read mapping: every message sent by any
sender 1is received by the receiver. This also can be simulated by
forming a set of simple paths from the sender processes to the
receiver. The concentration path can be used for synchronization of
the set of senders: every message received is the concatenation of
the set of messages from a single send by each sender. ' A message

cannot be received until every sender has transmitted a message.

Many-to-many paths are combinations of one-to-many and

many-to-one paths. The multiple-write/broadcast transmits every sent

message to each receiver, A message transmitted on a

multiple-write/multiple-read path by any sender is only received by

the first receiver requesting it. A concentration/broadcast message
is the concatenated messages from each sender and is sent to every

receiver. A concentration/multiple-read message is the concatenated

messages from each sender and 1is received by the first receiver

requesting it.

It is not necessary to declare the topology of the communication
path at path creation time. For example, a simple communication path
between a pair of. processes can be transformed into a broadcast path
after the path is created when a third process attains receive access
to the path. Therefore, the topology of a path is closely related to
the transference and access rights of processes to the path, and may

change over the lifetime of the path.

Page 9

3. Synchronization and Concurrency

An essential issue in the discussion of communication primitives,
particularly in a distributed environment, is the degree to which they
provide concurrency between processes. Primitives providing only
synchronous coupling with no parallelism implement, in effect, a
message-oriented approach ﬁo procedure calls. Communication
primitives use process blocking to achieve synchronization. Blocking,
the voluntary, temporary suspension of an executing process, prevents
maximizing the concurrency between processes. This section examines
the varying degrees of synchronization and concurrency provided by

different send and receive primitives.

The unconditionally blocking reply-send primitive

(remote-invocation send of [LISK79]) has the basic semantics of a
procedure call. The invoked procedure is a process blocked at the
start of the procedure with a receive, awaiting a message. The
- procedure caller, or message sender, issues a reply-send to initiate
the procedure execution. The contents of the message are the
procedure input parameters. The sender blocks until a reply message
(the return parameters) is returned by the receiving process,
indicating the procedure termination. The receiver blocks by
reissuing a receive after the reply-send. (Consult [NELS81] for an
extended comparison of message-based and remote procedure call
approaches to communication.) Thus, the reply-send primitive
synchronizes the sender and receiver at the éxpense of concurrent

process execution.

Page 10

The synchronized send increases the parallelism between

communication processes. With the synchronized send, the sender is
blocked until the message is received by the destination process.
This primitive 1is more powerful than the reply-send. It can be
implemented on either a simplex or duplex path, and can be wused to
simulate a reply-send By issuing a blocked receive to await a reply.
The sender is also notified immediately of communication failure. The
reply-send and synchronized send primitives require no message
buffering or queueing if only a single process has send access to the

port.

The no-wait send or asynchronous send maximizes concurrency

between communicating processes [LISK81]. 1In this model, the sender
resumes execution as soon as the message 1is composed and buffered
within the communication facility. The need for buffering introduces
problems of flow and congestion control, addressed in the following
section. Additionally, the sender is not notified of transmission
errors or communication failure. The no-wait send' can simulate a
synchronized send if the sender blocks on a receive after issuing the
send, and the receiver sends a reply upon receiving the message. The
no-wait send is therefore the most flexible of the three send
primitives, though it introduces extensive implemention problems. It
is the obvious candidate for wuse in more complex topological path
structures. Broadcast and multiple read topologies would result in
unacceptable delay without the no-wait send, while use of the no-wait
send is implied in the multiple write structure. Most recently
developed communication facilities providing asynchronous message

passing implement the no-wait send to increase process concurrency.

Page 11

The test and send primitive tests to ensure a that receiver Iis

blocked awaiting the message before transmitting a message. If the
receiver is not blocked, the sender resumes execution and is notified
that the message was not sent. The test and send primitive provides
the sender with a polling capability, an approach to synchrony
different from previously discussed primitives. To our knowledge, no

current systems have implemented this primitive.

There are two forms of receives: unconditional and conditional.

The unconditional receive, or blocked receive, blocks the receiver

until a message is queued on the selected port [RAO80,GENT81]. The
unconditional receive sacrifices process concurrency by blocking the

receiver when no messages are queued.

