Preliminary Design Of A Port-Oriented
Operating System
David Stemple

Steve Vinter
Krithi Ramamritham

82-24
Department of Computer and Information Science

University of Massachusetts, Amherst
Amherst, Massachusetts 01003

1. Introduction

In this report we describe a preliminary design of a
port-oriented operating system. We will call this system the
Gutenberg system because all port activity is driven by moveable type
definitions placed ';n a directory by the user, Throughout we adopt
the abstract data type approach to specification and implementation
and use the term object to denote an instance of an abstract data
type. We see the kernel as a type manager for the abstract data type
port. The capability manager, which builds a hierarchical type
directory and controls processes! port capabilities, is seen as the
manager of the directory object. 1In addition, we view processes as
either managers for object types passed on ports (the port server
processes) or as requesters of operations on the object types (the
port owner processes). Even processes themselves are seen as objects
to be passed on ports, since the port managing kernel uses itseif

recursively to manage processes,

The Gutenberg sysﬁem consists of ports, objects sent on ports,
processes, and a capability directory. Processes may request the
creation of ports and then execute operations which send and receive
objects on the ports, Sending and receiving objects on ports leads to
the creation, blocking, and starting of processes, and is the only
mechanism controlling processes after the system is initialized. The

capability directory contains the information used to control the

creation and use of ports, and also determines the process images
which are executed when processes are created. The capabilities

management scheme outlined in this report is a rudimentary

Page 2

password-based technique which we intend to expand and improve.

This report presents a logical design of the operating system
kernel, Details of hardware context switching, interrupts, memory
management, process priorities, and I0 device handling are not
included. The report is organized as follows. The next section gives
an overview of the Gutenberg operations, An example of port usage in
file I/0 is then presented. The fourth section presents detailed
descriptions of the port operations, their purposes, and their
parameters, This is followed by a description of the capability
directory and its operations, The next section introduces another
example to illustrate the wuse of port capabilities to achieve a
protected abstract data type view of a database and its operations,
Then process management by the port manager (the operating system

kernel) is outlined.

2. Overview of Gutenberg Operations

In the Gutenberg system we regard port as a generic abstract data
type. Accordingly, a port is defined as an object which can only be
operated on by the operétions: Createport, Send, Receive,
Selectreceive, Acceptrequest, Waitany, Waitall, and Destroyport. The
semantics of these operations are defined generically, i. e., without
specifying the types of the objects to be sent or received. The port
creation operation, Createport, not only creates a port for a process,
but also associates the port with a specific type of object which may
be sent or received on it. Subsequently, to allow a finer granularity
in the granting of capabilities, we wish to associate ports with

specific operations on the objects,

Page 3

Objects to be sent or received on a port are typed within the
context of an operating system directory structure which exists
outside of any process., This typing is separate from whatever typing
of objects is done within the process, Such internal/external typing
is not unlike that which occurs with records which are typed inside a
program oneL way and typed, perhaps differently, as elements of a
database., However, as we will see, objects sent on ports are actually
uninterpreted objeéts to the operating systeﬁ and include file

records, process images, processes, and resources,

In the Gutenberg system, processes which either wish to send or
receive objects of some type from (to) another process establish a
port for that purpose. A process may create a port either for sending
or receiving, but not both. The process creating a port is the owner
of the port. Port ownership rights include the right to destroy a
port and wait for multiple service requests on the port. When a port
is created, the owner must specify the type of objects to be passed on
the port. The named object type must be in the subdirectory of the
capability directory (similar to a directory node in a UNIX file
directory) pointed to by the process requesting the port allocation,

i,e.,, the owner, This subdirectory is denoted the active diredtory of

the owner. Generally, précesses are capable of changing their active
directory to different subdirectories nodes within the capability

directory throughout their existence,

An object type name in a directory is 1linked to at 1least one
process image. A 1link from an object type name to a process image
carries one of three labels: "R", "SR", 6r nsw, The meaning of the

link and its label, say an "R", is that a process using the directory

Page 4

can establish a port on which to Receive (Send if "S", Selectreceive
if “SR") objects of the fype. The 1link, called.a capability link,
denotes the privilege of a procesé'using the directory to create a
port for use with the specified operation. A process image connectéd
to an object type by an "R" or "SR"' link can be thought of as a
producer of the object type. A link 1labeled with "S" marks the
process image as an inventory mahager or consumer for the object type.
When the owner process executes its first Send, Receive, or
Selectreceive on a port, the process image associated with port's
object type ié used to create a process that will also communicate on

the port. This process is called the server of the port.

