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ABSTRACT

Experiments in Distributed Problem Solving
with

Iterative Refinement
February 1982
Richard S. Brooks
B.S., Massachusetts Institute of Technology
M.S., Ph.D., University of Massachusetts

Directed by: Professor Victor Lesser

A general method for distributed problem solving which tolerates
incomplete and inconsistent local databases is developed, based on a
centralized iterative refinement technique. It 1is shown that
uncertainty introduced as a result of distributing the iterative
refinement technique can be resolved through additional iteration if an
appropriate control scheme is employed to 1limit simultaneous
refinements,

To support this coneclusion, a number of variations of distributed
iterative refinement network traffic light control algorithm with modest
communication requirements are shown to find comparable solutions in
less time than an existing, centralized network traffic light control
algorithm. Processors are assumed to be located at intersections
equipped with signals, and may only communicate with processors at
adjacent intersections. Simulation results also indicate that the
algorithms tolerate the use of approximations that limit communication

and the uncertainty that is introduced if communication is noisy.
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As a by-product of this research, a general balance principle and
adaptive balancing algorithm for Pareto-optimal multi-access control of
distributed resources 1is also developed and tested. The balance
principle and adaptive balancing algorithm representsland extension of

work by Kleinrock and Yemini on packet-radio broadcast communication.
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CHAPTER I

INTRODUCTION

The cost of processing elements and communication networks is at a
level where distributed problem solving is now practical. - This is
mainly due to recent advances in microprocessor and network technologies
(LELA81]. The potential advantages of a distributed problem solving
approach over a centralized, uniprocessor approach include:

o0 enhanced real-time response;

o lower processing costs;

0 lower communication costs;

0 increased reliability and flexibility;

o the ability to handle increased complexity.

These potential advantages have yet to be exploited in a wide range of
applications because of a lack of appropriate theories on structuring
distributed problem solving systems, Only in the areas of distributed
databases [PEEB78, KIMB81, HOLL81] networking [TOBA80, KLEI79, THUR81a,
THUR81b] and process control [DIMM76, SCHO76, MERR81] have some of the
promises of distributed processing been realized.

There are many applications that could benefit from new theories on
structuring distributed problem solving systems. This is especially so
for applications which exhibit a natural spatial distribution of sensors
and/or effectors such as network traffic light control, air traffic
control, and sensor networks. Such applications often involve sensing

and/or control of many objects over a very large spatial area, making a



centralized, uniprocessor approach unattractive and often impractical.

The advantages of distributed problem solving can be realized by
exploiting the natural spatial decomposition of a problem as well as by
exploiting processing resources (parallelism), technological advances,
and good design. Enhanced real-time response, for example, can be
achieved by placing processing elements near sensors and effectors as
well as by exploiting parallelism. The use of cheaper, less complex
processing elements that can be mass produced, and the use of
load-sharing can contribute to lower processing costs. Abstracting data
for transmission, and placing processing elements near the data can
lower communication costs. And, increased reliability and flexibility
can be achieved through redundancy in communication paths and processing
elements, and through modularity of design. Often failures can be
localized, yielding graceful degradation. Finally, the ability to
handle increased complexity can be achieved by decomposing the problem
into subproblems, each of lower complexity than the overall problem.

On the other hand, there are potential problems with a distributed
problem solving approach. Many of these problems are not normally
encountered in centralized problem solving because centralized problem
solving techniques generally rely on maintaining correctness and
consistency in all aspects of the problem solving process.1 While

easily maintained in a centralized problem solving system, correctness

1. There are important exceptions, however, to this where there is
a need to introduce approximations in order to solve (with some degree
of accuracy) a very large problem.



and consistency is often difficult and expensive to maintain in a
distributed problem solving system because some of the information
required by a processing element to solve a subproblem often resides at
somé other processing element.

When information required to solve a subproblem does not reside at
a processing element responsible for solving the subproblem, the
information must be obtained from another processing element in order to
correctly solve the subproblem. However, there are costs associated
with communicating this information: the costs of the communication
network and the processing resources wasted while processors wait to
receive information.2 To eliminate the communication of some
information or to substitute for information not yet received,
approximations may be utilized in the local problem solving processes.
For example, worst-case information might be assumed in place of
communicating some actual information. This limits the information
needed by and transferred among processing elements, but at the expense
of possibly introducing error, inconsistency, and incompleteness into
the distributed problem solving system. Unreliable .or noisy

communication channels can be another source of error and inconsistency.

2. High speed point to point communication between arbitrary
processors in a large network is generally impractical, so less costly
but slower communication networks must often be employed in large
distributed systems.



Regardless of the source, error, inconsistencies, and
incompleteness leads to uncertainty in a problem solving system about
the correctness and completeness of the information received from other
processing elements, and thus the results of its own processing. The
main focus of this thesis is on how to deal with uncertainty in a
distributed problem solving system, Communication errors and
approximations employed to limit communication and permit more effective
utilization of processing resources are two important sources of
uncertainty in a distributed problem solving system. Another, more
subtle source of uncertainty may be viewed as a synchronization problem.
A processing element working in parallel with other processing elements
faces uncertainty as to the validity of the solution to its subproblem
if the solution is based on information obtained from other processing
elements which may be changed while the subproblem is being solved.3

The idea explored in this thesis is that a centralized problem
solving algorithm which 1is capable of resolving uncertainty in a
centralized setting may be capable of handling additional uncertainty
introduced as a result of adapting the algorithm for use in a
distributed problem solving system. Furthermore, the ability to deal

effectively with uncertainty should lead to many of the advantages of

3., If information that must be acquired from other processing
elements to solve a subproblem is obtained early and is invalidated
before it is used, or if this information is invalidated after it has
been used to solve a subproblem, the solution to the subproblem may also
be invalidated. This, however, is a problem not unique to distributed
problem solving (in planning this is called subgoal interaction
[NILS80]) and is usually addressed by finding a sequence for solving the
subproblems that avoids these problems.



distributed problem solving, i.e., less inter-process communication,
more effective processor utilization (i.e., parallelism), and more
robustness in presence of hardware error,

The centralized problem solving technique selected for this

research is iterative refinement. An iterative refinement algorithm

starts with an approximate solution and repeatedly refines (improves
upon) the approximation. Because of the iterative nature of the
technique and the fundamental use of approximate solutions, uncertainty
is not only tolerated, but is resolved as an integral part of the

problem solving method.

1.1 Objectives

The primary objective of this research is to demonstrate that it is
not necessary to maintain full accuracy, consistency, and completeness
in distributed problem solving with iterative refinement because of the
iterative refinement algorithm's ability to resolve uncertainty. This
uncertainty may arise from working in parallel on interacting
subproblemsu. using approximations to 1limit communication, and

sustaining occasional communication errors. To this end, a number of

distributed iterative refinement algorithms were developed and tested on

4, Two subproblems "interact™ if part of the solution to one
subproblem is needed to solve the other subproblem, This relation is
often symetric (i.e., the solution of each subproblem may require a part
of the solution to the other subproblem).



their ability to solve a number of problems, including a network traffic
light control problen.

In addition to the usual questions of how much parallelism can be
'effectively utilized (what degree of speed-up results) and how network
size and topology affect performance, the following questions are also
addressed:

o To what extent can interaction among subproblems be tolerated

and at what expense? Can interaction be limited?

o Can processing elements work with local views of the effects of

their actions or decisions, or must a global view be employed?

o How accurate must information needed by a processing element be'

about the rest of the system's actions or decisions?
Many of these questions are covered by asking how much uncertainty in

control, algorithm, and data can be tolerated in a distributed problem

solving system,

1.2 Results

It is shown that additional uncertainty introduced as a result of
distributing the centralized iterative refinement algorithm can be
resolved through the basic iterative nature of the algorithm if an
appropriate control scheme is employed to limit but not necessarily
eliminate the simultaneous solution of interacting subproblems, and
hence the uncertainty that results. To support this conclusion, a

number of versions of distributed iterative refinement network traffic



light control algorithm with modest communication requirements are shown
to find comparable solutions in less time than an existing centralized
network traffic light control algorithm. Simulation results also
indicate that the distributed iterative refinement algorithms tolerate
the use of approximations that limit communication and the uncertainty
that is introduced if communication ig noisy.