The unconditional receive has two variations. The first is the

port set receive in which the first message received on any of the

specified set of ports is returned to the receiver [BRIT80]. This is
useful for a serving process awaiting messages from multiple sources.

A second variation is the blind unconditional receive which blocks on

all ports to which the requesting process has receive access [STEM82].
If a new port is associated with the process after the receive is
issued, a message sent to the new port will be returned to the
receiver along with the new port ID. This allows processes to respond

to the dynamic creation of ports without a special joining mechanism.

The conditional receive (selective receive of [RA080]) introduces

a polling capability, allowing the receiving process control over the
degree of concurrency desired. The conditional receive polls a (set

of) pbrt(s) for a queued message. If a message is present it is

Page 12

returned, otherwise control is returned with a flag indicating no
message is available. The unconditional receive can be generalized to
check for a more complex condition than the presence or absence of a
message. For example, if messages are prioritized or categorized, the
primitive could specify a condition the queued message must satisfy.
In the case of many-one communication paths, the condition could
specify the source of the message. The Accent system [RASH81]
attaches a header to each message and provides a Préview primitive to
examine message headers without dequeueing the messages. Combined
with the unconditional receive primitive, the Preview primitive can be
used to select a specific message from a set of queued messages at a

port.

4. Message Delivery

Here we are concerned with issues affecting the delivery of
messages. The primary 1issues are buffer allocation, priority,

categorization, and age.

Implementing a general pbrt-based communication facility requires
the ability to queue messages at ports awaiting réceiver requests.
The easiest queueing strategy to implement 1is first in, first out
(FIFO). Regardless of the queueing technique used, queue maintenance
introduces the problem of allocating buffers for queued messages.
There are three buffer allocation techniques: port-local allocation,

process-local allocation, and system-global allocation.

Page 13

Port-local allocation assigns a fixed buffer space to each port

[RASH81]. When the buffer space is filled and a process attempts to
send another message to the port, there are three alternatives.
First, if a flow control option is included in the send primitive, the
port can dynamically expand its size to allow for an additional
message. Obviously, there are restrictions placed an a port's
expansion size. Second, the sending process can remain blocked until
space 1is available on the port for an additional message. Last, an
error flag can be returned to the sending process indicatihg a full
port. The choice of action when a full port is encountered can be an
option inclyded in the send primitive, a dynamic attribute of the

port, or a static system feature.

The process-local allocation technique associates the buffer

space with the process rather than the port [KNOT75]. This restricts
the total number of outstanding messages for a process. However, if
the processes with access to a port can change throughout the port's
existence, it 1is undesirable to associate message buffers with

processes.

A third resource allocation alternative is to maintain a global
buffer pool (examples include Roscoe [SOL079] and UNIX). This

technique, termed system-global allocation, introduces the problem of

congestion control: assuring that each process has fair access to the
communication facility. A viable solution to the problems of flow and
congestion control 1is to combine the port-local and system-global

techniques. The port-global hybrid could associate a fixed buffer

space with each port while reserving buffer space within the system.

Congestion control would then be assured by allotting space to each

Page 14

port and flow control would be provided at the discretion of the
communication facility through the distribution of surplus systenm

space.

Messages may have attributes associated with them to allow for
their reception in an order other than the order in which they were
sent. Priorities assigned to messages by senders can facilitate the
quick delivery of alarm or emergency messages to a receiver.
Categories assigned to messages can be used by a receiver to select
messages independently of both sender priority and send order. Aging
associates a time limit with a message. If the message 1is not
delivered within the specified time limit, the message is deleted from

the port queue.

5. Message Structure

There is a great deal of variety in the message structures of
proposed and implemented systems. One issue is the message length.
The Roscoe, Star0OS [JONE79], and Thoth [CHER79] systems have short,
fixed 1length messages. This‘is in part due to the belief that most
messages in such tightly coupled systems are short control messages.
Special, synchronous communication paths are provided for large data
transfer, such as reading and writing files. Most protocols for
loosely coupled systems support variable length message transfers(e.g.
Accent, Medusa [0OUST80], and CLU [LISK79]). Variable length messages
are obviously more difficult to implement due +to the buffering

problems they induce.