We now give a brief overview of the Gutenberg operations. The
Createport operation causes a port to be created for use in passing
objects of a particular type (given in the arguments), The calling
process 1is established as the owner of the port. The Createport
parameters include an operation mnemomic which specifies the only send
or receive operation which may be executed on the port by the its
owner., These operation mnemonics must match the 1labels on the
capability links. An error status is returned if the object is not in
the directory currently used by the process or the privilege is the

specified operation is not declared in the directory.

The Receive Opération requests an object on a port. If one or
more objects are queued on the port, the first one is delivered and
control is passed to the next statement after the Receive, If the
port is empty, and the waitnowait parameter of the call is "wait", the
calling process is blocked until the sender attached to the port sends

an object, When an object is sent on a port and the receiver of the

Page 5

port 1is blocked, the receiver is unblocked and the object is

delivered.

The Send operation causes an object to be queued on a port and
may unblock a receiving process. If the port is full, the sending

process is blocked until an object is removed from the port

The Selectreceive operation is used to receive objects
- selectively. The operation's inputs include information to be used by
the port server in choosing the object to be returned on the port.
Since the selection information is sent to the server on the port and
the server sends back the requested object on the port, the port is

said to be bidirectional. Thus a process may ‘request a particular

.object of a type by using a bidirectional port send the details to be

used in choosing the object.

The Acceptrequest opération is issued only by a port server, It
is issued to determine the port on which to send or receive objects.
Acceptrequest also returns the objeét type name associated with the
port, and, in the case of bidirectional ports, returns details of the

request.

The Createdir, Register, Changedir, and Removeport operations
involve the capability direetor&, not ports. Createdir adds a
subdirectory node to the current subdirectory. Register allows an
6bject type name to be placed in the capability diﬁectory. Changedir
changes the capability directory node éurrently associated with the
calling process to a new nbde. and thereby changes the capability of
the process to create ports. Removeport provides the ability ¢to

delete object types from the directory.

Page 6

3. An Example of Gutenberg Port Usage

Let us consider a simple example of ports used for file (or more
precisely, record) input. Assume process A is running and needs to
read a record of type PERSON-~REC. Before the process is started, a
directory structure, which we call a capability directory, must have
been built. A running process always points to a node in this
directory, its active directory. The node defines the process'
capébility for creating ports. In our example, the object type
PERSON-REC must occur in the active directory of Process A; 1i. e.,

the USERDIR subdirectory. The following diagram illustrates the

situation.
Processes Capabilities Directory
i Process | > USERDIR
i A i |
+ + !
i
PERSON~REC FILEMGR
t ~
| |
i R i

System before Createport

Page 7

Processes Capabilities Directory
{ Process | > USERDIR .
i A ' o
+ + .
~ ‘L— N :
| : :
: : :
{ port] PERSON-REC FILEMGR
[i 1 ~
. : . : : |
-] 1 [
! FILEMGR |——————- —+ ! R !
| Process +- N

]

[}
-
+

+

System after Créateport and Receive by Process A

By being attached to the capability directory node labelled
USERDIR (a subdirectory node), process A has the capability for
creating ports for the purpose of receiﬁing objects of type
PERSON-REC. This is shown by three arrows, the first from the process
to the directory node USERDIR, the second from USERDIR to PERSON-REC,
and the third labelled with R (receive privilege) from PERSON-REC to
the process image node labelled FILEMGR. FILEMGR, like PERSON-REC, is
in the capability directory and is located under some subdirectory
node not shown heré. The capability directory is organized in a
manner similar to a UNIX file directory, with USERDIR corresponding to

a directory node and FILEMGR to an executable file,

When Process A executes a Createport, a port is created' by the
operating system kernel. Process A, the port owner, is then marked
(in the operating system's process list) as having destroy, wait, and

receive capabilities on the port and the p9rt identifier is passed to

Process A. When process A executes

new process is initiated using
process is given Acceptrequest and

Using the Acceptrequest operation,

Page 8

the first Receive oh the port, a
the process image FILEMGR. This
Send capabilities on the port.

the FILEMGR process finds out what

request has been made, namely a Receive of an object of type

PERSON-REC on this particular port. FILEMGR then gets a record from

the appropriate file and Sends it on the port. Process A is unblocked

by the Send and is given control at the point after the Receive, the

record having been placed in Process A's buffer as specified in the

Receive. Subsequently, FILEMGR executes another Acceptrequest which

blocks itself until another Receive on the port is executed.

