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It is an old maxim of mine that when you
have excluded the impossible, whatever
remains, however improbably, must be the
truth.

—Sir Arthur Conan Doyle

If a man will begin with certainties he
will end with doubt, but if he will be '
content to begin with doubts he shall
end in certainties.

- Francis Bacon

Not ignorance, but ignorance of ignorance,
is the death of knowledge.

—Alfred North Whitehead
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ABSTRACT

Dependency-Graph Models
of Evidential Support

September 1982
John Douglas Lowrance
A.B., Indiana University
M.S., University of Massachusetts
Ph.D., University of Massachusetts

Directed by: Professor Edward M. Riseman

Dependency-graph models of evidential support are formal systems
capable of pooling and extending evidential 1nformation while main-
taining internal consistency. In this formalism, the 1ikelihood of a
Proposition is represented as a subinterval of the un1t interval. The
lower bound represents the degree of "support" prov1ded a proposition
by a body of evidence, and the upper bound represents the extent to
which it remains "plausible." The smaller this 1nterva1 the more pre-
cisely the probability of that proposition is known.

Evidential 1pformat1on, extracted from the environment by (indi-
visible) sources of knowledge, enters these models in the form of prob-
ability "mass" distributions, defined over sets of propositions common
to both them and the model. These mass distributions are combined
through Dempster's rule of combination [Dempster 1967]. The result is
a4 new mass distribution representing their consensus. Next, this pooled
information is extended from those propositions it directly bears upon,

to those it indirectly bears upon, and converted to the interval repre-

vii




sentation. Prior probabilities, frequently difficult or impossible to
collect in artificial intelligence domains, but required by most other
systems of inexact reasoning, are not needed. This form of evidential
reasoning, based on [Shafer 1976], is more general than either a Boolean
or Bayesian approach, providing for Boolean and Bayesian inferencing
when the appropriate information is available.

Dependency graphs are formal representations of dependency rela-
tions. A dependency graph consists of a set of propositions (nodes),
a covering assignment of confidences (node values), and a coordinated
set of dependency relationships (connecting arcs) constraining the as-
signment of confidences. Confidences can be fully specified (a single
value), partially specified (several values), or unspecified (all val-
ues). Similarly, a dependency graph can describe any degree of depen-
dence/independence among its propositions. This freedom to express par-
tial information makes dependency graphs suitable for modeling the de-
grees of belief one should accord a group of related propositions based

on evidential information, a suitable host for Shafer's theory. $
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CHAPTER 1
INTRODUCTION

The ability to extend a given body of information through inference
is an important aspect of any intelligent system. This ability is based
on an understanding of the dependencies within an enviroﬁment of inter-
est. Dependence implies predictability. If propositions are mutually
dependent and the nature of that dependence is understood, then informa-
tion concerning the truthfulness of some of these propositions can be
translated into information about the truthfulness of,seme-of the others.

An important type of inference involves the determination of the
truthfulness of propositions. This type of inference is well under-
stood when the truthfulness of the propositions can be expressed as cer-
tainties. However, intelligent systems often need to reason from uncer-
tain and incomplete information. This fef]ects the evidential nature
of their domains of application. Propositions may not be known to be
true or false, but may only be attributed degrees of ‘support based on
bodies of evidence extracted from the environment of lnterest. Indeed,
if the bodies of evidence are 1nconclusive. the exact degrees of sup-
port may not even be known, but only some bounding conditions on them.
The propositional and predicate calculi are not sufficient in these
evidential domains requiring inexact reasoning from incomplete informa-
tion. ,

- Initially, the need for inexact reasoning led to the abandonment

of formally founded systems and a move towards informal systems based




on ad hoc scoring functions. These models frequently consisted of a
delicately "balanced" system of weights, arrived at through a "tuning"
process of repeated adjustments. Typically, the complexity of these
models thwarted all attempts to analytically understand or improve
their performance. The levels of performance attained are a credit to
the perseverance of their designers, though the reliability of these
systems remains an article of faith.

More recently, systems have been developed based on formal logics
of inexact reasoning in the hopes of improving their understandability.
Though these systems are formally based, they still employ intuitively
motivated techniques. This is necessary since the logics and the do-
mains of application are not fully compatible. The introduction of
these techniques has some undesirable effects. If inferencing were al-
Jowed to proceed in an unconstrained manner, inconsistent predictions
might be made. That is, several incompatible predictions about the
truthfulness of a single proposition might be simultaneously generated.
To prevent this from occurring, constraints are placed on the inferenc-
"'ing, maintaining consistency at a cost of reduced flexibility.”

Inference can be formalized in terms of a set of propositions, a
covering assignment of confidences, and a set of dependency relation-
ships that constrains the assignment of confidences. The assigned con-
fidences reflect the perceived truthfulness of the propositions. The
dépendency relationships describe how the truthfulness of the proposi-
tions are interrelated. Inferential reasoning extends partial cover-

ings towards full coverings that are consistent with the dependency re-
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lationships.

These dependency relationships collectively form a dependency re-
lation. If they are mutually consistent, they form a simultaneously
satisfiable set of constraints over the confidences of the propositions.
However, if they are not properly coordinated, they simultaneously de-
scribe some dependency relationships in several incompatable ways, re-
sulting in an unsatisfiable set of constraints. Predictions, based on
such an inconsistent dependency relation, are 1ikewisé inconsistent.
This is the major problem with most of the previously devé]oped systems
for inexact reasoning. They are not internally consistent.

This thesis provides an internally consistent system capable of
reasoning from evidential information. The inferentiél constraints that
compensate for the lack of consistency in other systems are not needed,
thereby increasing inferential flexibility. This system is based on a
formal logic of inexact reasoning better suited to evidential domains
than those logics previously employed. The result is a system that is
both intuitively and analytically more understandable.

Our approach was to develop a -general theory.of.propositionaJ de-
pendence and then to specialize this to a theory offévidential depen-
dence. This began with the formalization of the notion of a dependency
relation and its graphical representation. Propositions are represent-
ed as nodes, dependency relationships as arcs, and assigned confidences

35 values of the nodes.' Graphical representations}have been used before
and have proven well-suited to mechanized inferential reasoning. Con-

fidence information is translated from proposition to proposition, pre-




dicting proposition confidences based on the confidences of neighboring
propositions, with the graphical structure providing the appropriate
indexing.

Unlike previously developed graphical representations of dependency

information, dependency graphs have an associated set of consistency,

conditions that must be satisfied. These preserve the fundamental pro-
perties of dependence, guaranteeing that no dependency relationships
are redundantly described in incompatible ways. This assures the in-

tegrity of the predictions based on these relationships.

A dependency-graph model, consisting of a dependency graph and an
accompanying inference engine, makes predictions about the environment
it models. The dependency graph describes how a set of propositions
depend on one another and reflects the oerceived dependencies in the
environment. The inference engine makes predictions based on theseiper-
ceived dependencies, taking incomplete information aboui the confidences

of the propositions from some source of knowledge over the environment,

and extgnding it through inferential reasoning. If the dependency |

‘graoh'aod thé_{nifiai confidence ihformation acourately reflect the

environment, so will the predictions. The internal consistency of a
model is guaranteed if the dependency graph consistency conditions'are

satisfied. Therefore, inaccuracies must be attributed to external, not

internal, inconsisiencies. The theory of dependency-graph models makes

no statement about how to achieve external consistency for any particu-
lar class of environmental situations.

A body of information might not provide the exact confidence of a




proposition, but only provide some partial information concerning it;
that is, only provide some set of confidences that the true confidence
must be within. Similarly, dependence is not always complete; it too
can be partial. Knowing the exact confidence of one of two partially
dependent propositions may translate into a set of possible confidences
for the other. In either case, dependency graphs represent such partial
information by assigning to propositions sets of confidence values in-
stead cf single confidence values. This freedom to express partial in-
formation within dependency graphs is critical to~thgir application as
models of evidential support. Partial information is the rule, not the
exception, in evidential domains. Without it, varying degrees of igno-
rance cannot be properly represented or reasoned about.

Though the theory of dependency-graph models makes no statement
about how to achieve external consistency for any particular class of
environmental situations, a mathematical theory of evidence by Glenn
Shafer provides just the formal foundation necessary to éonstruct de-

pendency-graph models of evidential support. The freedom to express

partial information within dependency-graph models makes them a suitable
host for Shafer's theory. The adoption of Shafer's theory leads to the
adoption of a subset of dependency-graph models as appropriate models
of evidential support.

A dependency-graph model of evidential support takes a single body
of evidential information (at a time) and extends ft through inferen-
tial reasoning, translating that information from the propositions the

evidence directly bears upon, to those propositions the evidence indi-




rectly bears upon. When knowledge sources are errorful - the typical
situation in artificial intelligence applications - it is imperative
that the distinct bodies of evidential information they produce be com-
bined to compensate for their individual failings. Dempster's rulé of
combination, an integral part of Shafer's theory, does exactly that: it
pools distinct bodies of evidential information. With its addition,
the results of multiple knowledge source applications can be combined
and the appropriate logical conclusions drawn.

Figure 1 illustrates the basic architecture of a dependency-graph
model of evidential support. The heart of the system is the dependency
graph. It describes how the truthfulness of a number of propositions
are interrelated relative to the environment of interest. It is based
strictly upon information delimiting the possibilities in the environ-
ment, making it far easier to construct and verify than those models
requiring probabi]istic estimates. Each knowledge source, after having
examined the environment, relates its findings to the model through a
“mass distributjon.“ These mass distributiops each partition a oojt of
be]ief omong.ovéubsef of the propositions in the_dependeocy gfooh,.mass
being attributed to those propositions for which there 1s.direct sup-
porting evidence. To compensate for the individual errors of the knowl-
edge sources, their findings are pooled, according to Dempster's rule
of combination and the information in the dependéncy graph, resulting
in a new mass distribution that represents the consensus of their in-
dividual opinions. Based upon this mass distribution and the depen-

dency graph, the inference engine derives an "evidential interval" for
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each proposition in the graph. These intervals are subintervals of
[0,1]. The lower bound of an evidential interval represents the total
weight of supporting evidence for a proposition, the upper bound repre-
sents the extent to which that proposition remains plausible, and the
width represents the degree to which that proposition's likelihood re-
mains unknown. So long as the knowledge sources do not completely con-
tradict one another, this procedure is guaranteed to produce a covering
of evidential intervals, that is consistent with Shafer's theory and in-
variant with respect to the order of the inferential steps.

This thesis is both a description of a general representation of
dependency information and its use as a basis for inferential reasoning,
as well as a description of a specific representation of evidehtial sup-
port and its use as a basis for evidential reasoning (Figure 2).

The remainder of this report begins with a more detailed discussion
of the previous approaches taken to the mechanization of inexact reason-
ing. This is followed by definitions of dependency relations and their
representation as dependency graphs. A taxonomy for classifying depen-
dency relations and dependency graphs according‘to the specificity and
order of the dependency relationships contained within them allows
there to be an incremental introduction. They vary from those restrict-
ed to total, binary relationships, to those that are unconstrained.
This leads into a discussion of inferential reasoning over dependency
graphs, including the introduction of a distinct type of inference en-
gine for each class of dependency graph. Dependency-graph models are

similarly classified and discussed. The next chapter reviews Shafer's
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mathematical theory of evidence, and describes how it can be used as a
guide to the construction of dependency-graph models of evidential aup-
port. This chapter concludes with an example application, highlighting
the strengths of this form of inexact reasoning. Finally, sbme summary
comments and suggestions for further investigation round out this dis-

cussion.



no substitute for formal understanding.

CHAPTER 1II
RELATED WORK

When artificially intelligent systems were applied to real-world
situations, and not just those found in idealized theoretical worlds,
Boolean logics were no lTonger sufficient. Truth and falsity needed to
be replaced by degrees of belief; precision, by degreéé of ignorance.
Inferential reasoning could no longer be based on the propositional and
predicate calculi. -

Initially, ad hoc techniques replaced formal 1ogics as the bases
of these systems. With the abandonment of formality came an accompany-
ing lack of understandipg, making system performancg'difficult to pre-
dict or improve. Experimental testing and tuning replaced analysis and
correction. But the simultaneous correction of both'internal and ex-
ternal inconsistencies, performed through repeated adjustments, proved
difficult. Even when this tuning process seemed toihave produced a
“balanced” system, some simple additions or modifications might com-
plete]y disrupt its performance. Trial-and-errqg“tggjgg;proved tp be

Frustration led designers back to formality. Statistical decision
theory seemed particularly attractive, especially in the form of Bayes'
rule of conditioning. Indeed, several early Programs, based on Bayes'
rule, successfully modeled the medical diagnostic process [Gorry 1968,
1973; Warner 1964]. This Success was largely due to the vast amounts

of data available pertaining to their respective diagnostic domains,

1
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thus allowing the required probabilistic measures to be accurately
estimated. Unfortunately, this kind of data is not generally available
in many other domains of interest.

A Bayesian approach in domains where the appropriate data is not
available necessitates the use of numerous approximations and assump-
tions. Subjective probabilities, provided by an "expert," replace sta-
tistically estimated probabilities. Inconsistencies in these estimates
and oversimplifying assumptions can render this entire approach worth-
less, realizing none of the benefits that originally justified its use.

Historically, the inadequacies of Bayesian probability in the anal-
ysis of real-world problems has led to a variety of alternative formal
approaches.. These include the thgory of "fuzzy sets" [Zadeh 1965;
Goguen 1968], the theory of “"choice" [Tversky,1972; Luce 1965], the
logic of “surprise" [Shackle 1952, 1955], the theory of "confirmation"
[Carnap 1950; Hempel 1945], the theory of "upper and lower probabili-
ties" [Dempster 1967, 1968], and the theory of “evidence" [Shafer 1973,

_1975, 1976]. Each of these provides an a1ternative basis for mechan-
ized inferential reasoning, several having already served in this capa-
city.

MYCIN [Shortliffe 1974, 1976; Shortliffe and Buchanan 1975], one
of the most successful and influential systems, is based on an alterna-
tive theory, the theory of confirmation. The approach was to develop
a system that reflects the observations of philosophers who have dealt
with the theory of confirmation, but not to be completely constrained

by their results. Whenever this theory proved inadequate, intuitively
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motivated techniques were added. MYCIN's knowledge-base consists of a
set of rules, each consisting of one or more stimulus proopsitions, a
response proposition, and a "certainty factor" that quantifies the de-
gree to which belief in the stimulus propositions confirms the response
proposition. This knowledge-base is provided by an expert, with the
certainty factors playing the same role as the estimated conditional
probabilities in a Bayeéian approach. A certainty facfor conibines two
distinct measures from the theory of confirmation, measures of "Belief"
and "Disl:»eh'e’f‘,".l into a single number. The claim is that thiS'dﬁmber
more closely corresponds to the number an expert giVés when asked to
quantify the strength of a judgmental rule. The inference ru]e-utflized
was conceived purely on iﬁtuitive grounds, but satisfies some theokéti-
cally motivated criteria [T6rnebohm 1966]. Though this System is hot
formally sound, it was carefully constfucted with an eye towards formal
concerns, making it analytically more understandabie. The justifica-
tion for their approach did rot rest with "a claim of improving on
Bayes' Theorem, but rather with the development of a mechanism whereby
jﬁdgmenta] knowledge can be efficienf]y repr.‘eseﬁtéd ‘v'a:nd utilized for
the modeling of medical decision making, espec1a11j'ih contexts where
(a) statistical data are lacking, (b) inverse probabilities are not

known, and (c) conditional independence can be assumed in most cases."2

]Theée terms are used by Shortliffe in explanation of the theory

of confirmation. They are not part of the standard terminology of the
theory.

ZShort1iffe 1976, p. 185.
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MYCIN's success in diagnosing bacterial infections, despite a lack
of statistical data, suggested that similar techniques might be advan-
tageously employed in other domains with a shortage of statistical data.
MYCIN's use of production rules to represent judgmental knowledge and
its inclusion of formally based mechanisms for handling uncertainty were
the dominant influences in the design of PROSPECTOR [Duda, Hart, Nil-
sson, and Sutherland 1977], a geological consultant system intended to
help geologists in evaluating the mineral potential of exploration
sites. However, PROSPECTOR is not based on the theory of confirmation,
but on a subjective Bayesian technique that retains, insofar as possi-
ble, the well-understood methods of Bayesian probability theory, intro-
ducing only those modifications needed to compensate for the subjectiv-
ity of the probabilities. Subjective probabilities are interpreted as
measuring degrees of belief rather than long-run relative frequencies
of occurrence [Fine 1973].

PROSPECTOR reformulated the problem of rule-based inexact reason-
ing in terms of a directed graph. The utility of graphical representa-
tions for mechanized inferential reasoning had been previously demon-
strated [Erman and Lesser 1975; Trigoboff 1976]. Judgmental rules
typically are not independent, but can be linked together to form what
they term an "inference network."” A link explicitly occurs when the
response proposition of one rule is a stimulus proposition of another.
In this representation, propositions are represented as nodes, judgmen-
tal rules as directed arcs between nodes, probabilities associated with

the nodes indicate degrees of belief in those propositions, and condi-
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tional probabilities associated with the arcs indicate the strength of
those ru]es.3 Inferencing is defined in terms of propagating proba-
bilities from node to node, according to the information along the arcs.
PROSPECTOR used approximations to overcome many of the problems
of dealing with subjective probabilities. Some of these approximations
include: the use of a piecewise linear interpolation formula to correct
for inconsistent probabilities (i.e., probabilities that do not conform
with Bayes' rule); the assumption that evidence comSines either inde-
pendently or as a logical function (i.e., conJunctlon d1saunct1on, or
negat1on), an interpolation formula to account for the combination of
uncertain independent evidence; the use of simple fbrmulas from fuzzy
set theory to combine dependent evidence. These approx1mat1ons led to
a computat1°na11y simple method for updating probab111t1es that has
proven very successful [Duda, Hart, Nilsson 1976]. |
PROSPECTOR's,formu]ation offers several advantages over that of
MYCIN. Since Bayesian probability theory is the most widely known,
PROSPECTOR's formulation often creates fewer conceptual barriers.
PROSPECTOR's graph1ca1 representation tends to ease the v1sua11zation
of the knowledge-base, and thereby of the 1nferénéev;;6¢ess Unlike
MYCIN, PROSPECTOR can utilize a rule regardless of the level of Support

that exists for its stimulus propositions. MYCIN can only use a rule

The actual values associated with the arcs are quotients of con-
ditional probabilities and are better suited to directed inferencing
in their formulation.
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once its stimulus propositions have attained a level of support above
a preset, empirically selected threshold. Thus, PROSPECTOR makes more
complete use of the available information than does MYCIN.

