A RIGOROUS APPROACH TO ERROR-SENSITIVE TESTING™

Lori A. Clarke
Debra J. Richardson

COINS Technical Report 82-~28
November 1982

*This paper appears in the Proceedings of the 16th Hawaii Internatiomnal
Conference on System Sciences.

This research was funded in part by the National Science Foundation
under grant NSFMCS 81-04202,

A RIGOROUS APPROACH TO ERROR-SENSITIVE TESTING

Lori A. Clarke
Debra J. Richardson
Computer and Information Science Department .
University of Massachusetts
Amherst, Massachusetts 01003

Abstract

Error-sensitive testing strategies assist in the selection of test data

that focus on the detection of particular types of errors. 1
Recently formal testing strategies have

strategies have been rather ad hoc.

Traditionally, these

been developed that more rigorously apply the ideas underlying_error-sensitiye
testing by using the functional representation of a program provided by symbolic

evaluation. This paper

computation testing and domain testing.

describes two such error-sensitive strategies,

An approach to integrating these

strategies, and the possibility of automating this approach are discussed.

1. INTRODUCTION

As was evident at the workshop on the
Effectiveness of Testing and Proving Methods (16),
there are a number of exciting research projects
addressing the problems of software testing. For
the most part, recent research has moved from
developing tools that gather information about
programs to developing techniques that actually
apply this information. Moreover, there is a
deeper awareness and understanding of the
theoretical limitations of the techniques that are
being developed. While many of these techniques
are quite complex, the wide availability of
increased computing power makes the actual

realization and everyday utilization of such
techniques an imminent possibility. A testing
method, composed of an integrated and well
understood set of testing techniques, could be

developed that provides considerable guidance in
the testing process.

For the most part, current testing research
is directed at either the problem of determining
the paths, the particular sequences of statements
that must be tested, or the problem of selecting
revealing test data for the selected paths. For
the path selection problem, techniques such as
data flow testing (11,13,14), perturbation testing
(8,19), and mutation testing (6) have been
proposed. For the test data selection problem, a
number of informal guidelines (6,7,10) have been

Thus,

put forth. Recently there has been considerable
work in developing more rigorous test data
selection strategies that can either eliminate
certain classes of errors or provide quantifiable
error bounds. In this paper, we assume a
reasonable method of path selection is available
and concentrate on the test data selection aspects
of testing. Two of the more rigorous
error-sensitive testing strategies, computation
testing (5,9) and domain testing (3,18), are
described. By expanding on these strategies, a
comprehensive and rigorous set of guidelines,
based upon the functional representation of a
program provided by symbolic evaluation, are
proposed. Moreover, these guidelines consider
both arithmetic and data manipulation errors.

The next section of this paper provides a
brief overview of symboliec evaluation and an
example is presented to demonstrate the technique.
The third section describes the two test data
selection strategies and, using the results from
the symbolic evaluation process, applies ecach
strategy to the example. Incorporating either one
of these strategies into a testing method would
inprove its error detection capabilities. An
integrated approach to test data selection that
combines both strategies would be even better.
the final section discusses integrating
these strategies and the possibilities of
automating such an approach.

This research was funded in part by the National Science Foundation under grant.

NSFMCS 81-04202.

2. SYMBOLIC EVALUATION

Symbolic evaluation provides a functional
representation of the paths in a program or
module. To create this representation, symbolic
evaluation assigns symbolic names for the input
values and evaluates a path by interpreting the
statements on the path in terms of these symbolic
names. During symbolie evaluation, the values of
all variables are maintained as algebraic
expressions in terms of the symbolic names.
Similarly, the branch predicates for the
conditional statements on a path are represented
by constraints in terms of the symbolic names.
After symbolically evaluating a path, its
functional representation consists of the path
computation, which is a vector of algebraic
expressions for the output values (including the
values returned by parameters) and the path
domain, which is defined by the conjunction of the
path's branch predicate constraints. For path PJ
the path computation and path domain are denoted
by C[PJ] and D[PJ], respectively.

The forward expansion method is the most
straightforward and efficient way to do symbolic
evaluation (2) and thus is the method described
here. Using forward expansion the path
computation and path domain are developed
incrementally by interpreting each statement on a
path. After symbolieally evaluating a sequence of
statements on a path, the symbolic representation
of the path to that point can be shown. This
representation consists of the current symbolic
representation for each variable and the
conjunction of the branch predicate constraints
that have been created so far. This conjunction
of constraints is called the path condition and is
used to determine the feasibility of the path
being examined. If, at any point during the
symbolic evaluation, it can be determined that the
path condition is infeasible -- that is, there are
no data for which the sequence of statements could
be executed -- then symbolic evaluation of that
path can be terminated. Nonexecutable paths are a
common phenomena in programs, especially
unstructured programs. Of course, no method can
determine the feasibility of any arbitrary path
condition (W). When path feasibility or
infeasibility can not be determined, symbolic
evaluation can still continue, but the selection
of test data must be manually decided.

The procedure RECTANGLE, shown in Figure 1,
is used to illustrate symbolic evaluation. Note
that the left hand side of the listing is
annotated with node numbers so that statements or
parts of statements "can easily be referenced.
Paths are designated by the ordered list of nodes
encountered on the path. Figure 2 shows the
symbolic evaluation of the path
(s,1,3,4,5,6,7,8,9,6,10,f).