Page 15

A more important aspect of message structure is the typing of
data within messages. Some systems support strongly typed data within
messages (Eden [LAZO81], CLU, and Accent). Strong typing of data
- provides reliability in general, but in a distributed system
consisting of .heterogenous nodes, it 1is especially important in

assuring proper conversion of messages across nodes.

6. Protection With Ports

We now turn our attention from port-based communication to
port-based protection. Towards this end, we first examine
capabilities as a mechanism for protecting shared objects and then

discuss ports as a technique for implementing capabilities.

6.1 Capability-based Protection Mechanisms

Introduced by Dennis and Van Horn [DENN66], the concept of
capabilities was first inéorporated into an operating system in the
CAL [LAMP76] and Hydra [WULF74] systems, and implemented in
commercially available hardware in the Plessey System 250 [C0SST72].
Systems employing a capability protection mechanism Qiew all data as
objects which are strongly typed and distinguished from one another Sy
unique identifications. Object types are abstract data types because
their type defines and limits the operations that can manipulate them.
Examples of object operations are create, destroy, duplicate, push,
pop, etc. A capability consists of an object identifier and a set of
access rights, which allow the manipulation of the object with a
subset of the operations defined by the object's type. A process may
request an operation on an object only if it possesses the appropriate

capability for the requested object.

Page 16

Capability-based protection- mechanisms are difficult to
implement. Once a process obtains a capability it is essential that
it not be able to modify it. Capabilities may be Stored as (C-lists,
as with the Intel 432 [COX81], or as tagged memory, as with the IBM
System/38 [BERS80]. The C-list scheme stores all capabilities in
separate capability segments. A major difficulty in the use of
capabilities is the separation of data and capabilitiés. Tagged
memory requires each unit of data, 32 bits in the case of the
System/38, to be tagged to indicate whether it is a capability or not.
Tagging presents a large overhead for memory. See [LEVY81] for a

complete description of capablity based architectures.

Object-oriented systems such as CAL, Extended CLU [LISK791], CAP
[NEED78], Hydra, and the Intel Y432 associate groups of objects with
modules. Modules appear in the literature with a variety of names,
including domain, context, guardian, and environment. A module
consists of a set of processes and 1local data (both objects
themselves) in addition to shared objects. A process within a module
has the right to distribute access rights, in the form of
capabilities, to processes outside the module. Only processes with a‘
capability for an object have the right to manipulate the object with
operations defined in the object's module. The protection of an
object is thereby controlled by the distribution of capabilities by

processes within a module.

The request for an operation on an object managed by another
process 1is an example of interprocess communication, and thus a prime
candidate for implementation with a port-based system. The

communication 1link between processes in separate modules is the port.

Page 17

Messages passed through ports include object capabilities and
operation requests on the objects. The Eden system combines the
capability-based architecture and port-oriented communication facility
of the Intel 432 to provide an object-oriented approach to protection.
Likewise, the proposed Extended CLU system combines the use of ports
with a modular design for an object-oriented distributed computing

system.

6.2 Proposed Port-based Protection Mechanism

We propose an alternative approach to protection than a striectly
capability-based system. In the wuse of capabilities and ports
discussed above, ports provide the means to manipulate objects, while
capabilities independently provide protection. In our approach, the
capability to manipulate an object using any of a set of operations is
equated with the capability to send a request through a port connected
to that object's manager. Thus, possession of a port capability
implies the right to perform a particular set of operatiohs on the
object associated with the port. The communication facility is
thereby extended to provide the protection mechanism for all objects

in the system,

User processes are permitted to creéte and thereby own ports to
perform a specific set of operations on an object. This permission is
granted by an underlying capability manager. To perform a specific
operation on an object, a process sends a message to that object's
manager through the port created for that purpose. On completion of
the requested operation, the result of the operation is sent to the

user process. A user process is permitted to request a certain

Page 18

operation on an object via a port only if it has the capability for
the operation. This is achieved by binding the port of each user
process to a specific set of operations on a specific object. Thus
ports are used to implement a certain capability structure which in

turn reflects the desired protection in the system.

