This work was

Introduction to
A Unified Treatment of
Interface Control and Program Structure

Lori A. Clarke
Jack C. Wileden
Alexander L. Wolf

COINS Technical Report 82-32
December 1982

Computer and Information Science Department
University of Massachusetts, Amherst
Amherst, Massachusetts 01003

supported in part by the National Aeronautics

Administration under NASA grant NAG1-115.

and Space

Abstract

Since its introduction in Algol60, nesting has been the predominant
mechanism for achieving interface control and program structuring in modern
programming languages. But nesting is inadequate for achieving some desirable
software properties, such as information hiding, and is antithetical to
others, such as program readability, incremental development and separate
compilation. This paper introduces a small, integrated set of programming
language concepts that comprises a unified mechanism for interface control and
program structuring. There are two aspects to our proposed mechanism. First,
we propose a program structure that supports information hiding, separate
compilation and managerial control. Second, our proposal includes language
contructs that, in conjunction with this program structure, provide precise
interface control.

Page 1

1. Introduction

Even in small and fairly simple computer programs, the issues of
interface control and program structure are more important than has generally
been acknowledged. As software systems become larger and more complex,
however, these "programming-in-the-large" [DERE76] issues assume an even
greater prominence. Especially in such software systems there is a real need
for mechanisms that:

.facilitate readability,

.support information hiding,

.encourage logical system organizations,

.support separate compilation, incremental development, and

maintenance, and

.provide managerial control capabilities.
Yet no existing programming language mechanisms address these needs in a
completely acceptable fashion.

Since its introduction in Algol60, nesting has been the predominant
mechanism for achieving interface control and program structuring in modern
programming languages. But nesting is inadequate for achieving some desirable
software properties, such as information hiding, and is antithetical to
others, such as program readability, incremental development and separate
compilation [CLAR80, HANS81]. Thus, particularly for large complex software
systems, more versatile and powerful mechanisms for interface control and
program structuring are required.

An additional impetus for the introduction of improved interface control
and program structuring mechanisms is the emergence and increasing acceptance
of automated software development support environments. The advent of such
environments allows us to consider a programming language not as an isolated
tool but rather as one component in an integrated suite of tools. This view

is clearly reflected in the design of Ada and its environment [DOD82, BUXT80].

Page 2

The prospect of having tools for constructing, viewing, manipulating - and
analyzing programs opens a wide range of possibilities for programming
" language organization and constructs. For example, the availability of tools
to assist in the construction of a program [MEDI81, TEIT81] effectiVely
counteracts the traditional resistance to redundancy in programming languagesf

Ihis paper introduces a small, integrated set of programming language
concepts that comprises a unified mechanism for interface control and program
structuring. These concepts provide means for controlling both components of

visibility -- that is, the accessibility of external entities from within a

given program unit and the availability of a unit and the entities comprising

it to other program units in the software system. Our mechanism 1is
illustrated using language constructs whose syntax is Ada-like. This syntax
is merely a vehicle for conveying our ideas, however, and should not be
construgd as a concrete proposal for adding specific constructs to Ada or any
other existing language.

In section 2 we discuss existing mechanisms for interface control and
program Structuring. Section 3 details our proposed mechanism, while section
4 illustrates it with an example. Future directions are mentioned in section

5.

2. Related Work

This section briefly comparesiand relates our proposed mechanism to many
of the mechanisms for interface control and program structuring developed in
previous language design efforts. The first mechanism examined is the
primitive notion of nesting as defined in Algol60. Encapsulation and
import/export concepts are then considered. In particular, we consider Ada
[(DOD82], Alphard [SHAW81], CLU [LISK79], Euclid [POPE77], Gypsy [AMBL77], Mesa

[MITC791], Modula [WIRTT77] and Protel [CASH81]. Finally, module

Page 3

interconnection languages are examined.

In nested languages, such as Algol60, interface control is described by a
simplistic tree structure. For each program unit, the accessibility of
external entities from within the program unit as well as the availability of
that unit to other program units is determined by its position in the tree
structure of the program. Such a tree structure is not genefal enough to
describe the wide range of possible interface relationships.among program
units, which are more appropriately represented by a directed graph.
Therefore, nesting usually provides weaker interface control than desired.
For example, a subprogram's "local" entities are unavoidably available to
other program units nested within that subprogram. Furthermore, nesting
forces a program to take the form of a single, monolithic unit, which makes
Separate compilation as well as managerial control of interfaces extremely
cdmbersome. We have argued elsewhere [CLAR80] that for these reasons nesting
is an inappropriate interface control and program structuring mechanism. In
our proposal, as well as in CLU and Gypsy, the nesting of program units is not
supported. While nesting is supported in Ada, Alphard, Euclid, Mesa, Modula,
and Protel, its use can, with some effort, be avoided in these languages (see,
for example, [CLAR80]).