Before interpretation of a path, the path
condition is initialized to the value true and the
values of all variables are set to their initial
values: the input _parameters are assigned

procedure RECTANGLE (A,B: in digits 8;

H: in digits 3 range -1.0..1.0;

F: in array [0..2] of digits 8;

AREA: out digits 8;

ERROR: out boolean) is
-- RECTANGLE approximates the area under the
-- quadratic equation F[0] + F[1]¥X + F(2]¥*X*¥2
-~ from X=A to X=B in increments of H.

X,Y: digits 8;

s begin
1 if H> B - A then
2 ERROR := true;

else
3 ERROR := false;
4 X = A;
5 AREA := F[0) + F{11¥X + F[2]%X*2;
6 while X + H <= B loop
7 = X + H;
8 Y := FLO) + FL11%¥X + F[2]*X%¥*2;
9 AREA := AREA + Y;

end loop;

10 AREA := AREA*H;

endif;
f end RECTANGLE;

Figure 1.

Procedure RECTANGLE

symbolic names, variables that are initialized
before execution are assigned their corresponding

_constant value, and all other variables are

assigned the undefined value won . Thus, before
symbolically evaluating a path in RECTANGLE, the
variables would be set to the initial values
specified for node s in Figure 2, where variable

names are written in upper case and symbolic names

in lower case.

After initiallizing the variables and path
condition, each statement is interpreted, as it is
encountered on the path, by substituting the
curent symbolic value of a variable wherever that
variable is referenced. Thus, for the assignment
statement at node S in RECTANGLE, the current
symbolic values of X and F after interpretation of
statements (s,1,3,4) are substituted into the
expression on the righthand side, resulting in
a*f[1]+2.0%a*f[21+f[0) being assigned to AREA. If
AREA is subsequently referenced on the path, then
this new value would be substituted for AREA, For
a conditional statement, the branch predicate
corresponding to the selected path is interpreted.
Thus when evaluating node 1, the branch predicate
representing the condition to go from node 1 to
node 3 is the complement of the condition at node
1. This evaluated branch predicate ‘is first
simplified and then conjoined to the previously
generated path condition, resulting in the path
condition

true and not(h > b-a) = (a-b+h >= 0.0)

‘Symbolic interpretation of the statements on
a path PJ. provides a symbolic representation of
the path computation and path domain. The path
computation C[PJ]° consists of the symbolic
representation of the output values. The symbolic

.

8 A=a
B=b
H=h
F=f
AREA=?
ERROR=?
X=?
=?
PC=true

1 PC=true and not (h>b-a)
==(a-b+h<=0.0)

3 ERROR=false
4 X=a

5 AREA=f{0] + f{1]%a + f[2]%a¥*2
==a*f[1] + 2.0%a*f[2] + (0]

6 PC=(a-b+h<=0.0) and (a+h<=b)
==(a-b+h<=0.0)

7 X=a+h

8 Y=£(0] + fl1]*(a+h)+f[2]%(a+h)*¥2
==akf[1] + a*¥2*f[2] + 2.0%a*f[2]*h
+ £{0] + f[1)*h + f[2]%n¥**2

9 AREA = a*f(1] + 2.0%a*r[2] + f[0O]

+ a*f{1] + a*¥2%¥7[2] + 2.0%a*f([2])*n

+ fl0) + f{1)*h + f[2])¥n¥**2

== 2.0%a¥f[1] + 2.0%a%*f[2]

+ akeRf[2] 4+ 2.0%a*f[2])*h

+ 2.0%£[0] + £{1]%nh + f[2]*n*¥*2
6 PC = (a-b+h<=0.0) and not (a+h+h<=b)
==z(a~-b+h<=0.0) and (a-b+2.0*h > 0.0)

10 AREA = (2.0%a*f[1] + 2.0%a*f[2]
+ a¥¥®2%f(2] 4+ 2.0%a*f[2]%h
+ 2.0*7[0] + f{1]*n + f[2]¥n¥*¥2) * p
== 2,0%a*f[1]*%h + 2.0%a*f[2]*h
+ aRk¥2%f[2]%h 4 2,0%akf[2)*n¥*2
+ 2.0*F[0)*h + f[1]1¥n*¥2 + f[2]%¥n*¥3

D: (a-b+h <= 0.0) and (a-b+2.0%h > 0.0)

C: ERROR = false
AREA = 2.0%a*f[1]%h + 2.0%a*f[2]*n
+ aRUORE[2])¥n 4 2 O¥a¥f[2]¥n¥¥*2
+ 2.0%C{0)*h + FL1)¥n*¥*2 + f2]%¥n¥*#*3

Figure 2.
Symbolic Evaluation of RECTANGLE

A symbolic representation of all executable

‘paths through RECTANGLE is unreasonsble since

there is an effectively infinite number of
executable paths. This problem exists for any
program in which the number of iterations of a
loop is dependent on unbounded input values. One
approach to this problem is to replace each loop
with a closed form expression that captures the
effect of that loop (1,2). Using this technique,
a path may then represent a class of paths that
differ only by their number of 1loop iterations.
While this is a powerful technique, it is not
always successful, It can, however, be
successfully applied to RECTANGLE. Figure 3 shows
the symbolic representations of the domains and
computations of the classes of paths in RECTANGLE.
Note the P3 represents all paths that traverse the
loop; P2 represents the fall through case of the
loop, which is infeasible; P1 represents the case
in which the input data is erroneous.