Although both MYCIN and PROSPECTOR represent giant steps towards
a well-founded theory of mechanized inexact reasoning, they share some
common problems. A number of these problems center around their in-
herent lack of internal consistency. This is not the Bayesian type of
inconsistency previously alluded too, but a functional inconsistency.
Chains of inferences across several rules, beginning and ending with the
same proposition, form "loops.” Inferences around these Toops cannot
be handled in a reasonable manner. If such a loop were permitted to
occur, the probability on which all of the inferences are based, that
is the probability of the initial proposition, would 1ikely be refuted
upon completion of the loop. Both MYCIN and PROSPECTOR are forced to
eliminate the possibility of these loops at a cost of'reduced flexi-
bility. |

A closer lgok at PROSPECTOR will better illustrate this problem.
Imagine two propoéiiions A and B. Bayes' rule describes how their mar-
ginal probabilities P(A) and P(B) are related to their conditional pro-
babilities P(A|B), P(A|B), P(B|A), and P(B|A). If B is known to be
true, then P(A|B) is the probability of A; if B is false, then its P(A|B);
P(B|A) is the probability of B given A; and P(B|A) is the probability |
of B given A. But what if the best estimate of the truthfulness of A

is Pt(A)? What is the corresponding probability of B, Pt(B)?
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PROSPECTOR uses the following equations, derivable from Bayes'
rule, as a basis for Tinearly relating Pt(A) and Pt(B):
P(A) = P(A|B)P(B) + P(A[B)P(B), (2.1)
P(B) = P(B|A)P(A) + P(B|A)P(R). (2.2)
Pt(A) and Pt(B) are substituted for P(A) and P(B) in equation (2.1),
producing the following mapping from Pt(B) to Pt(A):
Pt(A) := P(AlB)Pt(B) + P(A|B)[1 - Pt(B)]. : (2.3)

If the same substitutions are made in (2.2), an analogous mapping from

Pt(A) to P.(B) is derived:

P.(B) := P(B[A)P,(A) + P(B|A)[1 - P.(A)]. N (2.4)

The problem becomes apparent if these are considered as the mappings

relating propositions A and B by two distinct rules, one with A as the
stimulus and B as the response, the other with B as the stimulus and A

as the response.
These mappings are not mutual inverses. . In general, their only -

point of agreement about the relationship between Pt(A) and Pt(B) is

at the marginals (Figure 3). If unconstrained inferencing were allowed

in spite of this symmetric inconsistency, feedbackvbétween A and B

would eventually drive Pt(A) and Pt(B) to the marginals (Figure 4).
In actuality, PROSPECTOR uses more complicated mappings (ones that

are piecewise linear, broken at the marginals) to correct for Bayesian

inconsistencies within the subjectively specified marginal and condi-




P(B|A)
B P(B)
P(B|R)
ey : , —
P(A|B) P(A) P(A|B)
A

Py(B) = my [Py ()] = P(BIAIP,(A) + P(BIANCY - P, (M)

P.(A) := mg ,[P,(B)] = P(A|B)P(B) + P(A|B)[1 - P.(B)]

Figure 3. Inconsistent Bayesiaﬁ based mappings
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tional probabilities. But, the characterization of the problem remains
the same. The root cause is that Bayes' rule is a statement about the
relationship between marginal and conditional probabilities, and cannot
be parameterfzed to make predictions based on partial beliefs.

Both MYCIN and PROSPECTOR partially correct for these problems by
severely constraining their inferencing process. Inferences are re-
stricted to a single, predetermined direction along each arc within the
graph. And still, care must be taken that no sequence of inferential
steps forms a loop. The inconsistent feedback problem is eliminated,
but at a high cost in terms of flexibility since no single set of di-
rected inferential steps can be the most informative in all cases.

Recently, modifications have been proposed for both MYCIN and
PROSPECTOR that would allow inferential reasoning in both directions
along each arc [Friedman 1980; Konolige 1979]. Propositions would no
longer be predetermined to always serve as the stimulus or response of
a given rule, but could be dynamically selected to play either role.
However, loops stj]] must be prevented; rules can only be used in a
single directibn ét a time. The inconsistent feedback problem remains.

A mathematical theory of evidence and an aécompanying theory of
probable reasoning by Glenn Shafer [Shafer 1973, 1975, 1976] provides
an alternative foundation for the construction of mechanized systems
of inexact reasoning. Shafer's work is an extension of Arthur Demp-
ster's work on partial beliefs [Dempster 1967, 1968]. Shafer's theory
departs from the more traditional Bayesian theory [Bayes 1763], avoid-

ing several of its documented difficulties [Shafer 1976, Boole 1854,
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Fisher 1956]: of particular significance, its inability to represent
ignorance and its insistence that new evidence be expressible as a cer-
tainty.

Shafer's theory is fundamentally different from those theories
underlying MYCIN and PROSPECTOR. Unlike the theory of confirmation and
the Bayesian theory, Shafer's theory does not rely on prior probabili-
ties. It takes a conservative view. Inferences are made by eliminat-
ing the impossible, not by assuming the probable, much in the spirit of
“constraint-satisfaction” and “relaxation" [Waltz 1972; Rosenfeld,
Hummel, and Zucker 1976]. Sets of confidences are associated with pro-
positions. It is Presumed that the true confidence of each proposition
is an element of its associated set. Inferencing consists of reducing
these sets by eliminating those elements that aré iﬁconsistent with the
sets assigned to related propositions. However, Shafer's theory must
be viewed as a specialization of constraint-satisfaction and relaxation,
since it also prescribes what confidence assignments are consistent with
each propositional relationship in a way that guarantees inferential
stability. The reasoning is from information about'ﬁhe possibiiiiy of
Co-occurrence, not the probability. B '

This is not to say that Shafer's theory bears no resemblance to the
theory of confirmation or the Bayesian theory. In fact, Shafer's theory
can be viewed as a direct generalization of the Bayesian theory [Shafer
1976]. Thiﬁ generalization is in the direction of the theory of con-
firmation. Shafer rejects the idea that the support afforded a propo-

sition and its negation, based on a body of evidence, must sum to one.
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He, and the theory of confirmation, maintains that an adequate summary
of the impact of a body of evidence on a proposition must include the
degrees to which it supports and refutes that proposition. Their sum
is bounded by one, but is not constrained to equal one. This is the
key to the representation of ignorance. When there is little evidence
bearing on a proposition, frank agnosticism is expressed by according
both that proposition and its negation very low degrees of support.
Thus, unlike the Bayesian theory, Shafer's theory carefully avoids
equating the lack of belief in a proposition with disbelief in that
proposition.

We propose the adoption of Shafer's theory as a basis for mechan-
ized inexact reasoning. Shafer argues for its suitability in eviden-
tial domains where information is uncertain and incomplete [Shafer
1976]. This is not to say that this theory is without its critics
[Zadeh 1979]. However, its suitability is supported by the disappear-
ance of the inconsistent feedback problem without the introduction of

needless or inflexible constraints on the inferential process.
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CHAPTER III
DEPENDENCY RELATIONS AND THEIR GRAPHICAL REPRESENTATIONS

Dependence is the foundation of inferential reasoning. This chap-
ter is deyoted to the properties and representation of propositional

dependence.

Dependence/Independence

Two propositions are totally dependent on one another if the con-

fidence (i.e., truthfulness) of one exactly determines the confidence
of the other. If the confidence of one proposition leaves the confi-
dence of another proposition completely in doubt, they are said to be

totally independent. But dependence/independence need not be total.

In this case, predictions are not always exact, and it may only be pos

sible to predict a set of confidences within which the true confidence

must lie. Thus, dependence/independence ranges from total dependence,

to partial dependence/independence, to total independence.

Propos1t1ons that are mutually dependent whether it be partial]y

or tota]]y, const1tute a gkpendency relationship. These re]ationships

need not be binary. A proposition’s confidence may depend on the col-
lective confidences of a group of propositions, rather;than the confi-
dence of a singlerproposition. The number of propositions involved in
a dependency relationship is its order. A nroposition's dependence on
a group of propositions neither supports nor refutes that proposition's

dependence on a subset of those propositions.

23
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A coordinated collection of dependency relationships constitutes

a dependency relation. It describes how the confidences of a set of

propositions co-vary. Each n-ary dependency relationship has n associ-
ated predictive mappings. Each of these mappings predicts the confi-
dence of one proposition based on the confidences of the other proposi-
tions in that relationship. These mappings can be arbitrarily complex.
However, they cannot be arbitrarily assigned. They must be coordinated
within a dependency relation; otherwise they might simultaneously de-
scribe a single dependency relationship in several incompatible ways.
When such’incompatibilities exist, the dependency relation is said to

be inconsistent. A consistent set of dependency relationships forms a

simultaneoué]y satisfiable set of constraints over the proposition con-
fidences. The solution space of these constraints defines the space of

consistent coverings.

Dependency relations and their corresponding graphical representa-

tions, dependency graphs, are classified according to the order and

specificity of the relationships contained within them: by order,
ﬁﬁether or not all of the dependency re1afionshibs are binary, by spe-
cificity, whether or not all of the dependency relations are total.
Subscripts denote their order (*2" for binary and "+" for higher or-
ders) and superscripts denote their specificity ("1" for total and "+"
for partial). Four classifications result: for dependency relations,

D], D;, Dl, and D:; for dependency graphs, G;, G;, Gl, and G:.
At times, these classes are interpreted as being exclusive. A de-

pendency graph that represents only total dependency relationships with
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order no greater than two, necessarily falls in class G;. However,
these also can be interpreted hierarchically, based on their represen-
tational power. A G; dependency graph can be represented as a 62 or

G] dependency graph. In turn, Gz and G] dependency graphs can be repre-

sented as G dependency graphs. The reverse is not necessarily true.

G dependency graphs cannot, in general, be represented as 62 or G] de-

1
2

pendency graphs. This hierarchy is summarized (Figure 5). The discus-

pendency graphs and they cannot, in general, be represented as G. de-

sion that follows explains these classes in detail.
Dependency relations and dependency graphs are inérementa]]y in-
troduced in the remainder of this chapter, the simpler, more restric-

tive, providing the groundwork for the more general.
Binary Degendencz Relations and Their
Graphical Representations

22 dependency skeletons. Dependency skeletons are the frameworks of

dependency relations. They describe where dependency relationships ex-
ist, without describing the nature of those dependencies. If all of
the described dependency relationships are binary, the skeleton is
called a 02 dependency skeleton. Such a skeleton is defined as a binary
relation over a set of propositions P. However, not all binary rela-
tions over P can be legitimate descriptions of dependence. A D depen-‘
dency skeleton is an equivalence relation. That is, 1t must be reflex-
ive, symmetric, and transitive to reflect the nature of dependence:

every proposition is dependent on itself; if proposition P; is depen-
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Figure 5. Summary of dependency-graph taxonomy
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dent on pj’ then pj is dependent on Pys if P; depends on pj and pj on
Pr> P; depends on P This is captured by the following definition,

where P is a set of propositions and D is a set of binary dependency

relationships over P.

DEFINITION 1. D2 dependency skeletons.

A D, dependency skeleton is an ordered pair (P,D) where P

is d set of propositions and D is a set of two element sub-

sets of P subject to the constraint that

- if d'i’ d; €D and {p} = di n dj,

then ((dj v dj) - {p}) € D. O
D2 dependency skeletons can be straightforwardly represented as

undirected graphs with nodes representing porpositions and arcs between
nodes representing dependency relationships between propositions. Not
every dependency relationship need be represented by an arc in the
graph. Since D2 skeletons are transitive, all connected nodes repre-
sent pairwise dependent propositions. Arcs connecting nodes that al-
ready have a path between them are redundant and can be left out so
long as the transitive nature of connectivity is recognized. Similarly,

arcs connecting nodes to themselves, due to reflexivity, are excluded.

Thus, several distinct graphs may represent the same D2 dependency skel-

eton (Figure 6).

Dependence and independence are easily interpreted in terms of
this graphical representétion. Propositions are mutually dependent if
their associatied nodes are connected (i.e., there is a path between

them), otherwise they are independent. Each connected portion of the
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Figure 6. An example D dependency skeleton and some alternative
graphical representations.

(P D) = ({a b,C d’eo ag}’
{{a,b}, {a,c}, {a,d}, {b,c}» {b,d}, {c.d} {e,f}})

Equivalence classes of (P,D): {a,b,c,d}, {e,f} & {g}.
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graph delineates an equivalence class of the dependency skeleton.

22 dependency relations. D2 dependency skeletons and their graphs de-

# scribe where binary dependencies exist, but they do not describe the na-
R g; ture of those dependency relationships. Without this information, in-
ferences cannot be made. A D2 dependency relation is a D2 dependency
skeleton with this added information. Formally, a 02 dependency rela-
tion is an ordered triple (P,D,M). The first two elements constitute
a D2 dependency skeleton and the last element is a function that maps
binary relationships from D into sets of confidence pairs selected from
a range of confidences C. Each such pair represents a possible, simul-
taneous, confidence assignment to the propositions taking part in the
selected relationship. In other words, each such set tabularly de-
scribes how the confidences in the propositions are related.
Graphically, we take a directed, fragmented view of M. First, M
is divided into a set of functions, each of which is defined over ex-
actly one of the binary relationships in D and is identical to M over
that relationship. Then each of these functions are divided into two

directed mappings: if the original function is defined over the propo-

‘ sitions P; and pj, then one of the two mappings m, j maps confidences
o % associated with P; to compatible confidences for pj, and the other map-

ping m; . maps confidences associated with pj to compatible confidences

3, |
for Pie When these mappings are placed along the appropriate arcs of a

graph representing the D2 dependency skeleton of a 02 dependency rela-

tion, a 62 dependency graph for that relation is formed. Each arc has
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exactly two associated mappings relating the propositions it connects,
one for each direction (Figure 7).

These added mappings describe the dependency relationships in a
directed form well-suited to mechanized inferencing. One can imagine
propagating confidences'from node to node, along thé arcs, according to
these mappings, and thus inferring unknown confidepcés from known con-
fidences. N

0f course, M cannot be arbitrarily selected to form a 02 dependency
relation. If it were not well-formed, it might simultaneously describe
a single dependency relationship in several incompatible ways, and this
could lead to incompatible inferences. To ensure;that D2 dependency
relations are consistent, their definition includes three consistency
conditions: the first guarantees that the dependency relation is sym-
metrically consistent, the second guarantees that it is transitively
consistent, and the third guarantees that no confidence assignment is

unilaterally excluded.
DEFINITION 2. D2 dependency relations.

A D2 dependency relation is an ordered triple (P,D,M), )
where (P,D) is a D2 dependency skeleton and M is a function
from ordered elements of D into ordered pairs from the coné
fidence range C (i.e., for each {pysPy} € D, M[(p],pz)] c C¢),
subject to the constraints:

1. for every {p7,p2} ¢ D, ,

(C13C2) € M[(p]apz)]**'(czsc]) € M[(p29p1)];

2. if {pysPols {PysP3}s {py5P3} € D,
(C]scz) € M[(p]spz)]a and (52’33) € M[(P29P3)],




Figure 7. An example 1‘52 dependency graph.
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then (c],c3) € M[(p],p3)];

3. for every {p7,p»} ¢ D and every c¢; e C, there exists
c2 € C such lha%

(C] ’CZ) € M[(p] spz)]- a

These consistency conditions for D2 dependency relations can be
related to their graphical representations. Symmetric consistency (1)
guarantees that the two mappings placed along any single arc describe
exactly the same correspondence, while transitive tonsistency (2) guar-
antees that all composite mappings implied by any sequence of arcs con-
necting the same two nodes are compatible. The finaj“condition (3)
simply states that every confidence represents a pdténtial assignment

for every node.

Q; dependency relations. If a D2 dependency relapion has only total de-

pendency relationships, then it is called a D; dependency relation. The
superscript signifies that given any of these dependency relationships

and a confidence assignment for one of its propositions, there is exact-

ly one corresponding confidence value that can- be assigned the other

R

proposition. In other words, M'is functidnal.
DEFINITION 3. D; dependency relations.

A D} dependency relation (P,D,M) is a D2 dependency relation
with the additional constraint that M is functional. In
other words,

- for every {p1,p2} € D, ¢y ¢ C, Imy,20c1]] =1,

where m >[c1] = {cp|(cqscy) e M[(py>P,y)11. O
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This means that the mappings placed along the arcs of a G; depen-
dency graph are one-to-one; any two mappings along a single arc are mu-
tual inverses; and the ordered combination of mappings around any cir-
cuit (a sequence of arcs along a path which begin and end at the same
node) results in the identity mapping.

Clearly, a well-informed D; dependency relation describes a simul-
taneously satisfiable set of constraints over the confidences of a set
of propositions. An assignment of confidences to propositions that
satisfies these constraints is the object of the inferential process.

Such an assignment is described by a C'l covering.
DEFINITION 4. .01 coverings for D2 dependency relations.

A C] covering for a Dy dependency relation (P,D,M) is a func-
tion from P into a range of confidences C, C!:P + C, subject
to the constraint that ‘

- for every {p;,pp} € D,
(c'fp;1, C1Ip,d) € M(pyspp)]- O

Graphically, a C1 covering sets the value of each node to its as-
signed confidence. The covering is consistent.ff all of the mappings
along the arcs are satisfied. If any mapping is unsatisfied, the cov-
ering is inconsistent. In the case of a G; dependency graph, a mapping
LA from the confidence c, of a proposition P; to the~confideqce cj of
a proposition pj js satisfied if the image of ¥ under mi,j is cj (Fig-
ure 8).

Some example G; dependency graphs will help to illustrate. The
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m'i,j[ci] = cj Al {(C.i 9Cj)} = M[(p1 ’pj)]’ .

= 1 = 1 CEna
where c, = C [pi] and ¢ c [pj]. (ol

~

Figure 8. An example ¢! covering for a G; dependency graph.
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first example (Figure 9) mimics the propositional calculus restricted
to the propositional connectives «+and ~. Confidences range over the
Boolean values T and F; each dependency mapping ijs either the identity
or complimentary mapping. Such a graph is consistent if and only if
each arc has the same mapping for both directions and if every circuit
contains an even number of complimentary mappings.

The second example (Figure 10) is similar to the first save that

= [0,1]. The mappings are still the jdentity and complimentary map-
pings but defined over [0,1]. The conditions for consistency remain
the same.

In the third example (Figure 11) confidences range over the posi-
tive real numbers, C =R*. The mappings are lines through the origin
with different positive slopes. A combination of these mappings is a
linear mapping with a slope equal to the product of the slopes of its
component mappings. The jdentity mapping is the linear mapping with
slope equal to 1. This graph is transitively consistent since the pro-
ducts of the slopes a]ong each circuit are equa1 to 1. It is symmetri-
cally consistent since the product of the slopes of the mappings asso-
ciated with each arc are equal to 1.

The fourth example (Figure 12) is like the third except that the
confidences can be negative, as can the slopes of the mappings. Every-

thing else remains the same.

Do dependency relations. If not all of the dependency relationships in

D2 dependency relation are total, it is a 02 dependency relation. In
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Note: Each arc is marked with a single mapping that is used
in both directions.

C = {T,F}.
«— = identity mapping: < [T] = jef T,+[F] = 4ef F.
~ = complementary mapping: ~[T] ®def F, ~ [F] = 46t T.

Figure 9. An example G; dependency graph: Boolean.



Note: Each arc is marked with a single mapping that is used
in both directions.

c = [0,1]

“+—>

identity mapping: < [c] =def C for all c € C.

complementary mapping: ~[c] = def 1 -c¢c, for all ¢ € C.

Figure 10. An example G]

2 dependency graph: probabilistic.
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Note: Each arc is marked with the slope of the mapping from
the confidence of the lower numbered node to the higher

numbered node.
¢ = [0,=).

For all Ci’cj e C: ifi <],

then m [ci] def i ° slope-on-arc,

ni,nj

mnj;ni[cj] *def 3 + slope-on-arc.

Figure 11. An example G; dependency graph: weighted.
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Note: Each arc is marked with the slope of the mapping from
the confidence of the lower numbered node to the higher

numbered node.

C= (""o")-
For all ci’cj e C: ific< js

then mni,nj[ci] “def Ci ° slope-on-arc,

mnj,ni[cj] “def S5 * slope-on-arc.

Figure 12. An example G; dependency graph: t weighted.
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this case the superscript signifies that given a single confidence
value for one proposition in a dependency relationship, there are one
or more compatible confidence values for the other proposition. This
comes directly from the definition of partial dependence. When a de-
pendency relationship is total, the confidence of one proposition
uniquely determines the confidence of the other. However, when a rela-
tionship is partial, the confidence of one proposition may only deter-

mine a set of possible confidences for the other.
DEFINITION 5. D dependency relations.