Since the development of Algolé60, a variety of attempts have been made to
compensate for the inadequacies of nesting. The languages considered here
have relied, to a greater or lesser degree, on the concepts of encapsulation
and import/export to describe which entities are accessible andAavailable in a
program. 1In its most general form, although not the one used in all of these
languages, an encapsulation serves to group related program units, objects,
and types. Examples of encapsulation constructs include the Ada package,
Alphard form, CLU cluster, and Modula module. Our proposal combines

encapsulation and augmented import/export concepts to create a mechanism

Page 4

capable of describing the desired accessibility and availability of entities
in a program more precisely than is possible in any of the other languages.

Selective accessibility is the ability to import arbitrary subsets of the
available entities. This capability is provided in our proposal as well as in
Modula, Euclid and Mesa. In other languages, only all or none of the
available entities from an encapsulation can be imported, which frequently
results in some entities being .made accessible unnecessarily. Selective
availability, which is the corresponding ability to make specific entities
available to specific program units, is provided in Gypsy, through its use of
"access 1lists". Since we believe that selective availability is an important
capability it is also provided in our proposed mechanism.

A module interconnection language [DERE76, MITC79, TICH79] is a separate
language, used in conjunetion with a programming language, for specifying and
controlling the interfaces among program units. One of these languages
([TICH79]) also provides configuration control for multiple versions of
systems. The principal benefit derived from a physically separate
specification of interfaces is the possibility of independent ménagerial
control. While selective accessibility is possible in all these 1languages,
none supports selective availability. In many cases, the use of a separate
description causes a large amount of duplication. The mechanism proposed here
incorporates the functionality and independence of the interface control
provided by module interconnection languages without the duplication. We
believe that version control is best left outside of the programming language
and thus have not incorporated it into our mechanism.

In summary, while many existing programming and module interconnection
languages proVide some of the desired capabilities, none provides all. 1In the
next section we describe how our mechanism, using fairly straightfoward

constructs, achieves this goal.

Page 5

3. Constructs of the Proposed Mechanism

There are two aspects to our proposed mechanism. First, we propose a
program structure that supports information hiding, separate compilation and
managerial control. Second, our proposal includes language contructs that, in
conjunction with this program structure, provide precise interface control.
Although our mechanism is quite simple, it results in a more uniform,
complete, flexible and precise treatment of interface control than any of the
approaches previously proposed.

Under our proposal a software system consists of a (nest-free) collection
of program units, where a program unit is either a subprogram (procedure,
function or task) or a package (i.e., an encapsulation). To support
information hiding, separate compilation and managerial control, we propose
having three distinct kinds of subunits associated with each program unit: an

interface specification, a user specification and a body. An interface

specification subunit completely describes a program unit's interface. It
specifies the accessibility of external entities from within the program unit.
It also specifies the availability of the program unit, and (in the case of a
package) the entities comprising it, to other program units. A user
specification contains the minimum amount of information necessary for use of
the program unit by a particular user. A program unit's body contains the
actual code section(s) implementing the unit's specification.

A major benefit of the program structuring mechanism proposed here is
that the physical separation of a program unit's interface from its body
fosters managerial control over both the accessibility and availability of
that program unit. In cases where such control is not desired, however,
implementors of program units can assume the role of project leader and
construct their own interface specifications. The physical separation of user

specifications from the interface specification also fosters information

Page 6

hiding and allows different views of the same program unit. Furthermore, the
separation of a program unit's various specifications from its body
facilitates separate compilation, both of its users and of its implementation
[ICHB76]. Taken together, this separation of concerns aids in the incremental
development of large software systems by reducing the interdependency of the
components of those systems.

The second aspect of our proposal concerns the constructs used in a
program unit's interface specification to achieve precise interface control.
We propose two constructs, a with clause for defining accessibility and a

restrict clause for defining availability. The basic function of the with

clause, which is similar to that of the Ada with clause, is to serve as an
import 1list for program units. We have enhanced the Ada with clause in order
to achieve selective accessibility. In our proposal the with clause can
import not only packages and unpackaged subprograms but also specific entities
(subprograms, objects and types) encapsulated within packages. Thus, if only
some of the entities provided by a package are needed, then the balance of the
entities provided by that package do not also have to be imported. For
example
subprogram EXAMPLE (...)
with REALS, SUB1, STACK.ST

indicates that the subprogram imports the entire package REALS, the unpackaged
subprogram SUB1 and just the type ST from the package STACK.