Of course this is a simple example and illustrates only one use

of ports and their capabilities, It should be noted that Process A

does not specify, in this scheme, the name or identity of the process

which will wultimately satisfy the Receive request. The fact that

PERSON-REC type objects are produced by FILEMGR is only bound to a

port at port creation time and then from information in the capability

directory, not from information supplied by the process. The program

view _(Process A's) of the port is that it is used for Receiving

objects of type PERSON-REC. Nowhere in the program is it specified

that FILEMGR 1is to be the sender at the other end of the port. If

subsequently it is required to get PERSON-REC records from another

program, say a user written program, a query processor, or a program

on another node in a network, then the PERSON~REC object type would

only need to be 1linked to another process image node, either the

compiled user program, the query processor, or the network manager.

These programs would, of course, have to be capable of receiving and

Page 9

servicing requests for PERSON-REC objects. In the case of a . query
processor, it would be necessary for it to have its own directory of
defined queries (or views), one of which could be used to produce

PERSON-REC objects.

From the above we can see that when a port is created it is made
an instance of a specific abstract ﬁype.‘i. e,, an instance of the
type of ports on which a particular object type may be sent. The
specific port type is specified in much the same way as a generic
stack type is made into a specific integer stack subtype by further
specification, Here, the further specification is 'a part of the
Createport execution, for it is at this point that the port is first

associated with the type of objects to be sent on it.

One of the features of this system and the use of abstract data
types in general 1is the ability to hide details of operation
implementation. 1In the example, Receive is implemented as a read of a
record from a file, Not only is this fact hidden from the receiving
process, but the operating system kernel itself has access on;y to the
name of the implementation (FILEMGR) not to the implementation
details. Consistent with other exampies of abstract data types, the
hiding of implementation details allows us to choose different
implementations; as illustrafed in the discussion of alternate

producers of the PERSON-REC records.

The high level of the port operations and the ability to use ¢the
capability directory to bind the Receive and Send operations to
different implementations (process images) allows us to implement

diverse functions in a flexible but protected manner.

Page 10

4. Gutenberg Port Operations

In this section we present descriptions of the primitive port

operations of the Gutenberg system.
CREATEPORT (portid,objectype,operation,status)

Executed by: A process desiring to create a port. The célling
process becomes the owner of the port.,

Purpose: To establish a communication link between the owner process
and the server process., The created port is bound to the specified
object type and the creating process obtains Destroyport and Wait
capabilities for the port along with one other:

Send 1if <operation> is 'S', port will be undirectional.
Receive if <operation> is 'R', port will be unidirectional.
Selectreceive if operation is 'SR', port will be bidirectional.

Parameters:

<portid>: (output) Value of port identification of the established
port.

<objectype>: (input) Name of type of object to be passed on port.

Coperation>: (input) Indication of how owner will use port,
'S': Owner is the sender of objects on the port.
‘R': Owner is the receiver, using Receive, of objects on the port,
'SR': Owner is the receiver, using Selectreceive, of objects on the
‘port. :

<status>: (output) Indication of the result of the port creation
attempt.
0: Successful port creation

1: Error in calling sequence; illegal parameter,

2: Error - object type is illegal.

3: Error -~ object type is unavailable; owner does not have
privilege over object type.

4: Error - Too many ports allocated.

RECEIVE (portid,buffer,waitnowait,status)

Executed by: The owner if Createport parameter <operation> = 'R', or
by the server if Createport parameter <operation> = 'S!

Page 11

Purpose: To receive an object of ﬁype <objectype> on port <portid>
from another process,

Parameters:

<portid>: (input) Port identification from which object is to be
received. ’

<buffer>: (input) Location to place received object.

