—g

A}

8 ™3 3 TF

|

R

—3

A FRAMEWORK FOR ORGANIZATIONAL
SELF-DESIGN IN DISTRIBUTED
PROBLEM SOLVING NETWORKS

Daniel D. Corkilil

COINS Technical Report 82-33

December 1982

)

A FRAMEWORK FOR ORGANIZATIONAL SELF-DESIGN
IN DISTRIBUTED PROBLEM SOLVING NETWORKS

A Dissertation Presented
By

DANIEL DAVID CORKILL

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of
DOCTOR OF PHILOSOPHY
February 1983

Computer and Information Science

Daniel David Corkill

1982
All Rights Reserved

This work was supported in part by:'

The National Science Foundaﬁion
Grant Number MCS78-04212

and

The Office of Naval Research
Grant Number NOOQ14-79-C-0439

~ii

3

3 T3

—3 T3 — 1 —1 3

ACKNOWLEDGEMENTS

This - dissertation would not have happened without the friendship,
direction, encouragement, collaboration, and intellectual support I
received from Victor Lesser, I am continually amazed by his energy, his
insatiable appetite for new ideas, and the multitude and richness of his
insights, It was. Victor who first opened my eyes to the exciting
potential of distributed problem solving networks.

The diverse research interests of the other members of my
dissertation committee also contributed much to this work:
Michael Arbib introduced me to the work of Stafford Beer, suggested
some changes in the structure of the dissertation, and forced me to
clarify many-of the ideas. Kenan Sahin encouraged my attempts to
relate organizational structuring in distributed problem solving
networks to organizational concepts in business and management
organizations. Somewhat skeptical of artifiecial intelligence
research, Jack Wileden posed some difficult questions (a few of
which remain unanswered). Jack also untied some of the knots in my
exposition and my grammar.
I wvould also 1like to thank Richard Leifer for discussions of
organizational structuring in business and management organizations
during the early stages of this work.

Susan Lander, Jon Lander, and Jim Hoffman drew many of the figures
appearing in the dissertation, Susan also typed all the figures and
caught many of my spelling errors.

A project as large and complex as the Distributed Vehicle
Monitoring Testbed required the time and energies of a number of
individuals:

The selection of the distributed vehicle monitoring task and the

preliminary design of the testbed were done by Victor Lesser,

Jasmina Pavlin, and Scott Reed. Raam Mukunda was responsible for

the preliminary implementation of the (rather involved) FRONTEND

knowledge source. Jasmina Pavlin completed the coding of the

FRONTEND and implemented the 1local problem solving and

communication knowledge sources. (Jasmina also showed me the

Tyspin quote). Eva Hudlicka coded and debugged several iterations

of the subgoaling and goal satisfaction components of the 1local

node planner and implemented the goal rating function. Larry

Lefkowitz implemented the knowledge source rating function and the

local node and system state measures. Jon Borden, Larry Lefkowitz,

Jim Hoffman, and Sheryl Franklin worked on the dynamic color

graphic displays of testbed activity (which unfortunately only

appear in static black and white in this document). Richard Brooks
helped design the format for environment files. (Richard also

iv

helped me rediscover the joys of skating.) Victor kept us all on
our toes! A '

The students, faculty, and staff of the Computer and Information
Science Department have been a source of numerous .dicussions and
friendships (and volleyball games). In particular, John Lowrance was a
source of many prolonged and productive arguments during our formative
years.

On the more personal side, I would like to express my appreciation
to my parents for their support (financial and emotional) during what
seemed like such a long time (and was).

Finally, I would like to thank my wife Susan for her assistance
whenever I needed it and for keeping the household a welcome haven when
I was too busy to help. I couldn't have done it without you!

ABSTRACT

A Framework for Organizational Self-Design
in Distributed Problem Solving Networks

February 1983

Daniel D,-Corkill
BS, MS, University of Nebraska
PhD, University of Massachusetts

Directed by: Professor Victor Lesser

A distributed prdblem solving network is a distributed network of
semi-autonomous nodes that perform sophisticated problem solving and
cooperatively interact with other nodes to solve a single problem.
Because interaction among nodes is both limited and unreliable, each
node directs its own activities in concert with other nodes, using
potentially incomplete, inaccurate, and inconsistent information. Each
node must balance its own perceptions of appropriate local probiem
solving activity with activities deemed important by other nodes.

Organizatiénal self-design is proposed as a multilevel approach to
ceordinating these networks. An organizational structure specifies the
information and control relationships among the nodes in a general way.
Each node is responsible for elaborating these relationships into
precise activities to be performed by the node.

This work focuses on ‘the design and implementation of a
coordination framework that is responsive to organizational structuring

decisions. This framework is implemented as part of the distributed

vi

vehicle monitoring testbed: a flexible and fully-instrumented research
tool for the empirical evaluation of distributeq network designs and
~ coordination policies. Each node uses a goal-directed Hearséy-II
architecture and a local node planner to provide the sophisticated local
control necessary for a node to evaluate its activity decisions based on
internal, externél, and organizational criteria. The capabilities of
the framework are illustrated with testbed experiments using different
organizational structures in four-node and five-node distributed

networks.

¥

vii

E

3 3 3 _3

—a T3 T3 ™3

TABLE OF CONTENTS

LIST OF TABLES . ¢ ¢ ¢ ¢ o o ¢ ¢ o s s o o o s o o o s o o o o o o xii
LIST OF FIGURES ¢ ¢ « ¢ o « o « o o o o o o o o s o o s o s o « o« o Xiii
Chapter
I. OVERVIEW . o ¢ ¢ ¢« ¢ ¢ o ¢ ¢ o ¢ o « o o o o a o o o« 2 s o ¢+ 1
1.1 Introduction . . & ¢ ¢ o ¢ o ¢ o o o o o a « o o o ¢« o o« 1
1.2 What Distributed Problem Solving Is (And What It Is
NOE) & ¢ & 4 o ¢ o o ¢ o o o o o o o s o a s s o s ¢+ 4 8
1.2.1 Characteristics of distributed problem solving . . 9
1.2.2 Comparison with parallel processing . . . « « « - 13
1.2.3 Comparison with distributed processing 14
1.2.4 Comparison with cooperating experts 15
1.2.5 The argument against "distributed experts™ 17
1.2.6 Describing distributed problem solving networks . 20
1.3 The Major Contributions . ¢« v ¢« « « ¢ o ¢« o o s o o o « o 21
1.3.1 Philosophical idea8s . « o ¢ « o o o o o ¢ o o o o 22
1.3.2 Implementation of the Distributed Vehicle
Monitoring Testbed . . . & ¢ ¢« ¢ ¢« ¢ ¢ ¢« « « . 28
1.3.3 Testbed mechanisms for implementing the
philosophical ideas . « « « o o ¢ © s o o o o+ + 29
1.3.4 Initial explorations using the testbed 33
1.4 Navigational Aids for the Reader . . « ¢« ¢ o « « « « » « 34
II. DISTRIBUTED VEHICLE MONITORING AND THE TESTBED . « « « « « « o 37
2.1 The Vehicle Monitoring Task « « « « ¢ o o o o o o« o s » « 37
2.1.1 Vehicle monitoring task processing levels 38
2.1.2 Centralized vehicle monitoring . « « « « o« « o o o H1
2.1.3 Distributed vehicle monitoring . . . « « ¢« « « . . M1
2.1.4 Why distributed vehicle monitoring? 44
2.2 The Functionally Accurate, Cooperative Approach U46
2.3 The Distributed Vehicle Monitoring Testbed 51
2.3.1 Motivation . . & & ¢ ¢ o ¢ s 4 o o 4 o 0 o o s o o 51
2.3.2 The simplified vehicle monitoring task . . e « o 54
2.3.3 Basic node architecture &« ¢« ¢ ¢ ¢« « ¢ « « 55
2.3.4 Basic problem solving . . . ¢ ¢ 4 4 o o o s o o+ .. 66
2.3.5 Knowledge SOUrCES . ¢« v « o « o« o w s s o« o« o « o 16
2.3.6 Measurement capabilities « . ¢« ¢ ¢ ¢ ¢ ¢ « « « « o 80
2.3.7 Modifying knowledge source power . . « « « « « « o 82
2.3.8 Still to cOmME . & ¢ ¢ ¢ ¢ o o o o o 0 o o 0 o o .« 83

viii

III.

Iv.

COORDINATING NODE ACTIVITY . ¢ ¢ o« o o o o o o o o s o o o o

3.9

The Internal Coordination Problem « « ¢ « ¢ « &
The Network Coordination Problem « ¢« ¢« &+ ¢« & &
3.2.1 A simple (but extended) example . . . « « ¢ o &
3.2.2 Some additional considerations ¢ ¢ o o .
The Contract Net Approach . . ¢« ¢ ¢ ¢« ¢ ¢ o ¢ o ¢ o « &
The Self-Directed Approach ¢« . ¢« ¢ ¢« ¢ « o o &
Reconciling the Two Approaches . . ¢ ¢ ¢ « o o o o o
Forms of Network Coordination
Functionally Accurate, Cooperative Network Coordlnatlon
Organizational Design as a Framework for Network
Coordination . « o o o o ¢ ¢ o ¢ ¢ o o o s o o o o
3.8.1 The need for organizational design
3.8.2 Organizational design versus network design . .
3.8.3 The need for organizational change « « .
3.8.4 When is organizational design worth the effort?
Skeptical Nodes . + o« o« ¢ o o ¢ o o o o o o o o o o o o

3.10 The Need for Sophisticated Nodes . . .« ¢« ¢« ¢ ¢ & ¢ ¢« &

A FRAMEWORK FOR ORGANIZATIONAL COORDINATION . . « « & ¢ « &

4.1

4.2

4.3

A Goal-Directed Hearsay-II Architecture « . .
4,1.1 Limitations in Hearsay-Il's data-directed
approach tocontrol . . « ¢« ¢ ¢« ¢ ¢ ¢ o o o &
4.,1.2 Adding goal-directed control to Hearsay-II . . .
4.1.3 Control in the goal-directed Hearsay-II
architecture . . . ¢ ¢« ¢« ¢ ¢ ¢ ¢ o o o s e .
4.1.4 Generalizations in the Hearsay-II knowledge
source model c 4 e e e e e e 0 o .
4,1.5 Goal attributes ., . ¢« « ¢+ ¢ o ¢ ¢ o o o o o o
4,1.6 G0oal processSinNg .« « o« o « o o o o o o o o o o
Implementation of the Goal-Directed Hearsay-II
Architecture in the Testbed « . ¢« ¢« ¢ ¢ « &
1 Additional knowledge sources . . « « o« o o o o o
.2 Interest areas . . « ¢« + ¢ ¢+ ¢ o o s o s 0 o o »
3 Major goal attributes . . . « e e o s v e o
4 The testbed blackboard monltor and blackboard
€VENES v 4 4 4 4 4 o o s s s s e s s e e o @
5 The planner . . ¢ ¢« ¢« o+ o« « o o s o o s o o o o
6 Rating B0als . v v ¢ ¢ ¢ ¢ o o o o o o s o o o
7 Subgoaling « o o o o o s e o o
8 Knowledge source precondltlon procedures
9 Rating knowledge source instantiations
itional ISSUES o+ ¢ 4 o o o o o o o o o o o o o o o =
1 Plans in the goal-directed Hearsay-II
architecture . . ¢ ¢ ¢ ¢ ¢ o o o o o o o o &
2 Balancing the cost of goal processing
.3 The goal satisfaction problem+ .

ix

8u

85
88
88
100
102
108
112
114
118

121
121
123
125
126
127
132

133
134

135
142

170

173
174
176

178
178
180
185

186
196
199
201
207
208
21

211
212
213

VI.

5.2

4.4 A Framework for an Organizational Designer

DISTRIBUTED VEHICLE MONITORING TESTBED EXPERIMENTS . . .

5.1 The Environmental Scenarios .

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
E

F)

5.3

18] vz Wn [RGB NG, R RS,
o C e .
)

5.3.5
5-306

node Experiments . . « ¢« ¢ ¢« ¢ ¢ o &

The grammar

The sensors . . « « « & .

Knowledge sources . . « o« o o o o

The straight vehicle environment .

The bent vehicle environment
a

« o o
. L] L2

e o o o o
e o o o

o ¢ o

* e o o

® 8 o e o o

eriments with the Goal-Directed Hearsay-II
Architecture . . . + ¢« ¢ ¢ ¢« + « &

Local coordination strategies .
Straight vehicle environment . .
Bent vehicle environment
Real-time experiments« .
The cost of goal processing« .
The balance between data-directed and
goal-directed control
Summary of single node experiments

Multinode architectures &
Different four-node organizational problem
solving strategies . . ¢« ¢« ¢ o ¢ o o o o
Results of the four-node network experiments
the straight vehicle enviromment
Different five-node organizational problem
solving strategies . . ¢ ¢« ¢ ¢ 4 o o o &
Results of the five-node network experiments
the straight vehicle enviromnment
Comparing the four-node and five-node
architectures . . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o @

5.4 Future Directions in Evaluating the Effect of
Organizational Structuring ¢« ¢ ¢ ¢ « &

THE END OF

ooV Oy

A BEGINNING ® e © ® » o6 ¢ o © o o & & o o o o

. 1 A Look BaCk L] L] L] . . . L] . L] L] * * L] L] * L] L] L] . L]
‘o 2 A Look Ahead 3 [. 3 [. .
.3 Some Thoughts on Organizational De31gn for Distributed

Problem Solving Networks . . « « ¢ o« ¢ ¢ o« & o &

6.3.1
6.3.2
603-3

Business and management organizations
Biological and social systems . .
Parting thoughts . . . « « « « « &

L] L] . L] . L[] * L] L] L]

® o & o

e o o

218
223

223
224
224
227
231
234

236
237
238
249
262
271

279
282
282
282
286
289
293
295
298
299
305

305
308

313
314
320
323

—2 "3 ~—3® ~— 3% —3 —38 T3 T3 ~—=3 ~— 1 E | i T3 T3 i T3 T3 T3 "3

APPENDIX A. ENVIRONMENT FILE DESCRIPTION « « ¢ « « o o« o o o o« o o 325
APPENDIX B. DISTRIBUTED VEHICLE MONITORING TESTBED ATTRIBUTE

DESCRIPTIONS “& ¢ « ¢ o o o o o o o o o« o « o« « « o« 340

B.1 Competitor Set Attributes« « . . . 340

B.2 Global-Hypothesis Attributes 341

B.3 Goal Attributes . .« « + ¢« ¢ ¢ ¢ ¢ o s o o ¢« « o o 3N

B.4 Hypothesis Attributes e e e o o o o o 343

B.5 Knowledge Source Attributes . . . e o o o o o 345

B.6 Knowledge Source Instantiation Attrlbutes e o o o 3U46
B.7T Node Attributes ¢ ¢ ¢ ¢ o o o o . . 347

B.8 Sensor Attributes ¢ ¢ ¢ ¢« 4 ¢ ¢ s e o o 351

APPENDIX C. AN ANNOTATED PORTION OF A NETWORK TRACE« 353
SELECTED BIBLIOGRAPHY . v ¢ ¢ ¢ o o o « o o o o o o s o o o 362
CITATION INDEX . - * L] - L] L] . L] L] L] L] . L] L] L] L] L] L3 L] L] L] L] 37 1

xi

—3

1.
2.
3.
4.

5.
6.

8'
9’
10.
11.
12.
13.

_ LIST OF TABLES

Distributed Vehicle Monitoring Testbed Knowledge Sources

Execution Trace for Figure 22
Forms of Network Coordination

Additional Distributed Vehicle Monitoring Testbed

e« o o & o o o

Knowledge

SOUrCES & & & o ¢ ¢ o ¢ o o o o o s a2 o o o @

Interest Area Parameters ¢« o o &

Goal Rating Calculation . . & ¢ ¢ v & &4 o o o o «
Subgoaling Specification Data Structure

Knowledge Source Instantiation Rating Calculation
Knowledge Sources Used in the Testbed Experiments

Summary of Single Node Experiments . , .
Summary of Four-Node Network Experiments
Summary of Five-Node Network Experiments

Network Cycle Comparison of the Four- and Five-Node

xii

.

Experiment

L[] . L] . L] .

.
S

. 78
. 98
17

179
183
200
206
210
228
283
290
296
298

10.
11.
12.
13.
14,

16.
17.
18.
19.
20.

21,

22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.
35.
36.
37.
38.
39.
40.
41,
42,

43.

LIST OF FIGURES

A Simple, Hierarchical Organizational Structure
Basic Node Architecture . . . ¢« ¢ ¢ o ¢ ¢ ¢ ¢ o o o ¢ ¢ o o o
Vehicle Monitoring Task Processing Levels . « ¢ « ¢ o ¢ o o o &
Centralized Vehicle Monitoring . . o ¢ ¢« ¢ o o o « o o o o o &
Distributed Vehicle Monitoring . . . ¢« ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o o o o
Testbed Node Architecture . . . ¢« « ¢« ¢ ¢ ¢ ¢ ¢ o o @
Blackboard Levels in the Testbed . . ¢« ¢ ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ o o &
A Simple Testbed Grammar . . . « ¢« ¢ o o o ¢ o o o o
Location Synthesis . « ¢ ¢« o o ¢ ¢ ¢ o ¢ o o ¢ o o o
Inaccuracies in Signal Event Location and Frequency . . « « « .
Track Synthesis . o ¢« « o o o o ¢ o ¢ o ¢ ¢ o o o o s o o o o o
Track Formation . . ¢ ¢« ¢ o ¢ o ¢ o o o ¢ o o o o ¢ o o .0 o o o
Track EXtension « « o ¢ ¢ o o o o s o ¢ ¢ o o o o o o o°a o o »
Location—-to=Track Joining . « « « o o o o« o o o o o s o o o o o
Track Merging .« o« o o o ¢ o o o o o o o s s o s o o o o o o o o
The Simple Two Node Problem . . . o« & o ¢ ¢« « o o o o o o &
Node:1 Solves the Entire Problem ¢+ ¢« ¢ ¢ ¢« ¢ ¢ o &
Node:1 Transmits One Signal Location Hypothesis to Node:2 .
Node:1 Transmits Two Signal Location Hypotheses to Node:2 .
Node:1 Transmits a Different Two Signal Location Hypothesis to
NOdE:22 v o o ¢ o o o o o o s ¢ o o« o o s o o s o o o o o o o
Adding Group Location Communication to the Figure 19
Decomposition . ¢ o o ¢ o o o o ¢ o o o s e o s s s e s e e
Communication at the Signal, Group, and Vehicle Location Levels
Distributed Problem Solving Phases (Smith and Davis)
Data-Directed Hearsay-II Architecture ¢« ¢ ¢ ¢ ¢« ¢ « ¢ &
Goal-Directed Hearsay-II Architecture . . . ¢« ¢« ¢ ¢ o ¢ o ¢ o &
Bottom-Up Goal-Directed Processing . . ¢« ¢« ¢ ¢« & e=o o o o s &
Precondition-Action Backward Chaining . . . ¢« ¢« ¢« ¢« o o« & .« .
SUDZO0AlINE .« ¢ ¢ ¢ ¢ ¢ o o o o ¢ o v s s o e v e e e s o o o
Alternative Knowledge Source Instantiations ¢« « ¢« « ¢« &
The Simple Testbed Grammar . . « ¢ ¢ ¢ « o o« o o o o o o o o
Focus-of-Attention through Subgoaling . . « « ¢« ¢« ¢ ¢ ¢« o o « &
The Organizational and Local Node Focusing Blackboards and Node
SKepticisSm o o o o o o o o o o o s o o o s o o s o o o o o o
Grammar Used in the Testbed Experiments « ¢ ¢« & « + &
Sensor Configuration . . ¢ ¢ ¢ ¢ o ¢ o o o s o o o 6 o o o o o
Straight Vehicle Environment: Sensory data «
Bent Vehicle Environment: Sensory Data « ¢« « . & .
Straight Vehicle Environment without Subgoaling: Cyecle 30 . . .
Straight Vehicle Environment without Subgoaling: Cycle 61 . . .
Straight Vehicle Environment without Subgoaling: Cycle 62 . . .
Straight Vehicle Environment without Subgoaling: Cycle 63 . . .
Straight Vehicle Environment without Subgoaling: Cyecle 73 . . .
Straight Vehicle Environment without Subgoaling: Solution at
CYCLE 157 v v v o o o o o o o o o s o o o o o o o o o o o s
Straight Vehicle Environment with Subgoaling: Cycle 23

xiii

103
137
144
146
154
162
172
188
203

222
225
226
233
235
239
240
241
242
243

2uy
2145

3

3 -3 3 -3 5 _3 _3

—J

) 3 _ 3

4,
45.

46.
47.
48.
49,
50.
51.
52.

53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

64.
65.
66.
67.
68.
69.

70.

Straight Vehicle Environment with Subgoaling: Cycle 38

Straight Vehicle Environment with Subgoaling: Solution at

cycl e 52 * L] L] L] L] L] . L] L] L] - L3 * L] L] . . * L] . L] L]
Bent Vehicle Environment without Subgoaling: Cycle 28 .

Bent Vehicle Environment without Subgoaling: Cycle 45
Bent Vehicle Environment without Subgoaling: Cycle 46
Bent Vehicle Environment without Subgoaling: Cycle 52
Bent Vehicle Environment without Subgoaling: Cycle T1
Bent Vehicle Environment without Subgoaling: Cycle T4
Bent Vehicle Environment without Subgoaling: Solution
Cyele 116 & & v v v v v e b e e o v o o o o e e
Bent Vehicle Environment with Subgoaling: Cycle 28 .
Bent Vehicle Environment with Subgoaling: Cycle 35 .,
Bent Vehicle Environment with Subgoaling: Cycle 36 .
Bent Vehicle Environment with Subgoaling: Solution at
Real-Time Bent Vehicle Environment without Subgoaling:
Real-Time Bent Vehicle Environment without Subgoaling:
Real-Time Bent Vehicle Environment without Subgoaling:
Real-Time Bent Vehicle Environment without Subgoaling:
Real-Time Bent Vehicle Environment without Subgoaling:
Real-Time Bent Vehicle Environment without Subgoaling:
Real-Time Bent Vehicle Environment without Subgoaling:
at Cycle 118 & & 4 i i 4 v e 4 e e s o e e e e e

Cycle

Cycle
Cycle
Cycle

Cycle 41

Cycle
Cycle

Solution

Real-Time Bent Vehicle Environment with Subgoaling: Cycle 16
Real-Time Bent Vehicle Environment with Subgoaling: Cycle 29
Real-Time Bent Vehicle Environment with Subgoaling: Cycle 39
Real-Time Bent Vehicle Environment with Subgoaling: Cycle 49
Real-Time Bent Vehicle Environment with Subgoaling: Cycle 63

Real-Time Bent Vehicle Environment with Subgoaling: Solution at
Cycle 76 . . L] L] L] L] L] . . L] L] L] L] . L] L] L] L] L] . ® * L] L] L] .
Typical Network Response Time Requirements

xiv

Ove o o o

246

2u7
250
251
252
253
254
255

256
258
259
260 .
261
264
265
266
267
268
269

270
272
273
274
275
276

277
301

[

~ The Cosmic Command, obviously no longer able to supervise
every assignment on an individual basis when there were
literally trillions of matters in its charge, had switched
over to a random system. The assumption would be that every
document, circulating endlessly from desk to desk, must
eventually hit wupon the right one. A time-consuming
procedure, perhaps, but one that would never fail. '

- Stanislaw Lem

CHAPTER I

OVERVIEW

This - chapter presents an overview and the main ideas of the
dissertation, as well as delimiting the notion of dis@ributed.problem
solving, describing its major characteristics, and contrasting it with
other .problem sbléing forms. The last section of this chapter describes

the overall structure of the dissertation.

1.1 Introduction

Large tasks are not solved simply by throwing more workers at them,
Adding more workers appears to obey not only the law of diminishing
returns- (where each new worker contributes less and less compared to a
single individual) but also the law of the committee (where the addition
of* too many workers actually decreases the performance of the group).

If applying more individuals to a task does lead to a reduction in
productivity.bwhat happens to the added capability? It is:

o lost as members wait for something to do;

Overview 2

o wasted as members work at cross-purposes with one another;

0 redundantly applied as members duplicate efforts;

o expended in an attempt to avoid these inefficiencies.

In short, the additipnal capability is spent on coordination or lo$t due
to a lack of coordination.

Of course there are tasks too large for a single individual to
acqomplish alone. Biological organisms, animal and human societies,
businesses, and governments have addressed thesé tasks by evolving
coordination techniques sufficient for their survival., = They are
successful to the extent that they can accomplish more than the same
number of individuals acting independently. Their success depends on
striking an appropriate balance between the effort wasted due to a lack
of coordination and the effort expended on coordination itself.

There are also problem solving tasks too large to be handled
effectively using a single computer system. These ' include
computationally massive tasks requiring the simultaneous application of
numerous processors for timely.execution. However it is a second form
of size that is of interest here: problem solving tasks in which the
system's input and output are spatially dispersed, requiring extensive
communication to route information to and from a single site. With

these distributed problem solving tasks, a distributed network of

cooperating, semi-autonomous computer systems can be more effective than
a centralized system -- if the activities of the individual systems are

sufficiently coordinated,

Overview 3

This dissertation develops a framework for coordinating the

individual systems, or nodes, in such distributed problem solving

networks. Each node is itself a sophisticated problem solving systenm,
capable of modifying its behavior as circumstances change énd planning
its own communication and cooperation strategies with other nodes. Such
node sophistication is viewed as a requirément for effective cooperation
among large numbers 6f nodes operating in dynamic distributed problem
solving environments.

The existence of sophisticated nodes also allows the use of

organizational structuring as a means of achieving network coordination.

Communication limitations and network reliability considerations make it
infeasible to have a single node direct all the activities of the other
nodes in the network. Instead, most decisions regarding each node's

activity are made within the context of an organizational structure by

the node itself, perhaps after consultation with a small group of nearby
podes. . The organizational struc;ure Specifies the information,
communication, énd control relationships among the nodes in a very
general way. The ideé is to include in the organizational structure
those decisions that are not quickly outdated and that pertain to large
numbers of nodes. The development and use of an -organizational
structure is intended to be less cémplex .and dynamiec than directly
coordinating the overall distributed problem solving task;

A simple example of an organizational stfucture is a hierarchy in

which the responsibilities of a number of "worker" nodes are defined by

Overview y

a higher level "integrating" node (Figure 1.7 The responsibilities of
each worker node are delineated along functional, spatial, or temporal
lines and serve to restrict the range of possible activities each worker
node need consider. Situations that cannot be handled by a single
worker node are passed upward for the integrating node t§ resolve
[(GALBT71].

In a sense, an organizational structure is a high—le;el,
"strategic” plan describing and delimiting the grossvresponsibilities of
each node in the network; an example of the use of meta-level control to
coordinate activity in a complex system. A significant portion of the
control activity of each node is elaboration of these responsibilities
into precise activities to be performed by the node. In the simple
hierarchy example, each worker node must still decide what particular
activities are required to satisfy its responsibilities §nd determine
what particular information should be passed up to the integrating node
and laterally to interested worker nodes (as specified by the
integrating node).

The organizational strﬁcture of the distributed §rob1em solving
network strongly influences its effectiveness in a given situation.

This effectiveness is a multifaceted measure incorporating such

considerations as processing resources, communication requirements,

network reliability, timeliness of activities, and suitability of
activities. An inflexible organizational structure can lead to a loss

of network effectiveness if the internal or external-en{ironment of the

1. Hierarchies and distributed problem solving are not necessarily a
good marriage. o

.y 5 3 3 _3 _3

-3 -3 3 3 13

3 3 _3

Overview

integrating node

worker nodes

Figure 1: A Simple, Hierarchical Organizational Structure.

A simple, one-level hierarchical organizational structure in
which a single "integrating" node oversees the activities of a
number of "worker" nodes.

Overview 6

distributed problem solving network changes.

In the simple, one-level hierarchical organizational structure,
worker responsibilities may need to be reallocated if some worker nodes
are overloaded and other worker nodes remain relatively idle. If the
integrating node becomes overloaded, additional non-loéal decisionmaking
authority may need to be passed down to. the worker nodes. | If the
integrating task becomes excessively difficult, the entire hierarchical
structure may need to be augmented with an intermediate level of
integrating nodes. It may even be appropriate to replace ‘the
hierarchical structure with a complgtely different organiiational form.

Because an effective organizational structure is dependent upon the
dynamics of the problem solving situation, the distributed problem
solving network must initially develop an organizational structure and
as problem solving progresses: |

o monitor for decreased effectiveness caused by an inappropfiate
organizational structure;

o determine plausible alternative structures;

o evaluate the cost and benefits of continuing with its current
structure versus reorganizing itself into one of the alternative
structures;

o carry out the reorganization if appropriate.
This development and maintenance of an organizational structure by the

network itself is organizational self-design.

There are two basic approaches to organizational self-design. One
approach is to predetermine a "cookbook" of situation-organiiation
pairs. The network monitors for a change in its problem solving

situation and, if a change 1is detected, uses the associated

—3

3 3 3 3 _3

3

Overview T

predetermined organizational structure as its new organizational form.
Another approach is to provide the network: withr knowledge about
situations and organizational forms and have the network develop
plausible alternative structures as the situation warraﬁts.

A second issue is how the network performs organizational
self-design. The design task could be performed at a single "designer"
node. Alternatively, the organizational design task could itself be
distributed among the nodes, proceeding concurrently with the overall

problem solving task. This distributed organizatiohal self-design task

competes with the basic problem solving activities of each node in the
network.

This dissertaﬁion does not directly address the development of an
organizational self-designer, and organizational self-design remains on
the research horizon. The focus here is on the use of organizational
structuring as a coordination technique for large distributed problem
solving networks and on the design and implementation of a coordination
architecture that is responsive to organizational structuring decisions.
(A forward look at organizational self-design research is presented in
Chapter VI.)

The ability to coordinate activity within a distributed problem
Solving network 'is important for several reaéons. One important reason
is .that actual distributed problem solving networks are now being
constructed, The initial motivation for their development came largely
from advances in microprocessor and nétwork technologies which made
physically distributed problem solviné networks economically feasible

[CHUTT7, KIMB75, SCIE77]. While the first networks may consist of only a

Overview 8

small number of nodes, distributed problem solving networks may
eventually contain hundreds or thousands of individual nodes. . We are
nearing a situation of exciting hardware possibilities unaccoﬁpanied by
the problem solving technology required for their effective utilization.
As important as the architectural motivations are, an equal (if not
greater) motivation is understanding the process of cooperation in
networks of interacting problem solvers. Whether the underlying system
is societal, managerial, biological, or mechanical, we seem to
understand competition far better than cooperation. It is possible that
the development of distributed problem solving networks may serve the
same validating role to theories in sociology, management,
organizational - theory, and biology as the development of artificial
intelligence systems has served to ﬁheories of problem solving and

intelligence in psychology and philosophy.