As a by-product of this research, a general balance principle and
adaptive balancing algorithm for Pareto-optimal multi-access control of
distributed resources. is also developed. The balance principle and
adaptive balancing algorithm are used in some versions of the
distributed iterative refinement algorithm to control simultaneous
refinements. The new balance principle and adaptive balancing algorithm
is an extension of work by Kleinrock and Yemini [KLEI78, YEMI78, YEMI79]
concerning a balance principle and adaptive algorithms for multi-access

control of a shared communication channel in a packet radio network.

1.3 Summary of Remaining Chapters

The remainder of this thesis begins with a background chapter on
distributed proplem solving and iterative refinement. In Section 2.1
the relationship of this work to others' work in distributed problem
solving and distributed processing is discussed. The iterative
refinement technique is discussed in Section 2.2. A number of
variations of the basic iterative refinement paradigm are identified in

this section based on the way in which refinements are obtained.



The adaptation of an iterative refinement technique for distributed
problem solving is discussed in Chapter 3. Two main problems are
encountered in distributing the iterative refinement technique: the
simultaneous-update problem and the non-local interaction problem. The
simultaneous-update problem is the synchronization problem described
earlier which arises because simultaneous refinements may interact to
produce an unexpected result. The non-local interaction problem is the
problem of coping with interaction between processing elements which are
not neighbors (spatially adjacent).

The simultaneous-update problem is discussed at length in Chapter
4, The simultaneous-update prablem arises because processing elements
are allowed to make refinements in parallel. In order to alleviate the
simultaneous-update problem, decentralized update control schemes are
considered to control refinements, Because this problem of update
control can be viewed as a problem of decentralized access control of
distributed resources, this more general problem is addressed. For this
reason, much of Chapter U4 concerns this access control problem and may
be applicable to other problems involving access control of shared
resources,

Experiments with a distributed iterative refinement algorithm for
solving a simple numbering problem are discussed in Chapter 5.
Interaction is localized with the numbering problem, so a local view of
the effects of a refinement is equivalent to a global view, and thus
proposed refinements are always appropriate from a global context. For

this reason, the numbering problem is ideal for testing the ability of



update control schemes to alleviate the simultaneous-update problem
without the added complication of the local-view problem.

In Chapter 6, a network traffic light control problem is described.
This application exhibits clear, strong non-local interaction and
possesses a well defined but complex objective function. An existing
centralized algorithm based on iterative refinement which solves this
problem, SIGOP II [LIEB76], is also described in' this chapter; this
algorithm is used for comparisons in Chapter 8.

The problem of coping with non-local interaction is addressed in
Chapter 7. The non-local interaction problem arises Dbecause
communication between processing elements that are not spatially
adjacent is costly, and possibly errorful or delayed. For this reason,
it is desirable to introduce mechanisms that limit the information
processing elements must acquire from non-neighboring processing
elements, and to have processing elements employ only a limited, local
view of the overall problem. As a consequence, though, fefinements may
no longer be appropriate from a global perspective.

Because a local view may not be best, a number of ideas are
explored in Chapter 7. First, the local-view approximation is developed
under the assumption that effects beyond neighboring processing elements
may be simply ignored; it is hoped that the robustness of the iterative
refinement technique will permit this approximation. A worst-case
assumption is also developed for use with the local-view approximation
if decoupling of non-neighboring processing elements is desired.

Finally, an information gathering technique is developed for acquiring
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larger views.

Chapter 8 presents and discusses results of experiments with
“arterial and network traffic light control. These experiments focus on

the ability of the distributed iterative refinement technique to handle

the combination of the non-local interaction and simultaneous-update
problems, Communication errors are also introduced in some of the

experiments.

Conclusions and open questions are presented in Chapter 9.



CHAPTER II

BACKGROUND

This chapter consists of background sections on distributed problem
solving and iterative refinement. The relationship of the work
presented in this thesis to others' work in distributed problem solving
is discussed in Section 2.1, In Section 2.2 the basic (centralized)
iterative refinement paradigm is deseribed and a number of variations

are identified and discussed.

2.1 Distributed Problem Solving

The research presented in this thesis concerns . low-level
distributed problem solving. Distributed problem solving is defined as
a cooperative computation involving a network of processing elements
that share a common goal [DAVI8O0]. Low-level distributed problem
solving involves a close coupling of dedicated processing elements;
processors are often located near sensors and/or effectors, and aré
arranged with a fixed organization.

In contrast to this, high-level distributed problem solving
approaches which have recently appeared in the artificial intelligence
literature exhibit more loosely coupled -(nearly autonomous) interaction
among processing elements and permit more variablility in organization.
Some of theée high-level distributed problem solving approaches include

ACTORS [HEWI77], BEINGS ([LENA75], a distributed Hearsay approach
11
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[LESS80, LESS81,LESS82], and a contract-net approach [SMIT80, SMIT81l.

The difference between distributed problem solving and distributed
processing algorithms (for networking, distributed data base systems,
etc.) is the nature of the problem to be solved. With distributed
processing, there are many localized tasks that are to be performed by a
network of processing elements that share resources; with distributed
problem solving, on the other hand, there is a single, decomposed task,
a larger scope of interaction, and often a need for some global
coordination and/or calculations.

Unlike most control theoretic approaches to problem solving such as
aggregation, singular and non-singular perturbation, decentralized
feedback control, and multi-level - optimization [ATHA78, SANDTS,
LARS79b,c] the approach followed in this thesis is applicable to
problems with complex, multi-modal or discrete problems which need not
have special properties such a# fast and slow modes.

Finally, the difference between the approach to distributed problem
solving presented in this thesis and an approach by Tenny {TENNT9,
TENN81a, TENN81b]l] is the non-reliance on iteration to resolve
uncertainty; Tenny dismisses iteration as inefficient and favors complex

information gathering techniques.
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2.2 Ilterative Refinement

Iterative refinement is a very general and powerful centralized
problem solving technique. The technique is also called the method of
successive approximations and, according to Bellman and Dreyfus
[BELL62], is "the most powerful of all tools of analysis" because of its
general applicability as a method of solving problems of high
dimensionality. Abstractly, the idea is as follows: given a problem and
an objective function which can be used to determine the worth of a
potential solution to the problem, one starts with an initial guess as
to the solution of the problem and then repeatedly refines (improves
upon) this approximate solution using the objective function. The ..
algorithm terminates when further improvements are not possible or when
the approximation is within prescribed limits of accuracy.

Iterative refinement is distinct from relaxation [KILM69, WALT75,
ROSET6, DAVi76. ZUCKT7, RISE7T7, HANS78], which starts with probability
(or confidence) values for each alternative of each component of a
solution and uses local constraints between solution components to
modify these probability values until a single alternative for each
component dominates. Thus, many alternatives for a single component of
the solution vector are considered simultaneously with relaxation,
whereas only a single alternative for each component of the solution
vector is considered at any one time with iterative refinement. An
earlier study ([BROO79] found a relaxation approach to distributed

network traffic light control to be quite interesting, but limited in
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its ability to handle non-local interaction between distant traffic
lights without introducing a hierarchy. Also, as the complexity of the
application grows, so do the number of alternatives for each component
of the solution. This significantly affects the speed of the relaxation
algorithm.