A DS dependency relation is a D, dependency relation where
M 1§ not functional. O 2
The partial nature of D; dependency relations motivates the use
of coverings that partially specify confidence assignments. C+ cover-
ings accomplish this by assigning each proposition a (nonempty) set of
confidences, with the true confidence of each proposition being an ele-
ment of its assigned set. The smaller the set assigned a proposition,

the more precisely its confidence is known.
DEFINITION 6. C+ coverings for D2 dependency relations.

A C+ covering for a D, dependency re]atioq (P,D,M)_is a func-
tion from P into nonempty subsets of conf1@ences with range
C, C*:P » (2C-{4}), subject to the constraint that
- for every {p],pz} e D, .

ifc e C+[p]] then there exists c, € C [p2] such that

(C1,C2) € M[(p1sp2)]- 0
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Graphically, D; dependency relations and their accompanying ¢t
coverings can be represented the same way as D; relations with C] cover-
ings. The only difference is that the assigned confidences are sets
and therefore the mappings are from sets to sets. A mapping mi,j from
proposition P; to proposition pj is satisfied by the assignment of con-
fidence sets ¥ to P; and c. to pj if cj is contained within the image

J
of C; under mi

3J°

Connected propositions within a G; dependency graph are not neces-
sarily dependent. If the mapping relating two connected propositions
describes an all-to-all correspondence--every confidence of one propo-
sition corresponds to every confidence of the other--then the-ﬁroposi-
tions are independent; in other words, each in no way constrains the
other. Such independent re]ationships may be described by a single arc
in a G; graph or inferred from several arcs. All G; graphs can be
converted to fully connected graphs through the addition of such inde-
pendent arcs.

Like G; graphs, a G; graph need not include every relationship in
the dependency relation it represents. Those relationships that can be
inferred through combinations of the other re1afionships in the graph
need not appear. Indeed, if less precision can be tolerated, even re-
lationships that cannot be inferred from the others can be left out.
This has the effect of expanding the space of consistent coverings. All
those coverings that are consistent with D; are consistent with a less

precise G; graph, but so are some coverings that are inconsistent with
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D;. A less precise graph can also result from the weakening of some of
the mappings. If a mapping in the graph is weaker than that indicated
by M (i.e., that mapping's image is sometimes larger than that of M),
additional coverings might be consistent with that graph. In the ex-
treme, replacing a mapping with another that takes every subset of con-
fidences to the set of all confidences, is equivalent to the removal of
that relationship. Some example G; graphs follow.

The first example (Figure 13) mimics the propositional calculus
restricted to the propositional connectives «+, ~, and +~. <« and ~
correspond to the identity and complementary mappings respectively;
they are total. The remaining connectives, + and «, are partial. Con- -
fidences are restricted to the Boolean values T and F.

The second example (Figure 14) is similar to the first except that
the Boolean valued confidences have been replaced with confidences that
range between 0 and 1. <« and ~ still correspond to the identity and
complementary mappings. -+ corresponds to the mappings that take a con-
fidence to all confidences‘greater-than-or-equa] to the given confi-
dence, and « to all the confidences less-than-or-equal to the given con-
fidence.

Higher Order Dependency Relations and
Their Graphical Representations

The dependency relations and graphs introduced thus far are suffi-
cient for describing dependencies so long as they are binary. But when

dependencies exist among larger groups of propositions, more general de-
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C = {T,F}.
«+= jdentity mapping: —[{T}] =4eflT)s
o [{F}] =y ¢(F},
o [{T,F}] = 4o f(T.FL.

~ = complementary mapping: ~ [{T}] =, ¢(F},
~ [{F}] =4 lThs
~ [{T,F}] = ¢(T-F.

> [T =y f(Th, »LLFY] =y g (TF}, +LLT,FY] = elT,F2.
« [LT3] = ({TFY, «[{FY] = 4o ¢lFY, «LLT,FH] =g (T,

Figure 13. An example G; dependency graph: Boolean.
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¢ = [0,1].
«~= identity mapping:-«+[c1] =def Ci°

~ = complementary mapping:'-[ci] = def {célcé = 1-c;, c% € ¢}

-+ [ci] = def {célc% < c& <1, c% € ci}.

- [cj] = def {c%IO < c% s-c3 , c5 € cj}.

Figure 14. An example szdependency graph: probabilistic.
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pendency relations and graphs are required. This section introduces
dependency relations and graphs that are capable of describing depen-

dency relationships of arbitrary order.

D+7dependency skeletons. 02 dependency relations are collections of

binary dependency relationships. The natural extension is to drop the

restriction that the relationships be binary, which leads to D, depen-

dency relations. These are collections of dependency relationships of

arbitrary order, limited only by the number of propositions over which

the relations are defined. A D, dependency skeleton, the framework of

a D+ dependency relation, is a fairly obvious extension of a Dz-depen-

dency skeleton, except for the added condition that it is closed under

union. This additional constraint captures the notion that lower order
dependency relationships can be arbitrarily combined to form higher

order ones. The definition follows.
DEFINITION 7. D, dependency skeletons.

A D+ dependency skeleton is an ordered pair (P,D), where P
is a set of propositions and D is a set of nonempty, nonunit
subsets of P that is closed under union and is subject to
the constraint that

- if di’dj e D, difdj, and p € dj n dj,
then ((djudj)- {p}) e D. O
Graphically, a binary relationship from a 02 dependency skeleton

was represented as an undirected arc between two nodes. This was a

straightforward representation since arcs are inherently binary. But
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D, relationships cannot be similarly represented since they may be of
highef orders. Instead, a D_ dependencyrrelationship is graphically
represented by a relationship-node and a set of directed arcs. Each of
these arcs points from the relationship-node to a proposition node. The
set of proposition-nodes connected by (inpointing) arcs to a relation-
ship-node represents the propositions taking part in that relationship.
If n nodes are so connected, that relationship is of order n. Rela-

tionship-nodes are distinguishable from proposition-nodes by the direc-

tionality of their connecting arcs. Relationship-nodes always have out
pointing arcs emitting from them. Arcs connected to proposition-nodes
are always inpointing, though proposition-nodes may have no connecting
arcs. In drawings of these graphs, relationship-nodes are further dis-
tinguished by their triangular shape versus the circu}ar (or e]iptical?
shape of proposition-nodes. Just as before, not all of the relation- i

ships in a D dependency skeleton need to be graphically represented:

those that can be inferred, need not be included (Figures 15 and 16).

D,_dependency relations. D, dependency relations are analogous to D,
dependency relations only they are capable of describing n-ary depen-
dency relationships. As previously described, a groﬁp of n proposi-
tions are dependent if the confidence of each proposition can be par-
tially or totally predicted from the confidences of the other proposi-
tions in the group. Therefore, M is a function from ordered elements
of D to sets of confidence vectors, the length of each vector being

equal to the order of the selected relationship. Just as before, each
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Elements of D directly represented in the graph:

{a,b}, {b,c}, {a,b,c}, {f,g,h}, {c,d,e,f}, {c,d,e,q,h}.
Some additional elements of D that can be inferred from the
graph:

{a,c}, {b,d,e,f}, {a,b,f,g,h}, {a,b,c,d,e,f,g,h}.

Figure 15. An example G dependency-graph skeleton.
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Figure 16. An example G; dependency-graph skeleton. This
example is a direct translation of the Gp dependency-graph skele-
ton in Figure 6.
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vector represents a possible, simultaneous, confidence assignment to
the propositibns taking part in the relationship.

In the definition that follows, all but the second constraint are
trivial extensions of those found in the D, definition. The second
consfraint is substantially changed since there are more complicated
ways for thesé higher order dependency relationships to overlap. ‘In
general, two relationships sharing some common propositions need fo be
coordinated so that they do not describe the relationship among those
prqpositions in incompatible ways. In the definition, this is guaran-
teed by ensuring that all lower order relationships are compatib]é with
higher order relationships containing them. Thus, each higher order
relationship plays the coordinating role for the lower order relation-

ships it subsumes.
DEFINITION 8. D+ dependency relations.

A D, dependency relation is an ordered triple (p,D,M),
where (P,D) is a D+ dependency skeleton and M is a function,
from ordered elements of D into equal length vectors of con-
fidence values with range C (i.e., for each {p seessPp} € Dy
M[(p],..;,pn)] c Cn), subject to the constraints:

1. for every {p1,...,pi,...,pj,...,pn} e D,
(c],...,ci....,c.,...,cn) € M[(p1,...,pi,...,pj,...,pn)]

J
H(C],...,Cj,...,c,i,...,cn) €M[(p-l,..-,pj,oc-,p.i,o--’pn)]g

2. if d .d D, d cd
dm = {p1,...,pm},
dn = {p],...,pm,.--.pn},
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then for each (cl""’cm) e C",
(c],...,cm) € M[(p],...,pm)]
«+ there exists cmﬂ,...,cn e C such that
(C]g...,Cm,...,Cn) € M[(p-l,--ogpm’oo..pn)]

3. for every {p],...,pn} e D and every S e-C,
there exists'c,...,cp € C such that

(cqsensCy) € MLPyaeeespy)]. D

Again, when a dependency relation is represented by a dependency
graph, M is fragmented into local mappings and distributed across the
arcs in the graph. But in the case of G, dependency graphs, each arc
has one associated mapping that describes how the confidence of the
proposition at the head of the arc varies with respect to the confi-
dences of the other propositions connected to the réTationship-node at
the tail of the arc. For a relationship over propositions pl,...,pn.

the mapping m(1 n-1) n? Blaced along the arc pointing to P, Pre-
9oy H

dicts the confidence of Pn given the ordered confidences of PyseePpae

Thus, each n-ary dependency relationship is described by n mappings of

degree n-1 (Figure 17).

gl dependency relations. Before moving on to the most general form of

dependency relation, let us consider the extension of D; debendency re-
lations to higher order dependencies. This gives us Dl dependency re-
Jations that describe total dependency relationships over arbitrary

numbers of propositions. M is functional and therefore, C1 coverings

apply.
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(FI’f"’cn) € M[(p1,5.§,pn)]-e-+cn € m(l,...,n-1),n[c1""’°n-1]'

Figure 17. An example G+ dependency graph.
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DEFINITION 9. D) dependency relations.

A Dl dependency relation (P,M,D) is a D, dependency relation
with the additional constraint that M is functional. In
other words,

- for every {p1,...,pn}e D, CyseeesCy € cC,

|m(1’...’n_1),n[c],...,cn_]]ls 1,
where m(],...,n-]),n[c]""’cn-lj
= {cpl{cqsanine e MI(pyseenup )b D

DEFINITION 10. C] coverings for D, dependency relations.

A C] covering for a D+ dependency relation (P,D,M) is a
function from P into a range of confidences C, C!:P + C,
subject to the constraint that

- for every {p1,...,pn}e D,
(c'lpy1s--»C1Lp,1) € ML(pyse..op )], O

Two example Gl dependéhéy-graphs follow (Figures 18 and 19). They
mimic the propositional calculus restricted to the propositional connec-
tives«> and ~, with one additional n-ary connective, XOR. This addi-
tional connective is defined as follows:

XOR[Pgs--sPy] =y4oc (PG> Py V -oe vV D) " aiVien (p; A py)-

it
Note that the definition differs from the standard definition of “ex-
clusive or." It is motivated by those situations where a class, repre-
sented by Po> is broken into n subclasses, represented by PyseesPpo
based on an equivalence relation. The distinguished proposition Po is

true if and only if exactly one of the indistinguished propositions is
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C=(T,FL
«= identity mapping: «[1] =, T, [F] = (F.
~ = complementary mapping: ~{T] “qeff> ~[F] “def 1*
To1den €5 = T» c5 = Fo 1sisn, 14 5,
Fscy = F, 1<isn.
T, c0=T, cj=F, 1<jsn, 1#J,

XOR[c],...,cn] = def

x0rfegsCysenesCy 19547000+ 2Cn] “ger
F, c0=F, cJ.=F, 1sjsn,. 1#].

where o corresponds to the distinguished proposition.

Figure 18. An example Gl dependency graph: Boolean.
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¢ = [0,1]
«~+= identity mapping:++tc] ®daf © -

~ = complementary mapping: ~[c] def 1 - €+

n
XOR[c1,...,cn] = def iz cse

1

n
XO?‘[CO,CI....,Ci_-l ,Ci+1....,cn] =def Co- ji] Cj’
i

where <o corresponds to the distinguished proposition.

Figure 19. An example Gl dependency graph: probabilistic.
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true. No two of the indistinguished propositions are ever to be simul-
taneously true; if two of the indistinguished propositions were simul-
taneously true, the connective would be undefined. The confidences in
the first example range over the Boolean values T and F, while in the
second example they range over the real interval [0,1]. Throughout the
examples, "XOR" is the mapping that predicts the confidence of the dis-
tinguished proposition from the confidences of the indistinguished pro-
positions, and "xor" is the mapping that predicts the confidence of an
indistinguished proposition from the confidences of all of the other

propositions.

Q; dependency relations. Dl dependency re1étions are restricted to

total dependency relationships. The relaxing of this final constraint,
to include partial dependency relationships, results in D: dependency
relations. These may contain dependency relationships over any number
of propositions and with any degree of dependence/indepéndence. When
viewed hierarchically, all of the previously described relations are

subsumed by D: dependency relations.
DEFINITION 11. D: dependency relations.

A DI dependency relation is a D, dependency relation where
M is not functional. O
when graphically represented, M is fragmented and distributed over
the dependency graph in the same way as for Gl. Of course, the differ-

. . . At
ence is that these fragments map sets to sets, just 1ike those 1n G2
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graphs. Also like G;, c* coverings are used, allowing confidence as-
signments to be partially specified. A covering is consistednt with a
graph if all of its mappings are satisfied. In this case, a mapping
m(1,...,n-1),n from propositions pl’_._’pn_] to proposition Pn is satis-
fied by the assignments of confidence sets c, to py, 1<isn, if ¢ 1is

contained within the image of c,,...,c _; under m1,...,n-1),n°

DEFINITION 12. C+ coverings for D, dependency relations.

A C+ covering for a D, dependency relation (P,D,M) is a func-
tion from P into nonempty subsets of confidences with range
C, C*:P+(2C-{4}), subject to the constraint that

- for every {p],...,pn}e-D, :
+
ife e C*[p1] then there exists c, e C+[p2],.f.,cne F [péL
such that (c],...,cn) € M[(p1,...,pn)].

Like all dependenc& gfébhs. 1f§some of the mappings in G: are
weaker than their counterparts in*“, the graph may pq}y approximate the
underlying DI dependency relation, resulting in a,]aqger space of con-
sistent covering. :

The propositional calculus examples of the prgyioQSZSections are
here extended into GI graphs, with the additional connectives A and V.
A biconditionally relates the truthfulness of a distinguished proposi-
tion, to a conjunction of indistinguished propositions; v, to a dis-

junction:



58

A[pos--ospn] =def (po*‘*p] Aeaoh pn):

V[p()’---spn] =def (poﬁp] VeooV pn).

The mappings in the first example (Figure 20), defined over the Boolean
values T and F, are straightforward. The mappings in the second ex- !
ample (Figure 21), defined over [0,1], require some explanation. But‘
this will be deferred (pp. 107-123), for it is these mappings thatuare;:‘
justified by Shafer's theory of inexact reasoning. The reader is eh; '
couraged to verify that these examples are legitimate GI dependency
graphs with C+ coverings, while awaiting further discussion for thé{;uffj.
motivation. | e
Both of these examples are (demonstratively) approximations of -7 .
their underlying dependency relations. The V-relationship, found in
each, could be strengthened to an XOR-relationship. This is known '
since the disjuncts n4 and n5 are already participating in an XOR- |
relationship and therefore are known to be exclusive. This impreci-
sion, in the second example, js ‘cause for imprecision in the confidencef;*q‘
assignment of the proposition represented by n2. If fhe graph were prefv.
cise, n2 would have an associated confidence interval of [.7,.9], as |
would n6. Of course, the intervals that appear are not incorrect; they
do delimit the correct confidences; they are merely less precise than
they might be.
This concludes our journey from D; dependency relations to DI de-

pendency relations, a journey from a highly constrained, but simple,
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Figure 20. An example G: dependency graph: Boolean.

C = (T,F).
~{cq] "gar -
(T}, ¢4 = {F},
-t e B
T, ¢ = (1)

+[c,]=
1 d“{ (T,F}, else.

e (Fho ¢, = (F),
«fcd=
37 def ) (1 F}, else.

{T}, ; ¢ = (Th
XOR(CyoeeeaCp] "gpey (F1s c: = (F}, Isisn ,
{T,F}, else.
(T}, cq = (Th ¢y = (F}, {fan. '
X0P{Cge- ++4Cq_y o€y see=oCy) “gar | (F}e G = (F} OF PR LD
' (T.F), eise. M

(T, ¢ = (T}, Isisn,
Alcyeeeest,d 2gqr | (F1e :‘E‘ e = (Fh,
(T,F1, else. ‘
(T;: 6 = (Th
AlGgeeeeeCy_yoSpype-=6n] “gar| (F}s &g = (Fle cg =(Th }:.}sn i
(T,F1, else
(T, ; ¢ = (Th
Vleqeeeesby] ger | (F1 ::: = {F}, 1sisn ,
(T.F}, else.
{Th cg = (Thy ¢y @ (F}, }:isn.
(F1. g = (F),
{T.F}, else.
where ¢, always corresponds to a distinguished proposition.

'(CO"""I-I'ciﬂ"““n] ®def
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Figure 21. An example G: dependency graph: probabilistic.

¢ = [0.1].

~{ey] “gar ¢4

~ [c,] *daf (c3|c3 =1 -c,cf el
A T (cslc; s¢js 1o ¢} e cgle
- [cJ] “def LCHIY scisci. cj « cJ}.

0
xoa[c,.....cn] *daf (calca - 15] ci» g « o €f « G40 ]"‘"}'7. '

xcr{cn.... .C1_1 .C1+1 ""'cn]

]
*saf (c“c; - ¢6 - jfl ci’ cq e C. ci « ¢, O<isn, iP5},
i

J : ] n [ n . [
A(cI.....cn] *def (coll + (15‘ cy - 1) °6 < '11-1-'1‘ €i» G ¢ C,

c; €y 1si<n}.

A[CO..-..Ci-‘ .c1+100001cn] n
PR CH R R ( JE‘I ¢ - 1), ¢ « Co ¢§ « ¢4, Osgsn, 194},
183

n n
vtc‘.....cn] “sar (01 m cyseps 151 cqo cg ¢ Co 6§ € Cyo 1sisn}.

g vlcgeeeesCyy .c‘_n.....'r.n]
[} 1] n 1] 1] [ '] [
g “def (cgl(co - {E;»cj) SCHE R TR C. ¢y« C,s Osizn, £},

where c, always corresponds to a distinguished proposition.
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form of propositional dependence, to a more complex, general form. At
each step, consistency conditions, included in the definitions of de-
pendency relations, ensure that multiple descriptions of relationships
within dependency relations are consistent. The basis for all of the
preceding definitions is that redundant descriptions need to be consis-
tent. Dependency graphs, compact representations of dependency rela-
tions, permit some imprecision in representation so long as the consis-
tency of the underlying dependency relation is preserved. As will be
seen in the following chapter, well-formed dependency graphs provide a

sound foundation for automated inferential reasoning.



CHAPTER IV
DEPENDENCY-GRAPH INFERENCE-ENGINES

When a proposition is dependent on a group of other propositions,
information about its confidence can be inferred from jnformation about
the confidences of those propositions in that group. Within a depen-
dency graph, an n-ary dependency relationship is described by n (coor-
dinated) mappings, each capable of translating information about the
confidence of n-1 of the propositions to jnformation about the confi-
dence of the remaining proposition. In this chapter, inferential rea-
soning is formally defined as the process by which this predictive capa-
bility is exploited to extend and refine incomplete information about
proposition confidences. This definition takes the formof four infer-
ence rules, corresponding to the four classes of dependency're1ations,
and the inference engines that apply them.