1.2 What Distributed Problem Solving Is (And What I£ Is Not)

In the introduction, distributed problem solving was described as
the cooperative solution of a problem using a network of interacting
problem solving nodes., That description covers a broad range of problem
solving situations with widely varying and even contradictory
characteristics. In this section, a more restricted view of distribﬁted
problem'soiving is developed and contrasted with parallel processing,
distributed processing, and cooperating experts, While all these
problem solving forms deal with concurrent and interacting tasks, each

has a particular emphasis. To help accentuate these differences, an

3 3 3 3 3 _3

Overview 9

extreme position is taken on each problem solving form.

1.2.1 Characteristics of distributed problem solving.

The major characteristic of distributed problem solving is limited
interaction between the nodes. Limited interaction stems from both
modulafization of the problem solving task and physical separation of
nodes in the network.

Large and complex systems are easier to build and understand if

they are logically distributed. The system is decomposed into a number

of relatively independent modules which interact to perform the overall
task. Logical distribution divides the complexity of the system into
two parts: the functionality of each module and the coordination of the
modules into an effective overall system.'

Intermodule interaction is limited due to the bounded rationality

of computation described by Simon [SIMO57]. Processing resources are
expended in interactions with other problem solving modules. Because
processing resources are limited, a module sending or receiving many
messages sSpends system resources on communicating rather than on
computation, In addition, because processing speed is limited, a module
receiving or sending a large number of messages encounters a delay in
processing all the messages. Finally, if a given module needs to
interact with a number of disparate modules, a general interface (which
covers the full rénge of possible messages) 1is required. Such
generality further increases the processing resources required for

interaction.

Overview 10

In physically distributed systems, node interaction, is also limited

by the physical properties of the communication channel. For example,
the capacity of the channel is bounded. With packet-radio communication
[KAHN78], the possibility of a message interfering with another message
increases with the amount of information to be communicated and the
distance between interacting nodes. The potential for saturating
hard-wired links similarly increases with the amount of information and
the number of intermediate nodes needed to forward messages.

Internode communication is also subject to signifigfnt time delay.
Delay arises from propagation delays in the communication media and
queuing delays for accessing the communication channel.

Finally, messages may be incorrectly exchanged or lost altogether.
Errors in communication can result from encoding/decoding errors and
interference during transmission. Loss can result from hardware failure
in communication channels or nodes and from incorrect routing of
messages. In some distributed communication networks, the usable
capacity of the communications channel is significantly degraded if the
correct reception of all messages needs to be verified. In these
situations, a problem solving network that can function effectively
without explicit acknowledgment of meésages may be advantageousf

The relative isolation of the nodes gives physically distributed
problem solving its special character., Node activity is, by necessity,
loosely-coupled. A node can perform significantly more computation than
communication, In some cases it can be faster and result in better
network performance for a node to redundantly derive inf;rmation than to

request the existing information from another node. Limited node

—3 3 _3

—3 -3 _3 -3 3 3 3

Overview 11

interaction also makes it infeasible to keep every node fully abreast of
the current state of problem solving at the other nodes in the network.
Therefore 'nodes must be able to function with information that is
incomplete or inconsistent with information at other nodes. Such
incompleteness and inconsistency is true not only of the problem solving
data in the network, but of the present and planned future activities of
the nodes as well. This adds to the difficulty of coordinating node
activity.

A node may become temporarily isolaﬁed from the rest of the network
due to channel saturation or failure. It is appropriate for such a node
to continue its processing in 1isolation, contributing its work if
communication with the rest of the network is reestablished. This
requires each node to be self-reliant, able to function in temporary
isolation from the other nodes in the network, and to direct its own
activities based upon its local view of the state of problem solving in
the network.

Physically distributed problem solving networks are also logically

' distributed, However, the spatial distribution of information in the

network places 1limitations on the possible decompositions of the
network. When coupled with the additional interaction constraints
associated with physical communication between nodes, interaction in
physically distributed problem solving appears to be significantly more
restricted than in its logically distributed .cousin. This research

emphasizes physically distributed problem solving.

Overview 12

A second characteristic of distributed problem solving is the need
for cooperation among the nodes. The distribution of information in the
network may be such that no single node possesses sufficient information
to solve the problem alone or even sufficient information to realize
that a problem exists to be solved. Therefore, nodes must cooperate to
mutually identify and solve the préblem. Each node may need to share a
little of what it knows with other nodes so that enough information is
accumulated to allow the problem to be solved. As will be discussed in
Section 2.2, such cooperation does not demand the exchange of.accurate
information. Given a suitable problem solving approach, the exchange of
“éducated guesses" can be very effective. Of course, this cooperation
must be performed within the bounds of limited communication discussed
above,

A third characteristic of distributed problem solving is its
potential for reliable problem solving. Since failure of a few nodes or
communication paths amounts to only a fraction of the components of a
large network, it may be possible to have other components take up the
slack. Rather than failing at the loss of a single component, the
distributed problem solving network degrades gracefully by decreasing
its responsiveness and problem solving accuracy as components fail., 1In
addition, the spatial distribution of components in a physically
distributed problem solving network greatly reduces the possibility of
massive component failure due to local environmental conditions.

Finally, there is the potential for improved performance due to
parallelism, The existence of multiple problem solving nodes means

that those nodes can be applied to diverse aspects of the problem.

3

Overview) 13

Unfortunately, the limiﬁéd interaction between nodes and natural
distribution of information among nodes can significantly diminish the

effective amount of parallelism in the network.

1.2.2 Comparison with parallei processing.

The most significant differencé between parallel processing and
distributed problem solving is in the interaction between problem
solving components. Unlike distributed problem solving, interaction in
a parallel processing system is relatively unrestricted. As a result,
processing elements are more tightly coupled and share a much wider view
of the state of prdcessing than nodes in a distributed problem solving
network.

The major emphasis of parallei processing is speed; executing
programs as fast as possible. The data has no extensive initial
distribution and can be readily relocated to accommodate parallel
activity. The issue in paﬁallel processing is determining exactly what
this distribution should be to provide sufficient parallel activity with
a particular parallel processing s&stem.

In distributed problem solving, the emphasis is on dealing with the
problems arising from restricted communication. The data is naturally
distributed among the nodes in the network -- often in a manner
ill-suited to a high degree of parallel node activity. As a result, the
style of problem solving used in distributed problem solving differs

significantly from that used in parallel processing.

Overview 14

1.2.3 Comparison with distributed processing.

As noted by Smith and Davis, distributed problem solving differs
from distributed processing in both the style of distribution and the
type of problems addressed [SMIT81J. The distributed aspect of most
‘distributed processing is the data, with emphasis placed on synchronized
access to shared information and recovery of information in the event of
errors or partial system failure. Control of processing activity is
generally not distributed, and the processors perform littie
cooperation,

A distributed.pfocessing system typically has multiple, disparate
tasks executed concurrently in the network. Shared access to physical
or informational resources is the main reason for interaction among
tasks. The goal is to preserve the illusion that each tésk is execuping
alone on a dedicated system by having the network operating system hide
the interactions and conflicts among tasks in the network. Coordination
by the network operating system takes the form of a compromise between
the various conflicting tasks based upon some measure of the importance
of each task.

On the other hand, a distributed problem solving network performs
only a single task. Instead of hiding the existence of other nodes in
the network, each node is made explicitly aware of the other nodes at
the problem solving level. Coordination involveg deciding how best to
perform the problem solving task given the limited resources of the

network, rather than selecting between diverse competing tasks.

3

3 T 3

Overview 15

1.2.4 Comparison with cooperating experts.

Networks of cooperating nodes are not new to artificial
intelligence. However, the relative autohomy and sophistication of the
proBlem solving nodes sets distributed problem solvingvnetworks apart
from Hewitt's work on the actor formalism, Kornfeld's EITHER language,
Lenat's BEINGS system, and the augmented Petri neﬁs of Zisman [HEWITT,
KORN79, LENAT75, ZISM78].

Fpr exampie. in the cooperating experts style of system, knowledge
is compartmentalized so that each "expert"™ is a specialist in one
particular aspect of the overall problem solving task. An expert has
little or no. knowledge of the problem solving task as a whole or of
general techniques for communication andAcooperation. As a result, the
expert cannot function outside the context of the other experts in the
system nor outside specific communication and cooperation protocols
specified in advance by the system designer.

In the view of distributed problem solving networks taken in this
research, each node possesses sufficient overall problem solving
knowledge that its particular expertise (resulting from a unique
perspective of the problem solving situation) can be applied and
communicated without assistance from other nodes in the network. This
does not imply that a node functions as well alone as when cooperating
with other nodes -- internode cooperation is often the only way of
déveloping an acceptable solution -- but every node can at least
formulate a solution using only its own knowledge. An argument against

the distribution of expertise will be made in the next section.

Overview 16

Each node in the distributed network also possesses significant
expertise in communication and control. This knowledge frees the
network from the bounds of designed protocols and places its nodes in
the situation of developing their own communication and cooperation
strategies.

A second difference between cooperating experts and distributed
problem solving networks is node motivation. Simply stated, cooperating

experts are externally-directed in their behavior. The expert awaits

receipt of a message, performs activities based upon that message,
communicates results of those activities, and awaits receipt of a new
message. The externally-direetgd approach has been advocated by
Feldman, Hewitt, and Smith [FELD79, HEWI77, SMIT78]. As viewed in this
research, each node in a distributed problem solving network can be

self-directed in its activity, initiating activities in response to

changes in its local environment. These self-directed activities can be
modified through interactions with other nodes, but if_a node does not
receive an appropriate message from énother node, it is able to continue
with its locally initiated activities using whatever data are available
at that time,. As will be discussed in Chapter III, a node can also
choose whether to engage in activities suggested by other nodes or
pursue its own best interests. The importance of such self-motivation
in program modules has also been suggested by ?ox [FOX81].

The result of these differences is that the distributed problem

solving network can tolerate changes in node activity, -network '

connectivity, node and communication failure, and error in data and

control.

3

3

Overview . o 17

1.2.5 The argument against "distributed experts".

The cooperating experts style of problem solving has become a
useful metaphor in artificial intelligence problem solving and, on
initial consideration, appears to be a reasonable structure for
physically distributed problem solving. Each éxpert is placed at one
(or a few).nodes in the problem solving network, and their interactions
are routed 'over the communicatiop channel. The cooperating experts
system i3 now a "distributed experts" network.

But a distributed experts network is not necessarily an effective
problem solving decomposition for a physically distributed problem
solving application.' A distributed experts network, 1like its

cooperating experts forebear, is essentially functionally decomposed,

Particular problem solving expertise translates into particular problem
solving activities to be pebformed at each node. Unfortunately,
physically distributed problem solving aﬁplications are often spatially
decomposed in a manner ill-suited to a functionally. distributed
solutién. Each node may possess the information necessary to perform a
portion of each function, but insufficient information to completely
perform any function. Extensive communication would be required to
redistribute the information to match the functional distribution.
Distribution of expertise to individual nodes can also lead to
decreases in network processing performance. Davis and Smith observe
that "any unique node is a potential bottleneck" [DAVI81). 1If a single
node has the expertise for a particulér functionality that is in great
demand, problemvsolving can be impeded. Similarly, any unique node is

also a candidate for system failure. If the last node possessing a

Overview 18

neceséary expertise fails, the network will also fail. Redundancy in
expertise is an important consideration in a distributed problem solving
structure.

If each node were supplied all of the network expertise, it could
perform as much of each function as possible, given its local low-level
information, and through cooperation with other nodes aggregate a
complete result of any desired function. Because most node interaction
involves abstracted information, the amount of communication required
for aggregating the complete results of node processing is potentially
much less than is required for redistributing the low-level information
in a functionally decomposed network. Because each node can pdtentially
perform many functions, a node is less likely to be idle, Becéuée each
node has the long-term expertise of other nodes, a node is able to share
the work of an overloaded node or provide the functionality of a failed

node. 1In such a spatially decomposed network, a node is an "expert" not

because of its designer-supplied, ;ong-term expertise, but because of
the short-term information it possesses by being at a particular
location at a particular time. By providing each node the entire
complement of long-term expertise, the full range of functional
decompositions (including distributed experts) are available to the
network to be selected by its organizational structure. This is an

instantiation of McCulloch's concept of the redundancy of potential

command in which "the possession of the necessary urgent information
constitutes authority in that part possessing the information" [McCU65].
Any node might become the center of a particular function, depending on

the problem solving situation.

j

—3

)

—g 3

Overview ' . ' ' 19 °

Providing full .expgrtise at each node is not unrealistic for

computer netyorks. The cooperating experts model is based, in part, on

group problem solving behavior of human experts. The typical metaphor
is é gﬁoup of human éxperts sitting around a table and working together
to compléte a complex_task. With humans, the transfer of long-term
expertise is an arduous process, often involving years of traiding and
experiénee. Individuals with sufficien@ expertise to deal with all
aspecté of a complex task afe difficult, if npt impossible, to locate.

This diff;culty in obtaining human expertise underlies many
business organizational structures. Mundane tasks are transferred to
less skilled wéhkers in an attempt to maximize the amount of time that
highiy tfained (and expensi?e) individuals spend using their expertise.
If highly skilled workers were readily available at the same cost as
unskilled workers there would be no economic need for such task
transference. Each worker would perform both skilled and unskilled
activities,

With computer systems the acquisition of long-term expertise is an
arduous process, but the transfer of this expertise, once encoded, is
simple (élthough, possibly requiring translation from one machine type
to'another). If the knowledge can be encoded at one node, it can be
easily transferred to all the nodes. This suggests that computer

organizations are more akin to business organizations operating where

expertise is relatively inexpensive.

Although it is reasonable for a node to have the capability to
perform any problem solving activity, it is unreasonable for the node to

perform all activities., Determining the activities that are best suited

Overview _ 20

to the current information available to each node is a major issue in
network coordination.

The human group problem solving metaphor is also characterized by a
fairly rich communication channel used by the participants. Experiments

have shown that even simple tasks become difficult when the

communication channel between human problem solvers 1is restricted.

[CHAP75]. As discussed in Section 1.2.1, restricted communication is a
basic and unavoidable characteristic of distributed problem solving
networks, The problems of restricted node interaction .and network
cobrdination in the distributed experts network are not addressed by the
cooperating experts problem solving model.

On the other hand, the cooperating experts style of problem solving
is suited to the problem.solving activity within a node itself., The
functional decomposition of the cooperating experts can help to reduce
the control complexity within a node. A form of the cooperating experts
style of problem solving, Based on a generalization of the Hearsay-II

architecture, is developed as the architecture of a node in Chapter II.

1.2.6 Describing distributed problem solving networks,

We must be cautious when describing distributed‘ problem solving
networkg. These are multilevel systems. Each node is itself a complex
systeﬁ and the entire distributed problem solving network may be a
component of a still larger system. vThe boundaries of the systgm often

depend on how the system is viewed.

F‘

Overview 21

From a reductionist perspective, a distributed network can be
viewed as a system that is decomposed over a number of nodes, each of
which iS a part in the overall nétwork. From a constructionist
perspective, a distributed network is a society of nodes, where each
node is an individual system. While both perspectives view the same
reality; the reductionist viewpoint tends to encourage a search for
appropriate ways of pulling apart existing centralized systems. The
constructionist viewpoint tends to encourage a search for ways of
organizing individually cémplete systems into a society of cooperating
nodes [LESS80b]l. The constructionist view will be used throughout the
dissertgtion, with the term "network" referring to the overall
distributed system and "system™ referring to an individual node in the
network,

Mix;ng the two viewpoints can lead to conceptual inconsistencies.
For example, vieﬁing a disﬁributed problem solving network as a society
of nodes which are to be coordinated using some suitably decomposed,
centralized problem solving technique can lead to forgetting that the
control technique must be distributed among the nodes -- the technique
itself becoming a distributed problem solving problem and needing itself

to be coordinated.

1.3 The Major Contributions

- The major contributions of this research can be grouped into four

categories:

Overview) 22

1. development of the philosophy of organizational structuring as
a means of achieving coordinated node activity in distributed
problem solving networks;

2. a major design and implementation effort in creating a .unique
experimental testbed that is both parameterized and
fully-instrumented for realistic exploration of coordination
techniques for distributed problem solving networks;

3. concrete implementation of a computational framework for the
philosophical ideas on organizational structuring in the
testbed;

4, an initial exploration demonstrating the flexibility of the
testbed, the sophisticated internal coordination capability of
a testbed node and that an organizational structure can be used
to bias the activities of the network. These results suggest
that different organizational structures are indeed appropriate
in different problem solving situations,

The following sections survey these contributions and indicate where

each is elaborated in subsequent chapters.

1.3.1 Philosophical ideas.

Functionally accurate, cooperative distributed problem solving.

A straightforward approach to constructing a distributed(pfoblem
solving ngtwork is to ensure that all nodes have mutually consistent
views of the problem. An attempt is made to provide each node with the
information needed to perform its portion of the overall problem solving
task. If a node is missing some information, it is obtained from
another node as a complete, self-contained result. If the problem
cannot be partitioned so that each node works on a relatively
independent portion of the problem, a high degree of coupling'between
nodes is required. In a distributed problem solving environment, such
tight node coupling introduces significant communication and computation

costs.

3 T3 73 T3 T3 —3 — 3 —13

f

3

\

—3 —3 —31 3

Overview | 23

Fortunately, the requirement for complete consistency can be
relaxed if the style of problem solving is changed. Instead of always

producing complete, self-contained results, each node produces tentative

‘results which may be incomplete, inaccurate, incorrect, and inconsistent

with the tentative results produced by other nodes. An iterative,
coroutine style of node interaction is used in which the nodes exchange
their tentative partial results to cooperatively converge to acceptable
network behavior in the face of locally incomplete and inconsistent

views of the problem. This approach is called functionally accurate,

cooperative [LESS811.

Functionally accurate, cooperative problem solving is discussed in

Section 2.2,

Functionally accurate, cooperative control.

Coordinating the activity of the nodes in a distributed problem
solving network is difficult becaése the information needed to make
control decisions is distributed throughout thé network. In a
fUnctibnaily accurate, cooperative network, node coordination is even
more difficult due to the presence of inaccurate and inconsistent
information. To cope with this situation, we can apply the functionally
accurate, cooperative approach to the problem of' coordinating node
activity. Instead of ensuring that the activity decisions made by each
node a}e cohpletely consistent with those made by other nodes, nodes
determine their activities using incomplete and inconsistent local views
of the‘state of problem solving in the network. 1If coordination errors

are made, such as a node undertaking an activity before receiving all

Overview ‘ ' 24

input information from another node or a node selecting an activity
which is globally inappropriate, the tentative nature of the
functionally accurate, cooperative style of problem solving reduces
their impact. The intent is .that the additional communication and
computation caused by these local control decisions is less than would
be required to maintain complete and consistent views of network problem
solving activity and is, to some degree, offset by increases in parallel
node activity.

In order to bé successful, functionally accurate, cooperative
control must achieve the following conditions:

coverage - any given po}'tibn of the overall problem must be
included in the activities of at least one node;

connectivity -~ nodes must interact in a manner which permits the
covering activities to be developed and integrated
into an overall solution;

capability -- coverage and connectivity must be achievable within
the communication and computation resource

limitations of the network.
Sections 3.1 through 3.6 lay the groundwork for functionally

accurate, cooperative control which is discussed in Section 3.7.

Organizational structuring as a framework for control.

Even using functionally accurate, cooperative control there are
insufficient communication and computation resources to permit each node
to consider the network-wide ramifications of all of its possible 1local
control decisions, An organizational structure, developed and
maintained by the network, can be used to limit the range of decisions
which must be considered by a node and still accomplish an acceptable

level of coverage, connectivity, and capability.

—31 _1

— 53 3

5 3

~® 3 —3 —3 —3 —3 —¥ —% —3 — —31 ~F "I T3 —31 —3 —3 —3 3

Overview ‘ : 25

The orgaﬁization#l approach to coordinating a distributed problem
solving network splits the coordination problem into two concurrent
activities:

1. construction and maintenance of the organizational structure;

2. continuous 1local elaboration of this structure into precise
activities by the nodes.

If the coordination probleﬁ ié complex enough, development and
maintenance of the organizational structure may itself need to be
coordinated by developing levels of meta~organizational structure.

Included in the organizational structure are control decisions that
are not quickly outdated and that pertain to a large number of nodes.
The organizational structure fepresents general "ballpark" control
decisions which are dynamically tailored 'by the local, functionally
accurate} cooperative contrdl decisions of the nodeé. To be effective,
the orgénizational structure must be based on the dynamics of the
problem solving situation and the internal characteristics of the
network, As these change, the network may need to change its
organizational structure in ofder to maintain its effectiveness.

But organizational change can have negative consequences. Change

disrupts the progress of:problem solving activities and the flow of

. information in the network. Information and partially completed tasks

may have-;o be transferred among nodes, consuming valuable communication
resources. Processing time can also be lost as nodes await relocation
of taSks and information and as organizational activities override basic
problem solving. Even small changes in one part of the organizational

structure can have significant effects on the network as a whole.

Overview 26

In order to enhance the positive aspects of organizational change
while reducing its negative consequences, the basic organizational
framework must be capable of providing (adapted from Kast and Rosenzweig
(KAST741):

o enough stability to allow effective problem solving;

0 ‘enough continpitg to ensure ordefly change; -

o enough adaptability to react appropriately to external demands
as well as changing internal conditions;

o enough innovativeness to allow the organization to initiate
change when conditions warrant.

Of course, the network still has the problem of developing and
maintaining the organizational giructure.
Section 3.8 introduces the use of an organizational structure as a

control framework and the dynamics of organizational change.

Node skepticism.

What happens if the organizational responsibilities of a node, as
determined by the organizational self-design process, are incongfuous
with the potential actions of a node? This situation can arise if the

problem solving situation changes faster than the organization can

restructure itself or when organizational self-design decisions aﬁe made

4using incomplete and inaccurate information (which is often the case in
a functionally accurate, cooperative network).

One approach is to be dogmatic abOQt.the organizatibnal structure
and force all nodes to abide by its dictates. An alternative abproach
developed in this research views the organizationél' structure as. a

guide, not a rigid structure. The'ﬁetwoﬁk is viewed as a society of

—3 _ 13

k)

]

Overview 27T

skeptical nodes working within the framework of an organizational

structure‘but always alert for signs of trouble. The organizational
structure provides a basis for global coherence to what would otherwise
be an anarchic network.

A skeptical node's local activity decisions are constantly pulled
in two 'directions: toward the responsibilities specified by the
organizational structure and toward the activities suggested by its
locai data and interactions with other nodes. The tension between these
two direcpions can lead to an increase in the network's ability to
tolerate organizational control errors. If a node's organizational
responsibilibies are inappropriate to its potential activities, the node
can proceed. with locally generated activities, Similarly,
organizationai responsiﬁilities can be ignored by nodes which possess
sfrong_information to the contrary; a node with a unique perspective is
not nécessarily stifled by an uninformed majority. A strong mismatch
between organizational responsibilities and locally generated activities
is an indication of the need for organizational change. The ability of
a node to balance its organizational responsibilities with its locally
generated. activities and to sense when a mismatch between them has
oceurred is a key aspect of this research.

The degree of skep}icism exhibited by a node should dynamically
change according to the node's certainty as to the network importance of
its own locally generated activities: as the certainty of a node's own
perspective decreases, it should become more receptive to
organizationally generated responsibilities; as a node becomes convinced

of its own approach, it should become more skeptical of organizational

Overview 28

responsibilities which are in confliet with that approach.

In distributed problem solving networks composed of large numbers
of nodes, the existence of idiosyncratic degrees of skepticism can
further increase the robustness of the network. In situations where
there exist two competing approaches (one advocated by the organizétion
and one apparent to some of its members) individual variances in node
skepticism will ensure that both approaches are pursued by the
organization., The approach apparent to a portion of the node population
is implicitly pursued, without the cost of making an explicit
organizational decision., Of course this robustness comes at the price
of uncontrolled expenditure of resources by the skeptical nodes.

The motivation for skeptical nodes and a look at similar behaviors

in various "natural" systems is in Section 3.9.

1.3.2 Implementation of the Distributed Vehicle Monitoring Testbed.

An evaluation of the ideas outlined in the previous ‘section
required a complex distributed problem solving network to coordinate.
Because distributed problem solving networks are both difficult to
analyze formally and very expensive to construct and modify for
empirical evaluation, an intermediate approach of simulating the network
at a detailed level was taken. The result of this implementation effort
is the distributed vehicle monitoring testbed.

The nodes in the testbed attempt to identify, locate, and track
patterns of vehicles moving through a two-dimensional space by listening
to the acoustic signals generated by the vehicles. This task was

selected because it is a realistic and extremely flexible distributed

i __13

>

43 -3 43

—3 _3

Overview 29

problem solving task. As a passive interpretation task, distributed
vehicle monitoring does not modify the environment, eliminating any
interaction between network problem solving and the future behavior of
the sensed vehicles.

Distributed vehicle monitoring and the testbed are described in

Chapter II.

1.3.3 Testbed mechanisms for implementing the philosophical ideas.

T3 3 3 T3 ~—3 —3 T3 —3 T3 % 3 3 "3 T3 T3 3 —3% — 3 " 3

The philosophical ideas developed in the dissertation require each
node to make sophisticated 1local activity decisions based on both
external and internal criteria. Each node must be able to reason about
what it is doing and how its activities relate to the network as a
whole. v It must be sensitive to changes in the problem solving
situation, making different decisions in different situations.

These prerequisite characteristics are not well developed in
existing interpretation systems. Therefore, realization of the
philosophical ideas required several architectural developments, which

are surveyed below.

Goal-directed Hearsay-II architecture.

Elaboration of the organizational responsibilities by each node
requires significant local planning capabilities,. For a number of
reasons (discussed in Chapter II) Hearsay-II was the problem solving
architecture of choice for each node in the experimental testbed.
Unfortunately, control of problem solving activity in the original
data-directed Hearsay-II architecture is very limited. Hearsay-II1

reacts to changes in its developing solution by proposing a set of

Overview _ 30

plausible actions. These actions are scheduled for execution based on
an estimate of their individual potential for improving the solution.

While simple and economical, this form of control has three major
limitations:

1. lack of information as to the intended purpose of each
potential activity;

2. an instantaneous, single action view of potential activity;

3. a passive, "wait and see" approach to the generation of needed
information.

Hearsay-II's scheduler is not aware of the role a particular action
plays in the overall problem solving process or of other potential
actions that could achieve the same desired result. Similarly, the
scheduler cannot consider as a unit a sequence of actions which produce
a particular result, terminate such a sequence if a preliminary action
is unsuccessful, nor compare alternative sequences for producing the
same result. In addition, Hearsay-II cannot initiate actions to prdduce
results needed by other proposed actions or requested by other nodes,
but must await bottom-up synthesis of the information through normal
data-directed problem solving activity.

If a Hearsay-II system is to serve as the architecture for each
node in a distributed problem .solving network, more sophisticated
problem solving control capabilities are required. An extended

Hearsay-II architecture which integrates both data-directed and

goal-directed control into a common framework was developed and

implemented in the testbed to provide these capabilities. Goal-directed
control permits nodes to affect the processing of other nodes, not only

through the transmission of information (hypotheses), but also through

31 3 _3

.] % 3 3 % ' 3 E|

— 4

—

~—3 —3 T3 ~3 ~3 —3 ~3 —3 ~% T3 "B T3 3 —» "3 —3 I 3

Overview 31

transmission of goals which request the generation of particular
information. Goals reside on a separate blackboard called the goal
blackboard, which. parallels the dimensionality of the original

Hearsay-II data blackboard. Included in the goal-directed Hearsay-II

architecture is a full-fledged planner for initiating and directing the
activities within each node. "The integrated cdntrol framework also
improves the scheduling decisions made within each node by providing the
scheduler with additional information about the relationghip among
proposed actions., This additional information also helps in the
planning of communication activities with other nodes.

The details of the goal-directed architecture and the local node

planner are described in Sections 4.1 through 4.3.

Organizational roles and blackboard.

The planner, scheduler, and communication knowledge sources at each
node are influenced by the network organizational structure, which is

contained on the organizational blackboard (Figure 2). The

organizational structure 1is represented by data structures called

organizational roles that indicate the areas for which the node is

responsible for problem solving activity, the responsibilities of other
nodes, fhe areas in which the node is to send results to particular
nodes or receive results from particular nodes, and the areas in which
the node'is expected to accept goals from particular nodes or to request
the achievement of goals from particular nodes. The relationship
between the organizational blackboard and the local control components

of the node is described in Section 4.4,

Figufe 2: Basic Node Architecture.

.The major components of a Distributed Vehicle Monitoring
Testbed node can be grouped into three levels. The knowledge
sources and data blackboard form the basic problem solving
level; the planner and goal blackboard form the node control
level; and the organizational designer and organizational
blackboard form the organizational structuring 1level. The
"heart" of each node is the planner which integrates
organizational criteria, network goals, and the current state
of problem solving into precise activities for the node to
perform. ‘

32

Overview
organizational
l criteria
Organizational Organizational
. M
Designer . Blackboard
r_network goals
Pla r Goal
nne Blackboard
3 @S Ul tS
Knowledge Data
Sources I EEE—— : Blackboard
data

4 > 3% _3 _31 _.3

— 3

|

N

—3 3 3 _3

3

™3 r—3 —3 3

Overview 33

Implementation of the goal-directed Hearsay-II architecture, the
local node planner, and the organizational blackboard provide the
computational framework necessary for implementing a distributed
organizational designer. However, a distributed organizational designer
was nét implemented. It remains the object of continuing work discussed

in Section 6.3.

1.3.4 Initial explorations using the testbed.

A set of experiments illustrating the flexibility of the
distributed vehicle monitoring testbed and the control capabilities of
the goal-directed node architecture were performed. These experiments
show that the mechanisms do indeed work and can have a significant
positive effect on problem solving performance.

To indicate the need for organizational change, a number of
additional experiments were performed with the testbed. These
experiments involved a mixture of static organizational structures,
network sizes, and environmental scenarios.