As a starting point for controlling availability, our proposal includes
constructs that distinguish a package's provided entities from its hidden
ones. Both the provided and hidden entities are available to all other
entities in the defining package, but only the provided entities are available

outside of the package. Several existing languages employ similar constructs.

Page 7

In those 1languages, however, availability is controlled on an all-or-nothing
basis; either an entity is made available to every program unit, or it is
made available to no program unit other than the defining package. To remedy

this shortcoming, our proposal also includes a restrict clause, which has its

roots in Gypsy's "access list". The restrict clause may be appended to any of
a package's provided entities in order to selectively limit their availability
to other program units when such control is desired. For example
OBJ : INTEGER
restricted to PROGUNIT

indicates that object OBJ is only available to program unit PROGUNIT. For
convenience, a single restrict clause may be appended onto the package itself
to indicate that all the entities provided by the package are limited in the
same way. The restrict clause also applies to an unpackaged subprogram. An
appended restrict clause for such a subprogram limits its availablity and
avoids the need to create a superfluous package to encapsulate the subprogram
and control its availability.

An important aspect of information hiding is the distinction between the
availability of the name of a type and the availability of the representation
of that type. Hence, a type provided by a package may be associated with two
restrict clauses, one referring to the availability of the name and the other
referring to the availablity of the representation. Access to the name of the
type 1is, of course, necessary for any sort of use of the type. Therefore,
limitations on the availability of the representation are a subset of those on
the name and so a restrict clause associated with the representation serves as
a further restriction on the representation beyond that inherited from the
name. Six basic 1levels of control result (Figure 1). Associating two

restrict clauses with a type definition allows abstract data types to be

(1

(2)

(3)

(4)

(5)

(6)

type

type

A is B

—— name: no restriction

-~ representation: no restriction

— name and representation are available to all

A is B
restricted to X
—- name: no restriction
-—- representation: restriction
-- name available to all; representation

-— available only to X and defining package

type A is B
restricted
-— name: no restriction
-~ representation: complete restriction
—— name available to all; representation
-- available only to defining package
type A restricted to X
is B
-— name: restriction
-- representation: same restriction as name
-=- name and representation available only
-— to X and defining package
type A restricted to X, Y
is B restricted to X
-— name: restriction
~-- representation: restriction
-- name available only to X, Y and defining
-—- package; representation available only to
- X and defining package
type A restricted to Y
is B restricted

—— name: restriction

-—- representation: complete restriction

-— name available only to Y and defining

- package; representation available only to
-- defining package

Basic Levels of Control
Over Provided Packaged Type Definitions

Figure 1.

Page 8

Page ¢

easily defined and also solves the problem of sharing the representation of an
abstract type among different program units [KOST76].

Although not discussed further here. our proposal also allows control to
be applied to the operations associated with particular objects and types.
This is similar to the access constraint mechanism proposed for objects by
Jones and Liskov [JONE78].

It should be pointed out that our proposal provides little control within
a program unit over the accessibility and availability of entities declared in
that program unit. This lack of control, which is based on the presumption
that entities are declared together because they share some 1logical
relationship, may be vieweq as a syntactic shorthand for a commonly occurring
situation. If the control 1is desired, however, then it can be achieved
through appropriate use of our proposed mechanism.

A program is said to be interface-correct if there is consistency among

the interfaces of all the program's packages and subprograms. For each
program unit, this specifically means that all imported entities mu;t be
available to it. An appealing property of the with and restrict clauses as
defined here is that the interface-correctness of a program can be guaranteed

before execution of the program.

4, Example
To illustrate our proposed mechanism, consider one possible scenario of
its use, The project leader of a software project recognizes the need for a
package that defines a stack abstract type (what else!). The project leader
therefore creates an interface specification subunit for the stack package
that describes what types and operations it provides, how the abstract type is
to be represented, and to which other program units the abstract type is

available (Figure 2). In particular, the stack data type ST and stack element

package STACK interface specification

with LINKED LIST.LIST ELEMENT, LINKED LIST.LIST

provides

type EL is new LINKED_LIST.LISI_ELEMENT
restrigted to CONVERT

type ST is new LINKED LIST.LIST
restricted to CONVERT

subprogram POP (S : ST; OLDTOPEL : EL)
with LINKED LIST.DELETE
restricted to USERA

subprogram PUSH (S : ST; NEWTOPEL : EL)
with LINKED LIST.INSERT

subprogram TOP (S : ST; TOPEL : EL)
with LINKED LIST.EXAMINE

end package STACK

Interface Specification Subunit

Figure 2.