To this point, all of the coverings that have been defined pre-
clude any inferential reasoning. They have all been complete in that
a confidence was associated with every proposition, and totally refined
in that all of the mappings were satisfied by the confidences. Based
on the information embodied in a dependency relation, these coverings
cannot be made more precise. They are the goals of the inferential
process, and are what one would hope to discover; they are not the
starting points, but the fixed points. Less informative coverings,
analogous to C1 and C' coverings, are E] and C* coverings. A é}_ggggr;

1 “+

ing has a (possibly) reduced domain relative to a C covering: a C_

64
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covering has a (possibly) expanded image relative to a ¢t covering. A
C] covering is (possibly) incomplete and a ¢t covering is (possibly) un-

refined.
DEFINITION 13. C' coverings.

A é] covering for a dependency relation (P,D,M) is identical
to a Cl covering for that same dependency relation, but
(possibly) with a reduced domain.

61:§+C,
where P < P and
there exists CLP+C, such that for all ﬁ € ﬁ,

¢'tp1 = ¢'(p1. O

DEFINITION 14. C' coverings.

A 6+ covering for a dependency relation (P,M,D) is identical
to a C* covering for that same dependency relation, but
(possibly) with an expanded image.

ctp(2%-101),
where there exists C+:P+(ZC—{¢}), such that for all p ¢ P,
+ ~4
Clplccip]. O

A wide range of informedness is expressible through these cover-
. " “+ . . .
ings. At one extreme, the vacuous C] and C coverings provide no in-

formation. The vacuous C] covering associates no confidence with any

s ~+ . . .
proposition. The vacuous C covering associates the entire range of

confidences with each proposition thus, merely reaffirming the minimal
limiting conditions. At the other extreme, they may associate a single

confidence value with each proposition, exactly determining the confi-
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dence of every proposition. This range of description is much the same
as that found in dependency-graph representations of dependency rela-‘
tions, where dependency relationships can be left out of the represen-
tation or replaced by weaker mappings.

Given a dependency relation and a 6] or é+ covering (of the appro-
priate type), there is a potential for extending or refining that cover-

ing. This is formally defined in terms of four inference rules, one

for each class of dependency relation. Each rule is a function of
three arguments, a dependency relation, a covering for that dependency
relation, and a directed, dependency relationship selected from that
dependency relation. The result is a (possibly more informative) cover-
ing. If the inferential step provides new information, the resultant
covering is the original covering augmented by this new information.
Otherwise, there is either insufficient information to make an infer-
ential step or the inferential step simply reaffirms a portion of the
original covering; in either of these cases, the resultant covering is
the original covering. The R; and Rl inference rules (potentially) aug-

ment C] coverings, with confidence assignments for previously unassigned

propositions, based on the assignments of neighboring propositions. The

+
2

. . At . . . .
confidence sets in C' coverings, discarding those confidences that are

R, and R: inference rules (potentially) reduce the size of the assigned
inconsistent with the confidence sets assigned neighboring propositions.
Throughout the following definitions, references are made to C cover-

ings as both functions and sets. These two views are interchangeable:
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clpac *+{(mcheP,c=a[ﬂ};

6+:P+(2C-{¢}) <~ {(p,c)|peP, ce c*Ipl}.

DEFINITION 15. R; inference rule.

R% is a function _of three arguments, a D% dependency rela-

tion (P,D,M), a (! covering,for that relation, and a directed
element, from D, (p1,p2). Rp returns a (possibly more com-
plete) C! covering.

RyL(P.D,M),E",(py5p,)]
((pyac)tull, (C'IpyTucy) € ML(py.p,) T

6], else. O

DEFINITION 16. R\ inference rule.

Rl is a function of three arguments, a Dl dependency relation

(p,D,M), a ¢l covering for that relation, and a directed ele-
ment from D, (Pl’--~’pn)- Rl returns a (possibly more com-
plete) Cl covering.

1 ~1
RyL(P.DM,) C1u(pysnnnsp,)]

(pyre )t u €y (€015 uEl o, T5e,) € MR- -2 5P,) 5

6], else. O

DEFINITION 17. R; inference rule.

Ré is a function of three arguments, a DE dependency relation
(P,D,M

,M), a €t covering for that relation, and a directed ele-
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pent from D, (py, P2)- RE returns a (possibly more refined)
C* covering.

REC(P.D.M),E%, (py4pp)] = € - (pyuty) 189 € CTRp1- Coh

A ~+
where CZ = {Czl (C-l sCZ) € M[(P] spz)]’ C.[ € C+[p~|]: Cz eC [p2]}~ 0

DEFINITION 18. R[ inference rule.

Tis a fungtion of three arguments, a DI dependency relation
(P,D,M), a C* covering for that relation, and a directed ele-
ment from D, (p1’°'-’Pn)' Rt returns a (possibly more re-
fined) Ct covering.

. A A
REL(PLD,M) ¥ (pyae- o )] = €7 - Upyaty) £, € LR 1= Co s L
where Cn= {Cnl (C-l TR ,Cn) € M[(p] IR ’pn)]s

C;e 6+[pi]’ 1<isn}. O -

Given a dependency relation D and a 6 covering (i.e., a E or E+
covering) for D, there are multiple inferences that might be drawn.
Every element of D is a candidate for an inferential step and several
of these might provide additional information beyond that already avail-
able in E. To reap the collective benefits of multiple inferential

steps, an inference engine serially applies its inference rule to se-

lected elements of D, using the result of each application as an argu-

ment to the next.4 Ordered elements of D are selected according to a

o T e T o T o TR T

4Here, inference engines with parallel search strategies are ex-
cluded to simplify the discussion. They require that a merging opera-
tion be defined over multiple coverings.

—
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search strateqy. When the search strategy returns the null set, the

inference engine halts. An inference rule and search strategy fully
determine an inference engine. The class of the inference rule deter-
mines the class of the engine (e.g., an inference engine that applies

R: is an E: inference engine) and thereby the class of the dependency

. . ey . +
relations and coverings it is defined over (e.g., an E, inference en-

gine is defined over DI dependency relations and ¢t coverings).

DEFINITION 19. Inference engines.

An inference engine E is a procedure of two arguments, a de-
pendency relation (P,D,M) and a covering for that relation C.
E selects an ordered element from D in accordance with a
search strategy S; appplies its inference rule R to the se-
lected element; and loops with the resultant covering. This
continues until S returns the null set, at which point, the
final covering is returned. E is not (necessarily) a func-
tion since its search strategy might depend on some addi-
tional (heuristic) information H.

EC(P,D,M),C]
C, S[(P,D,M),C,H] = ¢;

EC(P,D,M), R[(P,D,M),C,d1], de SL(P,D,M),C,HI;

where S[(P,D,M),E,H] 5_{(p1,...,pn)| {pys---»P}€D}. O

As with any proof procedure, questions of soundness and complete-

ness come to mind. Will these inference engines discover only that
which follows and all of that which follows from a dependency relation

and a C covering for it? Instead of addressing these questions separate-

1y for each class of inference engine, we will only consider them for
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the most general class E: and be satisfied with some limited after-

thoughts about the others. Relative to E: these questions can be re-

phrased as

lation and

+ . . . +
one: does an E+ inference engine, given a D dependency re-

A+ R
a C covering for D:, always return the least precise C+

. + - . .
covering for D, over which C' can be defined? The answer is yes pro-

vided the

eventually

DEFINITION

THEOREM 1.

search strategy does not prevent informative inferences from

being drawn. Such a search strategy is said to be complete.
20. Complete search strategies.

A search strategy S, of an inference engine E, js complete
if it returns the null set only when the given C covering
is everywhere invariant to further application of E's infer-

ence rule R.

for all {p],...,pn} eD,

EC(P,D,M),C] = C « ! .
R[(P’D’M) ’C’(p'l"",pn)] = C’ D

+ .
Soundness and completeness of E, inference engines.

+ . . .
E;+ inference engines are sound and, with complete search
strategies, they are also complete; i.e., an EI inference
engine with a complete search strategy is guaranteed to
minimally reduce any C* covering to a C* covering.

et At o+ ot
E,[D;,C1=C <cC

. + +
and there does not exist another C+ covering £ for D_ such
that Ctcg*cCt. O
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+ ., . . .

A complete E, inference engine, restricted to a single de-
pendency relationship, discovers a minimally reduced C* cover-
ing that satisfies that relationship.

Let D, = (P,D,M,);

d+

(pyseenaPp} e Ds

d. = (p-l’--.,p,i_-':p.i+-l,-..,pn,pi), ]S'isn;

i
L teat At .
C(i) = R+[D+,C ’di]’ 1<izn;
+
(

—

ot At .
= R+[D+,C(i),dj], 1<i,j<n.

-

C(i,4)
To prove that 6?1 j) = 6?3 i) 1<i,j<n,

first let n=2 and prove that EZ] 2) = 6?2 1)
~4
For each c, e 0(1)[P]],
there exists c, ¢ 6+[p2] such that
(C]’C2)€ M[(p],pz)],
which implies that Coe 6?2)[p2].
Therefore, Cro 1[Py] = Ciqy[py]
erefore, Cr, 1ylpy (1)L 3
Clearly, 621’2)[p]] = 6;1)[p1] giving

+ _ ot .
Cr,2ytPd = C(2,1)[p1] and symmetrically

+

(

E 1’2)[p2] = éIZ,])[pzl-

~ 4 _ A+ -
Therefore, C(],Z) = C(z,]), when n=2.
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With n>2, it's clear that

~+ _ At _ “+
C(],z)[Pk] = C(z,l)fpk1 =C [pk], 2<k<n.

+

_ At ..
Therefore, C( = c(j,i)’ 1<i,j=n.

i,3)

From this it follows that ES[(P,{d}, M), C'] is independent
of the search strategy, so long as it is complete. Clearly,
EX[(P,{d},M),C*] minimally reduces ¢+ relative to d since
the only elements deleted from ¢+ are those that are incon-
sistent with M as it applies to d.

A C+ covering, minimally reduced to be consistent with the
highest order dependency relationship in a D dependency re-
lation, is theminimally reduced c* covering for that depen-
dency relation.

+— -
Let D, = (P,D,M) and P = {pl,...,pn}.

Since EI[(Pa{P},M),E+] has been proven to be the minimal re-
duction of C*t consistent with M[(p1,...,pn)] (part I of this
proof), and since

(C],-..,Ci,..-,cn)€M[(p-‘s--oapiso'-’pn)]
-+ (C]a---sc.i) GM[(P]"--’Pi)]
where P > {p1,...,pi}e D,

it follows that Ef[(P,{P},M),C"] is the minimal reduction of
¢+ satisfying all of M.

Therefore, EI[(P,{P},M),éf] is a ¢t covering for Di that is
the minimal reduction of C¥.

. . . +
A complete EI inference engine, operating over an entire D,
dependency relation, minimally reduces any C* covering to a
c* covering for DI. An inductive proof follows.

Basis. Given a C+ covering and a single relationship from a
DI dependency relation, a complete El inference engine will
discover a minimally reduced ¢+ covering that satisfies that
relationship (part I of this proof).
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Inductive step. Assume that a complete EI inference engine,
given a C* covering and all but one of the relatjonships from
DI, is guaranteed to return a minimally reduced C* covering
that satisfies all of those relationships. Prove that with
the addition of this excluded relationship, EI returns a min-
imally reduced C* covering for DI.

+
Let D_ = (P,D,M) and d = {pP...,pn}e D.

If d is the excluded relationship and d # P, then
EX[(P,D-{d},M),C*] is the minimal reduction consistent with
the highest order relationship and this has been proven to
be a C* covering for all of Df (part II of this proof).
Therefore, the addition of d has no effect.

If d is the excluded relationship and d = P, then
Ef[(p,D-{d},M),C*] is the minimal reduction of C* satisfying
the relationships in D-{d}. If this is a C* covering for all
of DI, then an E} inference engine can further reduce it to a
C* covering through application of R} relative to {P} (parts
I and II of this proof). This would be the minimally reduced
c* coverings for all of Df.

It remains to be proven that
ELL(P,{P},M),E¥ 1< EXL(P,D-{P},M),C*].
If this were not true, then there would have to be some die D,

di = £E],...,p1} cP = {p],...,pi,...,pn}, and
c; e o [pj], 1<j<n,

such that
(c],...,ci,...,cn)e M[(p],...,pi,...,pn)] and
(C'la---,c.i)éM[(pT:---9p1’)]-

But this contradicts the second constraint on D+ depencency
relations. Therefore,

e'0(P,(P).M),E%1 < EFL(P,D-(P3,M),E"T and
EXC(P, (P, M), ESL(P,D-(P},M),C711 = C".

Therefore, E:[D:,6+] = C+, by induction. O
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In terms of a G: representation of a D: dependency relation, an
E: inference engine makes inferences along arcs selected by its search
strategy. If the search strategy is complete, E: will draw all of the
inferences possible given the information in Gi. But if G: is only an
approximation of D:, it may be that some of what follows from D: will
not be discovered. Completeness may be sacrificed, though soundness 1is
guaranteed provided G: is an approximation of D:. For Gi to be an ap-
proximation of D:, each of its mappings must contain the corresponding
portion of M in D:; thus less precise predictions might be made rela-
tive to G:, but they will be consistent with those that would be made
relative to D:. Figures 22 and 23 show sequences of inferences that a
complete E: inference engine might make given some 6+ coverings for the
example GI graphs of Chapter III.

In general, all of the other classes of inference engines can be
viewed as restricted versions of E:. Like E:, the other inference

engines E;, E;, and El are sound and, given complete search strategies,

also complete. However, in the case of E; and El, those that extend

6 coverings, they do not always produce a C1 covering. This is not
to say that they are incomplete, but only that completeness does not
guarantee the production of a C1 covering. For example, in a G; depen-
dency graph, connected propositions are totally dependent on one anoth-
er; unconnected propositions are totally independent. This means that
an E; inference engine can predict the confidence of a proposition only

if the confidence of some connected proposition is known. Connected

portions of a G; graph correspond to equivalence classes; information
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Figure 22. An example of EI inference activity. At each step,
the choice of a highlighted arc by Ef for application of R} will re-
duce the C* covering; * marks the selected arch.

€ = (T.F1.
={¢4] “gef -
e,] AL
~ (o4 - » [ L] ’
17 def (T.F).ielse.

. (T ¢, = (T},
- c -
17 def ) (1 £y, else.

[ ] {F)' CJ - (F}o
« |C -
37 def ) (7 Fy, else.

n
(T, 3 ¢ = (T},

1 !
(F}, ¢, = (F}, l1sisn ,
(T,F}, else.

XOR(cl,....cn] "dof

(M) 6 = (Th ¢g = (F}, fsgen,

xor{co.....ci_].ci*l.....c"] *qof | (F1 g = (F}or 13‘ ¢y " (T},
(T.F}, else. M

(T}, ¢4 = (T}, Isisn,
n
A[c1.....cn] * daf (F}, ‘3] ¢y = (F1,
{T,F1, else.
T, ¢ = (Th
A[cnl---oc1_‘ 'C'_’.ro.-'c“] .def (F}' co - (F}o cj -{T)' };}‘n.
(T,F}, else
n
(T}, 13] ¢ = (T},
V[c1.....cn] " daf (F}, ¢; = (F}, Isisn ,
(T,F}, else.

(T}, ™ (T}, ¢y " {F}, 1sjsn,
143
Wegeeee i€y sCageene €l "gap | (Fo Go = (L,
{T,F}, else.

where c, always corresponds to a distinguished proposition.
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Figure 22 (a). Initial state,

Figure 22 (b). State 1
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Figure 23. An example of E4 inference activity. At each step,
the choice of a highlighted arc by EIf for application of Rf will re-
%a duce the C* covering; * marks the sejected arc.
¢ = [0.1].
‘-*:‘ -
H o] *ger -
ofl OO L (cjlci *1-ciocpecih
% - [c‘] *def (cjlt::I H cj s 1, ¢ e gl
3 - Ecj]»'def (cilo sc;scj, cj P cJ}.
n
3 XOR(cv....cn] *def (célc“) = 151 Cis Cg ¢ Co €f € ¢y, Isisn),
xor{co.....c‘_‘.ciﬂ.....cn]
n
= (ciley = ey - £ ¢, ct €C, ) € ¢, 0sisn, i#f}.
] “der (Sil<] LA R R <
' ' irj
- n n ' »
Aeeeeent] *gar (11 + (e = 1) € cg s M el g e .
- ci € ¢y 1sisnl.
AlegeesesCyyoCranee-eecyl .
= “dar (o119 € ©f £ g - (T, cj - Vo ¢ « o« cqu Ofan, A3}
- 144
:‘ . n q n L] L] 1]
- ‘V[c.‘.....cn] " sef (cé[l;!ﬁ ¢y scs 11-:] cq» g ¢ Co €5 € ¢4y 1sisnl.
; v{cn.....c1_,I .c1+].....cn]

n L]
*ief (c“(c& - Jfl cj) scps c6. cg ey ¢y € Sy O<jsn, i#j}.
143

where co always corresponds to a distinguished proposition.
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(.1,.2]  [.4,.6]

Figure 23 (a). Initial state0

Figure 23 (b). State,
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Figure 23 (e). State,

Figure 23 (f). Stateg
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Figure 23 (g). State6
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Figure 23 (h). State7
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Figure 23 (j).
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Figure 23 (k). State10
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about a proposition in an equivalence class is equivalent to information
about any other proposition in that equivalence class. If a 6] cover-
ing assigns a confidence to at least one proposition in each equiva-
lence class of a G; dependency graph, then an E; inference engine can
extend that incomplete covering to a complete C] covering; otherwise,
the best E; can do is to extend it to a more complete 6] covering. Sim-
ilar comments pertain to El inference engines.

Clearly, the effectiveness of any inference engine is intimately
tied to its search strategy. And the best search strategy for a given
situation depends on a number of factors. For example, if some kind of
parallel hardware is to be used, the best search strategy might be to
continually apply the inference rule everywhere until quiescence. If
serial hardware is to be employed, search strategies that take advan-
tage of the inherent indexing structure of graphs (i.e., strategies
based on graph walking algorithms) are probably better suited. But here
the best choice varies depending on the connectivity of the graph, where
the initial information is located within the graph, and what informa-
tion is desired. If there is a single path from one proposition to an-
other and confidence information is provided about one and desired about
the other, the optimal inference ordering is obvious. But if several
paths exist between these propositions, each with a different degree of
specificity, the best ordering is not as obvious. As with all search
situations, there is a trade off between doing extensive analysis, to
select optimal paths, and making blind selections. A detailed analysis

of inference-engine search-strategies is beyond the scope of this the-

p— pe— g e
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sis, but the standard body of search techniques is applicable [ Nilsson
1980].
Theorem 1 guarantees that a dependency-graph inference-engine,

given a well-formed dependency-graph and 6 covering, is a sound infer-

ence procedure. This is true even when the ground information is par-

AR §

tial. Models, based on dependency graphs, are thereby guaranteed to be

internally consistent. Dependency-graph models are the topic of the

next chapter.
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CHAPTER V
DEPENDENCY-GRAPH MODELS

Dependency graphs and their accompanying inference engines might
be of theoretical interest to mathematicians, but not until they are
jnterpreted as models of environmental situations do they fall within
the realm of artificial intelligence. In this capacity, information
concerning the confidences of some environmental propositions can be
transformed into predictions about other environmental propositions.

An interpretation is established by identifying the nodes of a depen-
dency graph with propositions relative to some environment. Given
accurate confidence information, an accurate dependency-graph model
will make accurate predictions through the application of its inference
engine.