<waitnowait>: (input) If 'wait' then process is blocked until a SEND
is performed on the port. If 'nowait' and no objects are available on
the port, the process executing the Receive continues, status will be
set to U4 and will be reset by the port manager when the Receive is
completed. See Waitany and Waitall below,

<status>: (output) Indication of the result of the attempted receive.
0: Successful receive performed.
1: Error in calling sequence; illegal parameter.
2: Error - illegal portid/objectype pair.
3: Error - Receive not preceded by server's Acceptrequest.
4: Receive pending, no error. Returned only if <waitnowait> =
'nowait!'. '

SELECTRECEIVE (portid,buffer,requestdetails,waitnowait,status)
This operation is the same as Receive except that, in addition to

Receive's actions, request details are sent on the bidirectional port
identified by portid.

SEND (portid,buffer,status)

Executed by: The owner if Createport parameter <operation> = 'S',
or by the server if Createport parameter <operation> = 'R' or 'SR!

Purpose: To send an object on port identified by <portid> to another
process,

Parameters:

<portid>: (input) Identification for port on which the object is to
be sent.

<buffer>: (input) Location of object to send.

{status>: (output) Indication of result of the attempted Send.
0: Successful Send performed
1: Error in calling sequence; illegal parameter,
2: Error - illegal portid/objectype pair.

Page 12
3: Error - Send not preceded by Acceptrequest by server,

ACCEPTREQUEST (objectype,portid,operation,directionality,
' requestdetails,waitnowait,status)

Executed by: A port server,

Purpose: 1) To receive information for the next request to be
serviced.

2) To poll its ports for pending requests to be serviced (if
<{waitnowait)> =.'nowait!')

3) To receive details of a request in <requestdetails)> (if
Createport called with <directionality> = 'B!)

Parameters:
<objectype>: ~(output) Object type of pending request.

<portid>: (output) Port identification for port on which request was
executed.

<operation>: (output) Operation mnemonic (see Createport) of owner's
request

{requestdetails>: (output) Details of service request. Sét only if
port is bidirectional.

{directionality>: (output) Indication of the directionality of the
port returned:

'U': port is unidirectional

'B': port is bidirectional -~ <requestdetails)> have been returned.

<waitnowait>: (input) Determines whether process should be blocked if
no request is pending:

'wait': block process if no request is pending;

'nowait': return with <{status> = error if no request is pending.

{status>: (output) Indication of result of <acceptrequest)> attempt.
0: Successful <acceptrequest> performed.

1: Error in calling sequence - illegal parameter,
2: Error - <waitnowait> = 'nowait' and no request is pending

WAITALL (portlist,status)
Executed by: The owner or server of the ports in portlist.

Purpose: To suspend the calling process until pending nowait Receive
and Selectreceive operations on all ports in portlist are completed.

Page 13
WAITANY (portlist,portid,status)
Executed by: The owner or server of ports in portlist.

Purpose: To suspend the calling process until any pending Receive or
Selectreceive operation on a port in portlist is completed. The
parameter portid is set to the port identifier’ of the port of the
completed operation. If more than one operation has completed, portid
is set to the port of one of the operations arbitrarily.

DESTROYPORT (portid,status)
Executed by: The port owner.

Purpose: To destroy the port identified by portid.

5. The Capabilities Directory

The capability directory contains 1linked subdirectories which
determine the port capabilities in terms of port operations,'object
types; and process images. An object type is represented by a node in
the capability directory. Each object type node is connected to
process image nodes by capabilities links labelled with port operation
mnemoniecs, The meaning of the object type 1is determined by the
process images to which its name 1is connected in the capability
directory, since the process images are the implementations of the
port,operations.labelling the capability links. Thus, in the example
above we know that PERSON-REC is a‘record type since it is connected
with the fiie manager. Such a view is in concert with certain
approaches to abstract data types in which the meaning of the data is

contained wholly in the permitted operations on the type.

~Page 14

The primary function of the capability directory is to control
the creation of ports, Each running process is associated with a
subdirectory node, its active directory, in the capability directory.
Subdirectory nodes are object types 1like any other nodes, and are
known to be subdirectory nodes by being attached to the capabilities
manager process image. Subdirectory nodes are different in one
respect from other nodes in that they can have unlabelled connections
to the object type names whiéh are said to be "in" the subdirectory.
These connections in the active directory of a process determine the
view of the process by defining the process' capabilities for creating

and subsequently operating on pofts.