P1 : (s,1,2,f)
D[P1] : (a-b+h > 0.0)
ClP1] : AREA=?

ERROR=true

P2 : (s,1,3,4,5,6,10,f)
D[P2]} : (a-b+h <= 0.0) and (a-b+h > 0.0)
== false ¥¥¥infeasible path *#¥

P3 : (s,1,3,4,5,(6,7,8,9),10,11,f)
DIP3] : (a-b+h <= 0.0)
CIP3) : AREA = a*f{1]*nh + 2.0%a*f[2)*h + f[0]*h
+ sumi:=1..int(-a/h+b/h) |
‘ (a*f[1)%n + a**2¥f[2]%*n

+ 2.0%a*f[2]*h¥*¥2%1 4+ £{0)*h
+ FL1]¥h*%2%] 4+ f{2]Xn*¥3*j%¥42)>
ERROR = false

Figure 3.
Path 'Domains and Computations for RECTANGLE

representation of the path domain D[PJ] is
provided by the path condition. Note that only
the input values that satisfy the path condition
could cause execution of the path. Figure 2 shows
the symbolic representations of the path domain
and path computation resulting from
evaluation of the path (s,1,3,4,5,6,7,8,9,6,10,f)
in RECTANGLE.

symbolic-

3. TEST DATA SELECTION STRATEGIES

A test data selection strategy should provide
guidance in the selection of test data for a
program. Ideally, executing the program on the
selected data reveals errors in the program or
provides confidence in the program's correctness.
In general, program testing detects an error by
discovering the effect of that error. It is
possible, however, that an error on an executed
path may not produce erroneous results for some
selected test data; this is referred to as
coincidental correctness. For example, suppose
that a computation z=a¥2 is incorrect and should
be z=a*¥*2; if no test data other than a=0 or a=2
are selected, the error will not be detected.
Although this appears to be a contrived example,
coincidental correctness is a very real phenomenon
that test data selection strategies must address.

The testing literature has classified errors
into two . types according to their effect on the
path domains and path computations. If an

incorrect path computation exists, a computation
error is said to have occurred. Such an error may
be caused by an inappropriate or missing
assignment statement that affects the function
computed by the path. If a path domain is
fncorrect, a domain error is said to have
occurred. Domain errors can be further divided
into path selection errors and missing path
errors. A path selection error occurs when a
program incorrectly determines the conditions
under which a path is executed. This may be due
to an incorrect conditional statement or an
jncorrect assignment statement that -affects a
conditional statement. A missing path error
occurs when a special case requires a unique
sequence of actions, but the program does not
contain a corresponding path. This type of error
is caused by missing conditional statements.

Error-sensitive testing strategies assist in
the selection of test data that focus on the
detection of particular types of errors.
Moreover, such strategies minimize the acceptance
of coincidentally correct results by astutely
selecting test data aimed at exposing, not
masking, errors. Error-sensitive testing has
traditionally been rather ad hoc. Foster's test
case analysis (7), Howden's functional testing
(10), Myer's error guessing (12), Weyuker's
error-based testing (17), and the test data
selection aspects of mutation testing (6) provide
intuitive guidelines for selecting test data
likely to expose commonly ocecurring errors. Each
approach is based on an examination of the
statements in a program or inspection of an
informal description of the intent of the program.
More rigorous application of the ideas underlying
error-sensitive testing, which analyze the
representations of the path domains and path
computations provided by symbolic evaluations,
have been developed. Computation testing
strategies analyze the path computations and
select test data aimed at revealing computation
errors. Domain testing strategies concentrate on
the detection of domain errors by analyzing the
path domains and selecting test data near the

boundaries of those domains.

In RECTANGLE there are four errors, one
computation error and three missing path errors.
The first error is caused by an erroneous
computation at statement 5; statement 5 should be
AREA := FIOJ+F[11*X+F[2)*X**2. The second error
oceurs when h=0 and b>a and results in an infinite
loop. The third error occurs when the sign of h
is different than the sign of b-a -- that is when
adb and h>0 or when a<b and h<0. The fourth error
occeurs when a+int(-a/h+b/h)*h < b since the area
under the guadratic is computed beyond the point
specified by b. In the ensuing discussion it is
shown how the application of computation and
domain testing strategies to RECTANGLE detects
each of these four errors.

3.1. Cpmputation Testing

Computation testing is based on the

.assumption that the way an input value is used

within the path computation is indicative of a
class of potential computation errors. Analysis
of the symbolic representation of the path
computation reveals the manipulations of the input
values that have been performed to compute the
output values. In general, a path computation may
contain arithmetic manipulations or data
manipulations, which are inherently sensitive to
different classes of computation errors and thus
tWo sets of guidelines are provided.