Confidence information, from some source of knowledge over the
environment, enters a dependency-graph model in the form of an (incom-
plete) 6] covering or an (unrefined) ¢t covering. The model's infer-
ence engine extends or refines this covering, translating the informa-
tion from proposition to proposition within the dependency graph, yield-
ing more complete information about the confidences of the propositions
represented in the graph (Figure 24). The accuracy of these predic-
tions depends on both the accuracy of the initial confidence informa-
tion and how accurately the dependency graph reflects the dependency
relationships in the environment. If either of these is in error, the

integrity of the predictions is impugned.
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Dependency-Graph Model
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Inference Search
Rule Strategy

Figure 24. Dependency-graph model.

oty




90

A model is accurate so long as it does not contradict the reality
of the environment it propounds to model. A model that fails to contra-

dict its environment is said to be externally consistent i.e., consis-

tent with the external environment it models. Internal consistency,

the absence of internal contradiction within a model, is a prerequisite
for external consistency. If a model contains contradictory descrip-
tions, it necessarily contradicts its environment! Inferencing based
on an internally inconsistent model leads to logical contradictions,
and thereby model failure. Of course, internal consistency does not
guarantee external consistency; it is a necessary, but not a sufficient
condition. Since a well-formed dependency-graph model is guaranteed to
be internally consistent, inaccuracies must be attributed to external,
and not internal, inconsistencies.

A dependency-graph model can be externally inconsistent due to
either its dependency graph or its covering. Either might contradict
the environment, leaving the model open to failure. The most graceful
failures are those that simply lead to incorrect predictions about the
environment. More catastrophic failures can lead to complete model
breakdown. Model breakdown can occur if the initial confidence informa-
tion is not a C covering for the dependency graph i.e., there is no
underlying C covering over which C could be defined. Applications of
an inference engine to such a noncovering ﬁ can lead to incompatible
predictions, necessarily so if the inference-engine's search-strategy
is complete. In the case of ﬁ] noncoverings, a complete E] inference

engine eventually attempts to reset the confidence of some proposition
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already assigned; in the case of i+ noncoverings, a complete E+ infer-
ence engine eventually assigns some proposition the null set of confi-
dences, indicating that no confidence assignment for that broposition

is consistent with all of its neighbors' assignments. This situation
is_analogous to a theorem prover provided an inconsistent set of axioms;
the null clause follows. In either case, the search strategy can be

set up to halt when breakdown occurs, but the results are largely mean-
ingless. A noncovering and dependency graph are incompatible relative
to any environment. One or both must be externally inconsistent.

One important property of dependency-graph models is that a cover-
ing which only provides information about a single proposition is guar-
anteed to be a E covering. Dependency graphs were carefully defined to
prevent unilateral exclusions of confidence values from propositions.
The significance of this will become apparent when dependency-graph
models of evidential support are explored in the next chapter.

An externally consistent model still may be largely uninformative.
External consistency only guarantees that a model does not contradict
its environment. Clearly a model, that never makes any predictions
other than reaffirming that each proposition is to be assigned some
confidence out of the possible range of confidences, is always correct,
but uninformative. To some degree all models of real-world situations
are merely approximations of their environments; infinite precision
cannot be expected. Imprecision is an inherent nemesis of the modeling

process and, paradoxically, also its salvation.

Approximations can be found at several levels in dependency-graph
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models. To begin with, dependency graphs are defined as approximations
of underlying dependency relations. The assumed dependency relations,
in turn, approximate the environments they model. Finally, the cover-
ings allow confidence assignments to be specified with varying degrees
of precision. Although these approximations lead to less precise pre-
dictions, they also allow available partial information to be gainfully
employed. A truthful set of partial statements leads to truthful par-
tial conclusions; a false set of precise statements leads to useless
contradiction. Since partial knowledge is the rule when modeling any
real-world situation, it is imperative that any inference mechanism, on
which such models are to be based, be capable of performing inexact
reasoning from incomplete information. External consistency can only
be achieved within a modeling environment tolerant of imprecision, one
that does not demand overstatement of what is known. Dependency-graph
models provide such an environment without a loss of logical consis-
tency. Thus, model failures are less likely to occur and are never

attributable to internal inconsistencies.

In general, achieving external consistency remains an open problem.

We have not described how externally consistent dependency-graph models

can be constructed, nor have we described how, when given such a model,

we could reason from confidence information that contradicts that model.

Although the theory of dependency-graph models makes no statements
about how to achieve external consistency for any particular class of
environmental situations, the freedom to express partial information

within dependency-graph models makes them a suitable host for a mathe-
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matical theory of evidential reasoning that does describe how external
consistency is achieved within this limited context. The next chapter

explores this application in detail.



CHAPTER VI
DEPENDENCY-GRAPH MODELS OF EVIDENTIAL SUPPORT

Frequently, the situations of interest in artificial intelligence
applications are evidential. Knowledge sources operating over an en-
vironment extract bodies of evidence that attribute degrees of support,
not truth or falsity, to selected propositions. In general, these
knowledge sources cannot provide the exact degree of support that should
be accorded each proposition, but rather provide partial information
prone to occasional errors. To counter the fallibility of these knowl-
edge sources, bodies of evidence from several knowledge sources with
distinct perspectives on the environment often need to be pooled; the
consensus of several independent opinions are generally more reliable
than any single one. This scenario is particularly evident in those
applications involving perceptual reasoning and situation assessment.

A mathematical theory of evidence by Glenn Shafer [Shafer 1976]
provides the appropriate foundation for the construction of dependency-
graph models of evidential support. These are a subset of the M: de-
pendency-graph models (i.e., those models consisting of G: dependency
graphs, 6+ coverings, and E: inference engines). Shafer's theory dic-
tates the appropriate D: dependency relations and C+ coverings for
representing the impact of a body of evidence on a set of propositions.
Dempster's rule of combination [Dempster 1976, 1968], an integral part
of Shafer's theory, is a rule for pooling distinct bodies of evidence.

The information needed for its application is embodied within the de-
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pendency-graph models constructed in accordance with Shafer's theory.

Y Thereby, dependency-graph models of evidential support provide an inte-

grated framework for the combination and extrapolation of evidential

] information in a way that is both sound and amenable to mechanization.
The next few sections of this chapter introduce Shafer's theory of

] evidence and describe how dependency-graph models are constructed in

a accordance with it. This is followed by an introduction to Dempster's

rule of combination and its application with respect to dependency-
graph models of evidential support. This chapter closes with some ex-

amples.

A Mathematical Theory of Evidence

Descriptions of evidential impact. Shafer's theory of evidence begins

% with the familiar idea of using a number between zero and one to indi-
cate the degree of support a body of evidence provides for a proposi-

g tion.

% 0 < SPT[p] =< 1. (6.1)

However, Shafer maintains that an adequate summary of the impact of a

body of evidence on a proposition also must include how well the nega-

tion of that proposition is supported, i.e., the dubiety of the propo-
sition.

SPT(p] = DBT[p] . (6.2)
Unlike the Bayesian theory, the support for a proposition and the sup-

port for its negation are not required to sum to one; their sum is

i
%

merely bounded by one.

| Y] sy
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sPT(p] + SPT[p]
i.e., SPT[p] + DBT[p]

IA

]a
(6.3)

IN

1.

This is the key to the representation of ignorance. When there is
1ittle evidence bearing on a proposition, frank agnosticism is ex-
pressed by according both that proposition and its negation very low
degrees of support, zero if the evidence has no bearinj whatsoever on

the proposition.

State of Ignorance: SPT[p] = DBT[p] = O. (6.4)

Consider the difficulty of expressing ignorance within the Bayesian
framework. Suppose that for a given situation we have two propositions
P and Pos and we know that exactly one of these is true, but we have
no idea which one. The usual technique is to set the probability of Py
61, Pos and 62 all to .5; thus all of the propositions are equally
likely. However, what if py can be more finely described in terms of
propositions p]’1 and p1,2, exactly one of which is true if and only if
P is true? The Bayesian theory does not allow us to assign .5 to all
of these propositions. If Py and p, are to remain at .5, then the sum
of p1,] and p]’2 must be .5. So we might assign them each .25. But
now pz(at..S) is twice as likely as P11 (at .25) and 2/3 as likely as
61’] (at .75). An alternative approach might be to assign 1/3 to each
of the propositions P1,1° p]’z, and Pys but then none of these proposi-
tions are as likely as their negations (at 2/3) or P (at 2/3). How
can one conclude from no information that some things are more 1ikely

than others? The problem is that the Bayesian theory does not dis-
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tinguish between disbelief and the absence of belief. Any belief not
attributed to a proposition is automatically attributed to its negation.
Within Shafer's theory the support and dubiety of all of these proposi-
tions can be zero, favoring no one proposition over any other.

One final measure for the expression of evidential impact remains,

plausibility. A proposition is plausible to the extent that one fails

to doubt it, which is the amount dubiety differs from one.

PLS[p] = 1 - DBT[p],

(6.5)

1 - SPT[p].

Clearly support, dubiety, and plausibility all convey the same informa-

tion.

SPT .
T3 £ R RS ) ’"]
0

PLS _ DBT(p] .
k [p] >]< SPTLgJ S|

Thus, a summary of the impact of a body of evidence on a proposition
can be expressed in several equivalent ways. But a complete summary
must include at least two values, one from each of the following two

sets:
{sPT[p],DBT[p],PLS[P]},

{SPT[p],DBT[p],PLS[pP]}.

Frames of discernment. The remainder of Shafer's theory is most easily

introduced utilizing the familiar formalism whereby propositions are

represented as subsets of a given set, here referred to as the frame of
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discernment or 6. When a proposition corresponds to a subsét of a
frame of discernment, that frame is said to discern that proposition.
If the task is to determine the true value of some variable v, then 6
js the set of all the possible values for that variable and the propo-
sitions of interest are precisely those of the form , "The true value
of v is in p," where p is a subset of 8. Thus, the propositions of
interest are in correspondence with the subsets of 6. For example, if
the task were character recognition, the frame of discernment would be
the set of possible characters and the propositions of interest would
correspond to subsets of those characters. The proposition, "The char-
acter has two parallel vertical line-segments," might correspond to the
set {H,M,N}. The primary advantage of this formalism is that it trans-
lates the logical notions of conjunction, disjunction, implication, and
negation into the more gfaphic set-theoretic notions of intersection,

union, inclusion, and complementation.

The interdependence of evidential support. The interdependence of evi-

dential support relative to a frame of discernment is based on two as-

sumptions:

1. The chosen frame of discernment contains the true value of
the variable of interest;

2. Any support committed to a proposition is thereby committed
to any other proposition it implies.

The first assumption dictates that the proposition corresponding to the
frame of discernment always receives full support, and its negation, no

support.
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SPT[e]

n

T,
- (6.6)
DBT[6] = SPT[e]

SPT[¢] = O.

The second assumption dictates that any support committed to one sub-
set of the frame of discernment is thereby committed to any subset con-
taining it. One proposition implies another if it is a subset of that
proposition in the frame of discernment. Of the total support commited
to a given proposition p relative to a frame of discernment, some may
be committed to one or more proper subsets of p, while the rest is com-

mitted exactly to p--to p and to no smaller subset.

SPTlpyu...up T2 = (-1 s 0 p)1. (6.7)
J<{1,...,n} jed
JF o

Let us explain this inequality with a descriptive example. Ex-
panding expression (6.7) for the case where n = 3, we see that it en-
deavors to count the support given each portion of the frame of dis-
cernment in (p]UPZlJDB) exactly once: first summing across the subsets
Py Pps P3s including their overlapping portions more than once; then
excluding these overlapping portions (p]npz), (p]np3), and (pznp3);
finally adding back the overlapping portion excluded once too often in

the last step (p]np2 np3).
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(6.8)
)
SPT[p1u Py U p3] >
9
SPT[P1]+SPT[P21+SPT[P3]
.
9
-SPT[p1r1p2]-SPT[p1r1p3]
-SPT[pzrwa]
9
. +SPT[pyn P npal.
# 17 P27 P3

Expression (6.8) is an inequality since there may be some support for
(p]u Py U p3) that is not attributable to any smaller subset.

An alternative view of evidential support focuses on the measure
of direct support a body. of evidence provides each proposition, exclud-
ing any support that evidence might indirectly provide. This measure,
called a proposition's basic probability mass, is understood to be the
support committed exactly to a proposition, not the total support com-

mitted to it. A mass function is defined by a support function.

MASS[p]l = ¢ (-1)“’“’1'l sPT(p,;]- (6.9)
pif.p
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A mass function provides exactly the same information as a sup-
port function: the support for a proposition being equal to the sum of

the mass attributed it or any of its subsets.

SPT{pl = ¢ MASS[pi] (6.10)
piip

The total mass distributed over the frame of discernment is always
equal to one. This is obvious since all propositions are subsets of
the frame of discernment and the frame of discernment always receives
full (unit) support. From this it is clear that the mass assigned the
null set is identically zero. Thus, a mass function partitions a unit
of support among the subsets of 6, assigning to each subset p that por-

tion committed to p and to nothing smaller.

MASS[¢] = 0; (6.11)

g MASS[p] = 1.
psé
Intuitively, mass is attributed to the most precise propositions

a body of evidence supports. If a portion of mass is attributed to a
proposition, it represents a minimal commitment to that proposition,
and all of the propositions it implies. Additional mass suspended
above that proposition, at propositions that imply neither it nor its
negation, represents a potential commitment. This mass neither sup-
ports nor denies that proposition at present, but might later contrib-
ute either way based on additional information. The amount of mass so

suspended above a proposition accounts for the difference between its
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support and plausibility, the Tatitude remaining in that proposition's
probability. Thus, mass associated with the disjunction of Py and Py
represents potential commitments to P and to Py that are not yet real-
jzed, and an immediate commitment to the proposition (p]V’pz) and all
that it implies. Mass directly attributed to & is noncommittal with
respect to all of the propositions that 6 discerns. It provides an
equal potential for each and represents the degree to which the evi-
dence fails to determine anything beyond the initial assumption that o
holds.

The impact of a body of evidence on a set of propositions dis-
cerned by a frame of discernment can be described by a support function
or a mass function, each being a notational variant of the other. A
few examples follow.

If nothing is known about the propositions discerned by a frame of

discernment, complete ignorance is expressed by the vacuous support

function. It supports no propositions other than the frame of discern-

ment. The entire unit of mass is assigned to the frame of discernment.

0, p; # o 0, p; #
SPT[pi] = MASS[pi] =

1, P; = 9. 1, Py = 8.

A simple support function distributes its mass between the frame

of discernment and one other proposition (e.g., p1). This represents

the situation where a body of evidence points precisely and unambiguous-

pasn pemm R g peem  peem e M ™ ™™
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ly to a single proposition. The mass attributed to this proposition
(e.q., m]) reflects the strength of the evidence. All propositions

implied by this one receive an equal measure of support; all other pro-

positions receive no support.

0’p]£pi 0,P17‘P]sp17‘e
SPT[p.] = Ms Py cp; ?o MASS[p,] = ms P = Py
1, P; = 8. 1 - mys Py = 8.

In general, the basic support mass can be distributed over several
propositions (e.qg., my and m, over p, and pz). This situation occurs

when the evidence is ambigquous, pointing not to a single proposition,

but to several.

0. Py £P4: Py £
Mys Py = Pys Py £ Py
SPTlp;1 = ¢ my. Py £Ps Py < Py
My ¥ My Py SPy» Py S Py Py 7 8

0,pi#p],pi#pz,pi#e

My, P; = P

MASS[p.] = LR
22 Py = Py

1 - my - My, Py = 8.
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However, if this represents an evidential situation, Shafer maintains

that the following condition must hold:

MASS[ U p] > 0. | (6.12)
MASS[p]> 0
&pcé

This guarantees that all partially supported propositions have unequal
support and plausibility assignments, reflecting the indeterminant na-
ture of evidential information. If this condition does not hold, the
function does not represent an evidential situation since it determines
the confidences of some propositions with seemingly infinite precision.

In that case it is called a pseudo-support function.

A11 Bayesian functions are pseudo-support functions (except in the
trivial case where every proposition or its negation receives unit sup-
port). The Bayesian theory dictates that any support not attributed to
a proposition is necessarily attributed to its negation. Therefore,

the support and plausibility of every proposition are equal.
SPT[p] + SPT[p] = 1; (6.13)
SPT[p] = 1 - SPT[p];
SPT(p] = PLS[p].

This means that the entire unit of mass is distributed exclusively over

the unit subsets of the frame of discernment.

r MASS[{q}] = 1. (6.14)
Qqeb
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Every proposition's probability is precisely determined with seemingly

infinite precision which is the kind of information that could only be

provided by an onmipotent source. Otherwise there would have to be
some admitted possibility of error; that is, there would have to be some
factors associated with these estimates by which support and plausibil-
ity would differ.

Although Shafer rejects pseudo-support functions as being repre-
sentative of evidential situations, his general theory of belief takes
these into account. When perfect information is available (e.g., a
Bayesian chance function), it can be quite gainfully employed. Depen-
dency-graph models of evidential support (the models proposed in the

next few sections of this chapter) preserve this ability of Shafer's

general theory.

MI Models of Evidential Support

The freedom to express partial information within C+ coverings
and G: dependency graphs makes them a suitable host for Shafer's theory.
This section describes the transition from the adoption of Shafer's
theory to the adoption of a subset of MI dependency-graph models as
models of evidential support. Throughout this section and the next the
reader might wish to refer to the examples in the final section of this

chapter (pp. 140-188).

. + . .
Descriptions of evidential impact as C coverings. According to

Shafer's theory, the impact of a body of evidence on a proposition is

summarized by its support and plausibility values. These can be inter-
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preted as the lower and upper bounds delimiting the possible probabili- -
ties of a propositionS: the lower bound corresponding to Shafer's de-

gree of support and the upper bound, Shafer's degree of plausibility.

Thus, the impact of a body of evidence on a set of propositions can be
+ . . A .
represented as a C covering that assigns each proposition a subinter-

val of the unit interval [0,1].

_ ot
For ¢, o [pi],

MIN[c.] = SPT[p;],
MAX[c,] = PLS[p; ],
c = {c_‘l | SPT[p‘i] < C’li < PLS[pi]s C;' e C},

[sPTLp. 1, PLS(P; 11-

——(sPTlp, ], PLS[p,1I——1
1

The wider these subintervals are, the smaller the impact of the evi-
dence, and the less known. In the extreme case of complete ignorance,
where there is no support for any propositions other than the frame of
discernment, the vacuous C+ covering applies. When a proposition's
probability is known with precision (i.e., its support and plausibility
values are equal), it is properly assigned a degenerate subinterval

collapsed about that probability

5This is the interpretation introduced by Dempster [Dempster 19761,
later adapted by Shafer.
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The interdependence of evidential support as GI dependency graphs.

When propositions are interpreted as subsets of a frame of discernment,
support relationships (by expression 6.7) are in direct (one-to-one) cor-
respondence with set-theoretic relationships. In turn, set-theoretic
relationships (e.g., inclusion, intersection, union, and complementa-
tion) have direct logical correlates (e.g., implication, conjunction,
disjunction, and negation). Thus, any set-theoretic or logical rela-
tionship is directly translatable into a support relationship. In
particular, any complete set of primitive set-theoretic or logical re-
lationships translates into a complete set of primitive support rela-
tionships, from which GI dependency graphs, representing the interde-
pendence of evidential support, can be constructed. Given a consistent
set-theoretic or logical description of the relationships among a set
of propositions, a consistent support relation follows.

Such a set of support relationships are here defined. Each of
these definitions begin with two statements of the relationship being
defined: the first is a logical statement and the second is a set-
theoretic statement corresponding to the accompanying Venn diagram.
This is followed by a drawing of the relationship's graphical repre-

sentation (superset nodes appearing above subset nodes) and the defi-

nitions of its mappings. Each mapping is defined by two expressions:

the first with a domain of continuous subintervals of [0,1], the lower

and upper bounds corresponding to Shafer's measures of support and

plausibility; the second with a domain of arbitrary subsets of confi-

dence values from [0,1]. These latter definitions appeared in some of
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the previous examples (Figures 23 and 25) and are direct generaliza-
tions of the interval based mappings. Each definition is immediately
followed by proofs that the intervals its mappings predict are true
bounds on the intervals justified by Shafer's theory. These proofs
rely on set theory and the previously introduced expressions of Shafer's

theory (referenced by parenthetical expression numbers).
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DEFINITION 21. IF support relationships.