Names of process images are also nodes in the capability
directory and ‘have an object type interpretation determined by the
capability links. By convention a process image has one capability
link connected to itself and labelled 'SR' for Selectreceive. We may
think of a process image as an object type, instances of which are its
individual executions, The object produced by the process image to

"objectify" its execution instance is its termination message.

Normally one process initiates -another process indirectly by
operating on a port associated with an object type connected to the
second process! image; We saw this in the example aBove in which a
file manager process is initiated by a Receive of a PERSON-REC object.
However, a process can directly initiate a second process if its
process image name is in the running process' active directory. To do
this the first process creates a port for purposes of executing
Selectreceive, and provides process image name as the object type

associated with the port. We will call a port created in such a

Page 15

manner an execute port. After creating the execute port, the port

owner executes a Selectreceive on it to initiate the second process.
The +two processes will be connected by the created port. At
termination the second process executes a Send of its termination
message on the execution port, This notifies the owner of the port

that the second process has terminated.

In order for the first process to communicate its desires to the
second process it can send information, including ports, in the
request details of the Selectreceive. For example, the terminal
command processor, in order to execute an interactive editor, would
send four ports to the editor process -~ the terminal input and output
ports, a port for reading the file to be edited, and a port to use in
writing the edited output. Upon termination these ports would be

returned to the command processor.

The capability directory is rooted at one node and is organized
in a manner similar to a UNIX file directory. The immediate
successors of the root node are the system initialization process
images, and the users' top level subdirectory nodes. Below the user
subdirectory nodes are the users' object types, including process
images and subdirectories, To each subdirectory node is attached
broﬁeetién information in the fofm of passwords paired with the
éapability directory operations, Createdir, Changedir, Register, and

Removetype.

_In the next section we give descriptions of these operations and

how the passwords are used to govern their use.

Page 16

6. Capabilities Directory Operations

CREATEDIR (dir-name,password-operation-list,password,status)
Executed by: Any process.

Purpose: To add a shbdirectory node to the object types of the
current subdirectory of the calling process.

Parameters:
{dir-name>: (input) The name of the new subdirectory.

<{password-operation-list>: (input) List of password-operation pairs
used to establish the capability to execute the operations on the new
subdirectory. The operations can be Createdir, Register, Removetype,
and Changedir.

<password>: (input) Password used to gain ability to execute a
Createdir on the current subdirectory.

<status>: (output) 1Indication of the result of the Createdir
operation

0: Successful Createdir performed

1: Failed to perform Createdir due to insufficient privilege

REGISTER (objectype,processimage,operation,passwordi
password?2,status)

Executed by: Any process.

Purpose: 1) To enter an object type name into the capability
directory under the current directory node of the calling process,

2) To label the object type name with an operation and a
link to the process image which implements the operation for processes
running at the current directory node.

3) If <processimage> = <objectype>, the object type being
registered corresponds to an executable file.

Parameters:

<objectype>: (input) This is the object type to enter into the
directory.

{processimage>: (input) Process image name currently residing in the
directory that is to be associated with <{operation> on objects of type
<objectype>.

Page 17

<operation>: (input) A mnemonic for the operation privilege being
granted to processes running at the current directory node. Can be
'S' (Send), 'R' (Receive), or 'SR' (Selectreceive).

<{passwordi1>: (input) A v51ue to be used in determining whether the
process is to be able to add an object type to its current
subdirectory.

<password2>: (input) Password to enable Register of an object type
connected to the processimage, or if Register is of a process image,
i.e., <objectype> = <{processimage>, a password to be supplied by a
process in order to Register an object type connected to the process
image. .
<status>: (output) indication of the result of the register attempt
0: Successful Register performed
1: Error in calling sequence - illegal parameter

2: Error -~ directory of <userid> is full,
3: Error - process has no privilege to update directory.

CHANGEDIR (newuserdir ,password,status)

Executed by: Any process,

Purpose: To change the difeétory of the running process.