Path computations containing predominately
arithmetic manipulations are sensitive to errors
relating to the use of numeric values and
operators in arithmetic expressions. The
following list provides guidelines for selecting
test data for such computations, along with the
class of computation errors the data is geared
toward detecting:

1) all symbolic names in C[PJ] take on distinct
numeric values (erronecus reference to an input
value);

2) each symbolic name corresponding to a
multiplier, a divisor, and an exponent in ciprJ]
takes on

a) the values zero, one, and negative one
(erroneous processing of special input
values),

b) nonextremal positive and negative values
(erroneous processing of typical values),

c) extremal* positive and negative values
(erronecus processing of atypical values or
oceurrence of overflow or underflow);

3) each term in C[PJ] takes on

a) the.only zero value (a term masking an error
in another term),

b) the only non-zero value (enables independent
evaluation of errors in a term),

¢) nonextremal positive and negative values
(erroneous processing of typical values),

d) extremal positive and negative values
(erroneous processing of atypical values or
occurrence of overflow or underflow);

4) each repetition count in a closed ' form

expression in C[PJ] takes on

a) the value zero (erroneous processing of loop
fall through),

b) the value one (erroneous processing of .
single loop iteration),

¢) a nonextremal positive value (erroneous
processing of typical loop traversal},

d) an extremal positive value (erroneous
processing of atypical loop traversal);

¥R value of large magnitude often serves the purpose of an extremal value for

, unbounded values.

5) c[PJ] takes on

a) the value zero (erroneous production of
special output values),

b) nonextremal positive and negative values
(erroneous production of typical output
values),

¢) extremal positive and negative values
(erroneous production of atypical output
values or occurrence of underflow or
overflow). :

Figure Ha describes the test data needed to
satisfy these computation testing criteria for the
class of paths P3 of RECTANGLE. The criteria are
not applicable for the trivial computation of path
P1. Note that epos and eneg represent extremal
positive values and extremal negative values,
respectively, for the symbolic name that appears
as arguments. In some instances, extremal values
are determined by the program -- e.g., epos(h)=1.0
and eneg(h)=-1.0. When an input is unbounded,
however, the tester must specify extremal values
to be used. In RECTANGLE, for instance, the
extremal values we selected for a, b, and f are

Conditions to satisfy criterion 1
(a#b,h,f,(01,£01],f[2])
and {b#h,fl0],£(11,£(2))
and (h#f{0]1,f(1],£(2])
and (£(01££01],7[2))
and (£L11££02])

Conditions to satisfy criterion 2a
a=0.0,-1.0,1.0
b=0.0,-1.0,1.0
h=0.0,-1.0,1.0
f{0]=0.0 ,
£[1]=0.0 ,
£[2]=0.0, ’

Conditions to satisfy criterion 2b
a=tpos(a),tneg(a)
b=tpos(b), tneg(b)
h=tpos(h),tneg(h)
£10)=tpos(£[0]1),tneg(£[0]))
£L11=tpos(£111),tneg(f1])
fl2)=tpos(f{2]),tneg(f2])

Conditions to satisfy criterion 2¢
azepos(a) ,eneg(a)
b=epos(b) ,eneg(b)
h=epos(h) ,eneg(h)
£[0)=zepos(£0]),eneg(fi0])
f{11=epos(f(1]),eneg(r(1])
fl2)zepos(f[2]) ,eneg(f(2])

Conditions to satisfy criterion 3a
£{13=0.0 and a,h,f[0],f(2]£0.0
£{2)=0.0 and a,h,f[0],f(1)£0.0
£{0]=0.0 and a,h,f{1],£(2]#0.0

Conditions to satisfy criterion 3b
a,f(11,h#0.0 and £{0])=£(2]=0.0
a,f[2],h#0.0 and £(0]=f{1]=0.0
£{0),h#0.0 and f{1]=£[2]=0.0
£{11,h#0.0 and a=£{0)=f[2]=0.0
£{2],h#0.0 and a=f[0])=f[1]=0.0

Conditions to satisfy criterion
a=tpos(a) and f[1]=tpos(f{1])
and f{0]=f[2])=0.0
a=tneg(a) and f[1l=tneg(f(11)
and £[0])=£[2)=0.0
a=tneg(a) and f{2]=tpos(f(2])
and f[0]=£[1]=0.0
a=tneg(a) and f{2]=tneg(f(2])
and £[01=£{1)=0.0
f[0)=tpos(f{0)) and h=tpos(h)
f[0)=tneg(£f[0)) and h=tneg(h)

Conditions to satisfy criterion
a=epos(a) and f[1)zepos(f[1])
and f{0]=f[2]=0.0 .
a=eneg(a) and fl1)=eneg(f(1])

and f(0])=f{2]=0.0
a=eneg(a) and f[2]=epos(fi21])

and f{03=r[1]=0.0
azeneg(a) and f{2]=eneg(f(2])

and f£(0)=f[1])=0.0
f{0)=epos(f(0]) and h=epos(h)
f[0)=eneg(f[0]) and h=eneg(h)