Page 10

e

Page 11

data type EL have three operations PUSH, POP and TOP associated with them.
Further, the project leader has specified that the representation of the
abstract type should be based on entities provided by a previously defined,
although not necessarily implemented, linked-list package. Any program unit
may create objects of the types ST and EL, but only program unit CONVERT
shares the representation of the types with the stack package. Moreover, only
program unit USERA may use operation POP.

Even though the stack operations have not yet been implemented, the
project leader would 1like to initiate development of the program units that
will wuse the package. The project leader therefore creates a user
speéification subunit for each user of the package (Figure 3). The resulting
user specifications present views of the package that are relevant to the
different users., Clearly, the software development environment could provide
a tool to derive appropriate user specifications from an interface
specification.

Independent of the development of the program units using it, the stack
package 1is eventually implemented. As it turns out, an additional object as
well as an additional subprogram, both of which should be unavailable outside
of the package, are needed in the implementation. Hence the project leader
updates the interface specification to include these two new entities,
TOTAL_STACKS and UTIL, still retaining control over their interface even
though they are part of the implementation (Figure 4). As part of the
updating procedure, the new interface specification is checked for consistency
with the old interface specification using a tool provided in the environment.
The actual bodies of the subprograms defined in the package appear in a body
subunit (Figure 5). Notice that the implementor is constrained by the
interface specification to wuse the entities provided by the linked-list

package in implementing these subprograms.

package STACK user specification
type EL

type ST

subprogram PUSH (S : ST; NEWTOPEL : EL)

subprogram TOP (S : ST; TOPEL :

end package STACK

(a)

package STACK user specification
type EL

type ST

EL)

subprogram POP (S : ST; OLDTOPEL : EL)

subprogram PUSH (S : ST; NEWTOPEL : EL)

subprogram TOP (S : ST; TOPEL :

end package STACK

(b)

package STACK user specification

EL)

type EL is new LINKED LIST.LIST ELEMENT

type ST is new LINKED LIST.LIST

subprogram PUSH (S : ST; NEWTOPEL : EL)

subprogram TOP (S : ST; TOPEL :

end package STACK

(e)

User Specification Subunits for General Users (a),
Program Unit USERA (b), and Program Unit CONVERT (c)

Figure 3.

EL)

Page 12

package STACK interface specification
with LINKED LIST.LIST ELEMENT, LINKED LIST.LIST,
LINKED LIST.LIST COUNTER -
provides
type EL is new LINKED LIST.LIST ELEMENT
restricted to CONVERT -

type ST is new LINKED LIST.LIST
restricted to CONVERT

subprogram POP (S : ST; OLDTOPEL : EL)
with LINKED LIST.DELETE
restricted to USERA

subprogram PUSH (S : ST; NEWTOPEL : EL)
with LINKED LIST.INSERT

subprogram TOP (S : ST; TOPEL : EL)
with LINKED LIST.EXAMINE

hides
TOTAL_STACKS : LINKED_LIST.COUNTER t= 0

subprogram UTIL (E : EL)
with LINKED LIST.STATISTICS

end package STACK

Updated Interface Specification Subunit

Figure 4,

package STACK body
subprogram UTIL (...) is ... end subprogram UTIL

subprogram POP (...) is ... end subprogram POP
subprogram PUSH (...) is ... end subprogram PUSH
subprogram TOP (...) is ... end subprogram TOP

end package STACK

Body Subunit

Figure 5.

Page 13

Page 14

A number of other scenarios exist that exploit our interface control and
program structuring mechanism in interesting ways. For instance, a
methodology could have been employed that would have called for the definition
of the various user specifications before the definition of the interface
specification. A tool could conceivably be used to synthesize the interface

specification from these user specifications and then check its consistency.

5. Future Directions

Several facets of the mechanism proposed here are presently being
studied. In particular, we are currently developing a formal model of
visibility, investigating the types of analytic techniques and tools that
should be provided to support the proposed mechanism, and examining the
usefulness of this mechanism during the pre-implementation phases of the
software development process.

The formal model of visibility that we are developing describes entity
accessibility and availability in a general, comprehensive manner. This model
Qill be used to describe the interface control provided by existing mechanisms
as well as by our proposed mechanism, We expect to use this model to
rigorously compare and evaluate these mechanisms. Moreover, this formalism
will be used to help define analytic techniques that can be applied to systems
using our proposed mechanism.

As alluded to throughout this paper, there are a number of tools that
should be developed to support interface control. Some of these tools are
quite straightforward to develop, such as a tool to derive a user
specification from an interface specification. Other tools, such as tools to
determine interface consistency or to determine what recompilation is
necessary after an interface specification has been modified, require

additional investigation.