Parameters:

<{newuserdir>: (input) New directory node to be made the current node

of the calling process. <newuserdir> must be among the current node's
successors,

<status>: (output) Indication of success of change directory attempt
0: Successful change directory performed.
1: Error - <newuserdir> is not a directory object type 1in the
current node of the calling process or the calling process does not
have the correct privilege to make the change.

REMOVETYPE (objectype,password,status)
Executed Ei: . Any. process.

Purpose: To remove an object type from the subdirectory currently
associated with the calling process.

Parameters:

Page.18

{objectype>: The entry to be removed from the subdirectory currently
associated with the - calling process. <objectype> must be among the
current node's succesors.

<{status>: (output) Indication of success of removal attempt

0: Successful Removetype performed.

1: Error - <objectype> is not a directory object type in the
current node of the calling process or the calling process does not
have the correct privilege to make the change.

7. An Example Using Capabilities

In this section we present an example of using ports to implement
é database system in order to 1illustrate use of the capability
directory. We start by adopting the idea that a database system is
itself a single abétract data type, where all legal database states
constitute the value set of the type and all legal updates, including
transactions, are the type's operations. One problem to be solved in
implementing this view is to limit certain users (processes) to only
particular operations on the database (the object of the type), while
allowing other processes, such as the operation implementations

themselves, more privileged capabilities.

Consider an example of a database on the National Football League
maintained by a football fan using his or her personal system. One of
the database operations, Hire-players, models the hiring of players by
a team. Suppose that the part of the database affected by this
operation consists of three database files, Players, Player-histories.
and Team-stats. Suppose further that the wuser has written an
interactive program which reads the hiring information from the user's
terminal and builds a non-database file of new player records. The

problem is how to allow the program to execute the Hire-players

Page 19

operation without allowing the program to gain access to the database

files themselves.

To address this problem using the Gutenberg system, suppose that
we have compiled the operation Hire-players and stored it as an
executable file, Suppose also that we have built a sub-directory
‘(Hire-players-dir in the figure below) which contains only those
object types (database files) that the operation needs, namely
Players,. Player-histories, and Team-stats. The capability directory

shown below can now be used to accomplish our goal.

Page 20

1
USERDIR

i

') i

i i

NFLdir i

i |

+ + + i

i i i

i i i

Hire-players-dir Hire-players - H

]] ~ 1

| 1 1

i | SR | i

H e + i

i i

+ + i

: : : |

NFL-playerstats NFL-teams NFL-teamstats Newplayers Filemgr

1 .0] [] ~

] 1]]
i i i i R,S i
[l]] . 4
i] [} ha Y
i i i R,S |
i i + +
i i R,S i
: + =

i

Capability Directory

A program running with a capabilities link to USERDIR (no access
to the database) could build a file of new players from information
typed at a terminal (with the proper prompting and editing). If the
program were written in PASCAL, this would be done with reads and
writes in the standard way, but the run-time support package would
execute a Createport to allocate a port for writing the Newplayers
file and use Sends to write it. Terminal IO would be implemented as
Sends and Receives on the standard terminal in and out ports. These

‘would be created by the program initiation routine.

1

Page 21

After writing the Newplayers file, the program needs to gain some
kind of access to the database. To do this it changes its current
directory pointer to point to NFLdir uéing the Changedir operation,
This gives it the privilege of executing Hireplayers, but not to
access any file of the database. Even so, changing the directory
pointer to NFLdir must be a protected operétion, unless any process is
to be able to executé Hire-players. For this protection the Gutenberg

system uses a password to enable a process to execute a Changedir.

Aftér moving to NFLdir the program executes Hireplayers, by first
creating a port for the purbose of executing a Selectreceive of the
Hireplayers type, then executing a Selectreceive on the port, and
sending a Receive port for the Newplayers file in the request details.
This causes the creation of a Hire-players process with the capability
of reading Newplayers on the passed port. The Hireplayers process now
needs to gain the capability of reading and writing the database files
and therefore changes its capabilities node to Hire-players-dir. This
is a serious change of capabilities and should therefore probably be
protected by something more than a password. Such protection is not
currently désigned into the Gutenberg, but is planned for in the

future.

The following is a simplified skeleton of what the operating
system interface calls would look like for both the user program and

the Hireplayers operation.