Conditions to satisfy criterion
infeasible

Conditions to satisfy criterion
b-a=zh

Conditions to satisfy criterion
b - a = 10%h

Conditions to satisfy criterion
b - a = 100*h

Conditions to satisfy criterion
h = 0.0

Conditions to satisfy criterion

3c
and

and
and
and

and
and

3d

and
and
and
and

and
and
4a
b
Ue
ud

5a

5b

h=tpos(h)
h=tneg(h)
h=tpos(h)
h=tneg(h)
f1eita1o0:0
h=epos(h)
h=eneg(h)
h=epos(h)
h=eneg(h)

fl1)=£{2])=0.0
£11)=£(23=0.0

a=tpos(a) and b=tpos(b) and h=tpos(h)
and f{0]=tpos(f[0]) and fl1l=tpos(fi1])

and -f[2]=tpos(f[2])

a=tneg(a) and b=tneg(b) and h=tneg(h)
and £[0]=tneg(f{0]) and f[1]l=tneg(f{1])

and f[2)=tneg(f(2])

Conditions to satisfy criterion

5¢

a=eneg(a) and b=epos(b) and f[0]}=epos(f(0])
and fl1lzepos(f{1]) and f[2)=epos(fi2])

and h>0

azeneg(a) and bzepos(b) and f[0]=eneg(f{0])
and fl1)=eneg(f[1]) and f[2l=eneg(f[2])

and h>0

NOTE: epos and eneg indicate extremal positive and

negative values,

respectively,

for the symbolic

name that appears as an argument.

and tneg

Likewise,

and negative values, respectively, for the symbolic
name that appears as an argument.

- Figure 4a.

" Conditions for Satisfying
Camputation Testing Guidelines for
Arithmetic Manipulations in RECTANGLE

tpos
indicate typical (nonextremal) positive

epos(a) = epos(b) = 100.6, eneg(a) = eneg(b) =
-100.0, epos(f(0]) = epos(f[1]) = epos(f[2]) =
10606 eneg(fl01) = eneg(fl1]) = eneg(f(2]) =
-10.0. :

The test data described in Figure U4a would
reveal error one in RECTANGLE. Notice that
statement 5 may produce coincidentally correct
results for some of the selected test data but the
‘error is guaranteed to be detected by the data
satisfying criterion 2a. The second error is also
guaranteed to be detected by this criterion.
While there is a reasonable chance that data
selected to satisfy the computation guidelines
will detect errors three and four, these
guidelines do not guarantee that these errors will
be revealed.

Path computations containing data
manipulation typically maintain compound data
structures and as a result are sensitive to errors
that involve data movement operations rather than
arithmetic operations. The following 1list
provides guidelines for selecting test data for
such computations, along with the «class of
computation errors the data is geared toward
detecting:

1) all component selectors in C{PJ] take on
‘a) distinct values (erroneous interaction
between different components),
b) identical values (erroneous duplicate use of
a component);

2) each component selector in C[PJ] takes on
a) a nonextremal value (erroneous processing of
components in the midst of the structure),
b) extremal value (erroneous processing
components on the edge of the structure);

of

all components of a compound structure

referenced in C[PJ] take on

a) distinct values (erroneous
selector),

b) identical values (erroneous processing of

duplicate values);

3)

compound

the size of a compound structure referenced in

C[PJ] takes on

a) nonextremal values (erroneous processing of
typical structures)

a) extremal values ({erroneous processing of
atypical structures or insufficient
storage);)

)

a compound structure referenced in C[PJ] takes

on .

a) an empty value (erroneous initialization or
processing of underflow)

5)

b) a full value ~(erroneous processing of
overflow)
Only criterion 3 is applicable to the path

computations in RECTANGLE, since each coniponent
selector for the array F is a constant. Figure 4b
describes the test data to satisfy this criterion.
Since none of the errors in RECTANGLE involve F,
none of the errors are detected by this criterion.

Conditions to satisfy criterion 3a
£L01#£(1],¢12]
« f1)#¢02])

Conditions to satisfy criterion 3b
£l0)=F{11=r(2]

Figure 4b.
Conditions for Satisfying
Computation Testing Guidelines for
Data Manipulations in RECTANGLE

. selecting test data for

A path computation may contain both
arithmetic and data manipulations, in which case
all applicable guidelines should be considered.
It is important to note that the guidelines may
not all be satisfiable due to the condition
defining D[PJ] or the representation of C[PJ]. In
RECTANGLE, for example,
guidelines 3a and 3b could not be completely

satisfied due to the relationships between the
terms in the computation. These computation
testing guidelines subsume those proposed by

Howden (10) for special values testing and
extremal output values testing, as well as the
error-sensitive test case analysis proposed by
Foster (7).

computations fall into
specialized categories, the general computation
testing guidelines can be tuned to guide in the
selection of an even more comprehensive set of
test data. For example, if a path computation
involves trigonometric functions, then guidelines
dependent upon their properties should be
exploited. In RECTANGLE an example for which an
extended set of guidelines are required is the INT
function that appears in the computation of AREA.
Data should be selected so that the dropped
remainder that results from applying the INT
function ‘is both zero and nonzero. Data
satisfying this extension would reveal the fourth
error,

When the path

Polynomial functions are a category for which
the guidelines have been refined (9). Under
certain assumptions, it is possible to demonstrate
the correctness of a polynomial path computation
by means of testing. This is called polynomial

testing and is based on algebraic results,
applicable only when an upper bound on the
algebraic complexity of the "correct" path

computation is known. If the path computation
C{PJ] should be a univariate polynomial of maximal
degree T-1, the selection of T linearly
independent test points is sufficient to determine
whether C[PJ] is correct. If the path computaton
C[PJ] should be a multivariate polynomial in K
input values of maximal degree T-1, C[PJ) must be
tested for TK linearly independent test points in
order to determine that it is correct (11). The
practicaltiy of polynomial testing is limited to
polynomials.in few variables and of low degree
since the number of test points required to
determine correctness increases rapidly with the
number of variables and the degree.