Given that ports are used for remote execution of operations,
addressing in a system protected via ports is functional. However,
one can choose from a variety of send and receive primitives, path
topology, message delivery schemes, message-buffering techniques, and
path types. Message delivery and message buffering relate only to
issues such as performance and hence are outside the domain of
protection. Now we briefly discuss some of the decisions to be made
in the selection of path types, path topologies, and message passing

primitives.

Obviously, given that a port is being used for sending a request
for an operation and receiving the results of the operation, a port
needs to be bidirectional. Since a port defines the capability of the
user that has access to it, definition of ownership of a port and
transference rights have important ramifications for protection. One
possible choice is to disallow the transference of ownership and
capabilities, thus requiring the allocation of new ports when
necessary. This restricts paths to a one-to-one topology. The

implications of decisions such as this are currently under

investigation.

Page 19

The choice of message passing primitives depends on the intended
use of ports. For example, if ports are to be used for remote
operation execution only, and no concurrency 1is desired, then the
reply-send primitive seems appropriate. However this in turn can be
simulated using other lower level message passing primitives. The

implications of such decisions are also being studied.

We should note that a program need not issue the port operations
expliecitly. It could instead request operations on objects and these
requests could then be translated by the system into the appropriate
send and receive primitives on ports allocated for the object

operations.

Port-based protection appears to achieve the dual requirements of
communication and protection uniformly. Currently, a prototype system
is being built in order to study the ramifications of the choices to
be made in the design and implementation of such a system [STEM82].

7. Summary

We have presented the important aspects of port-based
communication. Two salient features of ports deserve highlighting.
First, ports use functional addressing, where the identity of the
participating processes is secondary to the function served by the .
communication link. Second, a port is an entity recognized by the

operating system independent of the processes it links.

We have introduced a port-based protection mechanism for an
object-oriented system. Objects are abstract data types. The ability
to manipulate an object requires possession of a capability specifying

the object identity and subset of operations that may be used on the

Page 20

object. We have proposed associating each port with a set of
operations on a specific object, thus equating port and capability.
Processes access an object by establishing a communication 1link with
the manager of that object. Included in the specification of the
communication connection is the set of operations performable on the
object. These operations may then be performed by sending messages to
the object's manager via the port. We have thus unified the concepts
of port-based communication and protection in proposing the use of

ports as capabilities.

References

[BALLT6] Ball, J. E., Feldman, J., Low, J., Rashid, R., Rovner, P.,
"RIG, Rochester's Intelligent Gateway: System Overview", IEEE
Transactions on Software Engineering, Vol. SE-2, no. 4, December,
1976.

[BALZT71] Balzer, R. M., "Ports -- A Method for Dynamic Interprogram
Communication and Job Control", Report for an ARPA contract at RAND,
August, 1971.

[BASK77] Baskett, F., Howard, J., Montague, J., "Task Communication
in DEMOS", Proceedings of the 6th ACM Symposium on Operating System
Principles, pp. 23-31, November, 1977. : ’

[BERS80] Berstis, V., "Security and Protection of Data in the 1IBM
System/38," Proceedings of the T7th Annual Symposium on Computer
Architecture, May, 1980.

[BRIT80] Britton, D. E., Stickel, M. E., "An Interprocess
Communication Facility for Distributed Applications", Proceedings of
the 1980 COMPCON Conference on Distributed Computing, February, 1980.

[CcOSST4] Cosserat, D. C., "A Capability Oriented Multi-Processor
System for Real-Time Applications." Proceedings of the International
Conference on Computer Communications. October, 1972.

[CHER79] Cheriton, D. R., Malcolm, M. A., Melen, L. S., Sager, G.
R., "Thoth, a Portable Real-Time Operating System", Communications of
the ACM, Vol. 22, no. 2, February, 1979.

Page 21

[COX81] Cox, G., Corwin, W., Lai, K., Pollack, F., "A Unified Model
and Implementation for Interprocess Communication in a Multiprocessor
Environment", Intel Corporation, 1981.

[DENN66]1 Dennis, J. and Van Horn, E., "Programming Semantics for
Multiprogrammed Computations", Communications of the ACM, Vol. 9, no.
3, March, 1966.