User program

Createport(Wr-newplayers-port,!Newplayers'!,'Send',status)

Page 22

While more from terminal do
begin
Send (Termoutport ,Termprompt,'Nowait',status)
Receive(Terminport ,Newplayerdata,'Wait',status)
Send(Wr-newplayers-port,Newplayerdaté;'Nowait',status)
end
Waitall (Wr-newplayers-port,status)
(* Create a port for use in Hireplayers for getting Newplayers input, *)
Createport(Rd-newplayers-port,'Newplayers',!Receive',status)
_(* Change directory position so that Hireplayers is "visible". %)

Changedir('NFLdir' ,NFLpassword,status)

(* Execute Hire-players #)
Createport(Exhireplport,'Hireplayers','Selectreceive!,status)
Selectreceive(Exhireplport ,Hpmessbuffer ,Rd-newplayers-port,'Wait',status)

If status =0 then write('OK') else write('Nogo on Hireplayers.')

Hire-players
(¥ Find out requést details, in particular the port for reading input.¥)
Acceptrequest(...,Newplayers-port,...)
(* Gain access to the database files.¥)
Changedir('Hire-players-dir' ,Hp-password,status)
(* Open files for reading.¥)
Createport(Rd-players—port,'Players',!'Selectreceive',status)
Createport(Rd-Teamstats-port,'Teamstats','Selectreceive',status)
(* Open files for writing.¥)
Createport(Wr-Players-port,'Players','Send',status)
Createport(Wr-Teamstats-port,'Teamstats','Send',status)

Createport(Wr-Player—histories.'Player—histories'.'Send',status)

Page 23

(* Read Newplayers.*)

Receive(Newplayers-port,Player-rec,'Wait',status)

(* Check player record and write it to the Players file.¥*)

Send(Wr-players-port ,Player-rec, 'Nowait',status)

8. Process Management

Process management is pérformed as a byproduct of the port
management routines.' Processes are created when | a Send,
Selectreceive, or Receive is executed and the server of the port is
uninitiated. Createprocess, a procedure local to the port manager, is
the routine called to create a process, It creates a process control
block (PCB, see below) and returns a processid, essentially a PCB

pointer,

Two system ports are established explicitly for process
management, The currently running process is always queued on the

runprocess port. The readyprocess port contains all processes in the

ready state awaiting execution. In order to use ports for passing
process ids from the port operation procedures to the dispatcher the
port manager and the dispatcher together are identified as one
"pseudo-process" merely for the purpose Qf owning the runprocess and
readyprocéss ports. This pseudo-process will be referred to as both

the process manager and the dispatcher.

Page 24

Processes are placed in the ready state by being sent (using the
Send operation) to the dispatcher via the readyprocess port.

Processes become ready to execute in four situations:

1. As part of Send, Seiectreeéive. or Receive on a port with an
uninitiated server, thé created process is sent to the dispatcher on
the readyprocess port.

2. As part of é Send on a port which has a blocked receivér. the
receiving process is unblocked and sent to the dispatcher on the
readyprocess port.,

3. As part of a Receive or Selectreceive on a port which has a
blocked request accepter (Acceptrequest caller) or a sender with a
full port, the blocked process is unblocked and sent to the dispatcher
on the readyprocess port,

4, Upon receiving a timer interrupt at the end of its quantum for a
process, the dispatcher sends itself the process on the readyprocess

port.

The dispatcher places a process in the running state by sending
it to a processor on the runprocess port. The details of context
switching, processor status restoring, etec. are not dealt with in

this report.

Blocked processes are recorded in the details of the ports, A
process is blocked either by executing a Receive or a Selectreceive on -
an empty port, or by an Acceptrequest before a corresponding Send,

Selectreceive, or Receive,

Page 25

Below we detail the actions of each of the port operations.