The experiments indicate that different organizational structures
and cooperation strategies do make a difference in network problem
solving performance. These experiments also illustrate the problem of
distraction, where one node communicates incorrect information that
temporarily draw the other nodes away from working on the correct
solution. The experiments suggest that organizational structures which
divide the effort spent on distracting information among nodes are less

affected by the distracting information,

Overview - ' 34
The details of these experiments are the subject of Chapter V.

1.4 Navigational Aids for the Reader

The major chapters of the dissertation can be partitioned into four
groups. The first group (Chapters I and III) develops the >basic
philosophy of organizational self-design as a means of coordinating
activity within a distributed prdblem solying network, The second group
(Chapter II) describes the basic structure of the Distributed Vehicle
Monitoring Testbed and the characteristics of ﬂts underlying problem
domain. The third group (Chapter IV) describes the design and
implementation of the sophisticated iocal control component of a testbed
node which permits orgaﬁiiational'structuring decisions to affect its
local activity decisions, The fourth group (Chapter V) presents
experimental results obtained using the testbed.

Chapter I presented an overview and the main ideas of this reseafch.
as well as delimiting the hotion of distributed problem solving,
describing its major characteristics, and contrasting it with

other problem solving forms..

Chapter II starts with a description of the problem of‘distributed
vehicle monitoring, the task domain used throughout the
dissertation. It then explains that, due to ‘the particular

characteristics of distributed problem solving fnetworks.‘ an

unconventional style of problem solving, called functionally

accurate, cooperative, is needed for this task. The last section

of thi§ chapter introduces the distributed vehicle monitoring
testbed, a unique and versatile research tool for the empirical
evaluation of alternative distributed problem solving designs.
The basic architecture of the testbed and its parameterization

and measurement capabilities are described.

— 3 1 3 __3

3 3 __3

-3 3

J

Overview 35

Chapter III begins with ﬁhe problem of controlling the activities of
a single node in the distributed vehicle monitoring testbed and
then details the problem of coordinating the activities of
multiple nodes. Two diverse approaches to control are discussed
and a general view of coordination that integrates both

-approaches is developed. The 1last sections' of Chapter III
introduce the use of an organizational structure to serve as a
framework for making local node. control decisions and develop the
basic philosophy of organizational self-design as a means of
achieving coordinated activity in a distributed problem solving

- network. A discussion of node skepticism rounds out the chapter.

Chapter IV details the implementation of a computational framework
for organizational self-design in the distributed vehicle
monitoring testbed. This chapter first describes the
goal-direeted Hearsay-I1I architectufe_developed to provide the

~ sophisticated local control necessary to impiement the ideas of
Chapter III. A key aspect 6f the implementation is the use of a
.nonprocedural and dynamically variable specification of the
behaviors of each local node's planner, its scheduler, and its
communication knowledge sources. Next, the testbed
implementation of the goal-directed architecture and the 1local
node planner is presented. The chapter concludes with a
discussion of how organizational structuring decisions and node

skepticism can be used to modify these behavioral specifications.

Chapter V presents the expefimental evidence demoﬂstrating the
flexibility provided by the beﬁavioral specifications, the
capabilities of the goal-directed architecture, and the impact of
organizational structuring decisions on the 1local control
6omponent of a testbed node.

Chapter VI summarizes the contributions of this research and suggests
areas for further work. The potential contributions of
organizational theories of business, biological, and social

systems for distributed problem solving networks are also

Overview 36

surveyed,

For the reader interested in the philosophical issues of
organizational self-design as a coordination technique, a straight
dosage of Chapters I through III followed by Chapter VI is suggested.
For the implementer, Chapter II followed by Chapter IV bypasses most of
the discussion while detailing what was done. For the reader interested
only in results, Chapter II followed by Chapters IV and V is the

recommended abridgement,

3

3 .3y a2 _13

v 3 3

-3

" They tore my legs off, and they threw them over there! Then '
they took my chest out, and they threw it over there!

~~ the Scarecrow in the movie The Wizard of 0z

CHAPTER II

DISTRIBUTED VEHICLE MONITORING AND THE TESTBED

This chapter begins with a description of a specific distributed
pfoblem solving application, distributed vehicle monitoring. This
application is representative of many distributed problem solving
applications which are poorly-suited to conventional distributed-system
methodologies; The second section explains why a new problem solving

approach, called functionally accurate, cooperative, is more appropriate

for the distributed vehicle monitoring task.

Distributed vehicle monitoring also serves as the task domain for
the distributed thiclé monitoring testbed: a flexible and
fully-instrumented research tool —constructed for the empirical
evaluation of alternative coordination techniques for distributed
problem solving networks. Its structure is detailed in the 1last

sections of this chapter and is continued in Chapter IV.

2.1 The Vehicle Monitoring Task

Vehicle monitoring is the task of generating a dynamic, area-wide
map of vehicles moving through a geographical area. Acoustic sensors

are distributed over the area to be monitored and provide the input data

37

Distributed Vehicle Monitoring and the Testbed 38

for the network. Each sensor includes the actual acoustic transducer,
low-level signal processing hardware and software, and communication

equipment necessary to transmit the processed signals to a high-level

(symbolic) processing site. As a vehicle moves through the monitoring.

area, it generates -characteristic acoustic signals. Some of these
signals are detected by nearby sensors which detect the frequency and
approximate location of the source of the signals. An acoustic sensor

has a limited range and accuracy, and the raw data it generates contains

a significant amount of error. Using data from only one .sensor can

result in "identification" of non-existent vehicles and ghosts, missed
detection of actual vehicles, and incorrect location and identification
of actual vehicles, To reduce these errors, information from various

sensors must be correlated over time to produce the answer map.

2.1.1 Vehicle.monitoring task processing levels.

The vehicle monitoring problem has been investigated by a number of
researchers [LACO78, NII78, SMITT78]. Typically, processing has been
divided into a data hierarchy containing five identifiable levels
(Figure 3).

At the 1lowest level are' signals. Signalé are the output of
low-level analysis of the sensory data and 'each signal includes. the
frequency, appro*imate position, time of detection, and belief (based
partly on signal strength and sensor quality) of the acoustic-signél as
well as the identity of the detecting sensor. Signals are the basic

input to the problem solving network.

—3 __3

3 ~— 3 3% —=2 3 T3 T3 —3 —3 —3 —3 —§F 3

{

3

r

3

Distributed Vehicle Monitoring and the Testbed 39

Vehicle Patterns

Vehicles

{ Vehicle Components }

Signal Groups

Signals

- Figure 3: Vehicle Monitoring Task Processing Levels,

Forming a vehicle pattern from sensory signals involves
combining harmonically related signals into signal groups.
Various signal groups can collectively indicate a particular
piece of machinery (component) on a vehicle, and these
components can be used to identify the type of vehicle.
Specific vehicle types with a particular spatial relationship
among themselves form a vehicle pattern. (The vehicle
component level is omitted in the testbed, with vehicles
formed directly from signal groups.)

At the next level in the data hierarchy are signal groups. A group
is a collection of harmonically related signals (emanating from a common
source). Each group includes the fundamental frequency of the related
signals and its approximate position, time (based on the time of

detection of the related signals), and belief (a function of the beliefs

Distributed Vehicle Monitoring and the Testbed | 40

and charqcteristies of the related signals).

Groups are combined to form vehicle components. A component
consists of groups associated with a piece of machinery on the vehicle.
Each component includes the identity of the component and its time,
approximate position, and belief calculated from the lower data levels.
For simplicity this level was omitted by Smith [SMIT78] and will be
similarly omitted here.

Vehicles are the next level in the data hierarchy. A vehicle
consists of a collection of components (or in our case groups)
associated with a particular vehicle. Vehicles include the identity of
the vehicle and its time, approximate position, and belief.

At the highest level of processing are vehicle patterns. A pattern
is a collection of particular vehicle types with a particular spatial
relationship among them. Patterns can provide strong constraints
between distant nodes. A pattern includes the identity of the pattern
and its time, approximate position, and belief. A single vehicle can be
a pattern.

The answer map is produced from the vehicle patterns baséd upon
their beliefs and continuity over time. There are two types of answer
map distribution: one where a complete map is to be located at one or
more answer sites within the monitored area and one where a partial
(spatially relevant) map is to be located at numerous sites within the
area, In distfibuted vehicle monitoring tasks such as air or ship
traffic control, both distributions of the answer map may be required.
Each node would use its portion of the distributed map to control nearby

vehicles, while the complete map would be produced for external

1 __3

Distributed Vehicle Monitoring and the Testbed 41

monitoring of the network.

2.1.2 Centralized vehicle monitoring.

One means of generating the map is to have each acoustic sensor
transmit its sensory data to a central computer (Figure 4). The central
computer processes the data and produces the map which is distributed to
the answer sites. This approach has the advantage of performing all
problem solving activity at a single site using conventional methods for
processing and control. In addition, there is no communication involved
in the problem solving process itself,

However, the centralized approach has several disadvantages:

o0 The massive amount of environmental data collected by the

various sensors must be transmitted to the central computer,
Even if the computer is located in the center of the monitored
area, processors located on the periphery must send their data
half the distance across the area. Due to the distance,
transmission of sensory data is subject to propagation delay
which ecan, in turn, degrade network responsiveness. Since
communication cost is a function of both amount and distance,
collection of sensory data can be expensive.

o The answer map must be distributed to the appropriate sites,

However, the communication requirements here are small compared
to data collection.

o0 Central computer failure means complete network failure.

o Communication channel failure means possible network failure.

2.1.3 Distributed vehicle monitoring.

A second approach to the problem, termed distributed vehicle
monitoring, is to place a number of processing nodes throughout the area
to be monitored (Figure 5). The acoustic sensors transmit their sensory
data to nearby processing nodes. Nodes interact with other nodes to

construct the answer map. Depending on the desired distribution of the

Distributed Vehicle Monitoring and the Testbed

42

A

/\ sensor node

(:::) processing node

Figure 4: Centralized Vehicle Monitoring.

In centralized vehicle monitoring, all sensory data is
communicated to a central processing site that performs all
problem solving activities and transmits the resulting answer
map to the appropriate locations.

Distributed Vehicle Monitoring and the Testbed

43

A
A
A A
A
A

Z} sensor node

O processing node

Figure 5: Distributed Vehicle Monitoring.

In distributed vehicle monitoring, sensory data is only

communicated to nearby processing nodes, The nodes must
cooperate to construct and possibly redistribute the answer

map.

Distributed Vehicle Monitoring and the Testbed 4y

answer map, the complete map is generated at one or more answer.nodes
within the monitored area or a partial (spatially relevant) map is
generated at numerous processing nodes within the area.

The amount and distance that data is communicated in the
distributed approach are potentially much smaller than in the
centralized approach. Much of the environmental data needed by a node
is available from nearby sensors. Similarly, the distributed answer
maps can be generated near the answer sites. The distributed approach
is potentially more reliable than the centralized approach, degrading
gracefully in coverage, accuracy, and timeliness as nodes and
communication channels fail. Finally, the distributed approach may be
more responsive due to the closeness of problem solving to the sensory
data and to parallelism.

However there are disadvantages:

o Because eéch node only receives data from nearby sensors,

techniques for problem solving wusing partial environmental

information are needed. This will be discussed in Section 2.2.

o Techniques for coordinating this type of problem solving in
distributed environments must be developed.

o Communication 1is required to perform and coordinate the
distributed problem solving.

2.1.4 Why distributed vehicle monitoring?.

Distributed vehicle monitoring has four characteristices making it
an ideal initial problem domain for research on distributed problem

solving.

—3

Distributed Vehicle Monitoring and the Testbed 45

First, distributed vehicle monitoring is a natural task for a
distributed problem solving approach, since the acoustic sensors are
located throughout a large geographical area., The massive amount of
sensory data that must be reduced to a highly abstract, dynamic map
seems appropriate for a distributed approach.

Second, distributed vehicle monitoring ‘can be formulated as an
interpretation task in which information is incrementally aggregated to
generate the answer map. Nilsson has termed systems with this
characherisﬁic commutative [NILS80a]. Commutative systems have the
following properties:

1. Actions that are possible at a given time remain possible for
* all future times.

2. The system state that results from perfofming a sequence of
actions that are possible at a given time is invariant under
permutations of that sequence.

Commutativity allows the distributed vehicle monitoring network to be
very liberal in making tentative initiél vehicle identifications, since
generatién of incorrect information never precludes the generation of a
correct answer map. Without commutativity, the basic problem solving
task would be much more difficult. (Commutativity is an important
property of funcﬁionally accurate, cooperative distributed systems to be
described in the next section.)

Althbugh the generation of the answer map is commutative,

controlling hode activity is not. Here we enter the realm of limited
time and limited resources. If :a crucial aspect of the answer map is

not immediately undertaken by at least one node in the network, the

network can fail to generate the map in the required time. In the

Distributed Vehicle Monitoring and the Testbed 46

determination of node activities, mistakes cause the loss of
unrecoverable problem solving time and can therefore eliminate the
possibility of arriving at a timely answer map. If the nodes and
sensors are mobile, their placement adds another non-commutative aspect
to the distributed vehicle monitoring task. A misplaced node or sensor
can require substantial time to be repositioned. (The complexities of
mobile nodes and sensors are beyond the scope of this dissertation.)

Third, the complexity of the distributed vehicle monitoring task

can be easily varied. For example:

o Increasing the density of vehicle patterns in the environment
increases the computational and communication load on the
network,

o Increasing the similarity of the vehicles and patterns known to
the network increases the effort required to adgquately

distinguish them.

o Increasing the amount of error in the sensory data increases the
effort required to discriminate noise from reality.

Fourth, the hierarchical task processing levels coupled with the
spatial (x,y) and temporal dimensions of the distributed vehicle
monitoring task permit a wide range of spatial, temporal, and functional
network decompositions. Node responsibilities can be delineated along

any of these dimensions.

2.2 The Functionally Accurate, Cooperative Approach

Due to the large amount of error in the sensory data and the small
number of sensors reporting to each node, no single node in the
distributed vehicle monitoring network may possess sufficient sensory

information to accurately determine the movement and identity of

43 3 _3

—3

Distributed Vehicle Monitoring and the Testbed _ y7

vehicles in its area., Furthermore, communication limitations preclude
the exchange of a significant amount of sensory information among node;.
Therefore, the nodes must cooperate by exchanging tentétive and possibly
incorrect partial results with one another. For example, each node's
tentative vehicle identifications can be uSed to indicate to other nodes
the areas in which vehicles are more likely to be found and the dgtails
(vehicle type, approximate location, and speed) of probable vehicles,
In addition,,consistencies between these tentative identifications serve
to reinforce confidence in each node's identifications. Cooperation is
not only appropriate at the vehicle level, but at all the processing
levels, |

This type of node cooperation differs significantly from
conventional distributed-system design, which emphasizes the maintenance
of correctness in all aspects of the distributed computation [KOHL81].
The conventional distributed pracessing network is structured so that a
node rarely needs the assistance af another node in carrying out its
activities. This conventional type of distributed processing

decomposition is called completely accurate, nearly autonomous, because

each node's algorithms operate on complete and correct information
("completely accurate") and because each node usually has in its local
database the information it requires to complete its processing
correctly ("nearly autonomous") [LESS81]. When such information is not
available 1locally, a node requests another node to determine the
required information, which is returned as a complete and accurate
result. = This form of node interaction is oftén implemented using

asynchronous subroutine calls, in which one node is - the master and the

Distributed Vehicle Monitoring and the Testbed . 48

other is the slave.

This approach, however, is not suitable for applicatiohs such_as
distributed vehicle monitoring in which the algorithms and control
structures do not match the natural distribution of data in the network.
In these applications,,a completely accurate, nearly autonomous network
is expensive to implement because of the amount of communication and
synchronization required to redistribute the data and results and to
guarantee completeness and consistency of the local databases.

One way to reduce the amount of communication and synchronization
is to loosen the requirement that nodes always produce complete and
accurate results. Instead, each node produces tentative results‘ahich
may be incomplete, incorrect, or inconsistent with the tentative results
produced by other nodes, For example, a node may produce a set of
alternative partial results based on reasonable expectations of what the
missing data might be. This type of node processing requires a
distributed problem solving structure in which the nodes cooperatively
converge to acceptable answers in the face of incorrect, inaccurate, and
inconsistent intermediate results. This is accomplished wusing an
iterative, coroutine typa of node interaction, in which nodes' tentative
partial results are iteratively revised and extended through interaction
with other nodes. A network with this problem solving structure is

called functionally accurate, cooperative [LESS81]. "Functionally

accurate" refers to the generation of acceptably accurate solutions
without the requirement that all shared intermediate results be correct
and consistent (as distinct from completely accurate networks).

"Cooperative" refers to the iterative style of node interaction in the

3 3 _3 _3 3 _3 3 _3

3

3

Distributed Vehicle Monitoring and the Testbed 49

network.

The functionally accurate, cooperative style of processing can be
characterized as problem solving in the presence of uncertainty. A node
may be uncertain as to what input data it is missing, the missing values
of the data, and the correctness, completeness, and consistency of the
results of its processing and of the processing results received froﬁ
other nodes. In order to resolve this uncertainty, a node must be able
to:

o. detect inconsistencies between its tentative partial results and
those received from other nodes;

o integrate into its local database those portions of other nodes'
results which are consistent with its results;

o use the newly integrated results to make up for its missing
input data so that its tentative partial results can be revised
and enlarged.

Because consistency checking is such an important part of the
funetionally accurate, cooperative approach, errors Tresulting from
hardware, communication, or processing can be handled as an integral
part of the network problem solving process -- without the need for
other error correcting mechanisms. Work by Baudet, Brooks, Brooks and
Lesser, ‘'Fennel and Lesser, and Lesser and Erman has demonstrated such
error correcting capability [BAUD78, BROO79, BRO083, FENNT7, LESS80b].

The work by Fennel and Lesser., and Lesser and Erman is particularly
interesting because of its historical relationship to functionally
accurate, cooperative distributed problem solving networks. Fennel and
Lesser déscribe a simulated -parallel processing version of the
Hearsay-II speech understanding system in which knowledge sources were

executed in parallel, communicating via the blackboard. Normally

pistributed Vehicle Monitoring and the Testbed 50

regions of the blackboard were locked to avoid the inconsistencies
associated with interleaved accesses and modifications by multiple
knowledge sources. However in experiments without this locking, the
system produced approximately the same results as with locking. This
was an early indicator of Hearsay-II's potential for functionally
accurate, cooperative problem solving.

Lésser and Erman report the results of the first distributed
problem solving application of the Hearsay-II architecture. Again the
speech understanding system was used, this time in a simulated three
node distributed network. In their experiments, the network was able to
arrive at the correct solution with as much as fifty percent of
internode communication lost at random.

The quality of the knowledge used by each node to distinguish
between consistent and inconsistent data plays a major role in the
success of a functionally accurate, cooperative approach. A network
using low quality knowledge is unable to detect subtle inconsistencies
among tentative partial results and may be unable to arrive at an
acceptable solution. As the quality of knowledge used in the network is
improved, the network should generate an answer with greater accuracy in

less time.

Unfortunately, high quality knowledge for complex problem solving .

situations can be difficult to obtain and encode. Many months can be
spent developing the knowledge base for a single "expert system". Given
the elusiveness of quality knowledge, what level of knowledge is
sufficient for acceptable performance in a functionally accurate,

cooperative distributed problem solving network? The next section

3 3 _3 _3

Distributed Vehicle Monitoring and the Testbed 51

describes the distributed vehicle monitoring testbed, a research tool

developed, in part, to address this question.

2.3 The Distributed Vehicle Monitoring Testbed

This section introduces the distributed vehicle monitoring testbed,
a flexible and fully-instrumented reéearch environment constructed for
the empirical evaluation of alternative designs for functionally
accurate, codperative distributed problem solving ﬁetworks. Here, the
motivation for the testbed, its basic structure, and its
parametérization and measurement capabilities are described. The design
and implementation of the coordination components of the testbed (which
serve as the computational framework for organizational structuring) are

presented in Chapter IV.

2.3.1 Motivation,

Distributed problem solving networks are highly complex beasts,
difficult to analyze formally and expensive to construct and modify for
empirical evaluation. To reduce these problems, an intermediate
approach of simulating the network at a detailed level was taken. The
result of this_ still substantial implementation effort is the

distributed vehicle monitoring testbed.1

1. Construction of the testbed was far beyond the capabilities of a
single researcher and became itself a distributed problem solving
activity. The ongoing, cooperative efforts of these all-too-human
“"nodes" are summarized in the acknowledgments.

Distributed Vehicle Monitoring and the Testbed ‘ 52

An important decision in the design of the testbed was the level at
which the network would be simulated. An abstract modeling level, such
as the one used by Fox [FOX79], that represents the activities of nodes
as average or probabilistic values ,accumuiated over time would not
capture the changing intermediate processing states of the nodes, It is
~ precisely those intermediate states that are so important in evaluating
different network coordination strategies.. Instead, the testbed
euplicates (as closely as possible) the data that would be generated in
an actual distributed vehicle monitoriné network as well as the effect
of knowledge and control strategies on that data.

.A second design decisioq was to fully instrument the testbed. It
is important to know how well a node is doing with respect to its data
and organizational respensibilities as it develops its portion of the
overall solution. As will be discussed at the end of this chapter, the
testbed includes dynamic measures that indicate the quality of the
developing solution at each node in the network, the quality of the
developing solution in the network as a whole, and the potential effect
of each transmitted message on‘the solution of the reeeiving node.

A third decision in the design of the testbed was to make it
parameterized., Experience with complex artificial intelligence syStems
demonstrated the difficulpy of experimenting with alternative knowledge
and control strategies. As a result, potential experimentation with the
system is often not performed. Incorporated into the testbed are
capabilities for varying:

o the knowledge sources available at each node, permitting the
study of different problem solving decompositions;

Distributed Vehicle Monitoring and the Testbed 53

0 the accuracy of individual knowledge sources, permitting the
study of how different control and communication policies
perform with different levels of system expertise:

0 vehicle and sensor characteristics, permitting control of the
spatial distribution of ambiguity and error in the task input
data;

0 node configurations and communication channel characteristics,
permitting experimentation with different network architectures,

The fesult is a highly flexible research tool which can be used to
empirically explore a lérge design space 'of possible network and
environmental combinations.

One last consideration in the design of the testbed was a desire to
avoid the substantial knowledge engineering effort characteristic of
large knowledge-based artificial intelligence systems by keeping the
basic problem solving task simple. We were eager to experiment with the
problems of cooperative distributed problem solving -- not to develop a
knowledge base for distributed vehicle monitoring nor to develop the
definitive distributed vehicle monitoring algorithm, The goal of our
simplificaﬁions was to reduce the processing complexity and knowledge
engineering effort required in the testbed without significantly
changing the basic network coordination characteristics of the
distributed vehicle monitoting task.

The distributed vehicle monitoring testbed embodies these design
criteria. In the next section, the simplified version of the
distributed vehicle monitoring task used in the testbed is presentéd.
In subsequent sections, the basic architecture of the testbed will be

described.

Distributed Vehicle Monitoring and the Testbed - 54

2.3.2 The simplified vehicle monitoring task.

Since the purpose of the testbed is the evaluation of alternative
distributed problem solving network designs rather than the construction
of an actual distributed vehicle monitoring network, a number of
simplifications of the vehicle monitoring task were made. The goal of
these simplifications was to reduce the processing complexity and
knowledge engineering effort required in the testbed without
significantly changing the basic character of the distributed
interpretation task.

The major simplifications include:

o The monitofing area is represented as a two-dimensional square
grid, with a maximum spatial resolution of one unit square.

o The environment is not sensed continuously. Instead, it is
sampled at discrete time intervals called time frames.

o Frequency is represented as a small number of frequency classes.

o Communication from sensor to node uses a different channel than
internode communication.

o Internode communication is subject to random loss, .but if a
message is received by a node it is received without error.

o Sensor to node communication errors are treated as sensor
‘errors.

o Signal propagation times from source to sensor are processed by
the (simulated) low-level signal processing hardware of the
sensor;

o Sensors can make three types of errors: failure to detect a
signal; detection of a non-existent signal; and incorrect
determination of the location or frequency of a signal.

o Sensors output signal events which include the location of the
event (resolved to a unit square), time frame, frequency
(resolved to a single frequency class), and belief (based on
signal strength). .

3 3 _3

3 -3 3

—3 -3 3 3 3 _3 3 _3 _3y 3

3 _3 _3

Distributed Vehicle Monitoring and the Testbed 55

0 Incompletely resolved location or frequency of a signal is
represented by the generation of multiple signal events rather
than a single event with a range of values,

o Nodes, sensors, and internode communication channels can
- temporarily or permanently fail without warning.

2.3.3 Basic node architecture.

The distributed vehicle monitoring testbed simulates a network of
Hearsay-II nodes .2 Each node is an architecturally complete Hearsay-II
system, capable of functioning as a centralized vehicle monitoring
system if it was given all of the sensory data and made use of all its
knowledge. This flexibility permits any subset of the network's
knowledge to be used at a node and allows the simulation of a single
node (centralized) system to provide a benchmark for various distributed
networks monitoring the same environment.

The selection of Hearsay-II as the basic architecture of a testbed
node was based on several considerations. First, the multilevel,
diverse knowledge source structure of Hearsay-II seemed appropfiate for
the dis;ributed vehicle monitoring problem and had, in fact, been
previously used in a centralized multisensor interpretation problem
[NII7T8]. Second, experiments with the Hearsay-II speech understanding

system had indicated its potential for functionally accurate,

2. "Hearsay-II" refers to the general problem solving architecture
developed as part of the Speech Understanding Project at
Carnegie-Mellon University [ERMAS80]. In addition to speech
understanding, the Hearsay-II architecture has been used in such
diverse applications as protein-crystallographic analysis, image
understanding, a cognitive model of planning, dialogue comprehension,
multisensor interpretation of acoustic signals, a model of human
reading, and a learning system [ENGE77, HANS78, HAYE79, MANNT79,
NII78, RUME76, SOLOT7].

Distributed Vehicle Monitoring and the Testbed 56

cooperative problem solving [FENN77, LESS80b]. Third, we had experience

with the Hearsay-II architecture.

Problem solving in Hearsay-II.

The basic problem solving components of the Hearsay-II architecture
at each testbed node are illustrated in Figure 6.3 The major databases
are: the ©blackboard, the event-to-knowledge-sources tabie, the
focus-of-control database, and the scheduling queue. The major
processing modules are: knowledge sources, the blackboard monitor, and
the scheduler.

In a Hearsay-II system, domain knowledge is partitioned into a set

of diverse and independent programs called knowledge Ssources. Each

knowledge source contains knowledge about one aspect of the overall
problem solving task. In the testbed, there are knowledge sources which
know how to form signal groups from acoustic signals, vehicles from
signal groups, and patterns from vehicles.

Knowledge sources do not call one another directly. Instead, they
interact through a shared database called the blackboard. The
blackboard is subdivided into a set of distinct information levels, each
representing a different view of the overall problem. In the testbed,
there are blackboard levels for signals, signal groups, vehicles, and

patterns.

3. Additional coordination components of the testbed are presented in
Chapter 1IV.

57

Distributed Vehicle Monitoring and the Testbed

Figure 6: Testbed Node Architecture.

Each node in the distributed vehicle monitoring testbed is a
structurally complete Hearsay-II system. The basic execution
cycle of a Hearsay-II system begins with the execution of a
knowledge source that makes changes to the blackboard. These
changes are detected by the blackboard monitor which
determines what additional knowledge sources should be
executed in response to the changes. These knowledge sources
are placed on the scheduling queue which is ordered by the
scheduler based on the progress of problem solving in the
system. When the currently executing knowledge source has
completed, the highest rated knowledge source on the queue is
executed, and the cycle repeats.

pistributed Vehicle Monitoring and the Testbed

Blackboard
events| Knowledge Sched-
Source uling
Queues
Instances
Blackboard
Monitor
Focus-
of~
Control
Event -+ Database
KSs
Table

Figure 6: Testbed Node Architecture.

58

~Knowledge
Sources

Scheduler .

Control g e — —.

3

Distributed Vehicle Monitoring and the Testbed 59

The basic data unit of the blackboard» is the hypothesis. A
hypothesis represents a partial solution to the overall problem
expressed at one of the information levels of the blackboard. The
possible hypotheses at a level represent the search space at that level.
Each hypothesis inclu&es a belief value ihdicating its consistency with
supporting data and the likelihood that it is part of the overall
solution., Relationships among hypotheses at different levels on the
blackbqard are represented by links, which allow a partial solution at
one.level to constrain the search at another level.

Knowledge sources are invoked in response to particular kinds of

changes on the blackboard, called blackboard events, The

event-to-knowledge~source table specifies which events are of interest

to each knowledge source, This table is used by the blackboard monitor

to create a knowledge source instantiation when a knowledge -source's

triggering events occur on the blackboard.
The newly-created knowledge source instantiation is added to the

scheduling queue which 1is managed by the scheduler using the

focus-of-control database. The focus-of-control database is updated by

the blackboard monitor to reflect the global state of problem solving
activit} on the blackboard. The scheduler calculates a priority rating
for each knowledge source instantiation on the scheduling queue,
selecting for execution the one with the highest rating. Execution of
the knowledge source instantiation causes changes to the blackboard

which trigger additional blackboard events and the process continues.

Distributed Vehicle Monitoring and the Testbed 60

Internode communication is added to the basiec Hearsay-II

architecture by the inclusion of communication knowledge sources. These

knowiedge sources allow the exchange of hypotheses among nodes in the
same independent and asynchronous style used by ‘the other knowledge

sources.

The structure of the blackboard in a testbed node.

The blackboard at each node in the testbed is partitioned into four
of the task processing levels described in Section 2.1, In order of
increasing abstraction these are signal, group, vehicle, and pattern.
Each of these levels is further divided into two levels, one containing
location hypotheses and one containing track hypotheses. A location
hzgothesié represents. a single event at a particular time frame. A

track hypothesis represents a connected sequence of events over a number

of contiguous time frames.
These orthogonal partitionings result in eight blackboard levels:
signal location (SL).
signal track (ST)
group location (GL)
group track (GT)
vehicle location (VL)
vehicle track (VT) .
pattern location (PL)
pattern track (PT).
The relationships between these levels is shown in Figure 7. Location
hypotheses are formed from location hypotheses at the next iower
abstraction level. Track hypotheses can be formed - from 1location
hypotheses at the same abstraction level or from track hypotheses at the

next lower level, This means that there are four possible blackboard

paths for synthesizing pattern tracks from signal locations:

3 3 3 3 _3

3

a3 3 3 _3

—3 3 _3

e T T |

61

Distributed Vehicle Monitoring and the Testbed

Figure 7: Blackboard Levels in the Testbed.
The eight blackboard levels in the testbed are:

signal location (SL)
signal track (ST)
group location (GL)
group track (GT)
vehicle location (VL)
vehicle track (VT)
pattern location (PL)
pattern track (PT).