IMPLICATION: Py * Py-

INCLUSION: P S Pp-

IF: > [cq] =4 [SPTLR, 1,11,
= def {célci $Cys C€gels cyecyl.
+ [cgl =4e¢ [0,PLS[Py1I,
= def {c.ilc]' scys 6eCs checyl. O
SPTCpg] = SPTLpy u (py - Py)] :py = P

"

v

SPT[p,] + SPTlpy - py] - SPT[6]

[\

SPT[pl] + SPT[p0 - p1] :(6.6)

[\

SPTLpy] :(6.1)

PLS[pO] <1 :(6.1)&(6.5).

- Therefore, +[~c1]9_[SPT[pO],PLS[pO]], where ¢, = [SPT[p]],PLS[pT]]. a
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SPT[p1] 20 :(6.1)

1]

PLS(p,] = 1 - SPT[R;1 :(6.5)
1 - SPT[R,] :(py < Py)&(SPT(Ry] s SPT(R,1)

PLS[pO] :(6.5)

A

A

Therefore, +[c0] 3_[SPT[p]],PLS[p1]], where ¢ = [SPT[pO],PLS[po]]. 0

- - - - o - - - - - - - - - =P WP M = S B M > D s = D D WD = =P W WS S D WD D MRS M emem i e mEm S| SS S

1
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DEFINITION 22. IFF support relationships.

BIIMPLICATION: pq + py.

EQUALITY: Py = Py

IFF: A  [cq] =4o¢ [PTp;15PLSIR; 1],
- “~

) €2

—--——-————-----_----—-_-..-—-----—-————--—---—-------—---—--——----—--—--

wv
O
—
—
o
—
(1]
(2]
©
—
—
©
—
o
.
]
©

©
—~
(%)
m
o
—
"
-0
—
w
m~
©
(]
o
]
o

Therefore, « [c.] = [SPT[pj],PLS[pj]], where ¢, = [SPT[pi],PLS[pi]],
‘i,jE{]Qz}’i#\j‘ D
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DEFINITION 23. NOT support relationships.

0
NEGATION: ~ Py ** Po- Py P,
COMPLEMENTATION: E] =Py = 8 - Py
NOT: ~ A~ ~ [ci] = def [I-PLS[pi]J-SPT[pi]],

@ @ =def (651 ¢y = 1-5s cjecyd. O

SPTlp.] = DBT[ﬁi] :(6.2)

= DBT[pj] Py = Py
=

PLS[p;] :(6.5)

PLSCp;1 = 1 - DBT(p;] :(6.5)
sPT(p;] :(6.2)

SPT[pj] P,

it ]
) [}

Therefore, ~[Ci] = [SPT[pj],PLS[pj]], where c; = [SPT[pi],PLS[pi]],

i,jé{],Z},ifj. U

----—---——--—--——--—-_-—'—---—----——-—--————----—-----—-—-—---—----—--—-
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DEFINITION 24. OR support relationships.

DISJUNCTION; py <> V  p,. o
1<isn

UNION: p,= U p..
0 1<isn |
OR: V[c],...,cn]
=jer [ MAX [SPT(p.1], MIN[1, = PLS[p.]]],
1<isn 1<i<n

= {ca| MAX [c!]lscps I ¢, cheC,
def 70 lsisn ! 0 1sisn | 0

! . <is<n}.
CieCys 1<isn}

VECO""’Ci-l’ci+1"°"cn]

“er: (MAX[0,SPT[py] - = PLS[p,11,PLS[py11,

1sjsn
i#]
= {ct|(ch - £ ct)sciscl, cieC,
def " "i 0 1<j<n J i~ "0 7i
i#J
I cjeCyo O<jsn, i # j}. g
' SPT[po] > SPT[pi], 1<i<n :(pi g_po)&(IF)

> MAX [SPT[pi]]
l 1<isn

PLS{p,] = PLS[ U p.] :ph = U p,
0 T<isn 1 0 1<i<n 1

< T PLS[pi] :1 2 SPT[a v b] :(6.1)
1<i<n

i
i
i
E
!
1
|
1
i
|
,
:
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:1-SPT[a] = SPT[a v b] - sPT[a]
:pPLS[a] = SPT[a v b] - SPT[a] :(6.5)

:SPT[a u b] = SPT[a]+ SPT(b] - SPT[a n b]
:(6.7)

:-SPT[a n B] < SPT[a v b] - SPT[a] - SPT[bH]
:-SPT[a n b] s PLS[a] - SPT[L] :(above)
:1-SPT[a n b] < PLS[a]+ 1-SPT[b]
:PLS[a v b] < PLS[a]+ PLS[b]

PLS[po] <1 :(6.1)&(6.5)

PLS[py] < MIN(1, = PLS(p,]]
1<izn
Therefore, V[c],...,c 1> [SPT[po] PLS[po]], where c; [SPT[P 1
PLS[pJ]] Isasn 0

-----------------------------------------------------------------------

SPT[p J=2SPT[ U p ]-PLSL U p.]
]San 1<j<n J
i#]

:SPT[a] = SPT[a n B] :(a < a n DB)&(IF)
SPT((a v b) n b]

v

v

SPT[a u b]+ SPT[b] - SPT(e]
SPT[a v b]+SPT[B]-1 :(6.6)
SPT[a v b] - PLS[b] :(6.5)

v

\'%

v

sPT[a v b]+SPT[B] - SPT[(a ¢ b) u b] :6.7)

-

po—— r— — pom—— | v

i

-

Ve pm— gy pees pe—
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2

2 SPT[pO} -] > PLS[pj] :(above)
<jsn
i#d

SPT(p;] = MAX[0,SPT[py] - = PLS[p,]]

]
% SPTlp,1 20 :(6.1)
d

<jsn
i#d
a PLS[p;] < PLS[py] :(p; < py)&(IF)
g‘ Therefore, V[CO""’Ci-]’Ci+1""’Cn] 3_[SPT[pi],PLS[pi]], 1<is<n,

where c; = [SPT[pj],PLS[pj]], 0<js<n. O

- - - - - . = - " " " P D D D D D m D En S e e e - - S T . WD G W W S e W Tm e -
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DEFINITION 25. AND support relationships.

CONJUNCTION: Py < A Py
1<i<n

INTERSECTION: Po = N pi.
1<izn

AND: A[c],...,cn]

=, [MAX[0,1+ ¢ (spT(p.1-1)1,
def 1<i<n p1] ]

MIN [PLSCp,11],
1<i<n

= fch| 1+ £ (ci-1)=cysMIN [c!], cieC,
def™"0 1<izn ! 0 1sisn 1 0

! ., 1<isn}.
CieCys isn} |

A [°0""’ci-1’Ci+1""’cn]

=d8f[SPT[p0] ’
MIN[1,PLS[pgl- = (spT(p.1-1)11,
1<j<sn J
itJ
= dct|chschsch- & (e3-1),
def " "i 0 i 0 1<jsn
i#d

op C, c! ., 0<jsn, i i)}.
;€ CJeCJ J £ 3. O

.———--——-—------—--—-—--——-——-———----—--————-_—-——-——-—--------_----—-—

SPT[pOJ =SPTL n pi] :p0 = N P;
1<i<n 1si<n

v

1+ (SPT[pi] - 1)
1<isn

.PLS[a v b] < PLS[a]+PLS[b] :(OR)

—
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g :1-SPT[a n b] < (1-SPT[a]) + (1-SPT[b])
:(6.5)
F‘ :SPT{a n b] 2 1+(SPT[a]-1) + (SPT[b]-1)
E SPT[po] >0 :(6.1)
] SPTlpy] = MAX[O,1 + 1 (SPT[p,] - 1)]
E 1<is<n
g] PLS[pO] < PLS[pi], 1<izn :(p0 s_pi)&(IF)

PLS[po] ]MIN [PLS[p 1]
gl i<n

Therefore, A[cl,...,c ]2 [SPT[po] PLS{po]] where c; [SPT[p 1,

PLS[pj]], 1<jsn. O

gl SPT(p,] 2 SPTp,] :(pg < p;)&(IF)

PLSCp, 1 <PLS[ pJ] - (SPTL n p.]-1)
?’ 1<jsn 1<jsn J
g i#]

:SPT[a] = SPT[a v B]-PLS[B] :(OR)

:1-PLS[a] = 1-PLS[a n b]-1+SPT[b] :(6.5)
:PLS[a] < PLS[a n b]-(SPT[b]-1)
PLS[pg] - (SPTL 0 p;1-1) :pg =

1<jsn
i#]j

P

TS B
In

1

-t M

N
jsn
i#]

ﬂ??'
IA

PLS[pO]- 1M+ z (SPT[pj]-l)-l) : (above)
1<jsn
i#]

GLasing

b

|

2
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< PLS[po] -z (SPT[pj]-])

1<j<n
7]

PLS[pi] <1 :(6.1)&(6.5)

PLS[pi] < MIN[T,PLS[po] = X (SPT[pj]~1)]

1<j<n
7]

Therefore, A[CO""’C1-1’Ci+1""’cn] 3_[SPT[pi],PLS[pi]], 1<i<n,

where c; = [SPT[pj],PLS[pj]], O<j<n. O
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DEFINITION 26. XOR support relationships.

EXCLUSIVE DISJUNCTION:

(pg =V pyd A7( V. (pyap;)).

S =3 1=3

1<izn 1si,j<n
i#J
DISJOINT UNION:
Pp= U P:ssd= U (p:np,).
gl 0 1<isn | 1<i,jsn 1 J
i#]

|

XOR: XOR[c1,...,cn]

=

= [ © SPT[p,], MIN[1, & PLS[p.1]],
def 1<i<n 1 1<i<n !

RER L

= {cilch= & ¢!, cleC, ciec,, 1sisn}.
def™"0 " "0 1sisn 0 v

xor(co,...,ci_],ci+],...,cn]

=

=, [MAX[0, SPT[p,] - £ PLS(p.]],
def 0 1<j=n J
i#]

%l

PLS[p,] g L SPTlp;ll,
<jsn
i#J

3 = fecifel=cy- T ci,cieC,ciec,,

2 def "i ' 7i 0 1<j<n i j I
i#j

%’ 0<jsn, i # j}. O

- n D > WD W D WD T e D . P G W SR D D R R R W Y D G D D R L =S D D D R SN D WP TP D T b G R D D AP R Ch TR WP R e e e A W
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= SPTL U . : = U p.
SPTLrg) = SPIL, 4711 0 iy
> ¢ SPT[p.] - ¢ SPT[pi n pj] + ... :(6.7)
1<izn 1 1<1,j<n
i#J

> I SPT[pi] -z SPT[¢] + --- P, nP; =2¢
1<is<n

> T SPT[pi] :(6.6)
1<isn

PLS[pO] < MIN[1, PLS[pi]] : (OR)

T<izn

Therefore, XOR[cq,...,c ]2 [SPT[po],PLS[PO]], where ¢ = [SPT[pj],A
PLS[pj]], 1<j<n. O

SPT(p.] = MAX[O,SPT[pO] B PLS[pj]] :(OR)
! T<jsn
i#]
PLS[pi] =1 - SPT[ﬁi] :(6.5)
= - p U .] p. = pn u U p;
1 SPT[pO Ulsjsan ! 0 1<j<n J
i#] 7]

IA

5.1- 1+SPT[pn U p.] :(6.7)
1 - sPT(pyl SPT[lsgsan] Py 1egen
i#] i#]
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< PLS[py] - SPTL U p.] + SPT[4]
1<j<n J
i#j
(6=py n U p.)&(6.5)
1<j<n
i#j
< PLS[po] -SPTL U p.] :(6.6)
1<j<n
i#j
< PLS[po] - SPT[pj] : (above)

1<jsn
i#]

Therefore, xor[co,...,ci_],ci+],...,cn] 3_[SPT[p1],PLS[pi]], 1<isn,

where c; = [SPT[pj],PLS[pj]], O<jsn. O
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EXCLUSION: ( V p.) a~( V  (p; A Ps)).
Tsisn l<i,jsn 'Y N O

i#] n
PARTITION: 6 = U p., ¢ = U (pynp.).
1<isn 1<1,jsn vl
i#d
X: x[c],...,ci_],c1+],...,cn],

=def[MAX[0, 1- ¢ PLS[pj]],

1<j=n
i#]
1- ¢ SPT(p.1],
1<j<n J
i#]
= fct]ci=1- ¢ c;, c:eC,
def" i i 15jsn i
iJ

'ecC., 1<j<n, i i}.
cJe j J # 3. 0

--------—-—--‘—------—--------—————-——----—----—---——_-—-—-—---—-------

x[c1,...,ci_1,ci+],...,cn]

xor[[},]],c1,...,ci_],ci+1,...,cn]

(e = U pi)’ (sPT(8] = PLS[8] = 1):(6.6), &(XOR)
I<sisn &

Therefore, x[c1,...,ci_1,ci+1,...,cn] 3_[SPT[pi],PLS[Pi]]s 1<is<n,

where c = [SPT[pj],PLS[pj]], 1<j<n. O

---—-—--—------—---—--—-—————---—---—-———-—-—-------——_--------—----—--
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The correspondence among set-theory, propositional logic, and
Shafer's theory eases the transition from an evidential domain to its
representation as a GI dependency graph. A dependency graph can be con-
structed using familiar set-theoretic or logical relationships as the
base components. The appropriate support mappings then can be over-
laid, resulting in a G: dependency graph representing evidential sup-
port. If a set-theoretic description of the interrelationships among
a set of propositions is internally consistent (i.e., the propositions
can be identified, relative to some frame of discernment, with the
stated set-theoretic relationships), then the corresponding evidential
dependency-graph is guaranteed to be internally consistent. This fol-
Tows since all of the support relationships are specializations of the
same dependency-relation schemata, which is defined by expressions 6.6
and 6.7, and proven by the previous dem’vations.5 The consistency con-
ditions of dependency graphs guarantee that redundant descriptions are
compatible, a condition that is obviously satisfied when there is a
single relational statement from which they all follow. So long as the
set-theoretic information does not interject inconsistencies into these

specializations, they are consistent.

Constructing MI models of evidential support. The construction of an

M: model of evidential support might begin with an assessment of the

5The other expressions used in those derivations either follow
directly from 6.6 and 6.7 (e.g., 6.1), or simply rename support (e.g.,
6.2 and 6.5).
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environment to determine the propositions of interest. These should
include both those propositions whose truthfulness is of ultimate in-
terest, and those that the available knowledge sources can make state-
ments about. If each knowledge source responds to a different feature
of the environment, each might require a distinct set of propositions
relative to the feature space it explores. Additionally, some inter-
mediate propositions might be included to better, or more easily, de-
scribe the interdependencies that exist among these propositions of
primary interest.

The next step is to determine and represent the interrelationships
among these propositions. This might be accomplished by the following
steps: relating all of the propositions to a frame of discernment; dis-
covering their set-theoretic relationships relative to this frame; de-
scribing these relationships in terms of set-theoretic primitives;
translating these into their corresponding support primitives; and
finally, representing all as a G: dependency graph.

As usual, the more fully the interrelationships of the proposi-
tions are described in a G: dependency graph, the better the M: model.
For example, if a set of propositions are related by an OR support re-
lationship in a model, where an XOR would be appropriate, the model may
not be as informative as it might. Either way the predictions are con-

sistent; it is their precision, not their accuracy, that is in question.

+ . .
Inferential reasoning from M models of evidential support. As pre-

. . . + . At
‘viously described, knowledge sources communicate with M models via C
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coverings. These are coverings that assign each proposition a set of
confidence values bounding a set assigned by a C+ covering. In the
case of M: models of evidential support, é+ coverings assign subinter-
vals of [0,1], the lower bound serving as a lower limit on the support
accorded a proposition (thereby a lower limit on its plausibility), the

upper bound serving as an upper limit on its plausibility (thereby an

upper limit on its support).

SPT[p] = SPT[p] < PLS[p] < PLS[p], (6.15)
[SPT[p1.PLS[pI] = C'[p],
[SPT[p1.PLS[p]] = C'p].

o+ . . . . .
In other words, a C covering for an evidential model is a conservative

estimate of the impact of a body of evidence. Support may be under-
stated, but not overstated. And from this it follows that plausibility

may be overstated, but not understated.

SPT[p] < SPT[p]; (6.16)
1 - PLS[p] < 1 - PLS[p];
PLS[p] < PLS[p].

Given a 6+ covering which represents the estimated impact of a
+
body of evidence discovered by a knowledge source, an E, inference
. + . .
engine can refine this inofrmation to a C covering (Figure 25). The

accuracy of these predictions depends on the accuracy of the knowledge

“source and the accuracy of the dependency graph. In particular, the

description of the environment given by the dependency graph and the
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understanding of the environment by the knowledge source need to be
consistent. As previously discussed, the absence of a consistenf view
of the environment can lead to model breakdown. This condition occurs
when a knowledge source injects the model with a noncovering.

A partial solution to this problem is for a knowledge source to be
more conservative in its estimates, reducing the possibility of contra-
diction. But the problem remains.

Clearly, for the best results, a knowledge source needs to be con-
sistent with its dependency graph, and both must be consistent with the
environment they model. However, if there are only minor inconsisten-
cies, complete model breakdown can be avoided and relatively satisfac-
tory predictions made, if the knowledge source expresses its informa-
tion in terms of mass (instead of support and plausibility). That is,
the model can be guaranteed to produce well-formed C+ coverings through
a slightly different inference technique, approximating those cover-
ings that would follow if the knowledge source and model were mutually
consistent. As will be seen in the next section, mass is also the bre-
ferred means of expression when combining information from several
knowledge sources.

Given a mass function, there are three possibilities: vacuous sup-
port, simple support, or ambiguous support (pp. 102-103). Vacuous sup-
port and simple support lead directly to 6+ coverings, guaranteeing that
the standard inference technique can be applied without fear of model
breakdown. In the case of vacuous support, the full unit of mass is

attributed to the frame of discernment, it being the only proposition
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with non-zero support. This Situation is straightforwardly represented
by the vacuous C+ cdvering, a fixed point for any EI inference engine.

For simple support, the unit of mass is distributed over one pro-
position p and (possibly) the frame of discernment. This is represent-
ed by a l covering that associates [MASS[p],1] with p and the full
unit interval with all other propositions. This follows since the sup-
port for p is equal to the mass attributed it, and it is completely
plausible. Application of an EI inference engine (potentially) in-
Creases the support of those propositions implied by p to MASS[p], and
decreases the plausibility of those propositions whose negations are
implied by p to 1 - MASS[p]. This follows from expression 6.7 and the
assumption that the dependency graph is set-theoretically consistent
i.e., all propositions and their negations are nonintersecting.

When support is ambiguous because mass is distributed across sev-
eral (focal) propositions, the support attributed each proposition is
equal to the sum of the mass attributed it and any propositions that
imply it (expréssfon 6.10). Consider a mass function with focal propo-
sitions pT,...,pn and (possibly) the frame of discernment. For each
proposition P;» é+ covering can be initialized and refined to a C+
covering, just as if p; were the focus of a simple support function at-
tributing MASS[pi] to p; and 1 - MASS[pij to the frame of discernment.
Doing so for each Ps produces n C+ coverings, each describing the di-
rect and indirect support provided by a portion of the mass. The sup-

port committed to any proposition, based on all of the mass, is the

total support attributed it in these n coverings. Remembering that the
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support for the negation of a proposition is the amount its plausibility
differs from ohe, these dubiety measures can be similarly summed to
determine the total support for the negation of each proposition, and
then translated back into plausibility measures. Since no single por-
tion of mass can provide simultaneous support for a proposition and its
negation (assuming that the dependency graph is set-theoretically con-
sistent and the previously described technique for simple support has
been employed), the total support for a proposition and its negation is
bounded by one, assuring that the support for any proposition is less
than or equal to its plausibility. Thus, model breakdown cannot occur!
And from expression 6.10 it follows that the result is always a E+ cov-
ering, and depending on the G: graph, it may be a C+ covering. Either
way, one final application of a complete EI inference engine ensures a
¢t covering (Figure 25).