3.2. Domain Testing

Domain testing is concerned with detecting
both path selection errors and missing path
errors. Proposed domain testing strategies
emphasize selecting test points near the domain
boundaries. A path selection error is manifested
by a shift in some section of a path domain
boundary and hence are likely to be caught by such
strategies. Missing path errors, however, are
particularly difficult to detect since it is
possible that only one point in a path domain
should be in the missing path domain. In this
case the error will not be detected unless that
point happens to be selected for testing. Missing
path errors cannot be found systematically unless
a specification is employed by the test data
selection strategy, as is done by the partition
analysis method (15)., Missing path errors often
correspond to a missing path domain that is near a
boundary of an existing path domain, and thus
these errors may be caught by existing domain
testing strategies.

One proposed domain testing strategy (3,18)
selects test data on and near the boundaries of
each path domain. The boundary of a path domain
is composed of borders with adjacent path domains.
For each closed border, the strategy selects "on"
test points, which lie on the border and thus in
the path domain being tested, and "off" test
points, which 1lie on the open side of the border
and thus in an adjacent path domain. In such a
way, domain testing attempts to detect border
shifts, which occur when the border being tested
is incorrect -- that is, it differs from the
correct border. If the correct results are
produced for each of the on and off test points,
the border must be "close" to the correct border.
An undetected border shift can only occur if the
on test points and the off test _points lie on
opposite sides of the correct border. The
undetectable border shifts are kept "small" by
choosing the off test points as close to the
pborder being tested as possible. In fact, with
the proper selection of on and off test points, a
quantified error bound measuring the set of
elements - placed in the wrong domain by an
. undetected border shift can be provided. Figure 5
jllustrates a border shift, where G is the border
being tested, C is the correct border, and the set
of elements placed in the wrong domain is shaded.
This border shift is revealed by testing the on
points P and Q and the off points U and 7, since
the off point V is in the wrong domain. For a
path domain border resulting from an inequality
predicate in two-dimensions (two input values),
the selection of four test data points (two on
points and two off points is most effective for
detecting border shifts. For an inequality border
in higher dimensions, 2%V (where V is the number
of vertices of the border) test data points (V on
points. and V off points) must be selected for best
results. For an equality border, twice as many
off points, divided between the two sides of the
border, must be selected. A thorough description
of the domain testing strategy and its
effectiveness is provided in (3). Figure 6 shows

Figure 5.
Border Shift Detected by
Domain Testing Strategy

Conditions for on points for (a-b+h<=0.0)
a=100.0 and b=99.0 and h=-1.0
a=99.0 and b=100.0 and h=1.0
a=100.0 and b=100.0 and h=1.0
a=-100.0 and b=-99.0 and h=1.0
a=-100.0 and b=-100.0 and h=0.0
a=-99.0 and bz=-100.0 and h=-1.0

Conditions for off points for (a-b+h<=0.0
a=100.01 and b=98.99 and h=-0.99
=99.01 and bz=99.99 and h=1.0
a=100.01 and b=99.99 and h=0.01
=-99.99 and bz=-99.01 and h=1.0
a=-99.99 and b=-100.01 and h=0.01
a=-98.99 and b=-100.01 and h=-0.99

Figure 6.
Conditions for Satisfying
Domain Testing Strategy
for RECTANGLE

the test data selected for the paths in RECTANGLE
to satisfy the domain testing strategy. The only
closed border of the path domain is (a-b+h D=
0.0). If extremal values of 100.0 and -100.0 are
assumed for the inputs A and B, this border has
six vertices. The figure indicates whether each
datum is an on point or an off point (on or above
the border). The first three errors in RECTANGLE
are revealed by domain testing. Error one is
detected by execution of any of the on points.
Error two is detected by test data satisfying
either of the two conditions (a = 100.0 and b =
100.0 and h = 0.0) or (a = -100.0 and b = <-100.0
and h = 0.0). Error three is detected by test
data satisfying either of the two conditions (a =
100.01 and b = 99.99 and h = 0.01) or (a = -99.99
and b = -100.01 and h = 0.01).

The basic domain testing strategy described
is useful for testing path domain borders that
involve both arithemetic manipulations and data
manipulations in which the values of component
selectors are known. Complications in applying
the strategy arise when the values of component

selectors depend on input values. Due to the

dependencies among components of a compound
structure and the component selectors, it may not
be possible to find good on and off test points
for a particular border. The intuitive concepts
underlying domain testing can be used as
heuristics to test the borders of a path domain.
For instance, if a path domain border references a
component of a compound structure with a selector
of unknown value it is important to test values
both inside and just outside the domain for both
the selector and the component. When only such
heuristics are applicable, however, a bound on the
error cannot be quantified.