The arrows indicate the four possible synthesis paths from
sensory data to generation of the answer map. The task
processing level most appropriate for shifting from location
hypotheses to track hypotheses is dependent on the problem
solving situation.

Distributed Vehicle Monitoring and the Testbed

answer
map

PL

sensory
data

Figure 7: Blackboard Levels in the Testbed.

62

— 3

3

B

~—3 3 _3 _3

31 ~—73 ~ 38 T3 ~—3 ~8 3 -3 3y —3™@A 3 "3 3 3 3 3 T3 T3 "3

Distributed Vehicle Monitoring and the Testbed 63

SL =-> ST => GT => VT -> PT
SL => GL => GT => VT -> PT
SL => GL => VL > VT -> PT
SL -> GL -> VL => PL -> PT.
The multiple synthesis paths allow track formation and extension at all
data levels. This flexibility leads to a number of possible node
activities which, as we will see in Chapter III, must be restricted and
coordinated.
In addition to their 1level on the blackboard, hypotheses are

indexed by the spatial (x,y) coordinates, time, and event class of the

hypothesized event. The time-location list attribute of a hypothesis

is a list of time/location pairs indicating the hypothesized location at
the indicatéd time frames. The time-location-list attribute of a
location hypothesis contains only one such time/location pair; track
hypotheses contain two or more time/location pairs. The event class
attribute of a hypothesis indicates the kind of event the hypothesis
represents, and its interpretation is level dependent. On signal levels
an event class represents a particular signal frequency, resolved to a
single frequency class., On group levels an event class represents the
particular fundamental frequency class of the underlying harmonically
related signal events. Above the group 1levels, the event class
represents a classification. At the vehicle level an event class
indicates a specific vehicle type, and at the pattern level a specific

set of vehicle types with particular relative positions (a pattern).

4, A complete list of hypothesis attributes' is given in Appendix B.

Distributed Vehicle Monitoring and the Testbed 64

The testbed grammar.

The relationships among the event classes at each level is supplied
to the testbed as part of a testbed grammar. The relationship among
event classes in a simple grammar is illustrated in Figure 8. This
grammar contains nine signal frequency classes which can be combined to
fo;m four signal group classes. The number of the group class
corresponds to the fundamental frequency class of the group. For
example, group 14 consists of fundamental frequency class 14 and
harmonic classes 10 and 18. Notice that group classes 14 and 22 share a
common harmonic signal class, 18. If only this harmonic is .detected,
the network cannot discriminate between these two groups (and without
detection of other groups, between the two vehicles types at the next
level in the grammar).

The grammar also specifies three possible pattern types which can
be formed from the two vehicle types. Pattern type 1 is a single
vehicle of type 1. Similarly, pattern type 2 is a single vehicle of
type 2. Pattern type 3 requires a type 1 and a type 2 vehicle with a
particular spatial relationship between them, (The spatial relationship
is not illustrated in Figure 8.)

By increasing the connectivity of the grammér. the interpretation
task can be made more difficult. For example, if vehicle class 1
included signal classes 2, 14, and 22 and vehicle class 2 included
signal classes 14, 22, and 34, discriminating between vehicle class 1

and 2 would require the detection of either group class 2 or 34.

3

3 T3 3 "3 —T3 T3 3 —31 3 -8 3 T3 T3 T3 — 31 T3 —3F 3 "3

Distributed Vehicle Monitoring and the Testbed 65

O A @

0 o vehicle

(D) (¢) (o) (1) ——— e

DWW EEEE 6) —sm

Figure 8: A Simple Testbed Grammar,

A simple, three pattern grammar specifying the relationship
among the event classes at the various 1levels in the data
hierarchy. There are two different vehicle types (1 and 2)
each formed from two different signal groups. Each vehicle
can form a single vehicle pattern (1 and 2, respectively) or
both together (at a specific distance not illustrated here)
can form a two-vehicle pattern (3). Signal class 18 is
included among the supports of both vehicle types and adds
minor confusion in this grammar.

Distributed Vehicle Monitoring and the Testbed 66

There are several additional aspects to a testbed grammar which
also increase the difficulty of the interpretation task. These aspects
are best illustrated by overviewing the basic problem solving activities

in the testbed. That is the subject of the next section.

2.3.4 Basic problem solving.

This section surveys the six basic problem solving activities in
the testbed. They are: location synthesis, track synthesis, track
formation, track extension, location-to-track joining, and track

merging.

Location synthesis.

Location synthesis involves combining one or more location
hypotheses at one level of the blackboard into a new location hypothesis
at the next higher location level (Figure 9). The new ‘location

hypothesis is linked to its lower level supporting hypotheses. The

possible supporting hypotheses are defined by the grammar. The belief
of the created hypothesis is lowered if only a subset of the possible
supports exist on the iower level.

For a group location hypothesis to be formed, the locations of the
individual signal hypotheses should be the same. However, sensors do
not always accurately locate the source of the signal. In the testbed,
a signal event can be shifted by a sensor one location unit in either
the x or y direction (Figure 10a). Similarly, sensors do not always
accurately determine the frequency of the signal. In the testbed, the
frequency class of a signal event can be shifted up or down by one class

(Figure 10b). This means there are twenty-seven possible

3 3 _3

-3 _3

Distributed Vehicle Monitoring and the Testbed 67

HIGHER-LEVEL LOCATIOMN HYPOTHESES

LOWER-LEVEL LOCATION HYPOTHESES

Figure 9: Location Synthesis,

Combining location hypotheses at one level of the blackboard
into new location hypotheses at the next higher location
level.

Distributed Vehicle Monitoring and the Testbed 68
LOCATION FREQUENCY CLASS
+1 0 0 0 0 X 0
- +
y 0 X 0 1 frequency +1
-1 0 0 0 X = actual event
= shifted event
-1 X +1
(a) (b)

Figure 10: Inaccuracies in Signal Event Location and Frequency.

The sensed location of an actual event can be shifted in
either the x or y direction (a) and the sensed frequency can
be shifted up or down by one frequency class (b).

location/frequency class pairs for each signal. event listed in the
grammar. Depending on the sensor, up to sixteen of these possible pairs
may be generated by a single sensor from a single "actual" signal
source, The correct pair is not necessarily generated.

If the signal hypotheses are shifted in location or frequency

class, so are the synthesized group hypotheses. For example, if signal

location hypotheses with frequency classes 1 and 5 were processed using

the grammar of Figure 8, a group location hypothesis of class 1 would be
produced. This means that group hypotheses have the same twenty-seven
possible location/frequency class pairs as signal location hypotheses.

The knowledge sources in the testbed lower the belief of group location

—3

3

jy 3 3 -3 _3 _3

3

F % F“@ r‘—'% f “__% [_—§ | %l I"—% f %l {""3 1_-§ @ f % f %} f % 4 ? f "% f_'q l‘ﬁ f %

Distributed Vehicle Monitoring and the Testbed 69

hypotheses sypthesized from signal location hypotheses which are
mismatched, but within the single wunit tolerance, in 1location or
frequency class.

Synthesis of a vehicle location hypothesis should ideally involve
group location hypotheses with identical locations and with the
frequencies listed in the grammar'.5 However, the potential for shifted
group events requires the vehicle location synthesis knowledge source to
consider group location hypotheses whose frequencies are shifted one
unit to each side of the grammar frequency and which are within one unit
location of one another. (If the locations are separated by two unit
locations, vehicle location hypotheses with different locations are
generated.) The belief of vehicle location hypotheses are lowered if
formed from group location hypotheses with frequencies shifted from the
grammar, The beliefs are further lowered if the group location
hypotheses are mismatched in location or frequency with respect to one

another.

Track synthesis,

Track synthesis is the combining of one or more track hypotheses at
one level of the blackboard into a new track hypothesis at the next
higher track level (Figure 11).

Track synthesis involves the same tolerance issues as loéation
synthesis. Signal and group track hypotheses may be shifted in

frequency class, and each location contained in any track hypothesis may

5. The possibility of gargantuan vehicles with widely separated acoustic
sources is not considered.

Distributed Vehicle Monitoring and the Testbed 70

HIGHER-LEVEL TRACK HYPOTHESIS

LOWER-LEVEL TRACK HYPOTHESES

Figure 11: Track Synthesis.

Combining track hypotheses at one level of the blackboard into
a new track hypothesis at the next higher track level.

be shifted. The belief of the new track hypothesis is lowered according
to the number of missing support hypotheses, shifted frequency classes,

and mismatched location hypotheses.

3

-3 3

3

-3 3 3 __3

Distributed Vehicle Monitoring and the Testbed 71

The tracking component of a grammar.

The tracking component of a a testbed grammar specifies the
limitations on vehicle movement. It contains two values: the maximum
velocity of a vehicle (and implicitly, events at all 1lévels) and the
maximum acceleration of a vehicle.6 These values are used in three
activities involving the creation of track hypotheses: forming a track
hypothesis from individual 1location hypotheses, extending a track
hypothesis with an additional location hypothesis, joining a location
hypothesis to a track hypothesis (the dual to track extension), and
merging two abutting or overlapping track hypotheses into a single track

hypothesis. We first consider track formation.

Track formation,

To form a track from two location hypotheses, a hypothesis in one
time frame is selected and combined with a matching hypothesis in the
next time frame (or in the preceding time frame, if working backward in
time). Here "matching" includes hypotheses within event class tolerance
of hypotheses at the signal and group levels. These matching hypotheses
must be within the distance permitted by the maximum velocity for a
vehicle (Figure 12). Because there can be a number of matching
hypotheses in successive time frames that are within this distance, a
large number of incorrect, short track hypotheses can be formed.
Significant additional processing may be required to determine which of

these short tracks can be extended into additional time frames. For

6. Currently the maximum velocity and acceleration Qalues apply to all
vehicle types in the network.

Distributed Vehicle Monitoring and the Testbed 72

TRACK HYPOTHESIS

-/ LOCATION HYPOTHESES /

Figure 12: Track Formation.

Combining two location hypotheses in adjacent time frames into
a track hypothesis, The location hypotheses must be within
the distance permitted by the maximum velocity for a vehicle.

—3 3 _3

3

3 2 _13

.3 _3 3y 3 __3 _3

5 3

g l‘_ﬁg — a f] ? f 3 - g r_"—g (_3 f_'—% — g § % f ? % 4 g % r g [%’ %

Distributed Vehicle Monitoring and the Testbed 73

this reason, track formation is a relatively expensive operation.

Track extension.

Extending a track involves determining the spatial area in which
the vehicle must be located in the next (or preceding) time frame, under
the limitations imposed by the maximum velocity and acceleration of the
vehicle (Figure 13). The distance covered during the last (or first)
time frame of the track hypothesis determines the current velocity of
the vehicle. The track hypothesis can be extended using each location
hypothesis in this area which has an event class within tolerance of the
event class of the track. Extensions requiring high accelerations are

given lower beliefs than those requiring low accelerations.

Location-to-track joining.

Joining a location hypothesis to a track hypothesis is similar to
track extension. Instead of a track hypothesis, however, we begin with
a location hypothesis. All track hypotheses that are within the event
class tolerance of the location hypothesis, that end (or begin) in the
previous (or next) time frame, and that are within the maximum velocity
are located (Figure 14)., These candidate track hypotheses are then
checked to ensure that the acceleration resulting from joining the
location hypothesis to them does not exceed the maximum acceleration for
a vehicle, As with track extension, joins requiring high accelerations
are given lower beliefs than those requiring low accelerations. This
knowledge source is more expensive than track extension because the
acceleration of the vehicle cannot be used to filter the possible tracks

until after the candidate track hypotheses have been found.

Distributed Vehicle Monitoring and the Testbed T4

TRACK HYPOTHESIS

TRACK HYPOTHESIS

7/ LOCATION /

YPOTHE
RPN il

Figure 13: Track Extension.

Extending a track hypothesis with a location hypothesis in the
next (or preceding, if extending backward in time) time frame.

Distributed Vehicle Monitoring and the Testbed

TRACK HYPOTHESIS

LOCATION HYPOTHESIS

Figure 14: Location-to-Track Joining.

Joining a location hypothesis to a track hypothesis ending (pr
beginning) at an adjacent time frame.

75

Distributed Vehicle Monitoring and the Testbed 76

Track merging.

Merging a track hypothesis with a second track hypothesis involves
finding a track hypothesis matching the first track's event class which
overlaps or abuts the last (or first) time frame (Figure 15). The
overlapping or abutting locations must be within both event class and
location tolerance for the merge to occur.

Extending a track hypothesis is the preferred way of monitoring an
event. Although it is possible to track an event by repeated track
formation followed by track merging, extension is much cheaper due to
the additional context supplied by the track hypothesis. The intended
application of each activity is:

track formation -- initiation of new track hypotheses from existing
location hypotheses;

location-to-track
joining

- joining an internally generated or externally
communicated 1location hypothesis with existing
track hypotheses (preferred over track formation);

track extension -- extension of an internally generated or externally
communicated track hypothesis using existing
location hypotheses;

track merging —— integration of existing track hypotheses with those

received from other nodes (without using lower
level hypotheses).

2.3.5 Knowledge sources.

The fifty-two testbed knowledge sources are listed in Table 1.7 In
addition to knowledge sources which perform the five basic problem

solving activities discussed above, there are communication knowledge

7. Additional communication knowledge sources used in the goal-directed
implementation of the testbed are discussed in Chapter IV,

3

Distributed Vehicle Monitoring and the Testbed

TRACK HYPOTHESIS

TRACK HYPOTHESIS

TRACK HYPOTHESIS

Figure 15: Track Merging.

Merging two overlapping track hypotheses into a single track
hypothesis.

77

Distributed Vehicle Monitoring and the Testbed

Location

Synthesis:
S:SL:GL
S:GL:VL
S:VL:PL

Track
Formation:
FT:SL:ST
FT:GL:GT
FT:VL:VT
FT:PL:PT

Track
Synthesis:
S:ST:GT
S:GT:VT
S:VT:PT

Hypothesis
Transmission:

HYP-SEND:SL:SL
HYP-SEND:ST:ST
HYP-SEND:GL:GL
HYP-SEND:GT :GT
HYP-SEND:VL:VL
HYP-SEND:VT:VT
HYP-SEND:PL:PL
HYP-SEND:PT:PT

KNOWLEDGE SQURCES

Forward
Extension:
EF:ST/SL:ST
EF:GT/GL:GT
EF:VT/VL:VT
EF:PT/PL:PT

Backward

Extension:
EB:ST/SL:ST
EB:GT/GL:GT
EB:VT/VL:VT
EB:PT/PL:PT

Forward
Forward Location-to-Track
Merging: Joining:
MF:ST:ST JF:SL/ST:ST
MF:GT:GT JF:GL/GT:GT
MF:VT:VT JF:VL/VT:VT
MF:PT:PT JF:PL/PT:PT

Backward
Backward Location-to-Track
Merging: Joining:
MB:ST:ST JB:SL/ST:ST
MB:GT:GT JB:GL/GT:GT
MB:VT:VT JB:VL/VT:VT
MB:PT:PT JB:PL/PT:PT

Miscellaneous:

FRONTEND
SENSORS

Hypothesis
Reception:

HYP-RECEIVE:SL:SL
HYP-RECEIVE:ST:ST
HYP-RECEIVE:GL:GL
HYP-RECEIVE:GT:GT
HYP-RECEIVE:VL:VL
HYP-RECEIVE:VT:VT
HYP-RECEIVE:PL:PL
HYP-RECEIVE:PT:PT

Table 1: Distributed Vehicle Monitoring Testbed Knowledge Sources.

The fifty-two testbed knowledge sources.

source can be individually selected

Each knowledge

and weighted at each

testbed node (except for the FRONTEND, which runs at a special
"simulation node" zero).

Except for the FRONTEND and SENSORS knowledge sources, the

name of each knowledge source has the form:

type

: input-level(s) : output-level.

78

)

Distributed Vehicle Monitoring and the Testbed T9

sources and the FRONTEND and SENSORS knowledge sources.

Communication.

There are two types of communication knowledge sources at each
node: hypothesis send and hypothesis receive,

A hypothesis send knowledge source transmits hypotheses created on
the blackboard to other nodes based on the level, time frame, event
class, location, and belief of the hypothesis. The send knowledge
sources use a simple model of the hypotheses that have been seen by each
node and of the availability of the communication channel to decide
whether or not to send a particular hypothesis,

A hypothesis receive knowledge source places hypotheses received
from other nodes onto the node's blackboard. Incoming hypotheses are
filtered according to the level, time frame, event class, location, and
belief of the received hypothesis to ensure that the node is truly
interested in the information. (Specification of the interest areas of
a node will be discussed in Chapter IV.) Hypothesis receive knowledge
sources also use a simple model of the credibility of the sending node
to possibly lower the belief of the received hypothesis before it is

placed on the blackboard.

The FRONTEND and SENSORS knowledge sources.

The FRONTEND knowledge source is a special, simulation-level
knowledge source used to initialize the testbed network. It is always
the first knowledge source executed in a run. The FRONTEND reads a
complete specification of the run from an input file called the

environment file, An environment file includes: the configuration of

Distributed Vehicle Monitoring and the Testbed 80

the nodes and sensors, the grammar, and the movement og vehicle patterns
through the monitoring area. (A description of an environment file is
contained in Appendix A.) The FRONTEND creates all signal location
hypotheses for the run, but does not insert them onto the blackboard.
The FRONTEND also generates parameterization and measurement information
(described in the next section).

The SENSORS knowledge source is executed once each time frame at
each node, SENSORS inserts onto the node's blackboard the signal
location hypotheses for the time frame which were previously created by
the FRONTEND. A node can delay the receipt of sensory information by

postponing the execution of the SENSORS knowledge source.

A note regarding prediction.

The thoughtful reader may wonder why top-down, prediction knowledge
sources are not included in the testbed. As will be discussed in
Section 4.1, prediction of important activities need not involve the

top-down elaboration of hypotheses, and there are no prediction

knowledge sources in the testbed.

2.3.6 Measurement capabilities.

A testbed experiment typically involves a series of runs in which a
limited number ‘of characteristics are independently varied. Often such
gross measures of the testbed's performance as the time to generate a
solution, the number of created hypotheses, the number of transmitted
and received hypotheses, and the belief and accuracy of the solution can
be used to compare runs. (This is the case witﬁ(the experiments

described in Chapter V.) However, understanding exactly why one run is

3 1 __3

—-3

.t __ 13

[}

a3 D>

—®% T3 T3 T3 —3 T » 73 T3 —3 ~—3 —38 7~ 3 T3 T3 —3 —§ —» —3 13

Distributed Vehicle Monitoring and the Testbed 81

significantly better or worse than another can require detailed
measurement of the changing intermediate state of processing at each
node in the network. Measures of the immediate and long term effects of
executing a knowledge source and sending or receiving a message as well
as the context in which these activities were performed are needed to
truly understand what has occurred during a run. Even a slight delay in
performing a critical activity can have a significant impact on the
gross behavior of the network,

The need for such detailed measures led to the development of a
model for analyzing how a Hearsay-II system constructs a solution and
resolves the uncertainty and error in its input data. The basic
approach was developed by Lesser, Pavlin, and Reed [LESS80a] and
involves a measure for system performance which increases as the belief
of "correct" hypotheses increases and as the belief of "incorrect"
hypotheses decreases. The "correctness" of hypotheses is obtained from

a hidden data structure called the consistency blackboard, which is

precomputed by the FRONTEND from the simulation input data. This
blackboard holds what the interpretation would be at each information
level if the system worked with perfect knowledge. This blackboard is
not part of the basic prbblem solving architecture of a node but rather
is used to measure problem solving performance from the perspective of
the simulation input data. The consistency blackboard is also used to
mark consistent and false hypotheses (and the activities associated with

them) in system output.

Distributed Vehicle Monitoring and the Testbed 82

The present form of these - measures allows for sophisticated
analysis of locally consistent hypotheses which can only be viewed as
incorrect by knowledge sources working above a particular blackboard
abstraction 1level, of the instantaneous and potential effects of
hypothesis communication, and of the distribution of uncertainty within

the blackboard of each node as well as throughout the network.

2.3.7 Modifying knowledge source power.

One parameter that can have a significant effect on the performance
of the network is the problem solving expertise of the nodes. The
ability of each knowledge source to detect local consistencies and
inconsistencies among its input hypotheses and to generate appropriate
output hypotheses is called the power of the knowledge source,
Knowledge source power ranges from a perfect knowledge source able to
create output hypotheses with beliefs that reflect even the most subtle
consistencies among its input hypotheses down to a knoﬁledge source
which creates syntactically legitimate output hypotheses without regard
to local consistency and with beliefs generated at random., Note that a
perfect knowledge source is not the same as an omniscient one. A
perfect knowledge source can still generate an incorrect output
hypothesis if supplied with incorrect, but completely consistent, input
hypotheses.

The testbed can modify the power of a knowledge source to be
anywhere along this range. This is achieved by separating each
knowledge source into two stages: a candidate generator and a resolver,

The candidate generator stage produces plausible hypotheses for the

-3 -3 1

— 3]

k7

—.F

3 .1

-Distributed Vehicle Monitoring and the Testbed 83

output of the knowledge source and assigns each hypothesis a tentative
belief value, The candidate generator stage for each knowledge source
in the testbed incorporates relatively simple domain knowledge. The
next stage, the resolver, uses information provided by the consistency
blackboard to minimally alter the initial belief values of these
plausible hypotheses tb achieve, on the average, a knowledge source of
the desired power. The hypotheses with the highest altered beliefs are
then used by the resolver stage as the actual output hypotheses of the
knowledge source,

The alteration of hypothesis belief values by the resolver stage
can be used to simulate the detection of more subtle forms of local
consistency than is provided by the candidate generator's knowledge (and
thereby increase the apparent power of the knowledge source).
Hypothesis belief alteration can also be used to degrade the performance
of the candidate generator (and thereby reduce the apparent power of the

knowledge source).

2.3.8 Still to come.

The preceding sections discussed the basic structure, processing,
and measurement capabilities of the distributed vehicle monitoring
testbed. One major component of the testbed remains to be described.
This component is the 1local planner at each node and is the subject of
Chapter IV. First, however, the next chapter develops the problem of
coordinating a functionally accurate, cooperative distributed problem
solving network and discusses the need for sophisticated local planning

by each node to implement network coordination.

Let not thy left hand know what thy right hand doeth.

-=- St. Matthew

CHAPTER III

CCORDINATING NODE ACTIVITY

This chapter looks at the problem of coordinating node activity in
the distributed vehicle monitoring testbed. The basic issue is having
each node make reasonable local activity decisions with incomplete,
inaccurate, and inconsistent local information regarding both the
developing answer map and the current and‘planned activities of other
nodes in the network. The first section considers the problem of
identifying and ordering the activities within a single network node.
The second section presents the network coordination problem through a
highly simplified example. Subsequent sections describe the contract
network and self-directed approaches to the network coordination
problem, develop a framework which integrates them both, and explain why
even this integrated framework is insufficient to effectively deal with
the network coordination problem. The 1last sections introduce the
application of the functionally accurate, cooperative approach to the
network coordination problem and the use of meta-level coordination
through organizational design as a means of augmenting the integrated

coordination framework.

84

‘3 = > __ 3 __3

(__ 3 ;_\g' i ; 3

% __31 _§ 4 3

Coordinating Node Activity 85

3.1 The Internal Coordination Problem

It is unreasonable to expect coordinated network activity from
nodes that cannot effectively control their own behavior. Assuming the
general activities for each node in the network have been decided, we
would at least 1like the nodes to carry out those activities in an
effective manner. 1In this section we look at the internal coordination
involved in generating an answer map within a single node of the vehicle
monitoring testbed.

In a Hearsay-II1 system (used as our testbed node), internal
coordination involves deciding which knowledge source instantiation
should be executed next, taking into account the state of the developing
solution., Because knowledge sources are non-interruptible tasks in a
Hearsay-II system, this decision is made only at the completion of each
executing knowledge source instantiation. The difficulty in deciding
which knowledge source instantiation should be executed stems from four
sources:

1. The space of possible interpretations (answer maps) is very
large due to the amount of error in the input sensory data. It
is therefore important to prune the search by executing only
those knowledge source instantiations which develop
interpretations that are best supported by the data,

2. The interpretation has to be driven upward through a number of
blackboard abstraction 1levels. A highly-believed partial
solution at a high blackboard 1level should focus knowledge
source activity at lower levels on data with the potential for
adding to that solution.

3. There are multiple synthesis paths through different blackboard
levels involving different knowledge sources with different
expected costs., It is important to evaluate these alternative
paths and, once a decision to attempt a particular path is

made, inhibit work on the other paths. The node should not
waste its processing resources redundantly deriving the same

Coordinating Node Activity 86

partial solutions in multiple ways.

4, There are communication knowledge sources (in multinode
networks) which can be executed in place of a sequence of other
knowledge sources (such as asking a neighboring node for a
hypothesis at a particular level rather than deriving it
locally). Of course, the neighboring node needs to have
derived the requested hypothesis and to have sufficient
communication capability to receive the request and transmit
the hypothesis.

These considerations make it important that the node be aware of what it
is doing and why it is doing it. The node must be able to determine
what it needs to be doing and then to develop and implement a plan for
doing it. As will be shown in Chapter IV, this requires more
sophisticated control capabilities than exist in the basic Hearsay-II
architecture,

An important remaining consideration is when to stop executing
knowledge sources that are working on "old" data. Stated differently,
when has the space of possible interpretations been searched
sufficiently to be confident of the accuracy of the answer? In the
testbed, the first answer map that is generated is not necessarily the
highest answer map that would be found if processing were allowed to
continue. The distributed vehicle monitoring application is further
complicated because vehicles do not necessarily cross the entire
monitoring area (making it difficult to determine if a particular track
died out naturally or was the result of correlating sensory noise),
because there are an unknown number of vehicles present in the
environment (making it difficult to decide if the answer map is

complete), and because the network may be operating in a continuous,

real-time manner (resulting in -a conflict between increasing the

0

3 3 3 I 3

3 i}

3

5 3 __3?

Coordinating Node Activity 87_

accuracy of the answer map versus extending it forward in time). The
knowledge source stopping question is even more difficult in a multinode
network due to the lack of a complete and accurate view of the
developing solution in the network. For the present, we will ignore the
problem of deciding when a solution has been found, but will return to
these issues in Chapter IV.

It is interesting to note that if each node contained but one
knowledge source (in the distributed experts tradition) the internal
coordination problem becomes trivial, If there is something for a
node's knowledge source to do, the node should do it. While this may
initially appear to be an advantage of the distributed experts approach,
the coordination problem has merely been shifted from a local issue to
the more difficult one of coordinating all activities at the network
level. To what node(s) should the results of the node's knowledge
source execution be sent? From what node(s) should a node accept
hypotheses? What should a node do if it finds its knowledge source in
great demand? What should the node do if it finds a node or
communication link has failed? These questions must be addressed at the
network coordination level,

In the next section, we look at the problem of coordinating the
local node activities throughout the network. We will address the above
questions, not from the one-node/one-knowledge-source structure of a
distributed experts network, but from the more general perspective of

full-functioned nodes.

Coordinating Node Activity 88

3.2 The Network Coordination Problem

Suppose every node in the distributed vehicle monitoring testbed is
supplied with the entire complement of knowledge sources, giving each
node the potential for performing any portion of the problem solving
activity needed to generate an answer map. What portions should each
node perform to most effectively generate the map?

One way of approaching this question is to consider the distributed
vehicle monitoring task as the growing of a hypothesis structure between
the signal location hypotheses distributed among the nodes and the
pattern track hypotheses which are to be generated at the appropriate
answer sitg nodes. Note that only the initial node locations of the
signal location hypotheses generated by the sensors and the eventual
node location of the pattern track hypotheses used in the answer map
have predefined node locations. The remainder of the hypothesis
structure can be distributed (and duplicated) among any of the nodes in
the network, subject only to communication and computation restrictions.

This flexibility in hypothesis node location makes determination of
node activity a difficult problem, even when the required problem

solving activities are completely known.

3.2.1 A simple (but extended) example.

Consider a simple two node distributed vehicle monitoring network
in which the vehicle is 1located in an area covered only by sensors
reporting to Node:1 and in which Node:2 is to produce the answer map
(Figure 16). To further simplify the example, only accurate signal

location hypotheses are reported to Node:1, the grammar used contains

2 3 _ & .3 .3 _953 3 __3 3 __3 __3 _3

e

3 3 _3 -3 5 3

=2 o= 3

Coordinating Node Activity 89
=X,
tpiq)
\ PLll
-
NODE: 1 NODE: 2

OJOJOXO

Figure 16: The Simplé Two Node Problem.,

All sensory signals are reported to Node:1 and Node:2 is to
produce the answer map (indicated by the dashed pattern
location hypothesis).

only one pattern, and only one time frame is considered: the answer map
to consist of the correct pattern location hypothesis. One
decomposition of the problem is to have Node:1 perform the entire
problem solving task and transmit the answer pattern iocation hypothesis
to Node:2 which supplies it as the answer map (Figure 17). Given that
pattern location hypotheses are the most abstract of all location le?el
hypotheses, this approach requires the minimal amount of internode
communication. However, it does not exploit Node:2's processing

capacity, since Node:2 is idle while Node:1 solves the problem,

Coordinating Node Activity 90

S

Figure 17: Node:1 Solves the Entire Problem,

In this decomposition, Node:1 performs the entire problem
solving task and transmits the answer pattern location
hypothesis to Node:2 which supplies it as the answer map.

To maximize the amount of parallelism in our two node network,
Node:1 must immediately send Node:2 some of its sensory hypotheses,
leaving Node:2 idle only during the time required to communicate enough
signal location hypotheses to allow it to begin processing. But how
many signal location hypotheses should Node:1 send to Node:2 and which
hypotheses should they be? The decision can have significant impact on

the effectiveness of problem solving in the network.