[GENT82] Gentleman, W. M., "Message Passing Between Sequential
Processes: the Reply Primitive and the Administrator Concept,"
Software - Practice and Experience, Vol. 11, pp. U435-466, 1981.

[HOAR78] Hoare, C.A.R., "CSP: Communicating Sequential Processes",
Communications of the ACM, Vol. 21, no. 8, August, 1978.

[JONE7T9] Jones, A. K., Chansler, R. J., Durham, 1I., Schwans, K.,
Vegdahl, S. R., "Star0S, a Multiprocessor Operating System for the
Support of Task Forces", Proceedings of the Tth Symposium on Operating
System Principles December, 1979.

-

[KNOT74] Knott, "A Proposal for Certain Process Management and
Intercommunication Primitives", Operating Systems Review, October and
and January, 1974-75.

[LAMP76] Lampson, B. W., Sturgis, H. E., "Reflections on an
Operating System Design", Communications of the ACM, Vol. 19, no. 5,
May, 1976.

[LAZO81] Lazowska, E., Levy, H., Almes, G., Fischer, M., Fowler, R.,
Vestal, S., "The Architecture of the Eden System", 8th Annual
Symposium on 0S Principles, December, 1981.

[LESS79] Lesser, V., Serrain, D., Bonar, Je, "PCL: A
Process-oriented Job Control Language", Proceedings of the 1st
International Conference on Distributed Computing Systems, October,

1979.

[LEVY81] Levy, H., "A Comparative Study of Capability-Based Computer
Architectures", University of Washington Master's Thesis, October,
1981.

[LISK80] Liskov, Barbara, "Primitives for Distributed Computing",
Proceedings of the T7th Symposium of Operating System Principles,
December, 1979.

[NEED77] Needham, R. M., Walker, R. D. H., "The Cambridge CAP
Computer and its Protection System", Proceedings of the 6th ACM
Symposium on Operating System Principles, November, 1977.

[NELS81] Nelson, B. J., "Remote Procedure Call", Xerox Corperation
Technical Report CSL-81-9, May, 1981.

Page 22

fousT80] Ousterhout, J., Scelza, D., Sindhu, P., "Medusa: 6K An
Experiment in Distributed Operating System Structure", Communications
of the ACM, Vol. 23, no. 2, February, 1980.

[POWET77] Powell, M., "The DEMOS File System", Proceedings of the 6th
ACM Symposium on Operating System Principles, pp. 33-42, November,
1977.

[RAO80] Rao, Ram, "Design and Evaluation of Distributed
Communication Primitives", ACM Pacific 1980, November, 1980.

[RASH80] Rashid, R., "An Inter-Process Communication Facility for
UNIX", Carnegie-Mellon University Technical Report, June, 1980.

[RASH81] Rashid, R., Robertson, G., "Accent: A Communication
Oriented Network Operating System Kernel", Carnegie-Mellon University
Department of Computer Science Technical Report, April, 1981.

[RITC74] Ritchie, D. and Thompson, K., "The UNIX Time-Sharing
System", Communications of the ACM, Vol. 17, no. 7, July, 1974.

[SOLO79] Solomon, M. H., Finkel, R. A., "The Roscoe Distributed
Operating System", Proceedings of +the T7th Symposium on Operating
System Principles, March, 1979.

[STEM82] Stemple, D., Ramamritham, K., Vinter, S., "Preliminary
Design of a Port-oriented Operating System", COINS Technical report,
Dept. of Computer and Information Sciences, University of Mass.,
Oct., 1982. ‘

[SUNS77] Sunshine, C., "Interprocess Communication Extensions for the
UNIX Operating System: 1. Design Considerations", Rand Corperation
Publication R-2064/1-AF, June, 1977.

[WALD72] Walden, David C., "A System for Interprocess Communication
in a Resource Sharing Computer Network", Communications of the ACM,
Vol. 15, no. 4, April, 1972.

[WARD79] Ward, S., "TRIX: A Network Operating System," MIT Technical
Report, December, 1979.

[WULF74] Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R.,
Pierson, C., Pollack, F., "HYDRA: The Kernel of a Multiprocessor
Operating System", Communications of the ACM, Vol. 17, no. 6, June
1974.