The domain testing stategy subsumes both the
boundary value testing and condition coverage
guidelines proposed by Myers (12) and the extremal
input values testing proposed by Howden (10).
Domain testing is a relatively new test data
selection strategy for which much further research

is needed. The strategy has been well defined for
domains that are continuous, linear convex
polyhedra. This assumes that the input space is

continous and that none of the interpreted branch
predicates contain a disjunction and all
relational expressions are linear. Adequate
modifications have been proposed for both
nonconvex and discrete domains, although several
problems remain to be addressed (3,18). As yet,
however, the strategy has only been sufficiently
defined for linear borders. Modifications have
been proposed that require the selection of on and
off test points near each of the local minima and
maxima of a nonlinear border. Unfortunately, the

practical applicability of domain testing is
limited to interpreted branch predicates of low
degree.

4, AN INTEGRATED APPROACH

Combining the computation and domain testing
"strategies results in the selection of data that
more rigorously test a path than other strategies
proposed to date. In fact, it could be argued
that combining these two strategies will result in
a test data selection method that is likely to
detect all errors on the paths to which it is
applied. There are two major reasons for this
optimism, First, both strategies astutely select
test data with the intent of detecting errors.
Second, these strategies select a large number of
test points, which are scattered throughout a path
domain, so that even missing path errors are
likely to be caught. :

There are two major drawbacks, however,
associated with combining these strategies.
First, ©both strategies often produce a

prohibitively excessive number of test points.
Second, selecting data to satisfy these strategies
-is often a complex, ill-defined process. This
section discusses the need to develop an effective
procedure for integrating these strategies in
which the overall number of test points is
substantially reduced without a corresponding loss
in reliability. Also, the possibility of
providing automated support for the test data
selection process is explored.

.2b, and likewise for 3d and 2c.

when considering the number of tes; points
associated with either strategy, it is meorpanb
to note that many of the test data that satisfy

one selection criterion also satisfy others. This
overlap occurs within a strategy as well as
petween the two strategies. When applying

computation testing to the RECTANGLE example, each
of the test data selected to satisfy criterion 3c
satisfy several of the conditions for criterion
In addition, each
of the on points chosen by the domain testing
strategy also satisfy the computation testing
criteria 2¢ and 3d.

both

Although the guidelines outlined for
fairly

computation and domain testing are
well-defined, a systematic procedure for actually
selecting the data needs to be derived. Such a
procedure could be designed so as to maximize the
number of criteria satisfied by each selected data
point, thereby minimizing the total number of
selected test points. It is improbable, however,
that the cost of finding a minimal set of test
data would be cost-effective. A heuristic
approach, which exploits the overlap among the
criteria in an attempt to reduce the number of
selected points, should certainly be developed.
In defining an algorithm for combining computation
and domain testing, another factor that should be

considered is the flexibility of the selection
criteria. For example, the domain testing
ecriteria are generally very explicit about the
test data, whereas some of the computation

criteria can be satisfied by a number of different
data points. Thus, domain testing criteria should
probably be satisfied before the computation
testing criteria are considered,

Another consideration for reducing the number
of test points 1is to provide various levels of
testing. Only the highest level of testing would
require that all the test data selection criteria

be satisfied. Life critical software would
utilize this testing level but 1less critical
software could utilize 1lower levels. In

developing these testing levels, some of the more
costly criteria would only be associated with the
higher testing levels. Moreover, both computation
and domain testing can be applied more or less
rigorously, with the expected effect on cost and
reliability. For example, probabilistic arguments
have been made for greatly reducing the number of
test points that must be selected for polynomial
testing without sacrificing too much confidence
(5). Similarly, a weaker version of domain
testing, requiring considerably fewer test points,
has also been evaluated (3). The development of
testing 1levels must consider the cost and cost
benefits associated with each test data selection
criteria. Moreover, these testing levels should
also be associated with appropriate path selection
strategies. It 1is not reasonable to pair a weak

path selection criterion, such as statement
coverage, with the highest level - of test data
selection. Finally, care must be taken not to

create a proliferation of levels. Testers do need
a few well differentiated choices however.

-y

Even if well defined procedures are available
for satisfying a testing level, automated support
for the testing process is required. Evidence
supports this need, since even a weak testing
eriterjon such as statement coverage is difficult
to achieve without a tool to monitor program

‘coverage. Symbolic evaluation tools provide a

symbolic representation of the program, but
automatic support for path selection and test data
selection are needed -as well. While these tasks
can not always be completely automated, the need
for human interaction can be minimized. Moreover,
bookkeeping support tools are needed to keep track
of all the information, such as stubs, drivers,
input/output pairs, and test results, associated

with a large testing endeavor. In some instances,
specifications describing the expected output can
be utilized so that the results from testing a
program can be automatically verified. As is
evident by the guidelines provided for computation
and domain testing, reliable testing is a complex
process. It is unrealistic to expect to achieve a
reliable level of testing without providing
programmers with appropriate evaluation and
bookkeeping tools to support this process.