3 3 i3 _3 _3 _3 _3 _3

2

—3

T3

Coordinating Node Activity 91

A very simple metric can be placed on our example by counting the
number of support links created at each node (a measure of processing)
and the number of hypotheses transmitted between nodes (a measure of
communication). If Node:1 performs all the processing and sends the
answer map to Node:2, then:

12 links

0 links
1 hypothesis.

Node:1 Supports
Node:2 Supports
Communication

Now suppose Node:1 sends hypothesis SL4 to Node:2 and processes

only hypotheses SL1 through SL3 (Figure 18). 1In this case:

2?@

Figure 18: Node:1 Transmits One Signal Location Hypothesis to Node:2.

In this decomposition, Node:1 sends hypothesis SL4 to Node:2
and processes only hypotheses SL1 through SL3.

Coordinating Node Activity 92

11 links
3 links
2 hypotheses.

Node:1 Supports
Node:2 Supports
Communication

Obviously this is not much of an improvement.

Suppose Node:1 sends hypotheses SL3 and SL4 to Node:2 and processes
only SL1 and SL2 (Figure 19):
8 links

8 links
3 hypotheses.

Node:1 Supports
Node:2 Supports
Communication

This balances processing activity in the network at the cost of two

additional communicated hypotheses (and processing accuracy, see below).

F. B

Figure 19: Node:1 Transmits Two Signal Location Hypotheses to Node:2.

In this decomposition, Node:1 sends hypotheses SL3 and SL4 to
Node:2 and processes only hypotheses SL1 and SL2.

i3

3 3

2

—3

% T % ¥ T3 —T% /3 ™3 T8 T3 ~— 3 T3 T3 T3 7§ —3 3 —3 ~3 "3

Coordinating Node Activity 93

Would a different combination of transferred signal 1location
hypotheses work equally well? Suppose SL2 and SL3 are sent to Node:2
(Figure 20):

6 links

10 links
3 hypotheses.

Node:1 Supports
Node:2 Supports
Communication

n wn

In this case the processing balance is not so uniform. The reason is
that this decomposition does not match the connectivity of the grammar

as well as the decomposition of Figure 19,

Figure 20: Node:1 Transmits a Different Two Signal Location Hypothesis
to Node:2.

In this decomposition, Node:1 sends hypothesis SL2 and SL3 to
Node:2 and processes only hypotheses SL1 and SL4.

Coordinating Node Activity 94

In our simple measures, the effect that decomposing the problem had
on the belief of the eventual answer was ignored. Recall from Section
2.3.4 that the belief of a created hypothesis increases with the number
of hypotheses which support it. If we count the effect of each support
1link equally, the PL1 hypothesis created by each node in the Figure 19
decomposition is generated using four fewer supports than the PL1
hypothesis generated when Node:1 performed all the processing. This
means that the load-balanced decomposition generates an answer with
lower belief due to the use of partial sensory information. Although
Node:2 eventually receives the PL1 hypothesis generated by Node:1, it
does not know how the hypothesis was formed. Without the underlying
support structure of the received PL1 hypothesis, Node:2 does not know
if that hypothesis was generated using the same sensory data it used
locally to created its PL1 hypothesis or was generated by ﬁode:1 using

L This is one example of the

additional or independent sensory data.
tradeoff between processing speed and the accuracy of the answer.

A similar tradeoff occurs between the amount of communication and
the accuracy of the answer. (In fact, accuracy, speed, and
communication are all interrelated.) Suppose we allow group location

hypothesis communication in the Figure 19 decomposition, If Node:1

sends GL1 to Node:2 and Node:2 sends GL3 to Node:1 (Figure 21):

1. Determining independent versus redundant hypotheses generated at
different nodes is a very difficult problem, requiring sophisticated
models of the processing occurring at other nodes if nodes are to
avoid communicating the underlying support structures. In the
current version of the testbed, the maximum belief of the received
hypothesis (which includes the credibility of the sending node) and
the existing local hypothesis is used for the resulting hypothesis.

—3 3 -3 ‘_3

.3 3 3 @ 3 3 ‘3 i 3

& _3

Coordinating Node Activity 95

Figure 21: Adding Group Location Communication to the Figure 19
Decomposition.

In this decomposition, Node:1 sends hypotheses SL3 and SLY4 to
Node:2 and processes only hypotheses SL1 and SL2. Node:1 also
sends hypothesis GL1 to Node:2 and Node:2 sends hypothesis GL3
to Node:1.

9 links
9 links
5 hypotheses

Node:1 Supports
Node:2 Supports
Communication

and the number of supports used to generate the pattern location
hypotheses is only one fewer than the single node processing
decomposition of Figure 17. Again the choice of appropriate hypotheses

to exchange is important.

Coordinating Node Activity 96

A closer look at Figure 21 shows some redundant activities in the
network. Node:1 sends Node:2 the same PL1 hypothesis (with the same
belief) as Node:2 generates locally. This processing can be eliminated
if Node:1 sends Node:2 vehicle 1location hypothesis VL1 instead.
Similarly, there is no need for Node:2 to send Node:1 hypothesis GL3.
By carefully tailoring the problem solving activities, a decomposition
with a good balance between speed and communication can be obtained
which has no loss in accuracy with respect to the single node processing
case (Figure 22):

6 links

6 links
4 hypotheses.

Node:1 Supports
Node:2 Supports
Communication

Although removing the redundant activity does improve the speed and
communication requirements of the network, it also leaves the solution
more vulnerable if Node:1 or the communication link should fail during
the course of problem solving,. In a distributed problem solving
network, redundant activity is not necessarily bad. Part of the
coordination problem is being 1intelligent about what redundant
activities should be performed in the network.

The coordination problem does not end with problem dec;mposition.
In the discussion thus far, we have ignored the timing of the particular
activities at each node. Figures 17 through 22 only depict the
processing activity in the network statically -- after the answer has

been generated.

3 3 3 _2

—3 3 23 3 -y 3 3 3

N |

-
r

Coordinating Node Activity 97

Figure 22: .Communication at the Signal, Group, and Vehicle Location
Levels.

In this decomposition, Node:1 sends hypotheses SL3 and SL4 to
Node:2 and processes hypotheses SL1 through SL3. Node:1 also
sends hypothesis GL2 and VL1 to Node:2.

Suppose each knowledge source instantiation requires one time unit
to execute plus one time unit for each support link found. 1In addition,
suppose each communicated hypothesis requires two time units to send,
five time units in transmission and two time units to receive., Table 2

shows a possible trace of activity for the Figure 22 decomposition. It

illustrates several interesting situations.
First, the activities in Table 2 were ordered to generate the PL1
hypothesis in the minimum number of time units. Resequencing the

activities at a node (such as Node:1 generating GL1 before GL2) can

Coordinating Node Activity 98

Time Node:1 Channel Node:2

1 Send SL3 Idle Idle

2 k] v i

3 SL2 & SL3 => GL2 SL3 i

4 i i i

5) i i

6 Send SL4 | i

7 v v v

8 SL1 & SL2 => GL1 SL4 Receive SL3

9 | i v

10 v H Idle

11 Send GL2 : i

12 v v v

13 GL1 & GL2 => VL1 GL2 Receive SLU

14 i i v

15 v i SL3 & SL4 => GL3
16 Send VL1 i i

17 v \ v

18 Idle VL1 Receive GL2

19 i i v

20 H i GL2 & GL3 => VL2
21 i i i

22] ¥ v

23 i Idle Receive VL1

24 1] v

25 H i VL1 & VL2 => PL1
26 i H i

27 v v v

Table 2: Execution Trace for Figure 22.

Timing diagram showing the optimum execution ordering for our
simple (but extended) example given that each knowledge source
instantiation requires one time unit to execute plus one time
unit for each support link found and that each communicated
hypothesis requires two time units to send, five time units in
transmission and two time units to receive.

3 3

3 3

—3

3 3 _3 __7

Coordinating Node Activity 99

increase the time needed to generate PL1.

Second, all knowledge source instantiations were executed only
after all the possible supporting hypotheses were available. Recall
from Section 2.3.4 that a knowledge source can synthesize a hypothesis
using only a subset of the possible supporting hypotheses. A knowledge
source that is executed before all the supporting hypotheses are
generated would have to be reinvoked in order to incorporate these new
supports into an output hypothesis of higher belief. Reexecuting
knowledge sources would also increase the time needed to generate PL1.
(A mechanism for delaying the execution of a knowledge source
instantiation will be presented in Chapter IV.)

Third, the total time required in Table 2 is twenty-seven time
units. This is the identical time required for the single node
decomposition of Figure 17, given the above timing specifications. What
has happened to our load-balancing?. It has been eaten away by the time
needed to communicate the low-level hypotheses from Node:1 to Node:2.
The timing specifications have been <chosen so that the two
decompositions balance. If the timing tradeoff between communication
and computation is shifted toward communication, the Figure 22
decomposition will be faster., If the timing tradeoff is shifted toward
computation, the Figure 17 decomposition will be faster,

A closer look at Table 2 shows that the communication channel is
the bottleneck. Increasing the channel capacity to allow two concurrent

messages also favors the Figure 22 decomposition,

Coordinating Node Activity 100

3.2.2 Some additional considerations.

The above example illustrates how sensitive a distributed problem
solving network is to the use of a particular task decomposition,
knowledge source processing requirements, and the characteristics of
node interaction. The example also shows that by careful tailoring,
effective and balanced problem solving activity can be achieved.
However, the example was very simple and the tailoring was performed
using complete, pbst hoc information about the activities required to
generate the answer. How can an effective decomposition be determined
when the grammar contains many patterns, the sensory data is noisy, and
the actual pattern of vehicle movement in the environment is not known
beforehand?

The above example also dealt only with location hypotheses. Recall
that there are actually four possible synthesis paths from signal
location hypotheses to pattern track hypotheses, each with potentially
different resource requirements and coordination characteristics. An
appropriate choice of synthesis paths depends upon the grammar, the
sensory data, the communication channel capacity, and the anticipated
activities at each node.

In networks composed of even a small number of nodes, a complete
analysis to determine the detailed activities at each node is
impractical. The computation and communication costs of determining the
activities far outweigh the improvement in problem solving performance.
Instead, coordination in distributed problem solving networks must
sacrifice some potential improvement for a less complex coordination

problem, What is desired is a balance between problem solving and

-—3 3

.3 3 3

3 3 _3

Coordinating Node Activity 101

coordination so that the combined cost of both activities are
acceptable. Sproull incorporates a similar balance in his planning and
solution optimal (p-optimal) planning strategy [SPRO77]. The emphasis
is shifted from optimizing the activities in the network to achieving an
acceptable performance level of the network as a whole.

As noted by March and Simon, most human problem solving (both
individual and organizational) is similarly concerned with achieving a
satisfactory performance level. rather than an optimal one, Termed
satisficing, this level of performance can be significantly less complex
than optimizing. Determining if the activities in the network are
optimal requires:

0o a set of criteria permitting all alternative sequences of
network activities to be compared;

o using these criteria to decide whether the particular sequence
of network activities is preferred to all the alternatives;

while determining if the activities are satisfactory requires:

0 a set of criteria describing minimally satisfactory performance
levels;

0 using these criteria to decide whether the particular sequence
of network activities is minimally satisfactory.

March and Simon compare optimizing to "searching a haystack to find the

sharpest needle" and satisficing to "searching the haystack to find a

needle sharp enough to sew with" [MARCS58].

In the next sections, two approaches to the network coordination
problem are presented. These approaches do not attempt to optimize
network activity by precisely coordinating the detailed activities of
nodes but, instead, attempt to determine larger units of node activity

with limited node interaction.

Coordinating Node Activity 102

3.3 The Contract Net Approach

One approach to the coordination problem is the work of Smith and
Davis on the contract net formalism [SMIT81]. The contract net
formalism incorporates two major ideas.

The first idea is the use of negotiation between willing entities
as a means of obtaining coherent behavior. Negotiation involves a
multidirectional exchange of information between the interested parties,
an evaluation of the information by each member from its own
perspective, and final agreement by mutual selection. Negotiation
differs from voting in that dissident members are free to exit the
negotiation rather than being bound by the decision of the majority.

The second idea is the use of negotiation to establish a network of
contracting control relationships between nodes 1in the distributed
problem solving network. In the contract net formalism, nodes
coordinate their activities through contracts to accomplish specific
goals. These contracts are elaborated in a top-down manner; at each
stage, a manager node decomposes its contracts into sub-contracts to be
accomplished by other contractor nodes. This process involves a bidding
protocol based on a two-way transfer of information to establish the
nature of the sub-contracts and which node will perform a particular
sub-contract. The elaboration procedure continues until a node can
complete a contract without assistance.

The result of the contract elaboration process is a network of
manager/contractor relationships distributed throughout the network.

Each node knows for which nodes it is performing contracts and which

3 3 _3

3 3 3

—F 3 _3 _3

™

—3 3 _3

-3 3 2

~3 T3 1

Coordinating Node Activity 103

nodes are performing contracts for it. However, a node does not know
about the past, present, or future activities of other nodes outside its
local contracting relationships (see below).

Smith and Davis have used a model of distributed problém solving in
which the network passes through three phases as it solves a problem

(Figure 23) [SMIT80].

Problem Answer
Decomposition v Synthesis

Subproblem
Solution

Figure 23: Distributed Problem Solving Phases (Smith and Davis).

The model of problem solving used by Smith and Davis first
decomposes the problem into subproblems assigned to each node,
then the distributed subproblems are solved, and the results
are synthesized into an answer.

Coordinating Node Activity 104

The first phase is problem decomposition. The problem solving task

is recursively partitioned into increasingly smaller subtasks until
atomic (non-decomposable) tasks remain, Part of this decomposition
process is assignment of the subtasks to individual nodes. Smith calls

this the connection problem [SMIT78].) Node assignment is particularly

intertwined with problem decomposition. Different assignments may be
best suited to different possible decompositions, and vice versa. This
node assignment aspect of problem decomposition was made explicit by the

inclusion of a distinet phase, subproblem distribution, in a later

report by Davis and Smith [DAVI81].

The second phase in their model is the coordinated solution of the

individual subproblems. Potential interactions with other nodes during

the subproblem solution phase are specified by the elaborating nodes.

The third phase is answer synthesis using the results produced by

the second phase. Part of the answer synthesis phase is assignment of
synthesis activity to particular nodes. It should be noted that more
than one node can have a solution to a particular subproblem and that
not all such solutions are equally good. If the best subproblem
solutions are to be used in the answer synthesis phase, the synthesizing

nodes must locate and acquire these superior solutions. Therefore, the

inclusion of a another phase, solution collection, would seem to be

appropriate, given the inclusion of a distinct subproblem distribution
phase.

The Smith and Davis problem solving model embodies the classic
"divide-and-conquer" problem solving strategy, and the contract net

formalism fits nicely into their model's problem decomposition phase.

3 3 _3

Coordinating Node Activity 105

However, their model simplifies some important aspects of problem
solving in many distributed settings.

First, in applying their model to the contract net approach .Smith
and Davis imply that answer synthesis is the structural inverse of
problem decomposition. This need not be the case,. For example, in
distributed vehicle monitoring a node might be given the task of
generaﬁing a map at a second, distant node. Simple inversion of the
débbmposition structure would result in the generation of the map at the
first node. But there is a subtler issue here. Even if the node given
the task description is also to generate the map, is it necessarily the
case that the answer is best synthesized by the same nodes that
decomposed the task? If not, then control of the answer synthesis phase
is not simply a matter of unwinding the problem decomposition and node
assignment structure, Instead, it 1is a distinet control activity
requiring additional contracting to establish the answer synthesis and
result collection structure.

Second, their model suggests that the phases of problem solving are
sequential.2 Subproblem solution awaits problem decomposition and
answer synthesis awaits subproblem solution. As illustrated by the
example in Section 3.2, the control information required to perform
these three phases does not always present itself in such a timely
fashion. How can an appropriate decomposition of the problem be

performed without prior knowledge of the distribution of vehicular

2. In the later report, mention is made that the activities could be
performed in parallel, but the possibility 1is not elaborated
[DAVI81].

Coordinating Node Activity 106

activity (which is to be the result of the answer synthesis phase)?
Unless supplied with knowledge beforehand, a particular decomposition
can be very inappropriate to the actual problem solving situation.

Third, even if an appropriate initial decomposition is obtained,
what happens if the environment or network capabilities change? In
distributed vehicle monitoring, task assignments that work well at one
point in the problem solving phase may work very badly at another, as
patterns of vehicles move in the environment. The network may be able
to cope with some environmental changes by reassigning subtasks to
different nodes. However, the problem solving requirements may change
to such a degree that the decomposition itself needs to be modified, and
problem redecomposition is a much harder task than subproblem-to-node
reassignment. Even modification of a portion of the problem
decomposition can be difficult, because the manager/contractor
relationships are distributed throughout the distributed problem solving
network and each node knows only about its own manager/contractor
activities.

Fourth, their model does not address the issue of controlling the
three phases themselves. Each phase is, in fact, a distributed problem
solving £ask in its own right and competes for network resources with
the other phases. Some mechanism for balancing the effort expended
among the phases is needed.

With these points in mind, the strengths and weaknesses of the
contract network formalism become more apparent. The contract network
formalism does not really address the issue of controlling the

communication and processing activities of the problem solving and

3 3 __32

3 5 3 i3

3

|

.'w__ﬁ

3

Coordinating Node Activity 107

answer synthesis phases, but focuses instead on the problem
decomposition phase. The idea is to use the hierarchical decomposition
structure developed through the contracting protocols as a framework for
coordination decisions made during the problem solving phase.
Contract nets are ideally suited to distributed problem solving
situations where:
o the information required to hierarchically decompose the task is
available (or at 1least can be estimated) before subproblem

solution;

o the subproblem solution structure does not change significantly
during the course of the solution;

o answer synthesis is the inverse of problem decomposition;

o the amount of effort expended in the decomposition and answer
synthesis phases 1is small compared to the amount of basic
problem solving performed in the problem solving phase.

When these conditions do not exist, the contract network formalism
is 1less appropriate. The difficulty comes, not from the basic
philosophy of negotiation, but from the top-down, contracting character
of the contract network control structure, its focus on the problem
decomposition phase, and each node's lack of a general view of the
overall activities in the network., 1In the next section, we look at a
complementary approach to network coordination which is bottom-up in

character and which focuses on the problem solving and answer synthesis

phases.

Coordinating Node Activity 108

3.4 The Self-Directed Approach

In the absence of information needed to decompose, assign, collect,
and synthesize an answer, it becomes important to let the dynamics of
the problem solving itself dictate the coordination policies. This is
the approach taken in early work by Lesser and Erman and by Lesser and
Corkill [LESS80b, LESS81]. The idea is to develop the decomposition and
answer synthesis structures concurrently and implicitly while performing
the problem solving phase.

This is accomplished by having node activity be self-directed.

Each node is given the overall task to be performed and reacts to
incoming sensory data and messages received from other nodes. Each node
performs as much of the overall task as it can, given its information.
Using its own estimate of the state of network problem solving, each
node determines which portions of the overall task it should perform and
what information it should exchange with other nodes. Instead of
assigning node activity (as in the contract network approach), the
issues with the self-directed approach are initiating appropriate node
activity and eliminating inappropriate node activity.

The choice of self-directed activities in a functionally accurate,
cooperative network is potentially quite large because a node is able to
choose aiprocessing direction for which all the necessary data may not
be available or consistent with other nodes. For instance, if a node
does not receive an appropriate partial result in a given amount of
time, it has the option to continue processing, utilizing whatever data

are available at that time, or to choose some other processing direction

‘ ‘. - __j“. /‘____ Q‘%

{ 3

3 3

Coordinating Node Activity 109

which appears to be more beneficial.

Because the self-directed control decisions made by each node are
based on the information available to each node rather than being
elaborated from a complete decomposition structure, the nodes lack the
top-down imposed coherencé which characterizes the contract network
approach, No single node may possess enough information to initiate a
critical task. Furthermore, differences in local perspectives can cause
the nodes to perform unnecessary, redundant, or incorrect processing.
If these differences are not severe the amount of additional
communication and processing resulting from inconsistent local control
decisions may not seriously degrade network performance. This is not
unreasonable in a functionally accurate, cooperative system, given that
the additional data uncertainty caused by incorrect local control
decisions may be resolvable by the same mechanisms used to resolve data
uncertainties caused by incomplete 1local databases. Self-directed
control has the added benefit of increased network robustness in the
face of communication and node failure and increased network
responsiveness to unexpected events because a node can immediately
undertake activities without interacting with other nodes.

One way to obtain increased global coherence in the self-directed
approach is to provide each node with an enlarged and more accurate view
of the state of problem solving in the network so that its self-directed
control decisions are more informed and consistent with those of other
nodes. v This can be accomplished by having nodes exchange
meta-information about the state of their local problem-solving and what

they have learned about the states of other nodes.

Coordinating Node Activity 110

For example, one form of meta-information is the generation and
exchange of a problem "decomposition" structure synthesized’ from the
primitive subproblems generated by the self-directed activities at each
node. One could imagine standing the contract net approach on its head,
having nodes announce contracts for integrating their primitive
subproblems into the developing problem "decompoéition" structure, 1In
this case, negotiation would be used to decide which locally generated
subproblems should, in fact, be worked on by the nodes. The generation
of explicit relationships among the primitive subproblems could also be
used to indicate crucial activities that are not being performed by any
node. The difficulty with such an approach is that significant effort
may be required to determine how subproblems relate to one another and
to the overall problem solving activity in the network. (Another
approach. to the development of this meta-information is discussed in
Section 3.8.)

Self-directed control can be overly influenced by the iocal
perspective of a single node. A node whose data incorrectly indicates a
particular processing direction can adversely effect other nodes through
a process Lesser and Erman termed distraction [(LESS80b]. By sending
highly rated, but incorrect, hypotheses to other nodes, the distracting
node forces those nodes to attempt an integraﬁion of incorrect
hypotheses into their deQeloping hypothesis structure. Hopefully, the
distracted nodes will eventually discover the inconsistency between the
received hypotheses and their own sensory data, but a significant amount
of processing may have been lost. Note that distraction is not

restricted to the exchange of hypotheses, It can also occur in the

3 3 3

3 3 '3

{

i—3

—3 3

Coordinating Node Activity 111

contract net approach if nodes announce high priority, but
inappropriate, tasks to be performed,

The potential for distraction in the self-directed approach can be
reduced by lowering the beliefs of hypotheses received from other nodes
in relation to hypotheses generated directly from a node's sensory data,
Unfortunately, such damping of internode cooperation also reduces the
effect of helpful, correct hypotheses and can lead to slower development
of a solution or failure to develop a solution at all [BR0O0O79, BRO0O83].
We will return to the problem of ignoring distracting information while
quickly integrating accurate information in Chapter IV,

In summary, the self-directed approach to network coordination is
best suited to distributed problem solving situations where:

o at least one node has sufficient information to initiate every
crucial activity (ensuring coverage of the problem);

o only a small number of nodes have sufficient information to
initiate any particular activity (reducing the potential for
redundant network activity);

0 an appropriate problem decomposition structure is not known or
computable beforehand;

o the problem solving environment is changing significantly during
problem solving.

As fewer of these conditions exist, a self-directed approach to network
coordination becomes less appropriate. The difficulty comes from the
lack of an elaborated decomposition structure and the lack of a general

view of the activities in the network.

Coordinating Node Activity 112

3.5 Reconciling the Two Approaches

The contract net approach to network coordination is plagued by the
need to make control decisions before sufficient information for these
decisions is available. On the other hand, the self-directed approach
is overly influenced by the local perspective of each node and lacks the
coherence and continuity of purpose provided by the contract net
approach. Is there a way of achieving the best of both approaches?

On closer inspection, there is a strong similarity between these
two network coordination approaches and the classic
data-directed/model-directed problem solving dichotomy. When viewed
from the level of the network coordination task (recall the multilevel
system discussion of Chapter.I), the contract net approach can be viewed
as a model-directed approach to network coordination and the
self-directed approach as a data-directed approach.

The contract net approach uses a priori task decomposition and node
assignment information to determine how to decompose'the problem solving
task in an appropriate manner. To the extent that this information is
available and accurate, a suitable decomposition for the problem solving
phase is developed. The danger'is that the decomposition may not match
the actual problem solving requirements given the data. The network is
coordinated, but inappropriate.

The self-directed approach, on the other hand, assumes the task
decomposition and _node assignment information is not available,
Instead, primitive subproblems are generated from the receipt of sensory

data and incoming messages. These subproblems are then synthesized

3 3 3 _3 3

Yy 3 ._3

3

~3 ~3 ~3 —3 —3% ~3 —3 ~F I —3 —3 —3 —3 —3F 3

Coordinating Node Activity 113

(either implicit}y or explicitly) into increasingly higher-level tasks
until the overall task structure is developed. The danger here is that
the low level tasks may not merge into cohesive network activity and
that crucial low level tasks may not be worked on by any node (because a
node needs a larger context in order to recognize the overall importance
of a task). The network is appropriate, but uncoordinated.

What is needed is the ability to use whatever approach is best
suited to the current problem solving situation, including the
simultaneous application of both approaches on different aspects of the
problem. Integrating both approaches into a common network coordination
framework has several implications:

o A higher-level control mechanism is needed for deciding which
approach to use in a given situation.

o There is no guarantee that the top-down and bottom-up problem
"decomposition" structures developed by the two approaches will
be compatible. There is a significant possibility of the two
Structures passing one another by instead of meeting in the
middle. (Nilsson discusses at length the problems associated
with combined top-down and bottom-up problem solving [NILS791.)

0 To reduce the 1likelihood of incompatible structures, the
higher-level control mechanism should be able to modify the
activities of both approaches toward a common ground. The
meta-control mechanism must also determine when portions of each
structure should be merged (similar to Nilsson's CANCEL operator
[NILS79]).

0 The problem solving component of a node must be sensitive to
both coordination approaches, If there are conflicts between
the two approaches, the node must be able to reconcile them.

In short, the ability to use both approaches requires a sophisticated
coordination component, In Chapter IV, an extension to the basic

Hearsay-II architecture which integrates top-down and bottom-up loecal

node control will be described.

Coordinating Node Activity 114

In addition to differing in the direction that network coordination
is elaborated, the contract net and self-directed approaches also differ
in who makes the coordination decisions and in how these decisions are
exchanged among nodes, In the next section these differences are
elaborated into a general categorization of network coordination

regimes.

3.6 Forms of Network Coordination

An important aspect of network coordination is who makes the
control decisions., From the perspective of an individual node, control

can be self-directed or externally-directed. Externally-directed means

that the node is required to perform some action in response to the

receipt of a message. In an externally-directed approach the network

coordination decisions of a node are made externally, by other nodes
having a (hopefully) superior view of the state of network activity. 1In

a self-directed approach, nodes make their own network coordination

decisions.

Between the externally-directed and self-directed approaches is a
continuum of control schemes in which both local and external criteria
are used in determining the activities of a node. One means of
combining local and external criteria is through a weighted sum of the
received (externally-directed) activity evaluation and the local
(self-directed) activity evaluation. In this approach the local and
external node are not necessarily in agreement, but both contribute to

the activity decision through the weighted sum. The weighting controls

3 3 3 3

Coordinating Node Activity 115

the degree of external- versus self-direction and applies uniformly to
all the activity decisions of the node. This is approach taken in this
research.

Another means of combining local and external criteria is through
explicit negotiation, where nodes interact to mutually agree on a
coordination decision. The contract network formalism exemplifies the
negotiated approach to network coordination decisions: an external node
specifies the contract, but the local node determines whether to make a
bid on it. The entire deliberation is subject to modification by both
parties. 1In this case the goal is to bring nodes into agreement, using
information specific to the particular activity decision,

How network coordination decisions are exchanged among nodes is
also an important aspect of network coordination. Coordination
decisions can be exchanged through:
data -- sensory data and processing results (hypotheses);
goals -- requests for the generation of results with specified

attributes to be achieved by another node (much more regarding
goals is presented in Chapter IV);

tasks -— specific actions (knowledge source instantiations) to be
performed by another node.

These alternative network coordination regimes are illustrated in
Table 3. The more precise the message (tasks are more precise than
goals andv goals are more precise than data) and the more
externally-directed a node is, the more explicit the form of control.3

Each control regime can be appropriate in a particular situation, and a

3. Smith and Davis have termed control implemented as the exchange of
goals and tasks as task sharing and control implemented as the
exchange of data and results as result sharing [SMIT81].

116

Coordinating Node Activity

Table 3: Forms of Network Coordination,

The amount of influence a particular node has on another
node's coordination decisions depends on who makes the
decision (the particular node, the other node, or both nodes
-- with or without negotiation) and on the form that decision
takes (performing a specified task, achieving a specified
goal, or working with specified data). A node has the most
control on another node's decisions in the coordination regime
at the upper right and the least control in the regime at the
lower left.

—3 3 __3

3

{

L3

Coordinating

Node Activity

"7

Data-directed Goal-directed Task-directed

* receive
evaluated data

* generate goals
from the data receive

Externally-{ * prioritize the prioritized
directed goals goals

% determine tasks determine tasks
to achieve the to achieve the
goals goals % receive

* prioritize the prioritize the prioritized
tasks tasks tasks

®* receive data

* negotiate an
evaluation of
the data

* generate goals
from the data

receive goals
negotiate a

Negotiated | * prioritize the priority for
goals the goals
* determine tasks determine tasks
to achieve the to achieve the ® receive tasks
goals goals * npegotiate a
% prioritize the prioritize the priority for
tasks tasks the tasks
® receive data
® evaluate the
data
* generate goals
from the data receive goals
Self- *® prioritize the prioritize the
directed goals goals

%® determine tasks
to achieve the
goals

* prioritize the
tasks

determine tasks
to achieve the
goals
prioritize the
tasks

* receive tasks

® prioritize the

tasks

Table 3: Forms

of Network Coordination.

Coordinating Node Activity 118
truly general control framework should support the entire range of
control forms. In fact, the entire range of control forms can be useful

during the course of solving a single problem,

3.7 Functionally Accurate, Cooperative Network Coordination

In Section 2.2, the functionally accurate, cooperative approach to
problem solving was introduced, Since the problem of coordinating
network activity is characterized by the lack of timely coordination
information, can the functionally accurate, cooperative problem solving
approach be applied to the network coordination task as well?