Createport operation

CREATEPORT (portid,objectype,operation,status)

When Createport is executed, the user directory (located using
the pointer in the PCB of the caller) is searched for the objectype
passed in the parameter list. If the objectype is 1located in the
directory, the capability for the object type (the label on the link
to the process image) is checked to match the requested use of the
port. Errors result if the objectype is not located or the capability
for the requested operation does not exist, If the search and
matching 1is successful a new port entry is added to the system port
list. The new entry contains the objectype, directionality, process
id and owneruse from the input parameter. The server's status is set
to 'uninitiated', corresponding to an uninitiated server process, and
the server process image name from the directory is placed in the new
port entry. Then a new port id is generated corresponding to the port
entry created, and is returned in the <portid> parameter to the
caller,

Receive operations

RECEIVE (portid,buffer,waitnowait,status)
SELECTRECEIVE. (portid,buffer, ,waitnowait,requestdetails,status)

When a receive operation is executed, there are a number of
cases:

1. At least one object is queued on the port.

Pop the object queue, setting the object in the buffer parameter,
If the operation is a Selectreceive queue the request details
Set the status and return,

2. The object queue of the port is empty:
a) The port server is uninitiated:

Use Createprocess to create a PCB; _

Set sender field of port entry to process id returned;

Set the status of the server to 'initiated!';

Set 'Blocked receiver' field in port entry to 'T' for true;
Send the server process id to the process manager

using the readyprocess port, with the system parameter
'processid' in the send call set to 'procmgrid';

Call the dispatcher with 'Block' to remove the

currently running process from the runprocess port and

to insert a new process on the runprocess port;

If the operation is Selectreceive, queue the requestdetails.

Page 26

Return with status set appropriately.

b). The port server is initiated "
If the server is blocked on a previous Acceptrequest,

then mark the server status in the port entry as

'not blocked' and send the server process id to the

process manager via the readyprocess port;

Mark the receiver as blocked in the port entry;

Call the dispatcher with 'Block' to remove the currently
running process fromn the runprocess port and

to insert a new process on the runprocess port;

If the operation is Selectreceive, queue the requestdetails.
Return with status set accordingly.

Send operation

SEND (portid,buffer,waitnowait,status)

When Send is executed, the object in the caller's buffer is
queued on the port's object list, and there are 3 cases:

1.

The port server is uninitiated:

Use createprocess to create a PCB

Set the receiver field of port entry to the process id
Set the server status of the port entry to 'Initiated’
Send the server process id to the process manager on the
readyprocess port

Return with status set appropriately

The receiver is not blocked:

Return with status set appropriately

The receiver is blocked:

Set the receiver status in the port entry to 'Unblocked’
Send the process id of the receiver to the process manager
on the readyprocess port

Return with status set appropriately

Acceptrequest operation

ACCEPTREQUEST (objectype,portid,operation,directionality,

requestdetails,waitnowait, status)

When Acceptrequest is executed, portid is set from the server

port id

entry.

in the calling process PCB and the object type from the port

Page 27

If the port id passed is a bidirectional port, the calling
process must be the sending server of the port. There are two cases
to be considered: '

1. An unserved receive has been executed and thus
there are request details queued on the port.
Pop the request details and return them in the
requestdetails parameter,
Set the status and return normally.

2. No unserved receive has been executed and thus

the request detail queue is empty. The calling

process is blocked on acceptrequest,
Call the dispatcher to put a new process on the run port.
Control returns normally.

If the port involved is a unidirectional port there are three
cases to consider:

1. The calling process is a sending server and
there is a blocked receiver on the port,
Return normally.

2. The calling process is a sending server and

there is no blocked receiver.
If waitnowait is set to 'nowait!', return with error.
Otherwise, block the calling process by setting blkreq='Y'
and call dispatch.

3. The calling process is a receiving server,
Return normally regardless whether the port is
empty or not.

The primary data structures of the port manager are the port
entry and the process entry (PCB). Below is a schematic of the items
in each of these structures,

Page 28

Port entry items:

Portid: Port Id

Objectype: Object Type

Directionality: directionality('B' or 'U!)

Recid : Receiver process id

Sendid : Sender process id

Owneruse: Owner use('S' or 'R')

Status: status of server('I','U' or 'Hardware!')
Blkrec: Blocked receiver status ('Y' or 'N')
Blkreq: Blocked request-waiter status ('Y' or 'N')

Objecthead: Object list head

Objecttail: Object list tail

Reghead: Request detail list head

Reqtail: Request detail list tail

Image: process image of server

Ownerlink: 1link to next port owned by this port's owner

Serverlink: link to next port served by this port's server

Process entry items (PCB)

Processid: Process id
Image: process image
Userid : user id

Port-list-hdr: 1link to first port owned by this process

Serve-list-hdr: link to first port served by this process