In addition to investigating the integration
and automation of test data selection, some
theoretical and experimental evaluations should be
undertaken. While some of the test data selection
criteria have been carefully investigated, others
are only heuristics. Some criteria may subsume
others and the interaction among some criteria is
not well understood. As with polynomial testing,
more reliable criteria can be developed for other
well defined classes of computations, such as
boolean expressions. Experimental studies
evaluating the actual effectiveness of these
strategies for detecting errors are also needed.
It would be beneficial to experimentally evaluate
the different 1levels of testing so that
reliability measures can be associated with each
level. For example, the expected meantime between
failures or expected ratio of remaining errors to
statements would be useful statistics that would
help managers choose the appropriate testing level
for a program.

In sum, this paper provides a description of
test data selection strategies aimed at detection
of computation and domain errors. Combined they
provide a strong basis for a reliable test data
selection method. There still. remain several
unanswered questions on how to refine, integrate,
automate, and evaluate the test data selection
process. .

6. REFERENCES

1. T.E. Cheathanm, G.H. Holloway, and

- J.A. Townley, "Symbolic Evaluation and the
Analysis of Programs,”" IEEE Transactions on
Software Engineering, SE-U4,H, July 1979,
402-417.

2.

10.

1.

12.

13.

14,

15.

L.A. Clarke and D.J. Richardson, "Symbolic

Evaluation Methods -- Implementations and
Applications,” Program Testing,

Computer
North-Holland Publishing Co., B.Chandrasekaran
and S.Radicchi (eds.), 1981, 65-102.

L.A. Clarke, J. Hassell, and D.J. Richardson,
"A Close Look at Domain Testing," IEEE
Transactions on Software Engineering, SE-8, U,

July 1982, 380-390.

M. Davis, "Hilbert's Tenth Problem is

Unsolvable," American Mathematiecs Monthly, 80,
March 1973, 233-269.

R.A. DeMillo and R.J. Lipton, "A Probablistic
Remark on Algebraic Program Testing,"
Information Processing Letters, 7, June 1978.

R.A. DeMillo, F.G. Sayward, and R.J. Lipton,
"Program Mutation: A New Approach to Program
Testing," State of the Art Report on Program

Testing, 1979, Infotech International.

K.A. Foster, "“Error Sensitive Test Case
Analysis (ESTCA)," IEEE Transactions on
Software Engineering, SE-6, 3, May 1980,
258-264.

A. Haley and S. Zweben, "Development and
Application of a White Box Approach to
Integration Testing," Workshop on
Effectiveness of Testing and Proving Methods,

Avalon, California, May 1982.

W.E. Howden, "Algebraic Program Testing," ACTA
Informatica, 10, 1978.

W.E. Howden, "Functional Program Testing,"
IEEE Transactions on Software Engineering,
SE-6,2, March 1980, 162-169.

J.W. Laski, "A Hierarchical Approach to

Program Testing," Department of Systems
Design, University of Waterloo, Waterloo,
Ontario, Canada, Technical Report
No.55CFW130779.

G.J. Myers, The Art of Software Testing, John
Wiley & Sons, New York, New York, 1979.]

S.C. Ntafos, "On Testing With Required
Elements," Proceedings of COMPSAC '81,
November 1981, 132-139.

S. Rapps and E.J. Weyuker, "Data Flow Analysis
Techniques for Test Data Selection," Sixth
International Conference on Software
Engineering, October 1982.

D.J. Richardson and L.A. Clarke, "A Partition
Analysis Method to Increase Program
Reliability," Fifth International Conference
on Software Engineering, March 1981, 241253,

16. Workshop on Effectiveness of Testing and
Proving Methods, Avalon, California, May 1982,

17. E.J. Weyuker, "An Error-Based Testing
Strategy," Computer Science Department, New
York University, New York, New York, Technical
Report No.027, January 1981.

18. L.J. White and E.I. Cohen, "A Domain Strategy
for Computer Brogram Testing," IEEE
Transactions on Software Engineering, SE-6,
May 1980, 2u7-257.

19, S.J. Zeil and L.J. White, wSufficient Test
Sets for Path Analysis Testing Strategies,"
Proceedings of the Fifth International
Conference on Software Engineering, 1981,
180-191.

7. Biographical Sketches

Lori A. Clarke received the B.A. degree in
mathematics from the University of Rochester in
1969 and the Ph.D. degree in computer science
from the University of Colorado in 1976.

Since 1975 she has been on the faculty in the
Department of Computer and Information Science at
the University of Massachusetts where she is
currently an associate professor. Her interests
include software development, programming
languages, and compiler design.

Dr. Clarke is an IEEE distinguished visitor
and an ACM National Lecturer.

Debra J. Richardson received the B.A. degree
in Mathematics from Revelle College of the
University of California at San Diego in 1976 and
the M.S. and Ph.D. degrees in Computer and
Information Science from the University of
Massachusetts at Amherst in 1978 and 1981.

Dr. Richardson is currently a Visiting
Assistant ® Professor in the Department of Computer
and Information Science at the University of
Massachusetts at Amherst. Her interests include
program testing and verification, specification
languages, and software development environments.

Dr. Richardson is a member of the Association
for Computing Machinery, SIGPLAN, SIGSOFT, and the
IEEE Computer Society.

.

124