Instead of ensuring that the activity decisions made by each node
are completely consistent with those made by other nodes, nodes are
allowed to make tentative and possibly incorrect coordination decisions
using incomplete and inconsistent local views of the state of problem
solving in the network and of the proposed activities of other nodes.
If coordination errors are made, such as a node undertaking an activity
before receiving all input information from another node or a node
selecting an activity which is globally inappropriate, the tentative
nature of the functionally accurate, cooperative style of problem
solving reduces their impact. The intent 1is that the additional
communication and computation caused by these 1local coordination
decisions is 1less than would be required to maintain complete and
consistent views of network problem solving activity and is, to some

degree, offset by increases in parallel node activity.

3 3 _3 -3 _3 __3

—3d 3

3

Coordinating Node Activity 119

Because the generation of the answer map in the distributed vehicle
monitoring testbed is commutative, the network has substantial leeway
before an inaccurate tentative result must be corrected. While failure
to quickly correct an inaccurate result may delay the recognition of an
important additional constraint by the network and thereby increase the
time needed to generate the answer map, the major concern is correcting
incorrect results before they are included in the eventual answer map.

Network coordination décisions are not commutative, but must cope
with the constraints of limited time and limited resources. If a
crucial aspect of the answer map is not quickly undertaken by at least
one node in the network, the network can fail to generate the map in the
required time. In the determination of node activities, mistakes can
cause the loss of unrecoverable problem solving time and, if enough
mistakes are made, can the network can fail to generate a timely answer
map. If the nodes and sensors are mobile, their placement adds another
non-commutative aspect to the distributed vehicle monitoring task. A
misplaced node or sensor can require substantial time to be
repositioned.

These constraints suggest thattthere is less room for mistakes in
network coordination decisions than exists in performing the underlying
network problem solving activities themselves. How much less is an
interesting (and open) research issue. Individual coordination errors
may not be very damaging in isolation, it is the compound effect of many

individual coordination errors that must be avoided.

Coordinating Node Activity 120

Functionally accurate, cooperative network coordination applies the
concept of satisficing (Section 3.2) at the problem solving control
level, It substitutes a less than perfect network coordination
structure for a less complex coordination problem, at the risk of
degrading the overall problem solving performance in the network.
" Functionally accurate, cooperative coordination is applicable to both
the contract net and the self-directed coordination techniques.
However, in order to be successful, functionally accurate, cooperative
coordination must achieve the following conditions:

coverage -~ any given portion of the overall problem must be
included in the activities of at least one node;

nodes must interact in a manner which permits the
covering activities to be developed and integrated into
an overall solution;

connectivity

capability -- coverage and connectivity must be achievable within the
communication and computation resource limitations of
the network.

These conditions are more likely to be achieved if each node has a
high-level view of how the network is attempting to solve the problem
and how the node fits into this structure. Such a shared high-level
view is missing in both the contract net and the self-directed

approaches to network coordination. Its development is the subject of

the next section.

3

FN

Coordinating Node Activity 121

3.8 Organizational Design as a Framework for Network Coordination

3.8.1 The need for organizational design.

Even using functionally accurate, cooperative control there can be
insufficient communication and computation resources to effectively deal
with the network coordination problem. An organizational structure,
developed and maintained by the network, can be used to limit the range
of coordination decisions which must be considered by a node and can
provide a framework for obtaining an acceptable 1level of coverage,
connectivity, and capability.

The organizational design approach to network coordination splits
the network coordination problem into two concurrent activities:

1. construction and maintenance of an organizational structure;

2. continuous local elaboration of this structure into precise
activities by the nodes.

Included in the organizational structure are control decisions that
are not quickly outdated and that pertain to a large number of nodes.
The organizational structure represents general "ballpark" control
decisions which are dynamically tailored by the local, functionally
accurate, cooperative control decisions of the nodes. The idea is to
use the organizational structure to reduce the impact of non-commutative
network coordination errors and to provide a high-level view of problem
solving in the network by establishing a high-level set of node
responsibilities and node interaction patterns that is available to all

nodes.

Coordinating Node Activity 122

At the organizational structuring level, coordination decisions

involve determining an appropriate organizational structure for
addressing the problem, assigning general responsibilities to individual
nodes, patterning the use communication media and other shared network
resources, and monitoring and possibly revising the structure of the
organization as problem solving progresses. This level of coordination
is sometimes termed "strategic" planning [ANTH65].

Within the organizational structure developed at the organizational

level, network coordination is performed. Network coordination involves

the achievement of specific task goals and ‘the coordination of
activities within the organizational structure. This level of
coordination is sometimes termed "tactical" planning or "management and
operational control®™ [ANTH65].

If the coordination problem is complex enough, development and
maintenance of the organizational structure may itself need to be
coordinated by developing levels of meta-organizational structure.
However, we will consider one level of organizational structuring to be
sufficient.

It is important to have a clear demarcation between organizational
structuring and explicit coordination among nodes. Organizational
structuring decisions represent general responsibilities that are
possibly inaccurate and are subject to revision by the nodes. On the
other hand, explicit network coordination decisions made among nodes
represent short-term agreements to perform specific tasks for a specific
period of time. For example, specifying that a node should identify

vehicles within a particular area and forward their movements to a

-3 _ 3

—.3

3

3

Coordinating Node Activity 123

second node could be either a organizational decision or an explicit
coordination decision. As an organizational decision, the node is being
told that it should generally favor working in that area. There may be
other nodes with overlapping responsibilities, and since the decision is
a general one, vehicles may not even be expected within that area in the
immediate future., As an explicit coordination decision, the node is
being told that the second node is now expecting vehicle movement
information from the node's specified area. Typically, this type of
decision is an elaboration of the organizational decision, If a node
cannot distinguish one form from the other, it cannot decide whether a
particular decision is an organizational guideline or a specific

short-term elaboration.

3.8.2 Organizational design versus network design.

Organizational design is different from the underlying network or

system design. Network design involves determining the particular

resources available to the network and is generally performed prior to
the use of the network. In the distributed vehicle monitoring network,
network design includes:

o the number of nodes available for the task;

o the locations of the nodes (if the nodes are immobile);

o the sensors reporting to each node and their sensory
characteristics;

o the processing capabilities of each node (computational speed,
memory size, specialized hardware);

o the communication capabilities among nodes (channel bandwidth,
delay, reliability);

Coordinating Node Activity 124

o the long-term expert knowledge available to the network.,

Organizational design involves determining how these network

resources are to be applied to solve the problem. 1In the distributed
vehicle monitoring network, organizational design decisions define the
general responsibilities of each node and the pattern of communication
among nodes.

Design choices such as adding more nodes as the need arises,
increasing the processing speed of a node that is saturated, or
acquiring new, external knowledge are not reasonable organizational
decisions in distributed problem solving networks. With the exception
of possible node and communication failure (and conversely, the addition
of an occasional node or communication channel -- outside the control of
the organizational designer) the network must view its resources as
given and attempt to do the best with those resources.

This view differs significantly from the scope of organizational
design in the management 1literature. Business organizational design
includes the acquisition of additional resources as a Dbasic
organizational design option. If the demands on a business organization
are high, overtime is an option that can temporarily increase the
capacities of a given sized work force. A second option is the hiring
of additional temporary employees to increase the size of the work force
to handle the increased demands.“ Finally, subcontracting a portion of
the work load to an outside organization can be used to reduce the

internal overload [MARC58, GALBT7T].

4, The success of temporary office worker services such as Manpower and
Kelly Services testifies to the frequent use of this strategy.

-3 3 -3 3 __3

3

[
[

Coordinating Node Activity 125

3.8.3 The need for organizational change.

To be effective, the organizational structure must be based on the

dynamics of the problem solving situation and the internal

-characteristics of the network. As these change, the network may need

to change 1its organizational structure in order to maintain its
effectiveness.

But organizational change can have negative consequences. Change
disrupts the progress of problem solving activities and the flow of
information in the network. Information and partially completed tasks
may have to be transferred among nodes, consuming valuable communication
resources. Processing time can also be lost as nodes await relocation
of tasks and information and as organiz?tional activities override basic
problem solving. Even small changes in one part of the organizational
structure can have significant effects on the network as a whole:

In order to enhance the positive aspects of organizational change
while réducing its negative consequences, the basic organizational
framework must be capable of providing (adapted from Kast and Rosenzweig
[KAST74]):

0 enough stability to allow effective problem solving;

o enough continuity to ensure orderly change;

0 enough adaptability to react appropriately to external demands
as well as changing internal conditions;

o enough innovativeness to allow the organization to initiate
change when conditions warrant.

Of course, the network still has the problem of developing and

maintaining the organizational structure.

Coordinating Node Activity 126

3.8.4 When is organizational design worth the effort?.

Organizational design 1is not without cost. In particular,

determining and implementing a highly effective structure may be

prohibitively expensive. So it is appropriate to determine if the

possible increase in organizational effectiveness justifies the cost.

If the task demands are light enough that all nodes are relatively
ijdle and all communication channels have significant unused capacity,
then almost any organizétional structure will perform well, At the
other extreme are task demands which are so great that no organizational
structure can perform any useful work unless network resources are
increased.5 Between these two extremes are the situations where only
highly appropriate organizational structures can meet the task demands.
It is here that organizational structuring has the most effect on
network productivity. These situations are also the most subject to
organizational change, since the use of network resources are so tightly
coupled to the task requirements and there are very few slack resources.
Unfortunately, it is also precisely these situations when the network
can least afford to spend resources reorganizing itself.

So, what are the most appropriate situations for organizational
design? They should require enough network resources that the
jdentification and implementation of an appropriate organizational
structure improves the performance of the network. They should also
leave enough network resources unused to enable organizational

performance evaluation and change without seriously degrading network

5. Such situations are the province of Stanislaw Lem's satirical random
scheme,

—_d .3

Coordinating Node Activity 127

performance.

3.9 Skeptical Nodes

It is reasonable to ask if the functionally accurate, cooperative
approach can be applied at the organizational structuring level. The
answer is ies -~ 1if the nodes are sufficiently aware of their own
activities and the activities of other nodes and if the nodes are
allowed to override a locally inappropriate organizational structure,

The activities of a node can arise internally, externally, and
organizationally. Sensory data generate potential work for the node to
perform. Similarly, interactions with other nodes generates potential
work to perform. An organizational structure generates potential work
through the responsibilities assigned to the node. 1In order to favor an
externally or organizationally specified activity over of an internally
generated one, the node must consider the external or organizational
activity more important., Nodes are basically egocentric, but all nodes
share the goal of accomplishing the interpretation task in the most
effective manner. A node 1is ready to change its activities if
"convinced" that such a change will improve network performance.

The degree to which a node needs to be convinced in order to change
its activities places that node at a particular point in the
self-directed/externally-directed/organizationally-directed space of
coordination regimes. A completely self-directed node pursues only
those activities which can be justified by its own direct knowledge of

the problem solving situation, A completely externally-directed node

Coordinating Node Activity 128

pursues only those activities which are deemed important by other nodes.
A completely organizationally-directed node pursues only those
activities deemed important by the node's organizational
responsibilities.

Neither extreme is well-suited to the uncertain environment of a
distributed problem solving network. The self-directed extreme does not
allow node activity to be determined by what other nodes know about the
problem solving situation (for example: "If you would do THIS, it wduld
really help us out."). The externally-directed extreme does not allow a
node to ignore requests for activities which it knows are not
appropriate ("I know doing THIS for you won't help us at all, so I'll
ignore it."). The organizationally-directed extreme does not allow a
node to ignore its organizational responsibilities in favor of other
work ("I have much better work I could be doing than THESE
responsibilities, so I'll ignore them.").

A degree of skepticism on the part of a node allows it to continue
work on activities which are highly justified on the basis of 1local
knowledge despite ex?ernal or organizational requests for activities for
which there is negative local evidence. This skepticism can lead to an
increase in the network's ability to tolerate some error in control at
both the organizational and network coordination levels. Inappropriate
control decisions can be ignored by skeptical nodes which possess
information to the contrary: a node with a unique perspective is not
necessarily stifled by an uninformed majority. The degree of skepticism
exhibited by a node should dynamically change according the node's

certainty as to the network importance of its own locally generated

j

T3

Coordinating Node Activity 129

activities: as the certainty of a node's own activities decreases, it
should become more receptive to externally or organizationally generated
activities; as a node becomes: convinced of its own approach, it should
become more skeptical of external or organizational activities which are
in conflict with that approach.

In distributed problem solving networks composed of large numbers
of nodes, the existence of idiosyncratic degrees of skeptieism can
further increase the robustness of the network. In situations where
there exist two competing approaches (one advocated by the organization
and one apparent to some of its members) individual variances in node
skepticism will ensure that both approaches are pursued by the
organization. The approach apparent to a portion of the node population
is implicitly pursued, without the cost of making an explicit
organizational decision. Of course this robustness comes at the price
of uncontrolled expenditure of resources by the skeptical nodes. Reed
and Lesser describe an analogous thresholding behavior theory based on
genetic variation for the selection of activity by honey bees [REED80].

The notion of skeptical nodes also has an analog in an approach to
understanding the motivation of individuals in business organizations.

Called expectancy theory, Nadler and Lawler list the four assumptions of

this approach [NADL77]:

1. Behavior is determined by a combination of forces in the
individual and forces in the work environment -- different work
environments tend to produce different behavior in similar
individuals just as dissimilar individuals tend to behave
differently in similar environments.

2. Individuals make decisions about their own behavior in
organizations - most of the behavior of individuals in
organizations is the result of individuals' conscious

Coordinating Node Activity 130

decisions,

3. Different individuals have different needs, desires, and goals
-- these differences are not random but are based on the kinds
of outcomes desired by the individuals.

4, Individuals make decisions among alternative plans of behavior
based on their perceptions (expectations) of the degree to
which a given behavior will lead to desired outcomes.

If the business enterprise is going badly and morale is low there
is, as expected, a large amount of skepticism and dissension within the
organization, As the situation is perceived to deteriorate, each member
begins to look out for her own well-being, and her goals tend to become
completely disjoint witp those of the organization.

It might seem that if the business is going extremely well that
skepticism and dissension would be at their 1lowest. This does not
appear to be the case. When business is good, minor differences between
the goals of the organization and an individual's needs and aspirations
tend to be viewed as reasonable, given the health (and wealth) of the
organization, and unlikely to lead to the organization's demise. In
this situation, minor grievances tend to be openly displayed, rather
than withheld.

It is when the organization is perceived to be just barely
functioning, but when its members still believe in its eventual success,
that skepticism and dissension are at their lowest. Failure to place
the organization's goals ahead of individual goals, failure to follow
the company line, is viewed as a threét to the functioning of the
organization. If the members view the existence of the organization to

be in their own best interests, survival of the organization is viewed

as more important than minor individual differences.

-3 3 -3 3 -3 _3 _3

3

Coordinating Node Activity 131

Crane, in discussing biological and societal systems, considers the

appropriateness of dual-directed control in which a balance between

top-down (externally-directed) processes and bottom-up (self—directed)
processés are maintained [CRAN78]. Node skepticism is a mechanism which
can provide such a balance, Interestingly, Crane also 'discusses
dual-directed control in the context of the individual as a balance
between conscious and subconscious processes. It may be reasonable to
view top-down (conscious) and bottom-up (subconscious) behavior as
analogous dual-directed control at the level of a single network node.
Beer discusses a similar balance between the performance of

potential elemental actions (which he terms the operational force) and

the need for system viability and coordination (which he terms the

coherence force) [BEER81].

Historically, the notion of decisionmaking using a combination of
locally perceived information and decisions received from others goes
back at least as far as the Kilmer, McCulloch, and Blum model of the
reticular formation (an important control system in the brains of
vertebrates) [KILM69]. Their model consists of a voting system of small
neural regions, each of which sees a small portion of the environment
and receives the decisions of a limited number of other regions. The
voting strength of each region varies with an evaluation of {its
decisionmaking performance. In their model, activity was selected only
when a suitable majority of the regions arrived at a consensus,

Node skepticism allows node activity to occur without such a
consensus. When there is no agreement, the organization pursues a

number of activities implicitly and in parallel (similar to a

Coordinating Node Activity 132

breadth-first search). As the number of agreeing nodes increases,
organizational activity becomes both more specific and more explicitly

controlled.

3.10 The Need for Sophisticated Nodes

This' chapter presented approaches to the network coordination
problem that attempt to deal with the problem of obtaining coordinated
node activities with decentralized and interaction-limited
decisionmaking. A common theme throughout this chapter is that
sophisticated 1local control capabilities are necessary to achieve
effective network coordination in a distributed problem solving
environment. It is unreasonable to expect sophisticated network
behavior in dynamic and uncertain problem solving situations with nodes
having 1little knowledge of their own potential activities or the
activities of their neighbors.

Nilsson has stated that the challenges posed by distributed
artificial intelligence will contribute to (and may even be a
prerequisite for) progress in T"ordinary" artificial intelligence
[NILS80b]. This is especially true for the control component of
knowledge-based artificial intelligence problem solving systems. In the
next chapter we find that the control capabilities of our Hearsay-II
testbed node must be expanded if a node is to become aware of its own

activities and organizational responsibilities,

3

—3 3

~ 3

Though this be madness, yet there is method in't.

—- Shakespeare

CHAPTER IV

A FRAMEWORK FOR ORGANIZATIONAL COORDINATION

This chapter discusses the design and implementation of a prototype
internal and network coordination component for the distributed vehicle
monitoring testbed that integrates planning at both the organizational
and problem solving levels. This coordination component incorporates
two major developments: an extended, goal-directed Hearsay-~II1
architecture for planning the 1local activities of each node and an
overall testbed node architecture which interfaces organizational
structuring decisions with the goal-directed Hearsay-II architecture.
Single node and network experiments using this coordination component
are presented in Chapter V.

The following section develops the goal-directed approach to
control and introduces some of the issues involved with it. Section 4,2
details the implementation of the goal-directed Hearsay-II architecture
in the testbed., Section 4.3 discusses some additional issues involved
with goal-directed control, and Section 4.4 presents the organizational

structuring portion of the overall control framework.

133

A Framework for Organizational Coordination 134

4.1 A Goal-Directed Hearsay-II Architecture

Effective internal and network coordination in the distributed
vehicle monitoring testbed requires each node to assess its own state of
problem solving activity and to elaborate the organizational structure
into plans for using the network's limited processing and communication
resources to the best advantage. To do this each node must be able to
represent and reason about:

o the relationships among competing and cooperating knowledge

source instantiations (both past and potential) that are working
on different aspects and levels of the problem;

o the activities requested of the node by other nodes;

o the activities requested of the node by the organizational
structure of the network;

o the computational and communication resources available to the
node.

Although the data-directed, multilevel, cooperating knowledge source
modgl of problem solving used in the original Hearsay-II architecture
has many advantages, it is incapable of this level of reasoning or of
effectively planning its interpretation activities.

For example, the control component needs to develop and reason
about Sequences of knowledge source activities relating to a particular
approach to one aspect of ﬁhe problem. This allows these activities to
be scheduled as a coherent unit and to be eliminated as a unit if the
approach proves unproductive, A second example is the implementation of
an opportunistic scheduling strategy where a high-level partial
solution, possibly received from another node, is used to focus the node

on low-level activities required to solve the remainder of the problem

3 3 _3 __3

3

—3 3 _1

3 3

3

r

3 3 ~3 T3 —3 —3 -3 ~—3 —3 131 "3

A Framework for Organizational Coordination 135

(focus of attention through subgoaling). Other examples include
selecting a specialized knowledge source to resolve the node's confusion
over competing partial solutions and instantiating knowledge source
activities to produce input data necessary for performing an important
activity (precondition-action backchaining). All of these examples rely
on the control component's ability to evaluate the the potential effects
of knoﬁledge source activities from a non-local context.

To remedy these limitations, an augmented version of the Hearsay-Il
architecture was developed and implemented in the testbed. This
augmented architecture integrates data- and goal-directed control of
knowledge source activity via the generation of goals from blackboard
events. This architecture allows the relationships among knowledge
source instantiations to be naturally represented by viewing knowledge
source activity simultaneously from both a data-directed and a
goal-directed perspective. The next section outlines the limiéations of
the original data-directed Hearsay-II architecture. Subsequent sections
develop the goal-directed approach to control. Implementation of the
goal-directed Hearsay-II architecture in the testbed is described in

Section 4.,2.

4.,1.1 Limitations in Hearsay-II's data-directed approach to control.

Figure 24 presents a high-level schematic for data-directed control

in Hearsay-II. Knowledge sources are invoked in response to particular

kinds of changes on the blackboard, called blackboard events.1

1. The particular blackboard events used in the distributed vehicle
monitoring testbed are described in Section 4.2.1.

136

A Framework for Organizational Coordination

Figure 24: Data-Directed Hearsay-II Architecture.

The knowledge source execution cycle in the data-directed
Hearsay-II architecture begins with the execution of a
knowledge source that makes changes to the blackboard. These
changes are detected by the blackboard monitor | which
determines what additional knowledge sources should be
executed in response to the changes. The blackboard monitor
executes the precondition procedure of each of these knowledge
sources to determine if a knowledge source should be
instantiated. Instantiated knowledge sources are placed on
the scheduling queue which is ordered by the scheduler based
on the progress of problem solving in the system. When the
currently executing knowledge source has completed, the top
knowledge source on the queue is executed, and the cyecle
repeats.

T3 T3

A Framework for Organizational Coordination

N ChEE, A CENED SR D CEEED T —

Blackboard
events Know ledge S?hed-
Source 3 'ng
Instances ueues
Blackboard
Monitor
Focus~-
of-
Control
Event + Database
KSs
Table

Knowledge
Sources

137

Scheduler

Data d——cem————

Control

e e ——m e .

Figure 24: Data-Directed Hearsay-II Architecture,

A Framework for Organizational Coordination 138

Associated with each type of blackboard event is a set of knowledge
sources that might be executable, based on the occurrence of that event
type at a particular level on the blackboard. This information is

contained in the blackboard event table. The blackboard monitor uses

this table to determine which knowledge sources might be interested in
the event. The occurrence of a blackboard event does not guarantee that
there is, in fact, sufficient information on the blackboard for a
knowledge source to be executed., To investigate further, the blackboard

monitor executes a precondition procedure for each interested knowledge

source to make a more detailed examination of the hypotheses on the
blackboard. If sufficient information is found, a knowledge source

instantiation is created and placed onto the scheduling queue.

The knowledge source instantiation includes the knowledge source's

stimulus and response frames. The stimulus frame specifies the stimulus

hypotheses responsible for the creation of the knowledge source
instantiation and additional information located by the knowledge
source's precondition process. This information is used as an input
context when the knowledge source is executed, avoiding a second search

of the blackboard. The response frame is an abstract description of the

expected type of blackboard events that would result from executing the
knowledge source (including each expected output hypothesis's blackboard
level, the blackboard region in which the hypothesis is expected to
reside, and its estimated belief). In planning terminology, the
stimulus and response frames represent an operator model of the

knowledge source instantiation.

| 3

4 3 __ 13

—3 3 3 3 —F ™3 B

A Framework for Organizational Coordination 139

The scheduler uses this stimulus/response frame characterization,
together with measures of the overall state of problem solving contained
in the focus-of-control database (kept current by the blackboard
monitor), to calculate a priority rating for executing the knowledge
source, The scheduler then selects the knowledge source instantiation
with the higheét priority rating from the scheduling queue to be
executed .2

This approach to scheduling is instantaneous -~ only the immédiate
effects on the state of problem-solving, as specified in the response
frame, are considered by the scheduler in determining a priority rating
for the knowledge source instantiation [HAYE77]. ' Although the rating is
reevaluated if the knowledge source instantiation's stimulus hypotheses
are modified or if the relationship between the response frame and the
focus of control database changes, no attempt is made to determine the
effects of executing a knowledge source instantiation beyond its
immediate changes to the blackboard.

Another 1limitation in this type of scheduling occurs when a
knowledge source's precondition procedure cannot find sufficient
information for the knowledge source to be instantiated. No record of
the missing information is made and there 1is no mechanism for
reevaluating the priorities of a pending knowledge source instantiation
or for adding a new knowledge source instantiation to the scheduling

queue to potentially generate the missing information.

2. Erman, et al. describe in detail the knowledge source execution cycle
used in the data-directed Hearsay-I1 speech understanding system
[ERMAS80].

A Framework for Organizational Coordination 140

Suppose, for example, that a vehicle track hypothesis has been
~created and the node would 1like to extend it by executing the
EF:VL/VT:VT knowledge source. Extension requires the existence of a
suitable vehicle location hypothesis before it can be released for

execution. If such a precondition hypothesis does not exist on the

'blackboar'd. either the knowledge source instantiation must await
data-directed activity to create the vehicle location hypothesis or the
knowledge source instantiation is discarded to be recreated as a 'result
of the eventual creation of the precondition hypothesis. The first
approach was used in the "problems 1list" of SU/X and su/P3 [NII781 and
the second approach was used in the Hearsay-II speech understanding
system [LESS77]. '

The purely data-directed approach to control assumes that if the
information is truly important enough to be of use in devgloping the
solution it will eventually be generated based on normal scheduling
considerations, This assumption is clearly invalid in a distributed
network. If a node has one important stimulus hypothesis for a
knowledge source and a second node has the other necesséry input
hypothesis, both nodes will wait forever for the "missing" information.
What is needed is a more active approach to the acquisition of the
information.

This data-directed, instantaneous approach to control was
sufficient for the eventual (C2) knowledge source configuration used in

the Hearsay-II speech understanding system, which was - truly

3. This system has been renamed HASP/SIAP [NII82].

— 3 . 3

3 __ 31 _F _.3 __ a3 3 B 3 __2 _.»

—a % T3 7 3

—3 3

~3 ¥ "3

=g 3

|

A Framework for Organizational Coordination 141

data-directed at a only a single level, had all sensory data available
at the beginning of data-directed processing, had only a single
knowledge source to perform a particular action given a particular
blackboard event, and was not distributed among a number of nodes
[ERMA80]. However, its 1limitations have become apparent as the
architecture has been used in domains requiring more sophisticated
control of knowledge source activities.

Engelmore and Nii with SU/P, Nii and Feigenbaum with Su/X, and
Erman, et al,, with Hearsay-III recognized these 1limitations and
consequently have developed systems with enhanced control capabilities
[ENGETT, NII78, ERMA81]. These enhancements permit more sophisticated
control over scheduling by allowing the scheduling queue to be
manipulated under program control. However, these enhancements do not
go far enough for our needs in explicitly representing the relationships
among knowledge source instantiations to provide an adequate framework
for reasoning about control decisions in a general, domain-independent
manner, (Work on reducing this deficiency in Hearsay-III is currently
underway [BARN82].)

The premise behind the goal-directed Hearsay-1I architecture is
that the relationships among knowledge source instantiations can be
naturally = represented when knowledge source activity 1is viewed
simultaneously from a data-directed and a goal-directed perspective,
The next section describes how data- and goal-directed control can be

integrated into a single, uniform framework.

A Framework for Organizational Coordination 142

4,1.2 Adding goal-directed control to Hearsay-I1.

Figure 25 presents a high-level schematic of Hearsay-II as modified
to accommodate goal-directed control. A second blackboard, the goal
blackboard, is added that mirrors the original (data) blackboard in
dimensionality. The goal blackboard contains goals, each representing a
request to create a particular state of hypotheses on the data
blackboard in the corresponding area covered by the goal. For example,
a simple goal would be a request for the creation of a vehicle location
hypothesis above a given belief in a specified area of the data
blackboard.

The integration of data-directed and goal-directed control into a
single framework is based on the following observation:

The stimulation of a precondition process in the data-directed

architecture not only indicates that it may be possible to

execute the knowledge source, but that it is desirable to do

so in order to achieve the goal implicit in the response

frame.

In order to make these implicit goals explicit, the
event-to-knowledge-sources mapping contained in the blackboard event
table is split into two steps: event-to-goals and
goal-to-knowledge-sources, The blackboard monitor watches for the
occurrence of a data blackboard event, but instead of immediately
placing knowledge source instantiations on the scheduling queue, it uses
the event—-to-goals mapping to determine the appropriate goals to
generate from the event and inserts them onto the goal blackboard.
These goals explicitly represent the intended effects of each knowledge
source instantiation. These effects were implicitly represented in the

event-to-knowledge-sources mapping used by the blackboard monitor in the

.-"“"EI

143

A Framework for Organizational Coordination

Figure 25: Goal-Directed Hearséy-II Architecture,

Hearsay-II as modified to accommodate goal-directed control
includes a second, goal, blackboard that mirrors the original
(data) blackboard in dimensionality and a full-fledged
planner. The blackboard monitor responds to changed on the
data blackboard by inserting goals onto the goal blackboard.
The planner responds to these goals by developing plans for
their achievement and instantiates knowledge sources to
perform the plans, The scheduler uses the relationships
between the knowledge source instantiations and the goals on
the goal blackboard as a basis for its scheduling decisions,

A Framework for Organizational Coordination

Sched-
uling
Queues

Knowledge
Source
Instances

Planner

Goal =
KS Table

Goal »
Subgoals
Table

Scheduler) —— — —— e o — ———

T T T T

Goal
Blackboard

Data
Blackboard

goals

Blackboard

Moni tor

events

Event »
Goals
Table

144

- — — — — —— — —— 4

Knowledge
Sources

Data eee———————

CONtrol w = e —.

Figure 25: Goal-Directed Hearsay-I1 Architecture.

3 __3

3 _3 _F _3 _» 1 _3

3 __3

i

—> 3 _ >

3

—> 3 3 __ 3

3

A Framework for Organizational Coordination 145

data~directed architecture,

Goals may also be placed on the goal blackboard from external
sources. Placing a high-level goal onto the goal blackboard of a node
can effectively bias the node toward developing a solution in a
particular way. As we shall see, the exchange of goals between
goal-direcied Hearsay-II nodes provides an effective means . of
coordination (recall the forms of network coordination of Section 3.6).

A new control component, the planner, is also added to the

architecture. The planner responds to the insertion of goals on the

goal blackboard by developing plans for their achievement. The

goal-to-knowledge-sources mapping is used by the planner to instantiate
knowledge sources to potentially satisfy the goals. The scheduler then
uses the relationships between the knowledge source instantiations and
the goals on the goal blackboard as a basis for its scheduling

decisions,

Bottom-up goal-directed processing.

We first look at how a simple, bottom-up, vehicle 1location
synthesis sequence 1looks in the goal-directed architecture. For
simplicity, assume that the grammar contains only one 8ignal and group
for the vehicle, that each blackboard event triggers only one goal, and
that only one knowledge source can satisfy each goal,

Initially, signal location hypothesis H:SL is inserted onto the
data blackboard on level DBB:SL (Figure 26a). That event causes the
blackboard monitor to create goal G:GL on goal blackboard level GBB:GL

(Figure 26b). G:GL is a request to create a hypothesis supported by

A Framework for Organizational Coordination 146
GBB:VL DBB: VL
GBB:GL) DBB: GL
GBB:SL DBB:SL

(a) inserted

Figure 26: Bottom-Up Goal-Directed Processing.