Iterative refinement is also distinet from iterative synthesis,

which iteratively builds a complete solution from components (often
maintaining many alternative, partial solutions at the same time) until
an appropriate complete solution is constructed. Examples of the
iterative syntheéis technique include spatial dynamic programming
[(LARS79a, CLIN79] and the Hearsay approach [LESS77, ERMAT9, ERMASOI]. |
Still, it is possible to apply the iterative’refinement‘technique
in a variety of ways depending on how refinements are computed.
Classical iterative refinement algorithms include fixed-point and other
fiterative methods" of numerical analysis [CONT65], and the well-know
hill-climbing or gradient methods [COOPT70]. Non-classical iterative
refinement algorithms such as the SIGOP II network traffic light control
algorithm [LIEB76] and the Dynamic Programming Successive Approximations

method [LARS70] have appeared more recently.
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2.2.1 Classical iterative refinement.

Classical iterative refinement algorithms typically use'the value
of the objective function at the current approximate solution or the
derivative of the objective function at the current approximate solution
to compute refinements. Fixed-point iterations, for example, use an
objective function, in this case f, directly to find a solution, x, such
that x=f(x). This is accomplished by starting with an initial guess,
X5, and computing x4=f(xg), xp=f(xq), etec. until Xg=x{_q or the
difference is small enough. Unfortunately, there are restrictions which
must be satisfied in order for convergence to be assured. The function,
f, must be continuous and differentiable, and the magnitude of the
derivative must be less than 1 in the neighborhood of the solution.
Solutions may also be vectors, in which case f is called an operator.
Other, similar classical iterative refinement algorithms have been
developed to find the roots of non-linear functions and to solve
differential equations numerically.

Baudet ([BAUD78] has shown that certain fixed-point iterations can
be performed quickly using an asynchronous multi-processor system.
Similar restrictions to those encountered with centralized fixed-point
iterations apply to these asynchronous iterations. Very few additional
restrictions, however, are introduced by distributing the computation.
This was an important indication that the distribution of another type

of iterative refinement algorithm might succeed.
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Hill-climbing or gradient methods are also well-known variations of
the classical iterative refinement technique. Here the gradient of an
objective function at approximate solutions is repeatedly utilized to
perturb the current approximate solution towarﬁs the maximum or minimum
of the objective function. 1In general, the objective function must be
continuously differentiable; there are, however, hill-climbing
techniques that sample points in the neighborhood of a potential
solution to estimate the gradient when it is difficult or impossible to
calculate. Although ideally suited for problems with convex objective
functions, gradient methods generally yield poor results when started
with a poor initial prime and faced with a non-convex or multi-modal
objective function. Gradient methods are also inappropriate for
problems where there is no scalar relationship between possible values
for solution components.

Gallager [GALL77] developed a routing algorithm for a
packet-switched communication network such as the ARPANET, which is a
distributed gradient algorithm. A routing table at each node specifies
what fraction of packets destined for other nodes should leave on each
of the node's communication links. The distributed gradient algorithm
incrementally updates each node's routing table based on information
communicated between adjacent nodes about the marginal delay to each
destination. Unfortunately, the algorithm is not applicable to problems
with complex, non-convex or multi-modal objective functions. But again,
this successful distribution of an iterative refinement algorithm is

encouraging.
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2.2.2 Non-classical iterative refinement.

The objective function is used to evaluate a set of possible
refinements (perturbations) to the current approximate solution in a
non—classicai iterative refinement algorithm. The best perturbation is
then chosen and perturbations of the new solution are considered. A
Dynamic Programming Successive Approximation algorithm [LARS70] is an
example of a non-classical iterative refinement algorithm. The SIGOP II
network traffic 1light control algorithm is another non-classical
iterative refinement algorithm.

Larson's Dynamic Programming Successive Approximations technique is
an iterative refinement technique that has been applied to a reservoir
system flow control problem [LARST0]. Each component of a control
vector determines the flow from a reservoir through a unique dam, in a
system of connected reservoirs., The algorithm starts with an initial
control vector and determines the water levels in all reservoirs over
time, that result from the use of the initial vector. Then, each flow
from a dam and the associated reservoir's water level is readjusted, in
turn, so as to minimize a global objective function. This sequence of
readjustments is then repeated, until no further improvements are
possible.

From the standpoint of distributing this algorithm, it is
unfortunate that when changes in a dam's control and associated
reservoir's water level are considered, other dams' controls must be

readjusted to keep other reservoir water levels constant. This implies
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that each processing element cannot have sole control over its assigned
dam, and must posses knowledge of other dams, reservoirs, and their
relationship.

The iterative refinement technique underlying the SIGOP II
algorithm, however, does utilize a problem decomposition that appears to
be well suited for distributed problem solving. Again, a solution
vector is sought, but each refinement concerns only a single component
of the solution vector.5 This iterative refinement technique is useful
in a centralized system because the problem of refining a single
component of an approximate solution vector is generally of lower
complexity than the of'iginal problem of finding an optimal solutiop
vector, and overall computational requirements are reduged. This type
of iterative refinement is described in more detail in the next chapter
and provides a basis for the distributed iterative refinement algorithms

developed in this thesis.

5. This version of iterative refinement is most clearly explained
when there is one subproblem for each component of the solution vector.
The technique is easily extended to allow for the solution of multiple
components in one subproblem, but for clarity only the simpler case is
discussed in this thesis.



CHAPTER III

DISTRIBUTED PROBLEM SOLVING WITH ITERATIVE REFINEMENT

In this chapter a distributed iterative refinement technique is

developed based on a centralized iterative refinement technique. The
centralized iterative refinement technique is first described in detail.
Distributing the iterative refinement technique among processing

elements (PEs) is then discussed, the basic distributed iterative
refinement algorithm is described, and the cases of localized and

non-localized interaction are introduced.

3.1 A Centralized Iterative Refinement Algorithm

As a beginning, consider a very general optimization problem to be
solved with an iterative refinement algorithm,

MIN  C(u) | (3.1)
U

subject to ueU,

where the solution, u, 1is a vector of solution components,

(U1,u2,...uN). Assuming the objective function, C, is well defined for

all solution vectors, u, (i.e., C(u) takes on finite value for all uel),

the ith subproblem can be stated as

19
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MIN C(u1'oooui_1 ’ui'ui+1..'uN) (3'2)
Yy
subject to uie{u}(31,...ﬁi_1,u,ﬁi+1,...GN)GQ}.

A

The centralized iterative refinement algorithm proceeds from an initial

guess, u, (commonly called a prime), repeatedly solving the sequence for
i=1,2,...N of subproblems given by (3.2). The most recent value for ug

is represented by u and the algorithm terminates when a sweep of N

jv
optimizations results in no change.

Since a global view of updates (changes to components of u) is
assumed, convergence to a solution is easily guaranteed provided that
only a single update is considered each iteration and up to date
information is used. Of course, updates must only be allowed if they do
not result in an increase of the objective function. But unfortunately,

convergence to non-optimal solutions (local minima, points along a

ridge, etc.) may result for problems with multi-modal search spaces,

especially when u, is a poor prime (i.e., it is far from the optimal
solution).

The inability to always find a global optimum results because only
updates that involve single control variables are considered each
iteration. Thus, improvements requiring coordinated changes to u are
not considered. However, this version of iterative refinement is less
susceptible to convergence to non-optimal solutions than gradient
methods because a line search (i.e., a complete search with respect to
the control variable) rather than a gradient (i.e., the effect of .an

incremental change of the control variable) is wutilized in the
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modification of each u;.