Although this technique has the effect of smoothing over inconsis-
tencies, it does not eliminate them. It merely relocates their i1l ef-
fects in the interface between the model and the knowledge source.
Since the inconsistencies are manifest externally, model breakdown is
precluded. When a knowledge source provides information, it does so in
the language of the model. If the support/plausibility dialect is uti-
lized, partial information about the knowledge source's understanding
of the interrelationships among the propositions is inadvertently com-
municated. This information is implicit. For example if the support
provided one proposition P; is greater than the plausibility provid-

ed pj, then P; must not imply pj. If that is incompatible with the
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Figure 25. An example application from a mass function.
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model (i.e., ¥ does imply pj), it is a noncovering and may lead to
mode]l breakdown. When a knowledge source provides information in the
mass dialect, no relational information is communicated. Since a mass
function makes no relational statements, it cannot refute those in the
model. The model interprets the information according to its under-
standing of the world, irrespective of the knowledge source's under-
standing. If the two are incompatible, the information is garbled dur-
ing transmission. A C+ covering is produced, but it just doesn't cor-
respond to what the knowledge source was attempting to convey. If the
differences are small, this presents no major problem. If the differ-
ences are large, the results are largely meaningless.

Before moving on to an example M: model of evidential support and
its application, the next section describes Dempster's rule of combina-

tion, a rule for pooling distinct bodies of evidence.

Pooling Distinct Bodies of Evidence

A dependency-graph model of evidential support takes a single body
of evidential information, expressed in terms of support/plausibility
or mass, and extends it through inferential reasoning. This translates
the information from those propositions the evidence directly bears
upon, to those it indirectly bears upon. If the source of this evi-
dential information is unreliable, so are the resulting predictions.
This is the typical situation in artificial intelligence applications.
The knowledge sources, being synthetic entities themselves, are unre-

1jable i.e., they are prone to occasional errors. However, individual
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inaccuracies can be overcome when multiple independent opinions are
available; one opinion is independent of another if their error likeli-
hoods are unrelated. Pooling such a set of opinions will generally re-
sult in more accurate predictions. Dempster's rule of combination pro-
vides a formal foundation for this process in the context of dependency-
graph models of evidential support. The next two sections describe

Dempster's rule and its application within this context.

Dempster's rule of combination. Dempster's rule of combination [Demp-

ster 1967, 1968; Shafer 1976] is a rule for pooling distinct bodies of
evidential information. It is most easily described in terms of mass.
Given two mass functions, representing two independent bodies of evi-
dence, Dempster's rule produces a third mass function, representing the
consensus of those disparqte opinions. It is both commutative and
associative, which leads to the c]eariy desirable property that any
number of opinions can be combined, in whatever order is most conven-
ient, and the result is guaranteed to be the same.

Mathematically, Dempster's rule is the orthogonal sum. Given two
mass functions MASS] and MASSZ, their orthogonal sum, denoted

MASS]¢MASSZ, is defined as follows:

MASS]GMASSZ[p] =N-. MASS][ai] . MASSZ[bj] (6.17)
h,Jj
ainbj=p

where N = (1 - k)-],
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k = izj MASS][ai] . MASSZ[bj],
ainbj=¢

k < 1.

A partitioned unit square depicts this computation (Figure 26).
The horizontal strips correspond to the mass MASS] attributes each of
its focal propositions; the vertical strips similarly correspond to
MASSZ. For example, a horizontal strip of measure MASS][ai] is commit-
ted to proposition a; by MASS], and a vertical strip of measure
MASSZ[bj] is committed to proposition bj by MASS,. The area of the
rectangle at the intersection of these two strips, MASS1[ai] -MASSZ[bj],
is committed to a proposition p by MASS]eMASSZ, where p is equivalent
to a; n bj‘ Several of these rectangles may be committed to that same
proposition, increasing the total area of the unit square committed to
P. This accounts for the summation in expression 6.17, leaving only
the normalization factor N to be interpreted.

It may be that propositions a; and bj are nonintersecting in the
frame of discernment. If this is the case, there is no proposition p,
equivalent to a; n bj’ with which MASS]eMASS2 can associate the measure
of mass MASS][ai]- MASSZEbj]. The sum of all such mass, denoted by k
in expression 6.17, is a measure of the conflict in the combination.

If this accounts for the entire unit square, the combination does not
exist. Otherwise, k is proportionally redistributed over those propo-

sitions in the unit square that do exist; hence the normalization fac-

tor N.




MASS][an]
MASS,[a.]
1
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measure MASS][ai] . MASSZ[bj] committed to a; n bj.

Figure 26. Depictibn of Dempster's rule as applied to two mass

functions MASS1 and MASSZ.
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Intuitively, Dempster's rule moves mass towards more specific pro-
positions commensurate with both bodies of evidence, and away from pro-
positions incompatible with either body of evidence. If both of the
mass functions are Bayesian functions (p. 104), one of which attributes
jts full unit of mass to a single proposition a and the other distri-
butes its mass over the propositions b],...,bn, then Dempster's rule
has the same effect as Bayes' rule of conditional probabilities
P(bila) [Shafer 1976]. However, when evidence cannot be expressed as
a certainty, then Dempster's rule, unlike Bayes' rule, still applies.
The only time Dempster's rule is not applicable is when the given bodies

of evidence are completely contradictory.

Multiple bodies of evidence and Mi models. Dempster's rule depends on

the initial mass functions representing the bodies of evidence to be
combined and the pairwise intersections of their focal propositions
relative to the frame of discernment. These intersections can be di-
rectly determined from the information in an M: model of evidential
support. As was previously described, a GI dependency graph represent-
ing evidential support can be interpreted in terms of set-theoretic re-
Jationships. Set intersection algorithms, over such graphical repre-
sentations of set-theoretic relationships, have been previously devel-
oped [McSkimin 1976].

The only problem is that the dependency graph may not contain

enough information to uniquely and completely determine some of these

intersections. For example, there might not be a proposition in the
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graph that corresponds to a given intersection. When this occurs,
Dempster's rule does not have the appropriate proposition with which to
associate its mass product. This could be avoided if all pairwise in-
tersections were explicitly included in the graph, along with enough
dependency information to conclusively designate them as exactly the
intersections they represent, but this seems far too stringent a re-
quirement. Instead, the effect of Dempster's rule can be approximated
by evenly distributing each mass product over those propositions in the
graph that collectively best approximate the appropriate intersection.
The approximation used includes those propositions that are mutual sub-
sets of both propositions, but are not themselves subsets of any of the
other propositions in the approximation. When no mutual subsets can be
found, the propositions are assumed to be disjoint and their mass pro-
duct attributed to k. The effect of these approximations is for Demp-
ster's rule to overzealously jump towards some conclusions, when the
graph lacks the appropriate information. If this causes a problem, the
graph can be expanded by its designer, permitting those intersections
most crucial to the model's accuracy, to be more precisely determined
by the model.

Given several distinct bodies of evidence, each expressed as a
mass function over an M: model of evidential support, Dempster's rule
can be repeatedly applied based on that model, until a single mass
function, representing the combination of all of that evidence, is pro-
duced. At that point this mass function can be fed to the model, the

inference engine applied, and a C+ covering, representing a support and
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plausibility estimate for each proposition, returned. This procedure
is guaranteed to produce such a covering, so long as the original bodies
of evidence share some common beliefs (i.e., at no time during the ap-
plication of Dempster's rule is k equal to one). When a group of
knowledge sources can be assumed to be operating independently of one

another, their results can be pooled and interpreted in this way (Fig-

ure 27).

An Example Dependency-Graph Model of
Evidential Support and Its Application

This section presents an example dependency-graph model of evi-
dential support, and demonstrates how it can be applied to make predic-
tions based on multiple sources of evidential information. The model
domain is a simple one. Although a more complex example might have
better demonstrated the sophistication of these techniques, it probably
would not have been as instructive. The chosen example concerns the
identification of convex, regular polygons based on evidential informa-
tion about their characteristic features. In particular, there are
eight nonoverlapping possible identifications: oblique kite, isoceles
kite, oblique trapezoid, isoceles trapezoid, parallelogram, rhombus,
rectangle, and square; and there are six feature spaces: the number and
relative position of equal angles, the number and relative position of
equal sides, the number of parallel sides, the equality of the diagon-
als, whether or not the diagonals intersect at right angles, and the

number of bisecting diagonals. This information is summarized in Table
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1. Six independent knowledge sources are assumed, one operating over
each of these feature spaces. The hypothetical task is the identifica-
tion of a presented polygon, based on the evidential information pro-
vided by these knowledge sources after having examined it.

Modelling begins with the determination of a frame of discernment.
The key requirement is that all of the propositions of interest be in
correspondence with its subsets. This includes those propositions of
ultimate interest (i.e., those that identify a polygon as one of the
eight generic types) and those included in the vocabularies of the
knowledge sources. For the problem at hand, a frame of discernment is
sufficient whose elements each consist of a polygonal-type paired with
a feature vector representing one possible combination of features such
a polygon could exhibit. Thus 8 is a subset of the cross product of
polygonal-types (PT), equal-angles (EA), equal-sides (ES), paraliel-
sides (PS), equal-diagonals (ED), right-diagonals (RD), and bisecting-
diagonals (BD), where each of these feature sets consists of the en-

tries found in the similarly named column of Table 1.
8 ¢ PT x EA x ES x PS x ED x RD x BD.

Every element of 6 corresponds to a row in the table. There is exactly
one element for each row, except the oblique kite and oblique trapezoid
rows. These each have four associated elements, one for each possible
combination of the listed choices for equal-angles and equal-sides.

Within the context of an oblique kite or oblique trapezoid, the equal-

angles feature is independent of the equal-sides feature (i.e., knowing
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FEATURES EQUAL EQUAL PARALLEL EQUAL RIGHT BISECTING
POLYGONS ANGLES SIDES SIDES DIAGONALS DIAGONALS DIAGONALS
0BLIQUE 0 or 0 or 0 no no 1
KITE 1 adj. pair 1 adj. pair
ISOCELES 2 opp. pairs | 2 adj. pairs | O no ‘ yes ]
KITE
0BLIQUE 0 or 0 or 1 pair no no 0
TRAPEZOID 1 adj. pair 1 adj. pair
ISOCELES 2 adj. pairs | 1 opp. pair 1 palr yes no 0
TRAPEZOQID
PARALLELOGRAM Cj 2 opp. pairs | 2 opp. pairs | 2 pairs no no 2
RHOMBUS O 2 opp. pairs | 4 2 pairs no yes 2
RECTANGLE 4 2 opp. pairs | 2 pairs yes no 2
SQUARE 4 4 2 pairs yes yes 2

Table 1. Regular convex polygons and some of their characteristic features.

F'S
w




144

one doesn't allow the other to be predicted with any greater precision),
therefore all of the combinations are included.

The next step is to construct a dependency graph interrelating the
propositions of interest with respect to this frame of discernment.
Beginning with the response propositions, there are the eight identify-
ing polygonal-types. The most important relationship among these is
that they are all nonoverlapping in 6. An X relationship over a set of
nodes, one for each element of PT, describes this. Six of these nodes
can be identified as primitive elements of 8. The other two, OKT and
OTR (i.e., oblique kite and oblique trapezoid), can be identified with
four primitive elements each. Since the number of primitive elements
is so small, they can all be represented: the six indirectly by their
associated PT nodes, the remaining eight directly. Two XOR relation-
ships, relating OKT and OTR to their identifying primitive elements,
fi11 out this representation (Figure 28). Other nodes and relation-
ships might be included. For example, some nodes representing disjunc-
tions of these polygonal-types might be added along with the appropri-
ate X, XOR, and OR relationships. In general, soO long as any addition-
a] nodes and relationships are consistent with this frame of discern-
ment, they can be included. However, no other propositions are of di-
rect interest to this hypothetical task, and thus no others are includ-

ed.
The next step is to represent the propositions in the vocabularies
of the knowledge sources. It is assumed that these include the entries

in the columns of Table 1 along with some other disjunctive proposi-
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tions. Simple hierarchies adequately represent the interrelationships
among the propositions within each knowledge source's vocabulary (Fig-
ures 29-34). This is not to say that more complex, tangled hierarchies
could not be used. For example, the three subgraphs describing various
aspects of diagonals could be interwoven as in Fiqure 35. Again, soO
long as the integrity of the underlying frame of discernment is not im-
pugned, any set of propositions and relationships can be included.

The only remaining task is to interrelate these subgraphs. For
this example it is sufficient to independently relate each of the fea-
ture subgraphs to the polygonal-type subgraph, as illustrated by Fig-
ures 36-42. This is fairly straight forward, relating the leaves of
each feature hierarchy to the nodes in the polygonal-type subgraph, ex-
cept for the inclusion of an additional X relationship in each of the
equal-angles and equal-sides interfaces. These relationships tie off
OKT and OTR directly to the feature subgraphs. Without these, they
would still be indirectly related to the feature subgraphs, through the
primitive elements of the frame of discernment they encompass. But
tighter connections are desirable since these are the propositions of
primary interest to this system. Considering all of these subgraphs
collectively, a dependency graph representing evidential support within

this domain is defined.

This dependency graph can be used as a basis for both the combina-
tion and extrapolation of multiple bodies of evidence relative to this
domain. Assuming the appropriate mechanism for the application of

+ . .
Dempster's rule and an E+ inference engine with a complete search
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Equal-diagonals (ED) sub-graph.
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Figure 31. Bisecting-diagonals (BD) sub-graph.

parallel-sides (PS) sub-qraph.

Figure 32.
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Figure 33. Equal-angles (EA) sub-graph.
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Equal-sides (ES) sub-graph.
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xor

Figure 36. ED-PT interface.
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Figure 38. gD-PT interface.
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Figure 40. EA-PT interface.
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strategy, this dependency-graph model of evidential support is capable
of the following examples of evidential reasoning.

Beginning with the equal-sides knowledge source, let us assume
that it examines a given polygon and (unambiguously) determines that
the polygon has two pairs of equal sides, with some doubt remaining.
This might be represented by a mass function that attributes .80 to the
proposition ES=2P and .20 to 6. This is an example of simple support

(p. 102).

.80, p = ES=2P
MASSe(p] = .20, p =0
0.00, else

Table 2 summarizes the model's conclusions given this information.
Some propositions are supported, some are denied, and some remain un-
changed, but no propositions are both supported and denied. Notice
that those polygonal-types that can have two pairs of equal sides re-
main completely plausible, while the other polygonal-types have their
plausibility reduced. Yet none of these are supported since any one of
them could be false and still be consistent with this evidence.

Let us assume that the equal-angles knowledge source is even more
vague, unable to make up its mind whether the presented polygon has
four equal angles or just two (opposite) pairs of equal angles. It is
not certain that either is true, but it leans towards all four being

equal. This is represented by an ambiguous mass function (p. 103),

possibly one that attributes .60 to EA=4, .30 to EA=20P, and .10 to . ?
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ES=0 (0.00, .20] [k

ES=1AP (0.00, .20] [ e —— %

ES=10P [0.00, .20] [ I

ES=1P [0.00, .20] [ e i

ES=2AP (0.00, 1.00] [t

ES=20P (0.00, 1.00] [

. ES=2P , ([ .80, 1.00] 1 enon
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IKT {0.00, 1.00] [ ot oo .
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OKT (0.00, .20] [ e i |
OKT, 0,0 {0.00, .20] [ o i

OKT,0,1 [0.00, .20] [k - -

OKT,1,0 {0.00, .20] [ ekt 0 [
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OTR (0.00, .20] [ e 0

0TR,0,0 (0.00, .20] [ I [
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01R,1,0 (0.00, .20] ot I

0TR,1,1 {0.00 .20] e |

PRL 0.00, 1.00] [ ek ok |

RCT (0.00, 1.00] [ Ak ook

REM (0.00, .20] [oromen 1

SQR (0.00, .20] [n |

Table 2. Inference results: MASSgq- ,
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.60, p = EA=4
.10, p =19
0.00, else

This leads to some propositions being simultaneously supported by one
of the focal propositions and denied by another. But still none of the
polygonal-types receive any support, Just differing degrees of plausi-
bility (Table 3).

Assuming that these knowledge sources operate independently, their
information can be combined by Dempster's rule. Figure 43 illustrates
this combination. A rectangle has two pairs of equal sides and four
equal angles; a parallelogram has two pairs of equal sides and two op-
posite pairs of equal angles; no other polygonal-types have these pairs
of traits. Therefore the combined impact of this information is to sup-
port these two polygonal-types with some residual support going to the
previous focal elements (Table 4). Since the equal-angles knowledge
source is more confident of EA=4 than EA=20P, rectangle receives more
support than parallelogram. None of the other polygonal-types are sup-
ported, but their plausibilities vary. Thus, based on the combined
evidence from these two knowledge sources, the probability of the pre-
sented polygon being a rectangle is at least .48 and possibly as high
as .70, which is more Tikely than it being a parallelogram whose proba-
bility is bounded by .24 and .40, and both of these are far more likely

than any other polygonal-types. This certainly is the result that one

would expect.
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.80 .20
9 8 n (ES=2P) = (ES=2P); e neo =03
(.10)(.80) = .08 (.1)(.2)=.02} .10
(EA=20P) n @
(.30)(.80) = .24 (.3)(.2)=.06
MASSEA
(EA=4) n @
(EA=4) n (ES=2P) = RCT; = (EA=4); 50
Eh= (.60)(.80) = .48 (.6)(.2)=.12
£S=2P e
MASSES
/
.48, p = RCT
.24, p= PRL
.]2, p= EA=4
MASSc@MASSE,[p] = < .08, p = ES=2P
.06, p = EA=20P
02, p=o
0.00, else

Figure 43. Combination of MASSES and MASSEA.
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EA=0Q
EA=]1AP
EA=10P
EA=1P
EA=
EA=20P
EA=2P

EA>1P

ES=0
ES=1AP
ES=10P
ES=1P
ES=2AP
ES=20P
=2P
ES=4
ES>1P

IEKT
ITR
OKT
OKT, 0,0
OKT,0,1
OKT, 1,0
OKT, 1,1

OTR, 0,0
OTR,0, 1
OTR, 1,0
OTR, 1, 1
PRL
RCT

Table 4.

[0.00,
[0.00,
[o.00,
[o0.00,
(0.00,
[ .30,
[ .30,
[ .se0,
[ .90,

(0.00,
fo.00,
(0.00,
(0.00,
(0.00,
[ .72,
( .80,
[0.00,
[ .s0,

(0.00,
(0.00,
(0.00,
(0.00,
(0.00,
[0.00,
(0.00,
(0.00,
(o0.00,
(o.00,
{o.00,
(0.00,
[ .24,
[ .48,
(o0.00,
(0.00,

Inference

.10]
.10]
.10]
.10]
.02]
.40]

.70]
1.00]

.20]
.20]
.02]
.20]
.10]
1.00]
1.00]
.20]
1.00]

.10]
.02]
.10]
.10]
.10]
.10]
.10]
.10]
.10]
.10]
.10]
.10]

.70]
.08]
.14]
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But suppose we have some valuable prior information concerning
this presentation. Assume we know, without question, that it is either
a rectangle or a rhombus and that there is an equal chance of either
one i.e., a 50/50 Bayesian chance. Then this information can be gain-
fully employed by simply representing it as a mass function and combin-

ing it with the other (evidential) information.