The sequence of goal-directed activities used in the bottom-up
synthesis of a vehicle location hypothesis from a signal
location hypothesis.

—3

o3 3 __3

-3

3 3

J % 3 ’

3 —» 3]

—d

— "> T3 T3 ~®

t_ag,

A Framework for Organizational Coordination

GBB: VL

GBB: GL

G:

GL

GBB:SL

stimulates

147

DBB:VL

DBB:GL

DBB:SL

H:SL ’

(b)

Figure 26: Continued.

inserted

A Framework for Organizational Coordination 148
GBB:VL DBB: VL
GBB:GL DBB:GL
G:GL
stimulates
GBB:SL DBB:SL
stimulus
H:SL ,
stimulates

(c)

Figure 26: Continued.

inserted

3

A Framework for Organizational Coordination 149
GBB: VL DBB:VL
G:VL
GBB:GL DBB:GL
stimulates
G:GL — H:GL <::>

stimulates : /

GBB:SL

pBB:SL

")

supports

=
w
-

stimulates

(d) inserted

Figure 26: Continued.

A Framework for Organizational Coordination

GBB: VL

G:VL

GBB:GL

~\~______§§imulates

G:GL . e
~‘;-~.______§at|sfues

|
‘.R\\\\stimulate

GBB:SL \

stimulates

(e)

Figure 26: Continued.

creates

150

DBB:VL

DBB:GL
(2]
&=
.
o
Q-

. S DBB:SL
stimulus s

5L)

inserted

|

3

3 3 e;_ﬁg i)

3 __“4%

3

—3

—d

~3

3 T3 T2 "3 —3 ~—3 3 ~3 r‘*% 3

A Framework for Organizational Coordination 151

GBB:VL

G:VL

'Pulates

GBB:GL

G:GL

GBB:SL

r_.____EEEiffies

‘\Q\\\stimulates

DBB: VL

stimulates

stimulus

supports
o
o0
[0 0]
w
r

= =
w
[

stimulates

(f) inserted

Figure 26: Continued.

A Framework for Organizational Coordination

satisfies

'ru]ates

stimulates

-‘L~"“~—-—___satisfies

GBB:VL
et
G:VL
GBB:GL
G:GL
\
GBB:SL

stimulates

Figure 26: Continued.

152
DBB:VL
H:VL ::)
[74]
)
} .
S
g
stimulus S5 DBB:GL
} (72]
|
i J H:GL
i
]
creates @
=)
{9
g
stimulus g DBB:SL
| [T2]
H:SL)

inserted

ﬂ,\,§

3

% 3 3 _>?

-3 —3 3

T
.
)

~—3

A Framework for Organizational Coordination 153

H:SL on DBB:GL. The planner then 1looks at G:GL and instantiates
knowledge source S:SL:GL with H:SL as its stimulus and places it onto
the scheduling queue (Figure 26c). When S:SL:GL executes, it creates
hypothesis H:GL. The blackboard monitor responds to this event and
creates goal G:VL (Figure 26d). It also checks to see if hypothesis
H:GL can help to satisfy any goals on the goal blackboard. In this
case, H:GL completely satisfies goal G:GL (Figure 26e) .4 The planner
next instantiates S:GL:VL to achieve G:VL and places it onto the
scheduling queue (Figure 26f). When S:GL:VL executes it creates H:VL

and the blackboard monitor marks G:VL as satisfied (Figure 26g).

Precondition-action backward chaining.

In the ébove example, all necessary low-level hypotheses exist when
each knowledge source is instantiated. Instead, suppose the goal G:VL
is inserted first before any hypothéses on DBB:SL (Figure 27a). Given
only synthesis knowledge sources, a data-directed system must wait until
low-level hypotheses are inserted on DBB:SL before instantiating
knowledge sources., On the other hand, the planner in the goal-directed
system can immediately proceed to instantiate S:GL:VL (Figure 27b). The
planner is provided with an inverse operator model
(knowledge-source-to-precondition-goals) of each knowledge source, which
it uses to determine that precondition goal G:GL must be achieved before
S:GL:VL can be executed (Figure 27c). To achieve G:GL, the planner

instantiates S:SL:GL which requires G:SL to be satisfied before it can

4, Goal satisfaction is a tricky issue, see Section 4.3.3.

A Framework for Organizational Coordination 154
inserted
GBB: VL i DBB: VL
G:VL
GBB:GL DBB:GL
GBB:SL DBB:SL

(a)

Figure 27: Precondition-Action Backward Chaining.

The sequence of activities when the preconditions necessary

for synthesizing a vehicle 1location hypothesis
initially satisfied on the data blackboard.

are

not

i3 T

—3 3 __3

—3 3

-3 -5 2 3

A Framework for Organizational Coordination

inserted

GBB:VL

G:VL

155

stimulates

GBB:GL

DBB:VL

GBB:SL

DBB:GL

DBB:SL

(b)

Figure 27: Continued.

A Framework for Organizational Coordination

inserted

GBB:VL 4

G:VL

stimulates

GBB:GL

preconditiop

G:GL

GBB:SL

(c)

Figure 27: Continued,

156

DBB: VL

DBB:GL

DBB:SL

L__j i A

3 2

/
.

j

J

3 _3 _2

A Framework for Organizational Coordination 157
inserted
GBB: VL. DBB:VL
stimulates
G:VL -\\\\\J
GBB:GL precondi tion DBB:GL
G:GL
stimulates
GBB:SL DBB:SL
1
precondition
G:SL

Figure 27: Continued.

A Framework for Organizational Coordination 158
inserted

GBB:VL l DBB: VL

G:VL stimulates
GBB:GL preconditiqn DBB :GL

G:GL)

stimulates

GBB:SL DBB:SL

G:SL precondition H:SL

) ———__ | satisfies
inserted
(e) later

Figure 27: Continued.

¢
!

- F 8% _ 3 '_3 3 _3

—3

.

3

A Framework for Organizational Coordination 159
inserted
GBB:VL l DBB:VL
G:VL stimulates
GBB:GL precondit:on DBB:GL
: |
G:GL e satisfies H:GL
stimuI?tes
‘(ﬂ
)
g
GBB:SL & DBB:SL
a
L
G:SL precondition

.‘\I satisfies

8
g

inserted

(f) later

Figure 27: Continued.

A Framework for Organizational Coordination

inserted

GBB:VL l

160

satisfies

G:VL
"
)
.
«O
GBB:GL & DBB:GL
a
G:6L " satisfies H:GL
) stimulﬁtes
(7]
Fs)
.5
GBB:SL S DBB:SL
a
precondition .
G:SL | . iH-SL)
- N satisfies

Figure 27: Continued.

inserted
later

e d

3

[
!
i

A Framework for Organizational Coordination 161

execute (Figure 27d).° When H:SL is eventually inserted (Figure 27e),
the relationship among goals and knowledge source instantiations is used
by the scheduler to execute S:SL:GL and S:GL:VL as a multiple knowledge

source sequence to finally achieve G:VL (Figures 27f,g).

Subgoaling.

The planner is also provided with domain knowledge in the form of a
goal-to-subgoal mapping for decomposing high-level goals into
lower-level ones. This allows it to determine G:GL directly from G:VL
and G:SL from G:GL (Figures 28a-c). In this case, S:SL:GL and S:GL:VL
are not instantiated by the planner until their respective goals (G:GL
and G:VL) have their subgoals satisfied (Figures 28d-h). 1In fact, the
intermediate goal G:GL can be omitted; the planner can directly
determine the lowest level subgoals of the high-level goal. Once G:SL
is satisfied, the intervening goals can be created bottom-up, using the
high-level to low-level subgoal relationship as a guide. In some
domains such "level-hopping" could significantly reduce the number of
goals generated on the goal blackboard. In the testbed implementation,
however, relatively few subgoals are generated and the additional
complexity required to support delayed generation of intermediate
subgoals was inappropriate,

Subgoaling from high-level predictive goals can be used to greatly
reduce the combinatorics associated with using the top-down elaboration

of hypotheses as a focusing technique. Top-down elaboration of

5. If level DBB:SL hypotheses are produced by a controilable sensor,
G:SL can be used to request the insertion of hypotheses which satisfy
G:SL.

A Framework for Organizational Coordination 162
inserted
GBB: VL DBB:VL
G:VL
GBB:GL DBB:GL
GBB:SL DBB:SL

Figure 28: Subgoaling.

The sequence of activities involved in subgoaling a high-level
goal.

%

A Framework for Organizational Coordination

inserted

GBB:VL

G:VL

subgoal

GBB:GL

G:GL

GBB:SL

(b)

Figure 28: Continued.

163

DBB: VL

DBB:GL

DBB:SL

A Framework for Organizational Coordination

inserted
GBB:VL
G:VL
o
o)
— £
E GBB:GL
o
o
g G:GL
3
112
- GBB:SL
G:SL

(c)

Figure 28: Continued.

164

DBB:VL

DBB:GL

DBB:SL

—3

L8 3

3 __3 3

A Framework for QOrganizational Coordination 165
inserted
GBB:VL DBB:VL
G:VL
®
0
oo (=]
= GBB:GL DBB:GL
w
3
o G:GL
3
[12]
B GBB: SL DBB:SL
" satisfies .
6:SL H:SL

\

inserted
(d) later

Figure 28: Continued.

Framework for Organizational Coordination

inserted
GBB:VL
G:VL
‘©
o
- o
S GBB:GL
(72}
©
o
3 G:GL
pos |
wn
stimulates

GBB:SL

G:SL

166

DBB:VL

DBB:GL

o

Figure 28: Continued.

satisfies

DBB:SL

inserted
later

3 2 3 __2

8 3 .3 i_3 __13

-3 -3 _3

A Framework for Organizational Coordination 167
inserted
GBB:VL DBB:VL
G:VL
o
- S
fg GBB:GL DBB:GL
7]
©
o satisfies
3 G:GL
v
|
stimulates creates g
B GBB: SL S DBB:SL
3
7]
G:SL ot satisfies

inserted
(f) later

Figure 28: Continued.

A Framework for Organizational Coordination 168

inserted

* GBB:VL DBB: VL
G:VL stimulates
@
o)
o
5 DBB: GL
(73]
satisfies
G:GL
. |
stimulateS »n
4=d
}
0
GBB:SL S DBB:SL
-
G:SL
- satisfies
inserted
(g) later

Figure 28: Continued.

3 7 & __3

F 2 i3

/I3 ¥ 3 - 3 __F _23 ._3

-3 __3

32 __3

A Framework for Organizational Coordination 169
inserted
GBB: VL l DBB: VL
satisfies
"
G:VL
stiqulates Ccreates
o
0
= (=]
9 GBB:GL DBB:GL
wn
'—3 !
_§u 6:6L satisfies \/’(H:GL ,
0n
e~ |
stimulates Creates o
J .
— o)
GBB:SL S DBB:SL
a
G:SL e satisfies
inserted
(h) later

Figure 28: Continued.

A Framework for Organizational Coordination 170

hypotheses is generally used for two distinct activities: the generation
of the lower-level structure of a hypothesis (to discover details) and
the determination of which existing low-level hypotheses should be
driven-up to verify or extend a high level hypothesis based on
expectations (for focusing). Top-down elaboration of hypotheses is best
suited only to the first activity. Subgoaling of predicted goals on the
goal blackboard is a more effective way to perform expectation-based
focusing (see Section 4.2.7). When hypothesis elaboration is used as a
focusing technique, the elaboration process has to be conservative in
order to reduce the number of hypotheses generated and to reduce the
possibility of generated low-level hypotheses being used as "real data"
by knowledge sources in other contexts. Because subgoals are distinct
from hypotheses, they can be liberally abstrgcted (such as supplying a
range of values for an att}ibute) and underspecified (such as supplying
a "don't care" attributé). Subgoaling the high-level goal of generating
the expectation-based hypothesis (including the possible wuse of
"level-hopping") avoids the combinatorial and context confusion problems

associated with the use of top-down hypothesis elaboration for focusing.

4,1.3 Control in the goal-directed Hearsay-II architecture.

The goal-directed approach permits all three of these
goal-processing activities to be performed in an opportunistic way by
the planner, Highly rated low-level hypotheses can be driven up in a
data-directed fashion while high-level goals generated from strong
expectations can be subgoaled downward to control low-level synthesis

activities, Similarly, processing in low rated areas can be stimulated

-3 A

i3 3 3

~3

A Framework for Organizational Coordination 171

if a highly rated knowledge source requires the creation of a
precondition hypothesis in that area.

Control decisions in the goal-directed architecture can be made or
deferred at a number of points in the data blackboard event to knowledge
source execution process, based on the availability and reliability of
control information. When goals are created by the blackboard monitor,
they are assigned an initial priority rating based on the belief of its
stimulus‘hypotheses, the rating of any knowledge source instantiations
which require satisfaction of the goal as a precondition, the priority
rating of any goals which have the goal as a subgoal, on externally
supplied priority (for goals received from other nodes), and as we will
see later, on the organizational responsibilities assigned to the node.
These ratings are used to focus planning activity to higher rated goals.
The bléckboard monitor also serves as a "goal filter" by placing only
those goals with a priority rating above a specified goal-threshold onto
the goal blackboard.

Similarly, the planner can use a second dynamic threshold value to
ignore goals placed onto the goal blackboard which are rated below
threshold. The distinction between the two is that the planner can
eventually plan for goals on the goal blackboard which are currently
below the planning-threshold, but goals which are not inserted by the
blackboard monitor are lost and must be recreated by the planner from
other planning activities.

The goal-directed architecture also provides the scheduler with
additional information for selecting which competing knowledge source

instantiations to execute. The relationship between alternative

A Framework for Organizational Coordination 172

knowledge sources which achieve the same goal is explicitly available.
Figure 29 shows two highly rated goals, each of which can be satisfied
by a moderately expensive knowledge source or a more expensive knowledge
source, However, the more expensive knowledge source can satisfy both
goals. Due to the lack of this information in the data-directed system,
the single-shot scheduler would select the two moderately expensive
knowledge sources rather than the shared knowledge source which

satisfies both goals for a lower total cost.

cost=1 cost=1.5 cost=1

Figure 29: Alternative Knowledge Source Instantiations.

Selecting a more expensive knowledge source that can achieve
both goals over two moderately expensive knowledge sources
that can each achieve one of the goals. The relationships
among knowledge source instantiations and the goals they can
achieve allows the scheduler to execute the more expensive
knowledge source over the other two for a lower total cost.

-3 3 _A

,
{

-3 -3 3 _3 3 .3 '3

3 3 7

i

3 __3

A Framework for Organizational Coordination 173

4.1.4 Generalizations in the Hearsay-II knowledge source model.

Two generalizations in the model of a knowledge source are also
important in the goal-directed approach. 1In the data-directed system,
the knowledge source precondition procedure uses its stimulus hypotheses
as an. input context for the knowledge source instantiation. In the
goal-directed system, the planner can elect to supply a knowledge source

with only stimulus hypotheses, only stimulus goals, or both stimulus

. hypotheses and goals. In the first case, the knowledge source

precondition procedure functions as in the data-directed system. In the
second case, the knowledge source precondition procedure itself
determines the input context in order to best achieve the stimulus
goals. In the third case, the stimulus hypotheses are used as the input
context and the goals are used as an output filter by the knowledge
source; hypotheses which are outside the scope of the goals are not
created by the knowledge source.

The second generalization of the knowledge source model is the
establishment of bidirectional communication between each knowledge
source and the planner. While the precondition process is used by the
planner to determine if the major conditions necessary for the knowledge
source to achieve the goal are present, a knowledge source may still
fail due to the 1lack of "secondary" preconditions or detailed
incompatabilities between its input hypotheses. If the knowledge source
reports the nature of the problem back to the planner, the planner can
elect to create highly specific precondition goals for the knowledge
source and attempt to achieve them or to choose another knowledge source

which can satisfy the original goal in a different manner.

A Framework for Organizational Coordination 174

4.,1.5 Goal attributes.

A number of attributes can be associated with each goal. The
attributes listed in this section are potentially useful in many
application domains., Undoubtedly the most important goal attribute is

the satisfaction specification attribute. It is a declaration of the

desired state of hypotheses on the data blackboard that the goal
represents and serves as the basic means of communication between the
blackboard monitor, the planner, precondition processes, and knowledge
sources. In the testbed it is represented by three values: a blackboard
level, a set of data blackboard times and their associated regions, and
a disjunctive set of desired event classes. A second goal attribute is

the minimum satisfaction specification, the minimum conditions under

which the goal is considered satisfied. The satisfaction specification
states what conditions are desired, and the minimum satisfaction
specification indicates when the goal is sufficiently satisfied to allow
processing to proceed to knowledge source instantiations that require
minimal achievement of the goal. In the testbed this is represented by
a minimum belief threshold on the satisfaction condition.

Another important goal attribute is the rating of the goal's
importance, which is used to direct the planner and to influence the
rating of knowledge source instantiations. In some domains the
importance of goals may sharply decline due to time constraints on the
resulting hypotheses, In this case it 1is useful to associate a
"time-out" condition with the rating at which time it is recalculated.
An estimate of the cost of achieving the goal is another useful goal

attribute. Cost estimates can be used by the planner to choose between

2 -3 3 __3 _2

T 3

3 3 .3 '3 '3 ‘3 __3 ‘'3 ‘3 0 i_3 __3

A Framework for Organizational Coordination 175

alternative strategies based upon the resources which must be expended

in each. Similarly, an estimate of the probability of satisfying the

goal can be used by the planner to choose a strategy that has the
greatest chance of success.

Goals also contain a number of attributes linking them to other
goals, knowledge source instantiations, and hypotheses. These link
attributes include: the goal's subgoals, goals that include it as a
subgoal (supergoals), goals that are more abstract, goals that are more
specialized, goals that overlap, the hypotheses that stimulated the
creation of the goal, the hypotheses that can satisfy the goal (at least
in part), knowledge source instantiations that can potentially satisfy
the goal if executed, and knowledge source instantiations that require
the goal to be achieved as a precondition.

Goals can be used to request a number of different types of
knowledge source processing based on the details of their satisfaction

specification attribute, Specific hypothesis goals request a change to

be made to a particular (named) hypothesis. "Increase the belief of

hypothesis H:SL:057" is a specific hypothesis goal. Generic hypothesis

goals request the creation or modification of a single (unnamed)
hypothesis which satisfies a set of specified attributes. "Create a
hypothesis on level S:GL at time 3 with belief greater than 5000" is a
generic hypothesis goal. Area goals request the establishment of
reiationships between hypotheses in a specified area of the data
blackboard. "Create at least 5 hypotheses with belief greater than

H:GL:184 on level S:GL at time 3" is an example of an area goal.

A Framework for Organizational Coordination 176

Goals can also be characterized according to their durationm.

Single shot goals remain active (the planner attempts their

satisfaction) only until they are first satisfied. Single shot goals
may be reactivated by the blackboard monitor or by the insertion of
external goals, but are distinct from continuous goals which always
remain active. "Send all created hypothesis on level DBB:VL which have
belief greater than 8000 to node 2" is an example of a continuous goal.
Goals such as "create only those hypotheses with belief greater
than 6000 from stimulus hypothesis H:SL:057" naturally implement

threshold control of knowledge source activity. Threshold control

reduces the number of hypothesis inserted onto the data blackboard by

treating knowledge sources as generator functions which only create

their highest rated output hypotheses and can be reinvoked if lower

rated hypotheses are desired,

4.1.6 Goal processing.

In addition to the use of data blackboard events to create new
goals, these events must also be checked to determine if they can
satisfy existing goals on the blackboard. This checking can be
performed by the blackboard monitor, the planner, or a combination of
both, depending on characteristics of the task domain. If the checking
requires only simple, syntactic matching of the attributes of hypotheses
with those of goals, then it should be implemented as part of the
blackboard monitor, (This 1is the approach taken in the testbed).
However, if extensive task domain knowledge and processing resources are

required for matching, then the planning module is the appropriate place

3 3 2 3 2 _3 _A3

L3 3

3 __3

33 __3

A Framework for Organizational Coordination 177

to perform the checking. The philosophy is to keep the blackboard
monitor a simple table-driven procedure with low processing overhead. A
combined approach, in which a quick syntactic check is first performed
by the blackboard monitor, can also be used. If this check results in
only partial matches, then the event and partially matched goals are
passed on to the planner for more extensive analysis. 1In all of these
cases, the parallel structure of the data and goal blackboards
facilitates the effective implementation of event and goal matching.

Goal merging, which involves recognizing that two goals can be
satisfied by the same conditions, can be similarly implemented in the
blackboard monitor, the planner, or a combination of both. Again the
choice is based on the complexity of the operation required by the task
domain,

Additional goal-processing operations also need to be implemented.
These operations involve checking newly created goals for their
relationships with existing goals, including the relationships of:
goal/subgoal, goal/overlapping-goal, goal/precondition-goal,
goal/abstract-goal, and goal/specialized-goal. The need for determining
these relationships depends on the task domain and planning strategies
used in the system and, due to their complexity, most seem best

implemented in the planning module.

A Framework for Organizational Coordination 178

4,2 Implementation of the Goal-Directed Hearsay-II Architecture in the

Testbed

The complete goal-directed Hearsay-II architecture with both
bottom-up synthesis and subgoaling capabilities has been implemented in
the distributed vehicle monitoring testbed. Precondition-action
backward chaining has not been implemented (although there are
situations in the testbed where it would be beneficial). A rudimentary
planner has also been implemented. A key aspect of the control
framework implemented in the testbed is the use of a nonprocedural and
dynamically variable specification of the behaviors of each local node's
planner, its scheduler, and its communication knowledge sources. These
data structures are used to implement particular network configurations
and coordination policies and, as will be discussed at the end of this
chapter, provide the interface between the activity decisions of the
local node and organizational structuring decisions.

The following sections describe the testbed implementation,

4.2.1 Additional knowledge sources.

Additional communication knowledge sources used in the
goal-directed testbed architecture are iisted in Table 4. A goal send
knowledge source transmits goals created on the goal blackboard to other
nodes based on the level, time f{rames, event classes, regions, and
rating of the goal. Goal send transmits goals based on organizational
criteria -- whether or not the node is to attempt to achieve the goal
locally. A goal help knowledge source is used to transmit any goals

that the node's planner has determined cannot be satisfied 1locally

3 3 i3 i 3

-

—3

3

—3 ~3 T3 T3 3 —3 T3 —3 3

A Framework for Organizational Coordination 179

ADDITIONAL KNOWLEDGE SOURCES

Goal Goal
Transmission: Reception:
GOAL-SEND:SL:SL GOAL-RECEIVE:SL:SL
GOAL-SEND:ST:ST GOAL-RECEIVE:ST:ST
GOAL-SEND:GL:GL GOAL-RECEIVE:GL:GL
GOAL-SEND:GT:GT GOAL-RECEIVE:GT:GT
GOAL-SEND:VL:VL GOAL-RECEIVE:VL:VL
GOAL-SEND:VT:VT GOAL-RECEIVE:VT:VT
GOAL-SEND:PL:PL GOAL-RECEIVE:PL:PL
GOAL-SEND:PT:PT GOAL-RECEIVE:PT:PT
Assistance Satisfying
Goal Hypotheses
Transmission: Transmission:
GOAL-HELP:SL:SL HYP-REPLY:SL:SL
GOAL-HELP:ST:ST HYP-REPLY:ST:ST
GOAL-HELP:GL:GL HYP-REPLY :GL :GL
GOAL-HELP:GT:GT HYP-REPLY:GT:GT
GOAL-HELP:VL:VL HYP-REPLY:VL:VL
GOAL-HELP:VT:VT HYP-REPLY:VT:VT
GOAL-HELP:PL:PL HYP-REPLY:PL:PL
GOAL-HELP:PT:PT HYP-REPLY:PT:PT

Table 4: Additional Distributed Vehicle Monitoring Testbed Knowledge
Sources.

The additional testbed knowledge sources used for
communicating goals and replies to goals. Each knowledge
source can be individually selected and weighted at each
testbed node.

The name each knowledge source has the form:

type : input-level(s) : output-level,

A Framework for Organizational Coordination ' 180

(possibly after executing a number of local problem solving knowledge

sources). This separation allows a clear distinction in the criteria
for sending goals to other nodes for organizational reasons and for
asking for help with goals that cannot be achieved locally. Both
knowledge sources use a simple model of the goals that have been seen by
each node and of the availability of ihe communication channel to decide
whether or not to send a particular goal.

A goal receive knowledge source places goals received from other
nodes onto the node's goal blackboard. Incoming goals are filtered
according to the level, time frames, event classes, regions, and rating
of the received goal to ensure that the node is truly interested in
receiving goals of that type. (Specification of the interest areas of a
node is discussed in the next section.) Goal receive knowledge sources
also use a simple model of the credibility of the sending node to
possibly lower the rating of the received goal before it is placed on
the blackboard.

A goal reply knowledge source transmits hypotheses created on the
blackboard that satisfy a goal that specifies a reply to another node

when satisfied.

4,2,2 Interest areas.

The activities of the 1local node planner, scheduler, and
communication knowledge sources are influenced by data structures called

interest areas. There are six sets of interest areas for each node in

the testbed:

3 3 __3 __3 1 .__3

— 1

3

goal help transmission interest areas

A Framework for Organizational Coordination 181

local processing interest areas — influence the 1local problem
solving activities in the node
by modifying the priority
ratings of goals and knowledge
source instantiations and the
behavior of the node's planner
and scheduler;

hypothesis transmission interest areas -- influence the behavior of
HYP-SEND knowledge sources in
the node;

hypothesis reception interest areas —— influence the behavior of
HYP-RECEIVE knowledge sources
in the node;

goal transmission interest areas -- influence the behavior of
GOAL-SEND knowledge sources in
the node;

- influence the Dbehavior of
GOAL-HELP knowledge sources in
the node;

goal reception interest areas — influence the behavior of
GOAL-RECEIVE knowledge sources
in the node.

Each interest area is a list of areas of the data or goal blackboard
specified by a set of blackboard levels, a set of event classes, and a
set of time frame, spatial region lists. Associated with each interest
area are one or more parameters that modify the behavior of the node
(see Table 5).

Each local processing interest area has a single parameter
associated with it: a weight specifying the importance of performing
local processing within the interest area. Transmission interest areas
(hypothesis transmission, goal transmission, and goal help transmission)
are specified for one or more lists of nodes that are to receive
information from the node. Similarly, reception interest areas

(hypothesis reception and goal reception) are specified for 1lists of

182

A Framework for Organizational Coordination

Table 5: Interest Area Parameters,

The parameters associated with a node's 1local processing
interest areas, transmission interest areas (hypothesis
transmission, goal transmission, and goal help transmission),
and reception interest areas {(hypothesis reception and goal
reception) are used to influence the behavior of the node.

Only hypothesis reception interest areas have the
focusing-weight parameter,

'3 3 ‘.3 3 -3 3 _3

3

A Framework for Organizational Coordination

Local Processing Interest Areas:

((interest-area importance)
(interest-area importance)

(interest-area importance))

Transmission Interest Areas:

((node-list ((interest-area
(interest-area

(interest-area
((node-list ((interest-area
(interest-area
(interest-area

(interest-area

((node-list ((interest-area
(interest-area

(interest-area

Reception Interest Areas:

((node-list ((interest-area threshold importance

[focusing-weight])

(interest-area threshold importance

[focusing-weight])

(interest-area threshold importance

[focusing-weight]))

((node-list ((interest-area threshold importance

[focusing-weight])

(interest-area threshold importance

[focusing-weight])

(interest-area threshold importance

[focusing-weight]))
((node-list ((interest-area
[focusing-weight])

(interest-area threshold importance

[focusing-weight])

(interest-area threshold importance

[focusing-weight]))

threshold
threshold

threshold
threshold
threshold
threshold
threshold
threshold
threshold

threshold

e o o

threshold importance

)

importance)
importance)

importance))
importance)
importance)
importance)
importance))

importance)
importance)

importance)))

Table 5: Interest Area Parameters.

credibility

credibility

credibility
credibility

credibility

credibility

credibility

credibility

credibility

183

A Framework for Organizational Coordination 184

nodes that are to transmit information to the node. Each transmission
interest area has a weight specifying the importance of transmitting
hypotheses or goals from that area (to nodes specified in the node-1list)
and a threshold value specifying the minimum hypothesis belief or goal
rating needed to transmit from that area. Each reception interest area
has a weight specifying the importance of receiving a hypothesis or goal
in that area (from a node specified in the node-list), a minimum
hypothesis belief or goal rating needed for the hypothesis or goal to be
accepted, and a credibility weight. The credibility weight parameter is
used to change the belief of received hypotheses or the rating of
received goals. A node can reduce the effect of accepting messages from
a node by lowering the belief or rating of messages received from that
node. Each hypothesis reception interest area also has a focusing
weight parameter that 1is used to determine how heavily received
hypotheses are used in making local problem solving focusing decisions
(see Section 4.2.6).

As we will see in Section 4.4, interest areas specifications
provide the interface between the activity decisions made by a node and
organizational structuring decisions. A node's organizational
responsibilities are changed by modifying its interest areas. These
changes can be made as a part of network initialization as well as

dynamically, during the course of network problem solving.

3 3 _3

3

Iz

3

3 3

A Framework for Organizational Coordination 185

4,2.3 Majoggggaliattributes.

In this section the major attributes of goals in the testbed
implementation are described. (The complete list of goal attributes is
given in Appendix B.)

As mentioned earlier, three attributes are used in the testbed to
Specify the desired state of hypotheses on the data blackboard: the
goal's level, active-time-region-list, and event-classes attributes.
The level attribute is simply one of the eight blackboard levels, The

active-time-region-list attribute® is a 1ist of time frame, spatial

region pairs where each blackboard region is a rectangular area

Specified by the list (x_min y min X_max y max). The event-classes

attribute is a 1list of event class numbers. The pairs in the
active-time-region-list attribute and the event classes in the
event-classes attribute represent disjunctive goal states on the data
blackboard. The importance of achieving a goal is indicated by its
rating attribute

The relationships between a goal and hypotheses, knowledge source
instantiations, and other goals are indicated by various 1link

attributes. The goal's stimulus-hyps attribute connects the goal with

one or more hypotheses that, when created, stimulated the creation of

the goal. The goal's stimulated-ksis attribute connects the goal with

those knowledge source instantiations that are attempting to achieve it.
Hypotheses that satisfy the goal (at 1least in part) are linked as

satisfying-hyps of the goal. Goals whose level,

6. Goals also have an inactive-time-region-list attribute used to
further specify a goal. It is described below.

A Framework for Organizational Coordination 186

active-time-region-list, and event-classes attributes overlap the goal's

attributes are 1linked using the overlapping-goals attribute, The

subgoals attribute points to goals that are subgoals of the goal. The

supergoal attribute indicates the reverse relationship.