3.2 Distributing the Iterative Refinement Technique

The first step in distributing the centralized iterative refinement
technique described above is to choose a problem decomposition.
Generally, the components of a control vector are associated with
spatially distributed sensors and/or effectors. This spatial
distribution lends itself quite well to a decomposition where a unique
processing element is assigned to each of the N components.

The assignment of processing elements to subproblems, one for each
component (control), is depicted in Figure 1. To solve equation (3.2),
however, each processing element ‘(PE) must possess knowledge of the
global objective function, and must acquire current values for all other
PEs' controls unless some property of the application limits the effects
of changing controls. In a large distributed system point to point
communication between arbitrary processing elements is generally
impractical. For this reason,vapproximations to (3.2) that 1limit a
processing element's need for non-local iﬁformation are examined in
Chapter 7. Also, a cooperative non-local information gathering
technique is developed in Chapter 7 that provides processing elements

with larger than local views using neighbors-only communication.
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The assignment of processing elements (PEs) to controls
is depicted for a traffic light control application. A unique
PE is assigned to solve for the control of each traffic

signal. Ideally, PEs should communicate only with PEs
associated with adjacent signals. .

Figure 1: Assignment of Processing Elements to Controls.



23

A basic, often unstated assumption of the centralized iterative
refinement technique is that solutions to other subproblems (other
processing elements' current controls) will not change during the
computation of each subproblem., Because there is a critical region
between the attainment of information from another processing element
and the calculation of a new local control based on this information,
the simultaneous solution by another processing element of an
interacting subproblem may invalidate the calculation and produce an
outdated result. Thus, the simultaneous refinement of subproblems by
two or more PEs may actually lead to an increase in the global objective

function rather than a decrease, This is the simultaneous-update

problem. In fact, a straight forward, lock-step parallel approach where
on each iteration any PE could make a refinement almost always resulted
in oscillation, as 1is demonstrated with the numbering problem
experiments of Chapter 5.

Because of the simultaneous-update problem, a key issue in
developing an effective distributed iterative refinement algorithm .is
the 1limiting of simultaneous updates between interacting processing
elements or collisions, thereby controlling uncertainty introduced by
simultaneous updates. ‘ Schemes to restrict simultaneous updates are

called update control schemes. A major focus of this thesis is the

investigation of such schemes. Note that there is already a tolerance
to error in the iterative refinement algorithm so that it is not a
matter of completely avoiding collisions, but rather a matter of

limiting the frequency of collisions and the magnitude of effect of
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collisions. Of course, convergence is assured if an update control
scheme is employed that does not allow simultaneous updates among
interacting processing elements.6

The simultaneous-update problem is specifically addressed in
Chapter 4, The problem is treated as a problem of access control of

distributed resources. Below the basic distributed iterative refinement

algorithm is described.

3.2.1 The basic algorithm.

In the remaining chapters a number of distributed iterative
refinement algorithms are developed. A distributed iterative refinement
algorithm is executed by a network of processing‘ elements, but all
processing elements perform the same computation in a lock=-step
(synchronized) parallel fashion. Thus, a distributed iterative
refinement algorithm can be described by specifying the basic algorithm
for an individual processing element. Each processing element is
responsible for its own control variable; however, the common goal of
all processing elements is to find a control vector for which no further

refinements can be found.

6. The simplest such scheme is the sequential, serial update
control scheme.
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The basic algorithm for an individual processing element is shown
in Figure 2., The basic algorithm consists of a number of phases:
initialization, acquisition, calculation, and alteration. These phases
are described below. At the top-most level, the initialization phase is
run and then the sequence of acquisition, calculation, alteration phases
is repeated until convergence (or a time-out) is detected in the
evaluation phase.

Initialization Phase. During the initialization phase a PE

initializes its 1local control to "prime"™ the iterative refinement
algorithm, If the algorithm is run periodically in a quasi-static
(slowly changing) environment to obtain an more appropriate control
vector, the control vector used in the previous control period may-serve
as a prime; otherwise, a fixed, random, or heuristically obtained prime

may be used. This process is described below for PE;,

(% INITIALIZATION PHASE: initialize local control *)
(* other variables are also initialized at this time #)
(# u[i] is PEi's control to be initialized to PRIME[i] ¥)
(* it _count will keep count of the number of iterations *)

uli] := PRIME[il; ' .
it_count := 0;

Other initializations may take place at this time. Unless these other
initializations require communication, no communication is required for

the initialization phase.

Acquisition Phase. A PE acquires through communication other PEs'

controls during the acquisition phase. Note that a PE must make its
local control available to other PEs during this phase, since other PEs

are in their acquisition phase too. This process is described below for



PHASE l
INITIALIZATION: initialize local control
>l
ACQUISITION: get other PEs' controls
CALCULATION: search for a better local control

»l

done
EVALUATION: evaluate current situation |——————3
l not done
ALTERATION: adopt new local control

if better and allowed

-

The basic algorithm for an individual processing element
(PE) consists of a number of phases: initializationm,
acquisition, calculation, evaluation, and alteration. All PEs
perform this computation in a lock-step, parallel fashion,
until no PE can find a better control or a pre-specified
number of iterations have passed. All phases except the
calculation phase may involve communication with other PEs.

Figure 2: Basic Algorithm for a Processing Element.
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PE;.
(* ACQUISITION PHASE: get other PEs' controls *)
(* N is number of PEs *)
(* uljl is PEj's current control #) -

for j := 1 to N
do if izj and PEj's control is needed for PEi's calculation phase
then get ul jl from PEj;

In many cases only a subset of other PEs' controls are needed for the
calculation phase and, thus, need to be communicated during the
“acquisition phase.

Calculation Phase. Each processing element solves its subproblem

during the calculation phase to search for a better local control. This
phase is generally more time-consuming than all the other phases of the
algorithm. Because a processing element needs other PEs' current .
controls for the solution of its subproblem, this information was
communicated during the acquisition phase. The calculation process is

depicted below.

(®* CALCULATION PHASE: search for a better local control ®)
(* uli] is current local control *)
(* cost[i] is current cost associated with using ulil #)
(* Q[j] is PEi's copy of PEj's current control *)
(* best{i] will be better local control *)
(* demand[i] is set to indicate if PEi wants to ¥)
(# alter its control *)

best[i] := ulil;
costlil := C(R[1],...00i-1],uli],qi+1]1,...00ND);
min cost := cost[il;
for u := all values for uli] such that constraints are satisfied
do if c(Gl1],...00i~11,u,uli+1],...G[N]) < min_cost
then begin
min_cost := C(4[11,...00i-11,u,Gli+1],...00ND);
best(i] := u
end;

demand{i] := (best[il = ulil);
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Because a PE is interested only in changing its local control, it is
often the case that a simpler cost function will suffice, This often
happens because the local control seldom interacts with all other PEs'
controls. By simplifying the cost functions PEs use, the number of
other PES' controls acquired during the acquisition phase may be
reduced. No communication is required for the calculation phase.

Evaluation Phase. After the acquisition phase processing elements

generally have consistent views of the situation they are faced with

7

given the current solution vector. Local and and possibly global

evaluations are performed at this time., Convergence (or a time-out) may

also be detected during this phase. An evaluation process is given

below.
(* EVALUATION PHASE: evaluate current situation *)
(* demand[i] was set during the calculation phase to *)
(# indicate if PEi wants to alter its control ®)
(* converged(i] will be set to indicate if convergence *)
(% has been achieved *)
(* it count is current iteration number *)

it_count := it_count + 1;
converged(i] := (not demand[i]);
for j (=1 to N

do if ((j<>i) and converged[il])

then begin
get converged[ j1 from PEj;

converged[i] := (converged[i] and converged( jl)
end; :
if ((it_count > it_max) or converged(il)

then exit;

7. Communication errors or delays can lead to errors and
inconsistent views. However, if errors are infrequent, the general
robustness of the distributed iterative refinement algorithm resolves
these additional errors. This is demonstrated in experiments reported
in Chapter 7.
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Communication is required for convergence detection and for global

evaluations.