.50, p = RCT
MASSSO/SOEp] = .50, p = RHM
0.00, else

The order of this combination is immaterial since the result is invari-
ant with respect to the order. Figure 44 illustrates this combination.
Notice that some of the intersections do not exist, causing Dempster's
rule to renormalize over those that do. The impact of this information
(Table 5) is to make rectangle even more favorable, and to eliminate
all of the other polygonal-types, except rhombus, since they fall out-
side of the range of possibility. It also has the effect of collapsing
all of the intervals to points i.e., the result is Bayesian. This is
always the case when a Bayesian function is used in combination.

If a more elaborate Bayesian distribution were known to govern
this situation, it could be used instead. For example, the following

Bayesian mass function might represent the governing distribution.
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.50 .50 "
8 RC1;.01 RAM; .01 .02
eas20p|/ ,//7,//5, 03,/’7,// ,//,,/ RHM; .03 .06

T AT/

EA=4 RCT;.06 ¢. 06 .12

. // ./

20

RCT RHM
b
MASS54,50
N(.35) = .897, p = RCT b
MASS @ MASS e MASSg 50(P1= gfégf)e;sé]03' p = RHM
where N = (1 - )71 = (1 - .61)7'= 2.564. i

Figure 44. Combination of MASScc, MASScp s and MASSgq/50-
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Table 5. Inference results: MASSESQMASSEAQMASS 50/50°

6A11 entries have been rounded to two decimal places.
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.05, p = IKT

.10, p = ITR

.0075, p = 0KT,0,0

.0075, p = 0OKT,0,1

.0075, p = 0OKT,1,0

.0075, p = OKT,1,1

.03, p = 0TR,0,0

.03, p = 0TR,0,1
MASSg[p] = { .03, p = OTR,1,0

.03, p = 0TR,1,1

.20, p = PRL

.15, p = RHM

.10, p = RCT

.25, p = SQR

L 0.00, else

This is obviously a Bayesian mass function since it distributes its
mass exclusively over the most primitive elements of the frame of dis-
cernment (p. 104). From this information alone the point probabilities
of Table 6 follow. Table 7 summarizes the impact of this information
in combination with the evidence from the equal-sides and equal-angles
knowledge sources. Note that the higher prior probability of parallel-
ogram overrides the preponderance of evidence supporting rectangle, re-
sulting in parallelogram being the more likely.

If this, or any other, Bayesian mass function is combined with an-
other mass function that is fully committed to a single proposition,
the resulting support (and plausibility) for each proposition is the
Bayesian conditional. In other words, Dempster's rule has the same ef-
fect as Bayes' rule of conditioning in this limiting case. Table 8 sum-
marizes such an example where the Bayesian chance function of the pre-
vious example has been combined with a mass function that commits all
of its mass to the proposition PS=2P (i.e., two pairs of parallel sides).

Notice that the results are the Bayesian conditionals P(pilPS=2P).
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OKT, 0,0
OKT,0,1
OKT, 1,0
OKT, 1,1
OTR

OTR, 0,0
OTR, 0,1
OTR, 1,0
OTR,1,1
PRL

l—\l_lhl_\hl-—iﬁhl—'\'—l'_,'_\l"‘l_ll_ll"‘

Table 6.

7AH entries have

.08, .08]
.08, .08]
.05, .05]
A2, .12]
.10, .10]
.35, .35}
.45, .45]
.35, .35]
.93, .93]
.08, .08]
.08, .08]
1o, .10]
17, .17]
.05, .05]
.30, .30]
.35, .35]
.40, .40]
.93, .93]
.05, .05]
.10, .10]
.03, .03]
.01, .01]
.01, .01]
.01, .o1]
.01, .01]
12, .12]
.03, .03]
.03, .03]
.03, .03]
.03, .03] ,
.20, .20}
.10, .l0]
.15, .15]
.25, .25]

Inference results: MASSB.

been rounded to two decimal places.
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EA=0 ( .01, .01] e
=1AP ( .01, .01} G
EA=10P [ .02, .02] S
EA=1P [ .03, .03] [*
EA=2AP ( .01, .01] [*
EA=20P [ .44, .44] i *
EA=2P [ .45, .45] 1 .
EA=4 [ .51, .s1] ' 1
EA1P [ .99, .99] 0 *
ES=0 [ .01, .o1] =
ES=1AP { .01, .o01] 1= -
ES=10P [ .01, .01] »
ES=1P [ .02, .02] = -
ES=2AP [ .02, .02] [*
ES=20P [ .72, .72] i
ES=2P ( .75, .75] i
ES=4 [ .23, .23] 0 *
ES>1P [ .99, .99] 1 —k
IXT [ .02, .02] *
ITR [ .01, .01] [*
OKT [ .00, .00] *
0KT, 0,0 [ .00, .00] =
OKT,0,1 { .00, .00] I=
OKT, 1,0 { .00, .00] *
OKT,1,1 ( .00, .00] *
OTR [ .01, .01] I*
OTR,0,0 ( .00, .00] =
OTR, 0,1 { .00, .00] B -
01R, 1,0 ( .00, .00] * -
OTR,1,1 [ .00, .00] [*
PRL [ .39, .39] i *
RCT [ .34, .34] 0 —*
REM [ .06, .06] [ -
SQR (.17, .17] j--—*

Table 7. Inference results: MASSESQ MASSEAm MASSB.

8A11 entries have been rounded to two decimal pla

ces.
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This further illustrates that when true Bayesian information is avail-
able, it is fully exploited within this framework. Yet when this exact-
ing information is unavailable, which is the usual circumstance within
evidential domains, it continues to perform in a reliable and produc-
tive way!

Suppose we discover that this Bayesian distribution we have been

using MASS, is only applicable 75% of the time and the chance distribu-

B
tion governing the remaining 25% of the trials is unknown. This situa-
tion can be accurately modelled by a mass function that distributes
75% of its mass in accordance with the known chance distribution and

attributes its remaining mass to 6.

.0375, p = IKT
.075, p = IT
.005625, p = OKT,0,0
.005625, p = OKT,0,]
.005625, p = OKT,1,0
.005625, p = OKT,1,1
.0225, p = 0TR,0,0
.0225, p = OTR,0,1
MASSg . [p] =( .0225, p = 0TR,1,0
.0225, p = OTR,1,1
.15, p = PRL
.1125, p = RHM
.075, p = RCT
.1875, p = SQR
.25, p=686
0.00, else

Its impact, summarized by Table 9, reflects what is unknown. When this
mass function is combined with the evidential information already pre-
sented pertaining to ES and EA, the result (Table 10) reflects these

unknowns in addition to those already present in the evidential infor-
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EA=1AP
EA=10P
EA=1P

BA=20P
RA=2P
EA=4
EADLP
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BS=0
ES=1AP
ES=10P
ES=1P
ES=2AP
ES=20P
ES=2P
ES=4
ES)1P
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IKT
ITR
OKT
OKT, 0,0
OKT, 0,1
OKT, 1,0
OKT, 1,1

OTR, 0,0
OTR,0,1
OTR,1,0
OTR, 1,1
PRL
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Table 9.

9A11 entries have

.08,

.69,

.23,

.31)
.31]
.29]
.34]
.33]
.51]
.59]
.51]
.94]

.31]
.31]
.33]
.38]
.29]
.48]
.51]
.55]
.94]

.29]
.33]
.27]
.26]
.26]
.26]
.26]
.34]
.27]
.27]
.27]
.27]
.40]
.33]
.36]
.44]
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been rounded to two decimal places.




EA=Q [ .00, .06]
EA= [ .00, .06]
EA=10P [ .01, .07]
BA=1P [ .01, .07]
EA= [ .00, .02]
EA=20P [ .36, .42]
EA=2P [ .36, .42]
EA=4 [ .56, .63]
EA>LP [ .94, 1.00]
- ES=0 ( .00, .13]
~ ES=1AP [ .00, .13]
ES=10P [ .00, .02]
ES=1P [ .0, .13]
ES=2AP ( .01, .07]
ES=20P [ .72, .89]
ES=2P [ .78, .90]
~ ES=4 [ .09, .21]
ES>1P ([ .87, 1.00]
IKT { .01, .07]
ITR ([ .00, .02]
OKT [ .co, .01]
OKT, 0,0 [ .00, .01]
OKT, 0,1 [ .00, .01]
OKT,1,0 ( .00, .01]
OKT, 1,1 { .00, .01]
OTR [ .00, .02]
01R,0,0 [ .00, .O1]
O1R,0,1 { .00, .01]
O1R,1,0 [ .00, .01]
O1R, 1,1 ( .00, .01]
PRL { .30, .39]
RCT [ .43, .56]
REM [ .02, .07]
SQR [ .06, .15]
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]OAll entries have been rounded to two decimal places.
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i

mation from the knowledge sources. Such varying degrees of ignorance

cannot be properly captured by Bayesian point probabilities.

Even when chance information is totally unavailable, useful re-
sults can be obtained. In this last example, we assume that four

knowledge sources have examined a presented polygon, and have returned

with the following information:

; .80, p = ED=N
a MASS[p] = 20, p = 6
0.00, else
g .60, p = RD=Y
E MASSpop] = ¢ +20» P = RD=N
20, p=8
g 0.00, else
(.40, p = BDz21
.30, p = BD=2
MASSg,Lp] =ﬁ .30, p=9
| 0.00, else
{
.80, p = ES=2P
MASScs[P] ={ .20, p = @
0.00, else

Combining these bodies of evidence has the effect of distinguishing
isoceles kite as the most likely identification (Table 11). This evi-
dence also can be fed forward to predict unexamined features (Table

12), or fed back to make better predictions about examined ones (e.g.,

G Ve VN 0 a0 SR ele
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compare the ES portions of Tables 2 and 11). This flexibility follows
directly from the internal consistency of the model. Inferencing is
unconstrained; convergence 1is guaranteed!

A1l of the results in this section were produced by machine. A
general graph-theoretic database facility, GRASPER 1.0 [Lowrance 1978;
Lowrance and Corkill 1979], supports dependency graph construction,
editing, and retrieval. A LISP implementation of Dempster's rule and

an accompanying inference engine realize the reasoning component.
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RD=Y

ES=0
ES=1AP
ES=10P
ES=1P
ES=2AP
ES=20P
ES=2P
ES=4 .
ES)1P

Table 11.

[ .00, .06]
[ .57, .63]
( .37, .43]
[ .94, 1.00]
[ .07, .12]
[ .88, .93]
[ .65, .70]
[ .30, .35]
(0.00, .07]
[0.00, .07]
(0.00, .01]
[0.00, .07]
[ .55, .61]
[ .28, .34]
[ .85, .89]
[ .09, .13]
[ .93, 1.00]
[ .s5, .61]
[0.00, .01]
{ .c1, .o4]
[0.00, .04]
(0.00, .04]
[0.00, .04]
(0.00, .04]
[ .00, .02]
[0.00, .02]
(0.00, .02]
(0.00, .02]
[0.00, .02]
[ .22, .27]
[ .06, .10]
[ .07, .12]
[ .01, .o04]

Inference results: MASS
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11A11 entries have been rounded to two decimal places.
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EA=Q {0.00, .09] [ 1
EA=1AP (0.00, .09] [ 1
EA=10P [ .55, .61] I N q
EA=1P [ .55, .64] 0 - 0
EA= [0.00, .01] I* 1
EA=20P [ .29, .36] : i - 0
EA=2P [ .29, .36] 1 ropry 0
EA=4 [ .07, .14] [-*= 1
BA21P [ .s1, 1.00] 0 wx

Table 12. Inference results: MASSBDeMASSEDQMASSRDQMASSES on EA.

]zAll entries have been rounded to two decimal places.
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CHAPTER VII
CONCLUSIONS

Summary

This thesis is both a description of a general representation of
dependency information and its use as a basis for inferential reasoning,
as well as a description of a specific representation of evidential sup-
port and its use as a basis for evidential reasoning.

The utility of graphical representations of dependency information
has been previously demonstrated as a basis for mechanized inferential
reasoning. Dependency graphs are a generalization and refinement of
these representational ideas. They are more general, because they are
capable of representing dependency relationships of arbitrary order and
specificity; they are more refined, because they embody consistency con-
ditions that guarantee the integrity of any inferences based upon them.

Dependency graphs represent dependency relations. Four different
classes of dependency relations have been defined, giving rise to four
different classes of dependency graphs. This taxonomy has allowed
these concepts to be incrementally introduced on the basis of their
order and specificity, from the most restrictive to the least restric-
tive. Dependency relations have been defined as coordinated sets of
dependency relationships. Their consistency conditions play the coor-
dinating role, guaranteeing that all redundantly expressed information
is compatible.

Each class of dependency graph gives rise to a distinct inference
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rule and corresponding inference engine. A dependency-graph inference-
engine extrapolates from partial confidence information, expressed as a
dependency-graph covering, towards more complete information. It makes
these predictions based on the dependency information represented by a
dependency graph. The initial confidence information can be expressed
relative to any subset of propositions in the graph. Propositions are
not predefined to serve as either the stimulus or response of some pre-
selected inferential steps, but can serve in either role, at any time.
Inferencing is unconstrained; feedback and feedforward can freely occur
without fear of contradiction; reasoning Joops are guaranteed to con-
verge. This reasoning operation is based on whatever information is
available, be it pratial or total. One is not forced to estimate in-
formation that is truely unavailable for informative inferences to be
made.

A dependency-graph model consists of a dependency graph and an ac-
companying inference engine. The dependency graph reflects the per-
ceived dependencies among a set of propositions relative to an environ-
ment being modeled. The inference engine is capable of making predic-
tions based on these perceived dependencies, taking incomplete informa-
tion about the confidences of these propositions and extending it
through inferential reasoning. If the dependency graph and the initial
confidence information accurately reflect the environment, then so do
the predictions. The internal consistency of these models is guaran-
teed. Inaccuracies must be attributed to external, and not internal,

inconsistencies.
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Frequently, the environmental situations of interest in artificial
intelligence domains are evidential. Propositions are not known to be
true or false, but are attributed subjective degrees of belief based on
bodies of evidence extracted from the environment by unreliable sources
of knowledge. The freedom to express partial information within depen-
dency-graph models makes them a suitable host for Shafer's mathematical
theory of evidence. The adoption of Shafer's fheory leads to the adop-
tion of a subset of'dependency-graph models as appropriate models of
evidential support. A number of evidential relationships, derived from
Shafer's theory, constitute the base components from which dependency-
graph models of evidential support are constructed.

Dependency-graph models of evidential support take single bodies
of evidential information, expressed in terms of support/plausibility
or mass, and extend them. Evidential reasoning is used to extrapolate
evidence from those propositions that it directly bears upon to those
it indirectly bears upon. The only other information required is that
contained in the dependency-graph, which represents the range of possi-
bilities. If the evidential information is expressed in terms of mass,

model breakdown is precluded, even in the case of a knowledge source
and a model with incompatible views of the environment. This condition
is guaranteed because evidence expressed in terms of mass does not carry

any dependency information; therefore, it cannot refute the dependency

information in a model.

When a source of evidential information is unreliable, so are the

predictions based upon the information it provides. This is the typical
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situation in artificial intelligence domains, where knowledge sources
are prone to error. Since the consensus of several independent opinions
is generally more reliable than any single opinion, more reliable pre-
dictions should be possible if they are based on the combined opinions
of several independent knowledge sources. The same dependency-graph
that provides the appropriate information for the extrapolation of
single bodies of evidence, also provides the necessary information for
the combination of multiple bodies of evidence. Dempster's rule of com-
bination, an integral part of Shafer's theory, provides the appropriate
theoretical foundation for this process. It is order independent; it
treats Boolean, Bayesian, and evidential beliefs in a uniform manner;
and it does not require a priori chance density information, though

this can be fully exploited when it is available.

The feasibility of these techniques, as a foundation for automated
evidential reasoning, has been demonstrated. A general system embody-
ing these techniques has been implemented and an initial application
explored. The results are promising and suggest that these techniques

are applicable in more ambitious domains.
Innovations

Dependency-graph models of evidential support offer some signifi-
cant advantages over the previous approaches to evidential reasoning
in artificially intelligent systems. Many of these follow from the re-
jection of the probabilistic, rule-based approach, in favor of a possi-

bilistic, relational approach.
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The axiom base in a rule-based system consists of a predetermined
set of directed inferential steps. In addition each step has some
associated probabilistic information, describing the a priori probabil-
ity of that rule being a valid inferential step. The problem with this
approach is that the required probabilistic information is generally un-
available and cannot be accurately estimated. This leads to internal
inconsistencies and thereby to contradictory inferential paths. And
even when this probabilistic information is consistent, the rules of in-
ference employed typically are not, again leading to contradictory re-
sults. In order to prevent divergent behavior; these systems impose
arbitrary restrictions on their reasoning processes. For example, both
PROSPECTOR and MYCIN are forced to eliminate reasoning loops i.e.,
chains of inferences across several rules, beginning and ending with
the same proposition.

If these previous systems were recast as dependency-graph models,
the dependency-graph consistency conditions would not be satisfied. It
is these conditions that guarantee the integrity of dependency-graph
models. When these conditions are satisfied, it has been shown that a
dependency-graph model is a sound inferential system. Errors would have
to be attributed to external, and not internal, inconsistencies. When
these conditions are not satisfied, errors may be attributable to either
internal or external problems.

In place of directed inference rules, dependency graphs are com-

posed of coordinated sets of dependency relationships. These relation-

ships are undirected, providing the appropriate basis for inferential
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reasoning in any direction. These relationships are not limited to
those describing total dependence or independence, as in the probabi-
listic, rule-based formalism. When precise information about one propo-
sition only partially constrains another proposition, it can be so rep-
resented. Partial information about the probability of any proposition
can always be directly incorporated into the reasoning. One need not
overstate the available information to fit the formalism.

This ability to represent and reason from partial information is
critical in evidential domains. By its nature, evidence is partial,
characterized by varying degrees of ignorance. Boolean and Bayesian
based formalisms do not properly capture this aspect of evidential in-
formation. They force evidential information into a form belying its
precision. Dependency-graph models of evidential support, based on
Shafer's theory of evidence, do not require such overstatements. If
partial information is all that is available, useful predictions can be
made from it. If total Boolean or Bayesian information is available,
it too can be exploited. Further, this reasoning takes place with or
without the use of a priori chance densities, whose precise estimation
is required in the Bayesian approach. The axiom base in our approach
need only describe the possibilities, clearly making it easier to con-
struct than one requiring precise a priori probabilities, particularly
since these are typically unavailable and difficult (or impossible) to
estimate accurately.

Two distinct reasoning processes have been defined in terms of

these graphs. One extrapolates from those propositions that a body of
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evidence directly bears upon, to those propositions that it indirectly
bears upon. The other combines distinct bodies of evidence, pooling
the information. The previously developed approaches to inexact reason-
ing do not always properly distinguish these two types of reasoning,
and this is a source of their consistency problems. Dependency-graph
models of evidential support carefully avoid this confusion. The re-
sult is a system that freely reasons without the need of ad hoc order-
ing constraints. The conclusions are invariant with respect to the
order of the inferential steps. Feedback and feedforward occur freely.
Dependency-graph models of evidential support provide a common
framework for the combination and extrapolation of evidential informa-
tion provided by disparate sources of knowledge. They do so in a for-
mally consistent way, guaranteeing the integrity of their predictions.
Dependency-graph models of evidential support, though not a
panacea, do offer some significant advantages over the previously de-

veloped systems for inexact reasoning.

Areas for Further Investigation

This final section suggests some areas for further investigation,
prompted by this thesis. One of the most obvious shortcomings of this
work is the absence of a decision rule. Presumably, one who models an
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