Page 15

Finally, the application of these concepts to the pre-implementation
phases of software development is being explored. The mechanism has been
designed to support incremental development. The major system program units
and their interfaces could be described in a functional specification using
the proposed mechanism. During the design phase, the program units and their
interfaces could be further refined. We expect that many of the tools
mentioned above could be applied to high 1level, partial solutions, thus
providing precise, consistent interface control early and throughout the

software development process.

[AMBL7T71]

[BUXT80]

[CASH81]

[CLAR80]

[DERET761]

[DOD82]

[HANS81]

[ICHBT6]

[JONET8]

[KOSTT6]

Page 16
References

A.L. Ambler, D.I. Good, J.C. Browne, W.F. Burger, R.M. Cohen,
€ G Hoch, and R.E. Wells, "GYPSY: A Language for Specification
and Implementation of Verifiable Programs," Proceedings g£ an ACM
Conference on Language Design for Reliable Software, SIGPLAN
Noticies, vol. 12, no. 3, pp.1-10, March 1977.

J.N. Buxton, Requirements for Ada Program Support Environments
("Stoneman"), United States Department of Defense, Washington, D.C.,
February 1980.

P.M. Cashin, M.L. Joliat, R.F. Kamel, and D.M. Lasker,
"Experience with a Modular Typed Language: Protel," Proceedings of
the Fifth International Conference on Software Engineering, San
Diego, California, pp.136-143, March 1981.

L.A. Clarke, J.C. Wileden and A.L. Wolf, "Nesting in Ada Programs
is for the Birds," Proceedings of an ACM-SIGPLAN Symposium on the
Ada Progamming Language, SIGPLAN Notices, vol. 15, no. 1
pp.139-145, November 1980.

F. DeRemer and H.H. Kron, "Programming-in-the-Large Versus
Programming-in-the-Small," IEEE Transactions on Software
Engineering, SE-2, no. 2., pp.80-86, June 1976.

Reference Manual for the Ada Programming Language, United States
Department of Defense, Washington, D.C., July 1982.

D.R. Hanson, "Is Block Structure Necessary?," Software - Practice
and Experience, vol. 11, no. 8, pp.853-866, August 1981.

J.D. 1Ichbiah and G. Ferran, "Separate Definition and Compilation
in LIS and its Implementation," Lecture Notes in Computer Science,
no. 54, Springer-Verlag, Berlin, pp.288-297, 1977.

A.K. Jones and B.H. Liskov, "A Language Extension for Expressing
Constraints on Data Access," CACM, vol. 21, no. 5, pp.358-367, May
1978.

C.H.A. Koster, "Visibility and Types," Proceedings of a Conference
on Data, SIGPLAN Notices, vol 11, no. 2, pp.179-190, February 1976.

[LISK79]

(MEDI81]

[MITC79]

[POPE77]

[SHAW81]

[TEIT81]

[TICHT79]

[(WIRTT77]

Page 17

B. Liskov, R. Atkinson, T. Bloom, E. Moss, C. Schaffert, B.
Schiefler, and A. Snyder, "CLU Reference Manual," Technical Report
TR-225, MIT Laboratory for Computer Science, October 1979.

R. Medina-Mora and P.H. Feiler, "An Incremental Programming
Environment," IEEE Transactions on Software Engineering, vol. SE-7,
no. 5, pp.472-482, September 1981.

J.G. Mitchell, W. Maybury and R. Sweet, "Mesa Language Manual
Version 5.0," Technical Report CSL-79-3, Xerox PARC, Palo Alto,
California, April 1979.

G.J. Popek, J.J. Horning, B.W. Lampson, J.G. Mitchell, and R.L.
London, "Notes on the Design of Euelid," Proceedingslgg an AE!
Conference on Language Design for Reliable Software, SIGPLAN
Notices, vol. 12, no. 3, pp.11-18, March 1977.

M. Shaw (ed.), ALPHARD: Form and Content, Springer-Verlag, New
York, 1981.

T.Teitelbaum and T. Reps, "The Cornell Program Synthesizer: A
Syntax-Directed Programming Environment," CACM, vol. 24, no. 9,
PP.563-573, September 1981.

W.F. Tichy, "Software Development Control Based on Module
Interconnection," Proceedings of the Fourth International Conference
on Software Engineering, Munich, West Germany, pp.29-41, September

1979.

N. Wirth, "Modula: A Language for Modular Multiprogramming,"
Software - Practice and Experience, vol. 7, no. 1, pp.3-35,
January-February 1977.