Alteration Phase. A processing element that finds a better local

control must not always adopt the new control, else the

simultaneous-update problem results., For this reason, an alteration
phase is included in the algorithm, during which processing elements use
an update control scheme to determine which processing elements may

adopt new controls. This phase is depicted below.

(* ALTERATION PHASE: adopt new control if better and allowed *)

(* demand[i] was set during the calculation phase to ®)
(® indicate if PEi wants to alter its control *)
(*# uli] is current local control *)
(* Dbest[i] is new local control #)

(* allowed(i) is a call to an update control scheme ¥)
if demand[il
then if allowed(i)
then ulil := best[il;
Eight update control schemes are described in detail in the next

chapter. Because some update control schemes require communication,

some communication may be required for the alteration phase.

3.2.2 The case of localized interaction.

The.distributed jterative refinement algorithm described above has
been designed for applications where there 1is a natural spatial
distribution of effectors (and sensors) and a unique processing element
is assigned to each effector. Based on this spatial distribution, two

processing elements are said to be neighbors if they are spatially
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adjacent, Communication between neighboring processing elements is
assumed to be direct (point to point), inexpensive, and fast, while
communication between non-neighboring processing elements is assumed to
be indirect, expensive, and slow.

With this in mind, interaction is said to be 1localized if only
neighboring processing elements' subproblems interact. This case is
interesting because a limited, local view of the effects of changing a
control is equivalent to a global view, and because during the
acquisition phase of iterative refinement algorithm a processing element
ﬁeed oﬁly acquire neighbors' current controls. Thus, the lack of a
global view presents no problem, and the only source of uncertainty
which must be faced by processing elements, unless communication errors
are considered, is the simultaneous-update problem which is discussed in
Chapter 4, Experiments pertaining to the case of localized interaction

are discussed in Chapter 5.

3.2.3 The case of non-local interaction.

When there is interaction between non-neighboring Pés' subproblems
interaction is said to be non-local. Many real applications exhibit
non-local interaction, including the network traffic 1light control
problem examined later in this thesis. The presence of non-local
interaction has .the following implications: the simultaneous-update
problem extends beyond neighbors (i.e., a PE may collide with a

non-neighboring PE), each iteration PEs must acquire non—neighbors'
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current controls to accurately assess its current situation, and a
global view of the effects of changing a control is needed to accurately
search for a better control.

Because of these implications, it may not be possible to maintain
correctness and consistency at all times during the problem solving
process in order to solve a problem with non-local interaction
distributively with an effective utilization of processing resources and
with limited communication. It may be necessary to trade off some
accuracy for increased speed and decreased communication by introducing
quick approximations based on local information (e.g., use a limited
view). The lost accuracy will hopefully be regained through a few
extra, less expensive iterations as neighbors' controls eventually
embody the considerations of non-neighbors.

The first implication, that the simultaneous update problem extends
beyond neighbors, is simply ignored (i.e., no attempt is made to control
collisions between non-neighboring PEs). Preliminary experiments
(BROOT9] indicated that if simultaneous updates between neighboring PEs
were controlled, the distributed iterative refinement algorithm resolved
the additional uncertainty introduced by simultaneous updates between
non-neighboring PEs. Since it is possible that oscillation will occur
making it difficult to choose a solution if a deterministic update
control scheme is employed and simultaneous updates between
non-neighboring PEs is ignored, periodic global evaluations of tentative
solutions is considered as an alternative to simply taking the last

solution after some fixed number of iterations.
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The second implication, the need to communicate non-neighboring
PEs' controls is addressed through the introduction of state variables
(which abstract the interaction of non-neighboring PEs) and state
updating (which propagates non-local interactions). This allows a PE to
solve at least part of its subproblem uSing‘only information obtained
from neighboring PEs, and is discussed in detail in Chapter 7. Although
state updating requires communication between neighboring PEs, partial
stage updating is also considered to limit this communication.

The third implication, that PEs require knowledge of the global

objective function is called the local-view problem. The local-view

problem is addressed in a number of ways. A local-view approximation
assumes a local view is a good approximation to a global view. With a
local-view approximation communication is minimized, but desired
accuracy may not always be achieved. Furthermore, complications arise
in assuring convergence and selecting a solution. The local-view
approximation is deseribed in detail in Section 7.1. A worst-case
assumption is considered in Section 7.2 as a means of decoupling
non-neighbors' subproblems, Cooperative gathering of non-local
information (with abstraction) is discussed in Section 7.3. Although
more communication is needed for the cooperative gathering technique,
better solutions may result. The effectiveness of the various

techniques is determined via experiments discussed in Chapter 8.



CHAPTER IV

THE SIMULTANEOUS-UPDATE PROBLEM

The simultaneous-update problem is addressed in this chapter. The
simultaneous-update problem is the problem of encountering unexpected,
often negative results from processing elements simultaneously solving

interacting subproblems. The approach taken here is to view this as a
problem of access control of distributed resources, and to use access
control schemes to control simultaneous updates. This approach is then
tested in experiments that follow in Chapter 5.

To see how the simultaneous-update problem may be viewed as an
access control problem, consider a processing element which has solved
its subproblem and obtained a solution, Because processing elements
operate in parallel, the processing element faces uncertainty as to the
validity of its solution because solutions to other subproblems that the
processing element's subproblem was dependant on may have
(simultaneously) changed. If one imagines an abstract entity, called
"the right to update," which is a resource shared by processing elements
whose subproblem interact, then in order to effectively utilize this
shared resource it must be accessed by a single processing element at a

time. Thus, the problem of update control for iterative refinement is

transformed into a problem of access control.

33
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4,1 Access Control

Unlike the problem of update control for an iterative refinement
algorithm, the access control problem has been studied by a number of
researchers. Two well known applications, packet radio [KLEI78, TOBAS8O,
THUR81b] and multidrop coax bus (Ethernet) [METCT76, SHOC80, THUR81b]
broadcast communication concern decentralized access control of a
communication medium. Since both these applications involve
communication over a shared path, a determination must somehow be made
as to which PE is allowed to transmit.

Unfortunately, these applications involve controlling access to a
single shared resource (e.g., the packet radic communication schemes
generally assume all PEs transmit to a single satellite). However, much
of the theory is applicable to the more general case of access control
of multiple, distributed resources. What stands in the way of using
this tgeory for the more general case of packet radio communication is
the inability of processing elements to observe all collisions with
their transmission, and the fact that acknowledgements which would
supply this information require some of the very resource which is to be
controlled. The update control application, on the other hand, does not
involve the control of a communication resource.

In general, there are many variations of the decentralized access

control problem. Variables include:
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o how the resources are shared (which processing elements have

access to what resources),

o how demand for resources arises (model with probabilities or
rates which specify what resources are needed and for how long
resources are needed when demand arises), and

o what the payoffs for various events (exclusive access,
collision, ete.) are, and how they are combined in an objective
function for processing elements.

Different access control problems, as defined by these variables, often
require different ' solutions. The access control equivalent of the
update control problem is discussed in the next section.

Access control strategies can be either fully controlled or
partially controlled. With a fully controlled strategy, which PEs are
allowed to access resources is determined before any attempt is made to
uiilize,resources. Controlled strategies avoid collisions, and include
reservation schemes and selection schemes. Reservation schemes work by
establishing a schedule of resource use in advance statically (as with
TDMA, time division multiplexed access) or dynamically. Selection
schemes involve arbitration by priority, voting, or sequencing before
resources are used.

Partially controlled access control strategies include random
access or contention schemes. With a partially controlled access
control strategy, PEs access resources whenever demand for them arises,
and if a collision occurs a retry scheme is employed. Sometimes a

little discretion is used and PEs do not attempt to access resources if
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they are known to be in use. Collision detection can be done any number
of ways, depending largely on characteristics of the specific
application. There are also quite a few retry schemes, including
random, fixed, adaptive, and even reservation schemes. Some fundamental
fully controlled and partially controlled access control schemes will be
discussed after the following section on access control for iterative

refinement update control.

4.1.1 Access control for update control.

The characteristics of the iterative refinement update control
problem (viewed as an access control problem) can be summarized as
follows:

o an arbitrary network is assumed with many shared resources, and
use of resources is time-slotted with a single time-slot needed
when demand arises;

o demand for resources arises in an unknown, random manner, and
PEs are "greedy" (i.e., an attempt is made to access all
resources accessible to a PE when demand arises); and,

o the payoff for exclusive access to shared resources is positive
but variable and there is a variable penalty for collisions.

In choosing an access control scheme for update control, these

characteristics must be considered.
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There are important differences between the iterative refinement
update control problem and the communication channel access control
problems. For example, a single time-slot is needed to satisfy demand
for the update control problem, whereas many consecutive time-slots may
be useful for broadcast communication applications. This difference
makes carri;r-sense techniques that have provéd to be quite successful
for Ethernet [SHOC80] inappropriate for update control in an distributed
iterative refinement algorithm. A second difference is that a collision
does not necessarily lead to zero utilization for the update control
application (i.e., it may be negative), whereas most communication
applications consider a lost packet to be =zero utilization. These
differences make it necessary to extend somé of the existing work on

access control for its use in alleviating the simultaneous-update

problem.

4.1.2 Some fundamental access control schemes.

Unless demand is sporadic, collisions will regularly ocecur with
distributed iterative refinement if no access cgntrol scheme is
utilized, resulting in oscillation. There are a variety of fundamental
access control schemés of potential interest for the iterative
refinement update control application. These include both controlled

and uncontrolled schemes.
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A serial control scheme gives PEs access to shared resources one at

a time in some order. Thus, the serial scheme is a controlled, static
reservation scheme like TDMA. The particular order is generally
considered to be unimportant. If there are N PEs, then all N PEs have
access to shared resources once and only once each N iterations.
Unfortunately, this permits no parallelism, thus defeating much of the
potential advantage of a distributed approach.

An alternating control scheme cycles between pre-specified groups

of PEs, giving all PEs in the currently chosen group access rights. The
alternating control scheme is also a controlled, static reservation
scheme. Usualiy, each PE is a member of only a single group, and PEs
that share resources are members of different groups. Note that this
scheme degenerates to a serial control scheme if all PEs share some
resource.

A negotiated control scheme requires communication before each

time-slot and allows only a subset of PEs which do not compete to access
resources. The negotiated control scheme is a controlled selection
scheme. A number of variations of this basic approach are possible,
some employing fixed or dynamic priority mechanisms. The version
employed in later experiments has neighboring PEs communicate their
demand and employs a rotating priority mechanism based on an
alternating PE ordering to resolve conflicts in a fair manner, A
negotiated scheme can give near perfect utilizations, but at the cost of

communicating with contending PEs.
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A probabilistic control scheme involves the use of a policy, Pij, by

each PEi to determine if it should have access rights for each

time-slot. The policy is a probability value, and represents the

probability that PE; is given access rights given that PEj; has demand.
The probabilistic scheme is an uncontrolled, random access scheme. The
optimum value(s) for p=(py,p,,...py) depend upon the optimality
conditions chosen., Below, Pareto optimality is used as a decentralized
optimality condition to derive a balance principle for optimal access
control. Because the policy may be varied over time, it is shown how
this control scheme can be made demand adaptive.

An urn control scheme [KLEI78, YEMI78, YEMI80] is an interesting

alternative to the probabilistic decision mechanism described above.
The urn scheme is another uncontrolled random access schemes. Under the

urn scheme, each PEi draws kj numbers from identical pseudo-random

number generators using a common seed and if it drew its number it may
attempt utilization of shared resources. The probability of drawing a
particular number from a pseudo-random number generator in a sample of k
numbers is similar to the probability of drawing a ball of a particular

color from an urn containing various colored balls in a sample of k

balls; hence, the name "urn" scheme. The use of a common seed and
identical pseudo-random number generators coordinates the decisions of

PEs without communication.



40

Actually, a variety of urn schemes are possible, depending upon how
numbers (colors) are assigned to PEs and what numbers can be drawn from
a pseudo-random number generator (how many balls of each color are in an
urn)., Perhaps the simplest urn scheme assigns a unique number to each
PE, and has PEs draw numbers from identical, randomly ordered lists of
the assigned numbers. A better urn scheme, though, assigns the fewest
numbers to PEs such that each PE is assigned a number yet in each
neighborhood no PE has the same number, and has PEs draw numbers from
identical, randomly ordered lists of the (fewer) assigned numbers. Note
that when each PE may interfere with all PEs, the schemes are
equivalent. The use of multiple urns has been proposed [YEMI80] which
produces a scheme similar to the tree scheme [CAPE79].

The balance principle derived below for the probabilistic scheme
may also be used to determine an optimal k for an urn scheme. The urn
scheme, as Kleinrock and Yemini showed in [KLEI78] and will be shown
below, achieves a utilization similar to the probabilistic scheme when
demand is 1light, and significantly better utilization when demand is

heavy.

4.,1.3 Discussion.

Update control schemes of all the types listed above are employed
in distributed iterative refinement algorithms to control simultaneous
updates. These update control schemes are described in greater detail

at the end of this chapter along with the SIGOP update control scheme (a
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serial scheme with heuristics) and the attenuated update control scheme

(a parallel scheme that limits the magnitude of updates rather than
their frequency). The theory needed for the probabilistiec and urn

update control schemes is developed next; readers not interested in this

theory should continue with Section 4.3.

4.2 Pareto-Optimal Access Control for Two Schemes

In this section the general problem of optimal, distributed
multi-access control of shared resources_in a network of processing
elements is addressed outside the context of the iterative refinement
application, The balance principle derived below is appropriate for
access control schemes for which the probability that a processing
element will attempt to access shared resources given it has demand cah
be expressed as a function of the processing element's qccess control
policy. The probabilistic and urn schemes described above are this type
of access control scheme. The balance principle can be used to
determine optimal access control policies for these schemes in a number
of ways. An adaptive balancing algorithm is also developed to handle
variable demand.

The research presented in this section is based on recent
contributions to the field of Communication and Networking by Yechiam
Yemini and Leonard Kleinrock [KLEI78, YEMI78, YEMIT9] concerning a
balance principle and adaptive aigorithms for multi-access control of a

shared communication channel in a packet radio network. This research
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extends their work to cover a broader range of objective functions
which, in addition to specifying the utilization of a success (exclusive
access to shared resources), may specify a penalty for collisions and/or
sacrifices - (decisions to not attempt access though in need of
resources), A more general balance principle results because an
alternative interpretation of the necessary conditions is found to be
appropriate. Furthermore, a new adaptive balancing algorithm that has

been developed and tested is presented in Subsection 4.2.2.

N

4.2,1 A balance principle for optimal access control.

In this section a necessary condition for (Pareto) optimality is
applied to the access control problem and an interpretation results in a
general balance principle for optimal access control. The balance
principle is quite general and is shown to hold for a wide range of
models of wutilization. Direct use of the balance principle is
discussed, and theoretical performance figures are presented, comparing
two schemes for which the balance principle was used to obtain
Pareto-optimal policies and two standard schemes that do not use the
balance principle.

It is assumed that each PE has access to a subset of all resources,
and demand for resources arises in a random manner. Demand is assumed
to be irregular, so a scheme which is demand adaptive is necessary to
avoid a waste of resources. Use of resources is assumed to be

time-slotted (i.e., use is synchronized to slots in time) and a PE
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requires a single time-slot of all accessible resources when it has
demand. This "greedy" assumption simplifies the analysis, but a
probability distribution may be used to specify probabilistically which
resources accessible to a PE will be needed when demand arises.

When two or more PEs attempt to access a shared resource
simultaneously, a collision occurs, and for many applications the shared
resource cannot be properly utilized. Because of this, an access

control scheme that decides which PEs with need of resources should have

the right to access the resources is desirable. The objective of an
access control scheme' is to maximize the expected utilization of
resources. Note that the utilization of resources when a collision.
occurs is taken to be zero for many applications, but this need not be

the case,

4,2,1.1 Objective functions.

The major difficulty in determining an optimal control scheme in a
distributed manner is the lack of a global view of demand and resources
in the network. For this reason, the optimization will be based on a
simple relationship among local, decentralized objective  functions
rather than on a global objective function. A network utilization
operator mathematically expresses the expected utilization of resources
by each PE; it is a vector of local utilization operators, one for each
PE. These local utilization operators are used as local objective

functions.
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A number of utilization operators are possible, depending for
instance on which accessible resources will be needed when demand arises
and how possible outcomes (success, collision, sacrifice, etc.) are
combined. Different applications will call for different operators.
While the balance principle will be developed below using only one
utilization operator, it will later be shown to apply to a broad class
of utilization operators.

Formally, let §F = (3?, ag, cees 35) designate the demand process

for time-slot t.8 That is,

1 if PEi requires resources at time-slot t,

at
- ot
"

0 otherwise.

There is no distinction between resources in this model because it is
assumed thét when a processing element attempts to access resources, it
attempts to access all resources to which it has access. Let n‘(g)
designate the distribution of EF (i.e., the likelihoods that PEs have
demand) . This distribution is not known, and is assumed to change
slowly with time.

Define the resource utilization process of PE; during time-slot ¢t

as

8. A random variable and its mean are represented by X and E.
respectively. Vectors are underlined and sets are capitalized.
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1 if PE; has demand and gains exclusive access
to all shared resources,

GE = §-x if PEi has demand and one or more PEs

interfere with PE;,

0 if PE; has demand but does not attempt to access
shared resources, or if PEi has no demand.

Thus, a PE is awarded one unit of utilization for a success and is
penalized a units for a collision; a sacrifice or being idle (having no
demand) results in no utilization.9 For the packet broadcast problem
examined by Yemini and others [KLEI78], [TOBA80] a penalty was not used
(i.e., x=0) since a packet whose transmission is interfered with is not
lost because a copy is always held for possible retransmission. It is
not the case that collisions are harmléss for distributed iterative
refinement, |

Consider a probabilistic access control schemen)where a utilization

policy, p = (pq, po, ..., Py), i3 a vector of probabilities, such that
for each time-slot PE; yill attempt to access shared resources with
probability p; if it has demand. Assuming that a PE attempts to access

all resources to which it has access when demand arises the mean

utilization of PE; when policy p is used, conditioned upon g& =dis

9. A single penalty for a collision with any number of PEs and no
penalty for a sacrifice is used here, but many other utilization
processes are possible,

10. Other control schemes may be used provided the probability a PE
will attempt utilization can be expressed as a function of the: policy;
another control scheme, the urn scheme, is described in Section 4.
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Je1;(a) jeI; (@)
ui(d.p) =

Lo if d;=0,
where I;(d) = {J | (J#i)~(dj=1)~(JeI(1)) 1,

and I(i) = {j | PEj potentially interferes with PEj }.

Clearly, PE;ts expected utilization given demand d and policy p is zero
if d;=0 (i.e., PE; has no demand). If d;=1, however, PE;'s expected
utilization is 1 times the ﬁrobability that it attempts and no PEs
interfere minus a times the probability that it attempts and some PE
interferes.

Assuming a particular distribution of demand (specified by T, the
expected utilization of PE; 4quring time-slot t with policy p is given by

the local utilization operator,

a‘;(m: Z nt@-a*;(g.p).
defo, 1N

To simplify notation, the time index, t, will be eliminated in
expressions where there is no confusion. The network utilization

operator can now be described by
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— 31 @ ]
52 (p)

ulp) = . .

;N' (p)

— —

Given a policy, p, the network utilization operator yields the expected
utilization of PEs.

4,2.,1.2 Pareto optimality and a necessary condition.

Pareto optimality, a concept of mathematical economics and game
theory [LUCES57] is an attractive choice of a decentralized optimality
eriterion because it is a.weak form of optimality that requires minimal
coordination of members of a decentralized community. At a
Pareto-optimum it is impossible to increase the utilization of any PE by
changing PEs' policies without decreasing the utilization of some other
PE(s); thus, PEs are not selfish. A Pareto-optimal policy yields a
Pareto-optimal utilization.

The following derivation of the necessary conditions for Pareto
optimality is based on a similar derivation by Yemini [YEMIT9].
Formally, a utilization vector, u*, is Pareto-optimal if and only if

1) it is attainable, i.e., u* = U(p*) for feasible policy p*, and

2) it is not dominated by another attainable utilization vector
(i.e., "3u' 1 Vi “i.Z ut, with at least one strict inequality).
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The concept of Pareto optimality has a simple geometric
interpretation. To see this, consider the case of two PEs that both
have demand for a single, shared resource, If the penalty for a

collision is one (i.e., &=1), the utilization operator is

;1 (2) p1(1-p2) - p1p2

up =

Uy(p) = pp(1-Py) - P2py

and Figure 3 shows how the space of feasible policies is mapped onto
attainable utilizations.

In this example, feasible policies are probability vectors for
deciding whether to access shared resources when there is demand, so all
components must .lie between 0.0 and 1.0, inclusive. Each feasible
policy vector has a corresponding utilization vector determined by the
network wutilization operator;\ these utilizations constitute ‘the
~attainable utilizatioms. Pareto-optimal utilizations are all
utilizations on the upper-right boundary of the region of attainable
utilizations because such utilizations are not dominated by any other
attainable utilizations (i.e., there is no other utilization that gives
more to one PE without taking utilization away from another PE).

The set of feasible policies includes internal policies and extreme
policies. A policy, p', is an extreme policy if p}=0 or py=1 for some
i. The necessary condition for Pareto optimality to be derived
characterizes internal Pareto-optimal policies and does not necessarily

hold for extreme policies. This is so because the extremality of U(p')



internal Pareto-optimal pelicies
extreme Pareto-optimal policies

The utilization operator, U, maps feasible policies onto
attainable utilizations. A feasible policy is a probability
vector, so each component is a real number in the range [0,1];
attainable utilizations are all the utilization vectors
associated with the feasible policies. Utilizations on the
upper right boundary of the region of attainable utilizations
are called Pareto-optimal policies, and the policies that map
into these utilizations are called Pareto-optimal policies.

Figure 3: Utilization Operator.

49
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may be directly caused by the extremality of p'. Extreme Pareto-optimal

policies must be found by other means.

Consider an internal Pareto-optimal policy, p*, and let u*=U(p*)
be the resulting Pareto-optimal utilization. Provided U(p) is
continuous, a small perturbation of p* leads to a small perturbation of
g’. The utilization of these perturbed policies are related to u* by

the following linear approximation:

U(p* + gp) = u* U (p)
R Ty P
oU(p)
where 2P |p=p* is the Jacobian matrix of U(p) at p*.

Because p* is an internal point of the set of feasible policies, it
admits perturbations in all directions. The extremality of u* implies
that the attainable perturbations of u* must not admit perturbations in
all directions. This condition occurs if the Jacobian matrix at p* is
singular, because (according to the linear approximation) when this is
the case there is no perturbation of p* that perturbs u* in the
direction perpendicular to the boundary surface of attainable
utilizations. Note that this condition is necessary but not sufficient
for determining these extrema.

The singularity of the Jacobian at p* implies that there is a
non-zero linear combination of rows of the Jacobian at p* which yields a
zero vector, If ¢ = (01, Coy eees cN) are the non-zero coefficients of

such a linear combination, the necessary condition for Pareto optimality
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of an internal policy can be stated as

Yi Z c M =0
TN D

4.,2.1.3 The balance principle.

For the utilization operator defined in Section 4.2.1.1, the

elements of the Jacobian at p are

_ 41 (p) if 1=
dui(p) =
0 P; (LR if 1z,

Y m@ duyd.p)

where ¢;(p)
de{o, 11N o Py

Z m(d) aa;@.oP) .
def0, 11N 0 P;

¢1j(;p

(
11 (1-p,) - «(1- ﬂ (1-p))  if dy=1

keI (q) keI(d)

- 4
du;(d,p) _ n
3 Py

0 if dj_:O,
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,
ﬁ keI;(d)~k#] kel;(d)~k#J
ou,(d,p) .
bpj
0 otherwise.
\

Obviously these expressions are the marginal expected utilizations for
PE; given an incremental change in p; or pj; but, these expressions also
have another meaning. To see the alternative interpretations for ¢i(2)
and ¢ij(2) it is necessary to look at the expressions by themselves
(i.e., not as derivatives).

If PE; has demand, §;(p) is the probability that no PEs with demand
that may interfere with PE; attempt to access shared resources minus a
times the probability that some PE with demand that may interfere with
PE; does attempt (and hence collides with PEj). If PEj does not have
demand, ¢;(p) is 0. Thus, ¢;(p) can be interpreted as PE;'s expected
utilization with policy p given that it attempts to access shared
resourées if it has demand. Note that if «=0, ¢i(2) may alternatively
be interpreted (as Yemini did) as the probability that shared resources
to which PE; has access will not be utilized given that PE; does not

attempt to access them if it has demand.

To interpret ¢ij(2), note that

-Xi5(p) + Z43(p) if jeI(i)

¥;5(p) =
0 otherwise,
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1]

defo, 11N

X §(p)

where Zij (2) : 'ﬂ'(_(!) ‘ Eij (ng) ’

de{o, 1N
Py TT (1-py) -apy(1- ] (1-py)) 1f dy=dy=1
JeL, () ~k#d JeI;(d)~k#d
xy4(d.p) = Py n (1-p1;) -apy(1- ﬁ (1-py)) if dj=1+d3=0
keI, (d) keI, (d)
- 0 if di:o.

chi(g)afd,j Jely(d)~k#d
zij(g'ﬁ) = pi ]—[ (1-pk) -api(1— T-I- (1-Pk)) if d1=1“d =0
J
keI, (d) keI, (d)
0 if dy=0,

through the addition of some dummy terms. For jeI(i), xij(g) can be

interpreted as PEy's expected utilization with policy p given PEj does

not attempt to access shared resources if it has demand. And, for
JeI(1), Z;4(p) can be interpreted as PE;'s expected utilization with
policy p given PE; does. attempt to access shared resources if it has

demand. Note that ;ij(dvﬂ) = -apj after a little algebraic manipulation

for di=dj=1 as it should since PE; attempts to access shared resources
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with probability p; and will suffer a collision for sure if it attempts
(because it is given that PE; yill attempt to access shared resources
and PEj interferes with PEy).

The Jacobian of the utilization operator at p can now be stated as

T 0@ U Uq3(R) ... Wiy
Uo1(p  da(p "23(2)... Fon(p)

QUM | U3y Uga(p)  d3(p)... Usy(p

Iyi(p “NZ(B) ¢N.3(B) eee Oy _

And, the necessary condition for Pareto optimality of an internal policy
(that there exist a non-zero linear combination of rows of the Jacobian

at p that yields a zero vector) can be stated as

3c | e¢(0,0,...0) ~Yi=1,2,...,N

For convenience, a PE which may interfere with PEi will be called a

neighbor of PE;, and a PE and its neighbors form a neighborhood.

Noticing that ¢ can be interpreted as a vector of pay-off coefficients

similar to a vector of Lagrangian multipliers, and discounting the case

where PE; has no demand (since then §;(p)=0 and Zj;i(p)=Xjj(p)), the

following interpretation, the balance principle, is possible:
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At a Pareto-optimal policy there exists a non-zero vector

of payoff coefficients such that for each PE, expected

neighborhood utilization payoff given the PE has demand and

attempts to access shared resources equals expected

neighborhood utilization payoff given the PE has demand but

does not attempt to access shared resources.

This balance principle differs from Yemini's which, for each PE,
equates expected silence (empty slots) given the PE has demand with
expected utilization by the PE's neighbors given the PE has demand. In

the next section the balance principle developed above is shown to hold

for a wide range of utilization operators which may include a penalty
for collisions and/or sacrifices. Yemini's balance principle is less
general as it does not hold for such a wide range of utilization

operators.

4.2,1.4 Proof of generality.

It will now be shown that the general balance principle developed

in the previous section applies for a broad range of utilization
operators. Let E[ﬁjipfattempt(i)] be PE;j's expected utilization with
policy p given that PE; attempts to access shared resources. Similarly,
let E[d,iprsacrifice(i)] and Elujipridle(i)] be PEj's expected
utilization with policy p given that PEi has demand but does not attempt

to access shared resources and PEi has no demand, respectively.
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The local utilization operator for some PE. can now be written as

J

uyp = Z m(d)-uy(d,p),
de{o, 1N
piE[ajigfattempt(i)] + (1-pi)E[ﬁjlgfsacrifice(i)] if dy=1

E[l{ipridle(1)] if dy=0.

And,  providing E[ﬁjggfattempt(i)], E[ﬁj{gfsacrifice(i)]. and

E[ﬁjlgfidle(i)] are independent of p; for all j (including j=i)

duyp) - z m(g) due.D)
d Py de{0, 1} dPy
where

_ E[ﬁjigpattempt(i)] - E[ijgfsacrifice(i)] if dy=1
auj(g'.g) =
opy 0 if dy=0.

Using the necessary conditions for pareto optimality and discounting the

case where d;=0 (since 0=0), the general balance principle results:

3ec | Vi=1,2,...N

¢iE[u,ip~attempt(i)] + : ch[Gjip_nattempt(i)] =
jeI(i)

¢;E[U, |prsacrifice(i)] + .E::_ ¢jEfujiprsacrifice(i)].
JeI(i)
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This balance principle is valid for a wide range of utilization
processes and operators; however, for some applications a special case
of the balance principle is appropriate. This case arises when a PE's
utilization of one shared resougce‘is not dependent on the PE gaining
exclusive access to other shared resources. When this condition holds,
a PE's neighbors' utilization of resources not shared with the PE is

independent of the PE's actions, and neighbors' conditional expected

utilization payoff of resources shared with the PE may be used in place
of neighbors' conditional expected utilization payoff of all shared

resources,

4,2,1.5 Direct use of the balance principle.

A direct way of using the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>