4,2.4 The testbed blackboard monitor and blackboard events.

The testbed blackboard monitor recognizes seven types of blackboard
events, They are:

hypothesis creation -- creation of a new hypothesis on the data
blackboard;

hypothesis modification -~ modification of the belief of an existing

hypothesis on the data blackboard;

hypothesis reception -— reception of one or more hypotheses in the
node's communication buffer (the hypotheses
are inserted onto the data blackboard by a
HYP-RECEIVE knowledge source);

goal creation . — creation of a new goal on the goal
blackboard;

goal modification -- modification of the rating or stimulus
hypotheses of an existing goal on the goal
blackboard;

goal reception -- reception of one or more goals in the node's

communication buffer (the goals are inserted
onto the goal blackboard by a GOAL-RECEIVE
knowledge source);

goal satisfaction -- creation or modification of one or more
hypotheses of sufficient belief in the data

blackboard area specified by the goal.7
A seventh event, quiescence, is also used in the testbed. Not a true
blackboard event, a quiescence event is signalled when there are no

executable knowledge source instantiations above a specified knowledge

T. See Section 4.3.3 for a discussion of the problems associated with
determining goal satisfaction.

3 -3 3 3 _3 __3

3 _3 '3

3

3

P

A Framework for Organizational Coordination 187

source instantiation execution threshold rating at the node.
The blackboard monitor behaves differently for each type of

blackboard event, We look first at hypothesis creation.,

Hypothesis creation events,

If the created hypothesis is a location hypothesis, the blackboard
monitor uses the event-to-goals mapping to determine the attributes of
one or more goals to be be created at the next higher location
blackboard level (if one exists). These goals represent the desire to
create an output hypothesis with attributes derived from the newly
created hypothesis at that next higher location level. Since the
location synthesis knowledge sources allow a shifting of one unit in the
X and Y dimensions, the goals need to cover a three unit square region
centered around the newly created hypothesis. Similarly, since the
frequency class can be shifted up or down by one class on the signal
location and group location levels, signal location and group location
goals must cover a three frequency event class range centered around the
event class specified in the grammar., For example, suppose a node using
the grammar presented in Chapter II (reproduced as Figure 30) creates a
signal 1location hypothesis with a time-location-list attribute of
(C1 (5 15))) and an event-class attribute of 17. The blackboard monitor
would create a group 1location goal K with an active-time-region-list
attribute of ((1 (4 14 6 16))) and an event-classes attribute of (5 6 7)
and a second group location goal with the same active-time-region-list

attribute and an event class attribute of (9 10 11).

A Framework for Organizational Coordination 188

o ° ° pattern

o ° vehicle

(2) (¢) (o) () v

OO EEE @6 ——xw

.

Figure 30: The Simple Testbed Grammar.

The illustrative grammar used in the examples presented in
this section.

For signal and group location hypothesis creation events only 1
higher location 1level goal is created. However, vehicle location
creation events are somewhat more complicated because the grammar
specifies a spatial displacement of pattern locations with respect to
vehicle locations, In this case multip}e goals may be needed to
represent the possible output hypotheses that can be synthesized at the
pattern location level from the vehicle location hypothesis, (The

blackboard monitor attempts to coalesce goals as much as possible.)

3 3 __3 __3

3

A Framework for Organizational Coordination 189

For each location hypothesis creation event the blackboard monitor
also creates two track formation goals at the location hypothesis's
corresponding track level: one to form a track from the created
hypothesis using a hypothesis in the previous time frame and the other
to form a track using a hypothesis in the following time frame. Because
the velocity of the vehicle cannot be estimated from a single location,
each track formation goal is a region twice the maximum vehicle velocity
square, centered at the position of the location hypothesis. For a
vehicle 1location or pattern location hypothesis, the event-classes
attribute of each track formation goal contains only the event class of
the location hypothesis. For a signal 1location or group 1location
hypothesis, the event-classes attribute of each track formation goal
must contain one shifted frequency event class in each direction from
the frequency of the location hypothesis. Because the track goals are
at the same level of abstraction in the data hierarchy as the created
hypbthesis. no vehicle-to-pattern conversion, (and therefore no spatial
displacement of goal regions) is involved. ‘

For example, a node using the grammar of Figure 30 and a maximum
vehicle velocity of 3 units per time frame would generate one signal
track formation goal with an active-time-region-list attribute of
((0 (2 12 8 18))) and an event-classes attribute of (17 18 19) and the
other signal track formation goal with an an active-time-region-list
attribute of ((2 (2 12 8 18))) and an event-classes attribute of
(17 18 19) from the signal location hypothesis with a time-location-list

attribute of ((1 (5 15))) and an event-class attribute of 17.

A Framework for Organizational Coordination 190

If the output hypothesis is a track hypothesis, the blackboard
monitor uses the event-to-goals mapping to determine the attributes of
one or more goals to be created at the next higher track blackboard
level (if one exists). Each time frame, spatial location pair in the
track hypothesis is converted into a time frame, spatial region pair for
the active-time-region-list attribute of these goals. This conversion
is identical to the conversion of the single time frame, spatial
location pair of a location hypothesis, For example, a node using the
grammar of Figure 30 creating a signal track hypothesis with a
time-location-list attribute of ((1 (5 15)) (2 (8 16))) and an
event-class attribute of 17 would create a group track goal with an
active-time-region-list attribute of ((1 (4 14 6 16)) (2 (7 15 9 17)))
and an event-classes attribute of (5 6 7) and a second group track goal
with the same active-time-region-list attribute and an event class
attribute of (9 10 11). As with pattern location goals, pattern track
goals can require a spatial displacement of the spatial-region from the
spatial-location of the newiy created vehicle track hypothesis.

For each track hypothesis creation event the blackboard monitor
also creates two track extension goals at the same blackboard level: one
specifying an extension of the track forward in time and one specifying
an extension backward in time. With track extension goals it is
possible to compute the velocity of the vehicle at the end of the track
(or the inverse of the velocity at the beginning of the track if
extending backward). The extension region is formed by extrapolating
this velocity one time-frame and creating a region two times the maximum

vehicle acceleration square, centered around the extrapolated position.

~—3 3 _3» .3 3 -3 3 3 _3J __3

-3

3

A Framework for Organizational Coordination 191

The event-classes attribute contains the event class number of the newly
created track hypothesis (and plus or minus one frequency class for
signal track and group track goals due to possible frequency shifting).
The extension-direction attribute of the goal is also set to forward or
backward, as appropriate.

For example, the forward extension track goal for the above signal
track hypothesis example would have an active-time-region-list attribute
of ((3 (9 15 13 17))) and an event-classes attribute of (17 18 19) if
the maximum vehicle acceleration is 2 units per time frame.

To differentiate this goal from another forward track extension
goal that might happen to have the same active-time-region-list
attribute but a completely different track to be extended (such as two
vehicles crossing at right angles), an inactive-time-region-list

attribute is also formed. The inactive-time-region-list attribute

specifies information about the track that stimulated the creation of
the goal. For the above example, the inactive-time-region-list
attribute would be ({1 (5 15 5 15)) (2 (8 16 8 16))).

While it may seem reasonable to create track extension goals that
explicitly name the track hypothesis to be extended (a specific
hypothesis goal), the inactive-time-region-list attribute allows the
blackboard monitor some latitude in creating a single (generic
hypothesis) goal to extend a number of "similar" track hypotheses. For
example, by including only the time frame, spatial region pairs nearest
the extension end of the track, hypotheses that differ far from the
extension end but which are identical near the extension can be ineluded

in a single track extension goal. Similarly, enlarging the region size

A Framework for Organizational Coordination 192

in the inactive-time-region-list attribute allows track hypotheses that
are close together to be included in a single goal. Finally, goals with
an inactive-time-region-list can be communicated to another node without
sending its stimulus track hypotheses,

The blackboard monitor does not immediately create goals on the
blackboard from hypothesis creation events. 1Instead, it first looks to
see if the attributes of the new goal are similar to those of an
existing goal. If they are, the attributes of the similar goal are
changed and a goal modification event is signalled, If they are not, a
new goal is created.

In addition to creating or modifying goals from hypothesis creation
events, the blackboard monitor also must check to see if the newly
created hypothesis satisfies any existing goals on the goal blackboard.
If it does the hypothesis is linked as a satisfying hypothesis to those
goals and a goal satisfaction blackboard event is signalled. If the
created hypothesis is at a level at which the node is transmitting
hypotheses to another node, the precondition procedure for HYP-SEND is
executed. If it indicates that the hypothesis should indeed be

transmitted, a HYP-SEND knowledge source is instantiated.

Hypothesis modification events.

If the belief of a hypothesis is modified, the blackboard monitor
must recalculate the ratings of the goals that were originally

stimulated by the hypothesis and, in turn, notify the scheduler to

rerate any pending knowledge source instantiations associated with those’

goals. An increased hypothesis belief may also be sufficient to satisfy

—3 3 __ 2 __3

1__,__.3 __J

3

A Framework for Organizational Coordination 193

one or more goals, sSo the blackboard monitor must check for this
possibiliiy. In addition, a raised hypothesis belief may cause the
hypothesis to be above the transmission belief threshold for a node or
to be raised enough to warrant retransmission of the hypothesis, so the
blackboard monitor must execute the precondition procedure for HYP-SEND.
If it indicates that the hypothesis should indeed be transmitted, a
HYP-SEND knowledge source is instantiated.

Finally, the new belief value of the hypothesis may cause the
beliefs of hypotheses created by knowledge sources that used the
modified hypothesis in their calculations. In the testbed
implementation, propagation of modified belief values is not a scheduled
activity. Instead, the blackboard monitor 1is responsible for
propagating changes in hypothesis belief values that are above a
specified threshold value, Changes below the ,threshold value are
assumed to have such a smail effect on the belief of the eventual
solution that the propagation cost is not Jjustified. The relative
contribution of each input hypothesis is recorded in the testbed,
allowing the blackboard monitor to change each output hypothesis
accordingly -~ without reexecuting the knowledge source. Propagation of
modified hypothesis beliefs recursively signals hypothesis modification

events.

Hypothesis reception events.

If one or more hypotheses are received at a node while a knowledge
source is executing, a hypothesis reception event is signalled when that

knowledge source completes. The blackboard monitor executes a

A Framework for Organizational Coordination 194

HYP-RECEIVE precondition procedure to determine if the node 1is truly
interested in any of the hypotheses. If so, a HYP-RECEIVE knowledge
source is instantiated to potentially modify the belief of each
hypothesis and to place them on the data blackboard (at which time a
hypothesis creation event or a hypothesis modification event is

signalled by the blackboard monitor).

Goal creation events.

When a goal is created on the goal blackboard, the blackboard
monitor calculates a priority rating for the goal (described in Section
4,2.6) and determines if any existing goals overlap the new goal. Two
goals overlap if they are on the same blackboard level, have at least
one event class in common, and have at least one overlapping region (in
an identical time frame) in their active-time-region-list attribute.
The overlapping-goals attribute is used to link these goals with the
newly created goal. The blackboard monitor then checks to see if the
goal is already satisfied by existing hypotheses. If it is not already
satisfied the blackboard monitor notifies the planner that it should
attempt to satisfy the goal. The actions of the planner are detailed in
Section 4.2.5.

If the created goal is at a level at which the node is immediately
transmitting goals to another node, the precondition procedure for
GOAL-SEND is executed. If it indicates that the hypothesis should

indeed be transmitted, a GOAL-SEND knowledge source is instantiated.

—3 -3 _3 _ 3

—3d 3

3

-3 _3

-

3 __3 3

3

A Framework for Organizational Coordination 195

Goal modification events.

If the rating of a goal is modified, the blackboard monitor
notifies the scheduler to rerate all pending knowledge source
instantiations that are scheduled to achieve the goal. It must also

rerate the goal's subgoals (and, in turn, their subgoals) to reflect the

. new rating (see Section 4.2.6). 1In addition, a raised goal rating may

cause the goal to be above the transmission rating threshold for a node
or to be raised enough to warrant retransmission of the goal, so the
blackboard monitor must execute the precondition procedure for
GOAL-SEND. If it indicates that the goal should indeed be transmitted,
a GOAL-SEND knowledge source is instantiated.

If one or more new stimulus hypotheses are added to the goal, the
blackboard monitor must notify the planner that the goal now has the

potential to be achieved using the new hypotheses,

Goal reception events.

If one or more goals are received at a node while a knowledge
source 1is executing, a goal reception event is signalled when that
knowledge source completes. The blackboard monitor executes a
GOAL-RECEIVE precondition procedure to determine if the node is truly
interested in any of the goals. If so, a GOAL-RECEIVE knowledge source
is instantiated to potentially modify the rating of each goal and to
place them on the goal blackboard (at which time a goal creation event

or a goal modification event is signalled by the blackboard monitor).

A Framework for Organizational Coordination 196

Goal satisfaction events.

When the blackboard monitor determines that a goal is satisfied, the
planner is notified that it is no longer necessary to achieve the goal
(see below). In addition, if the goal contains a request to transmit
satisfying hypotheses to another node, a HYP-REPLY knowledge source is

instantiated.

4.,2.5 The planner,

The planner at each node attempts to achieve the goals created at
the node by instantiating knowledge sources and by creating subgoals
which, if satisfied, increase the likelihood of achieving higher-level
goals. The planner also has a rudimentary capability for deciding when
goals cannot be achieved locally. This section presents a high-level
view of the planner's activities. Section 4.2.7 discusses subgoaling in
the testbed. The implementation details involved in handling the
asynchronous creation and modification of goals, hypotheses, and

knowledge source instantiations efficiently are omitted.

Newly created goals.

When the blackboard monitor notifies the planner that a goal has
been created on the goal blackboard, the planner first checks to see if
the goal's rating is above the current planning threshold. If the
rating is above the threshold, the planner looks at each knowledge
source instantiation on the scheduling queue that was stimulated by
goals that overlap the newly created goal to see if that knowledge
source instantiation can potentially satisfy the newly created goal.

(The overlapping goals are determined by the blackboard monitor.) The

3

. 3

i

A Framework for Organizational Coordination ' 197

newly created goal is added as a stimulus goal to any such knowledge
source instantiations, and the knowledge source instantiations are
rerated.

The planner can also elect to attempt to satisfy the newly created
goal directly. 1In the testbed implementation, each node's planner has a
preference ordering for knowledge sources. The planner selects the
first knowledge source in this ordering that can create hypotheses on
the same blackboard level as the goal and executes that knowledge
source's precondition procedure. If the precondition procedure
estimates that the knowledge source is likely to generate one or more
hypotheses that can potentially satisfy the goal, a knowledge source is
instantiated, rated by the scheduler, and placed on the scheduling
queue. If the estimation is that the knowledge source will fail to
generate a hypothesis for the goal, the planner repeats this procedure
with the next knowledge source in the preference ordering. 1If no local
problem solving knowledge source is found for the goal and no
lower-level data is expected to provide input data for these knowledge

sources, a GOAL-HELP knowledge source can be instantiated.

Modified goals.

When the blackboard monitor notifies the planner that a goal's
rating has been increased, the planner checks to see if it rating was
previously below the planning threshold value. If it was previously
below the threshold, the planner treats the goal as if it were a newly
created goal. If the goal was previously above the threshold and there

are no new stimulus hypotheses attached to the goal, the planner needs

A Framework for Organizational Coordination 198

to do nothing else (the scheduler has already rerated any pending
knowledge source instantiations that were stimulated by the goal).

If there are new stimulus hypotheses, however, a knowledge source
with a higher execution preference that was previously unable to create
a hypothesis for the goal may now be able to do so. The planner again
executes the precondition procedures for knowledge sources with higher
preferences than the knowledge source currently pending for the goal (if
one exists), looking for one that may create hypothesis for the goal.
If a higher preference knowledge source is found, it is instantiated and
rated. The currently pending knowledge source (if one exists) remains
on the queue to be used in the event the goal is not satisfied by the
more preferred knowledge source instantiation. It is removed from the
queue by the planner if the goal is satisfied before it is executed (see

below) .

Satisfied goals.

Whenever a hypothesis is created, it is linked with any goals that
it satisfies (at least in part) by the blackboard monitor. When the
currently executing knowledge source instantiation is finished, the
blackboard monitor informs the planner of all goals that have had new
satisfying hypotheses linked with them or the belief of an existing
satisfying hypothesis increased by the knowledge source instantiationm.
For each of these goals, the planner must determine if the goal is
sufficiently satisfied (see Section 4.3.3) that additional work on the
goal is unnecessary. If the goal is sufficiently satisfied, the planner

must remove from the scheduling queue all pending knowledge source

(5

3 __ 3

—3 -3 -3 3 _3 3

-3 3 ___3

—3 _ 3

[

A Framework for Organizational Coordination 199

instantiations that are working solely toward the achievement of the

goal.

4.2.6 Rating goals.

Table 6 describes the rating calculation wused for 1locally
stimulated goals in the testbed. The goal rating calculation is the
maximuﬁ of two componenﬁs: one based on the hypotheses that directly
stimulated creation of the goal and one based on the ratings of any
goals having the goal as a subgoal. The stimulus hypotheses cémponent
includes a weighting specified in the local processing interest areas of
the node.

Received goals have no local stimulus hypotheses. Instead, the
stimulus hypotheses component of received goals is computed directly by
the GOAL-RECEIVE knowledge source using the rating of the received goal,
the credibility weight specified in the goal reception interest areas,
and the local processing interest areas of the node.

There is a subtle problem associated with using the beliefs of
received hypotheses in calculating the ratings of local goals resulting
from them. If a node receives hypotheses with high belief values from
another node, it will create highly rated goals indicating that the node
should strongly attempt to use the received hypotheses even if there is
littlev supporting 1local evidence. While this is fine for an
exterally-directed control regime, it is inappropriate for a strongly

self-dirécted control policy.

A Framework for Organizational Coordination 200

The rating of a locally created goal is calculated as:
Rating(goal) = MAX[SHC(goal),SGC(goal)]

The stimulus hypotheses component (SHC) rating is:

SHC(g) = IAW(g) * MAX [FW(h) * belief(h)]
h in SH(g)
where:

IAW(g) = the maximum importance weight in any local processing
interest area that overlaps the goal g

SH(g) = the hypotheses that stimulated the creation of the
goal g

FW(h) = the maximum focusing-weight in any received hypothesis
interest area that overlaps the hypothesis h
(or 1 if the hypothesis h was not received from another
node)

belief(h) = the belief of hypothesis h.

The supergoal component (SGC) rating is:

SGC(g) = MAX rating(sg)
’ sg in SG(g)
where:
SG(g) = the supergoals of goal g
(goals that have g as a subgoal)
rating(sg) = the rating of supergoal sg.

Table 6: Goal Rating Calculation.

The goal rating calculation is the maximum of two components:
one based on the hypotheses that directly stimulated creation
of the goal and one based on the ratings of any goals having
the goal as a subgoal. The stimulus hypotheses component
includes a weighting specified in the 1local processing
interest areas of the node. The stimulus hypotheses component
of received goals is computed directly by the GOAL-RECEIVE
knowledge source using the rating of the received goal, the
credibility weight specified in the goal reception interest
areas, and the local processing interest areas of the node.

-3 _ ¥ .3 _3¥ 3 __3 __3 __3 3 __3

32 -3 -3 3 3 _3

-3 3 _13

—4 ~— 31 ~ 3 3§ -3 T3 ~—3 ~ a8 ~—2323 ~—3 ~—3 "33 T3 T3 T3 T3 ~ 3 T3 T3

A Framework for Organizational Coordination 201

The self-directed control regime requires the exchange of highly
rated hypotheses without having the receiving node use their beliefs in
its local problem solving activity decisions. The credibility weighting
in the hypothesis transmission interest éreas cannot be used because it
lowers the belief of received hypotheses. Instead, an additional
focusing-weight parameter (contained in hypothesis reception interest
areas) is used in calculating the rating of goals that are stimulated
directly from received hypotheses. This parameter is used to diminish
(or raise) the hypothesis belief value used in the goal rating
calculation without <changing the ©belief value of the received
hypothesis. Thus strongly believed data received from another node can
be accepted as such, to be incorporated into the local solution if it is
relevant, without directly changing the course of local problem solving.
(Of course, if received hypotheses are incorporated into the node's
developing solution they will indirectly affect future problem solving

focusing decisions.)

4.2.7 Subgoaling.

In addition to instantiating knowledge sources to achieve a goal,
the planner can also create subgoals that reflect the importance of
lower-level data in achieving the original goal and that, if satisfied,
increase the likelihood of achieving the original goal. Subgoaling is
an effective means of focusing low-level synthesis activities based on

high-level expectations.

A Framework for Organizational Coordination 202

Consider the following situation. Problem solving at the node is
restricted to location synthesis until the vehicle location level at
which point track formation and extension is to be performed. The
creation of signal location hypothesis H:SL:01 on the data blackboard
causes the blackboard monitor to create group location goal G:GL:01 on
the goal blackboard (Figure 31). This goal indicates that the system
should attempt to form a group location hypothesis using H:SL:01. The
planner next instantiates knowledge source instantiation S:SL:iGL:01 to
try to achieve this goal. The rating of a knowledge source
instantiation is a function of the belief of its stimulus hypotheses and
the priority rating of its stimulus goals (if any). The priority of a
goal is a function of the belief of its stimulus hypotheses, its level
on the blackboard, and its relationships with other goals. Assume that
H:SL:01 is weakly believed and consequently S:SL:GL:01 is given a low
execution rating. Processing continues with other signél location
hypotheses and eventually creates a vehicle track hypothesis H:VT:01
with a moderately high belief. The creation of this hypothesis causes a
number of goals to be created, including the goal shown in the figure,
G:VT:02. This goal indicates that the node should attempt to extend
H:VT:01.

The planner uses 1its goal-to-subgoal domain knowledge for
decomposing this high-level goal into a signal location level subgoal,
G:SL:03. This subgoal indicates the area in which signal location
hypotheses are needed in order to eventually extend the vehicle track
hypothesis. Subgoal G:SL:03 is given the same priority rating as its

parent goal G:VT:02. The planner finds that H:SL:01 has already been

3 _ 3

3 3 _3 -3 _3 __3

—3 -3 3 _3

—3 __3

3 3

-3 3 __13

r——“g r-——§ r——ié r‘——a r——jg r——?g r‘—jg r———§ r‘~—§ r——?g r———g F"‘f% F*—?a r”——g r——?i r———g r———% r—-—g r“f?

A Framework for Organizational Coordination 203

stimulated goal

G:VT:02

subgoal

verlapping goal

GBB:GL | DBB:GL

G:GL:04 G:GL:01 stimulated goal
N— . stimulus hyp
\I _/

satisfying hyp

0BB:SL

G:SL:03

Figure 31: Focus-of-Attention through Subgoaling.

An example showing how subgoaling is used to increase the
priority rating of a low-level knowledge source instantiation
based on the creation of a goal representing a high-level
expectation (G:VT:02). The predicted vehicle track extension
goal 1is subgoaled downward to raise the rating of a pending
knowledge source instantiation (S:SL:GL:01) whose output could
potentially extend the vehicle track hypothesis (H:VT:01).

A Framework for Organizational Coordination 204

created in this area and can satisfy G:SL:03. The planner then creates
subgoal G:GL:04 and finds that goal G:GL:01 overlaps with it. The
planner adds G:GL:04 as a second stimulus goal of the low-rated
knowledge source instantiation S:SL:GL:01. The addition of the higher
priority goal causes the rating of the knowledge source instantiation to
be increased based on its potential contribution to the track extension
goal G:VT:02.

A similar situation occurs when a node receives a high-level goal
from another node but has yet to synthesize that data necessary to
satisfy the goal. Subgoaling this goal (and potentially instantiating
knowledge sources to achieve the subgoals) identifies which lower level
data should be synthesized to achieve the higher-level goal.

In the testbed, the domain knowledge needed to perform subgoaling
is taken from the grammar and the behavior of knowledge sources
(tolerance of location and frequency class shifting at the signal and
group levels). Inverting the event class relationships permits the
planner to determine the event classes and active-time-region-lists for
subgoals to be created at any level. Subgoals normally have the maximum
rating of any of their supergoals, however a weighting can be applied to
this rating to raise or lower the subgoal's focusing influence (see
below) .

Because subgoaling requires some effort, its use needs to be
controlled. In the testbed, subgoaling is controlled in two ways: by
restricting subgoaling to particular levels and by a minimum rating

threshold for a goal to be subgoaled.

3 3 __3 3 __ 3

-3 _ 31 _1

~1 3 __13

—3 ~—3 —3 —3 —3 —3% —3 —3 ™~ 3 — % —3a "~ 3 "3 3 ? '__?’3' a T 3 3

A Framework for Organizational Coordination 205

Each node is supplied with a subgoaling specification data

structure that lists the levels at which goals are to be subgoaled and
the levels at which these goals are to be created (Table 7). The
shrink-factor and rating-weight parameters can be used to create a
number of concentric subgoals of increasing sizes and decreasing
ratings. Such nesting of goals is useful in representing situations
where the likelihood of creating suitable hypotheses decreases with
distange from the center of the goals.

Each node also uses three goal rating threshold values to decide
whether a goal on a subgoaling 1level should be subgoaled. The

internal-subgoal threshold specifies the minimum goal rating threshold

of goals stimulated by locally-created hypotheses, Such
locally-stimulated goals must be rated at or above this threshold for

subgoaling to occur. Similarly, the received-hypotheses-subgoal

threshold specifies the minimum goal rating threshold of goals
stimulated directly by hypotheses received from other nodes. Finally,

the received-goals-subgoal threshold specifies the minimum goal rating

threshold of goals received from other nodes. If a particular goal
falls into more than one of these categories, the minimum of the
appropriate thresholds is used.

Since subgoaling can have a significant effect on the 1local
activities of a node, the relative settings of these three parameters
strongly influence the balance between local and external direction,
Experiments with various settings of these parameters are presented in

Chapter V.

A Framework for Organizational Coordination 206

The subgoaling specification at each node is a list:

((goal-level-list
(subgoal-level-list ((shrink-factor rating-weight)
(shrink-factor rating-weight)
(shrink-factor rating-weight)))
(subgoal-level-list ((shrink-factor rating-weight)
(shrink-factor rating-weight)

(shrink-factor rating-weight)))
(subgoal-level-list ((shrink-factor rating-weight)
(shrink-factor rating-weight)

(shrink-factor rating-weight))))
(goal-level-list

(subgoal-level-list ((shrink-factor rating-weight)
(shrink-factor rating-weight)
(shrink-factor rating-weight)))

(subgoal-level-list ((shrink-factor rating-weight)
(shrink-factor rating-weight)
(shrink-factor rating-weight)))

(subgoal-level-list ((shrink-factor rating-weight)
(shrink-factor rating-weight)

(shrink-factor rating-weight)))))

goal-level-list = a list of levels where created goals are subgoaled
(if they are rated above the appropriate belief
threshold);

a list of levels at which subgoals will be created;
the amount that the X and Y dimensions are reduced
for each region in the subgoal;

the weight multiplied by the original goal rating
when calculating the new subgoal rating.

level-list
shrink-factor

rating-weight

11

Table 7: Subgoaling Specification Data Structure.

The subgoaling specification data structure at each node
specifies the levels where created goals are subgoaled and the
levels, sizes, and ratings of the subgoals. Its values are
strongly related to the local processing and communication
interest areas.

3 3 3 > 4 _ 3 » _ » _» _3 __a _3 _ 2

—2 __ 2 _ 3 3 .3 __ 3

g 3§ "3

T3

B

A Framework for Organizational Coordination 207

4.2.8 Knowledge source precondition procedures,

The overall performance of each node depends on the ability of each
knowledge source precondition procedure to correctly anticipate the
eventual behavior of executing the knowledge source instantiation.
Normally, this problem of selecting the knowledge source that has the
appropriate balance between expected execution cost and 1likelihood of
success would be determined by exécuting the precondition procedures of
all knowledge sources that could potentially achieve the stimulus goals.
Uncertainty as to the behavior of knéwledge source instantiations (as
specified in the response frame) makes it difficult for the planner and
scheduler to decide what knowledge source instantiations to execute.

In order to investigate the effects of this uncertainty the testbed
simulation preexecutes the entire knowledge source as the precondition
procedure. The knowledge source does not actually create any hypotheses
or goals, but instead places an exact specification of their attributes
in the output-set attribute of the knowledge source instantiation. The
output-set provides an exact description of what the knowledge source
instantiation will do if executed. (The output-set is updated if the
input context of the knowledge source instantiation is modified while it
is awaiting execution.) The actual hypotheses or goals are created when
the knowledge source instantiation executes.

The information contained in the output-set allows the knowledge
source instantiation rating to be made with perfect knowledge of the
knowledge source instantiation's behavior, Precondition procedures with
less than perfect estimation abilities are simulated by perturbing these

perfect ratings. The details are described in the next section. -

A Framework for Organizational Coordination 208

4.2.9 Rating knowledge source instantiations.

Table 8§ details the knowledge source instantiation‘ rating
calculation used in the testbed. It is basically a weighted sum of a
data-directed and a goal-directed component. The data-directed
component captures the expected belief of an output hypothesis (as
specified in the knowledge source instantiation's output-set attribute).
The goal-directed component measures the ratings of goals that would be
satisfied (at 1least in part) by each output hypothesis. The
goal-weighting parameter adjusts the importance given to satisfying
highly-rated goals versus producing strongly believed hypotheses. The
weighted sum of these two components is computed for each. output
hypothesis in the knowledge source instantiation's output-set attribute
and the maximum value (multiplied by the knowledge source efficiency
estimate) is used as the base rating for the knowledge source
instantiation.

Since the testbed precondition procedures precompute the actual
output hypotheses of the knowledge source instantiation, the scheduler's
base rating calculation uses the exact beliefs of the output hypotheses
and the goals that they satisfy. Gaussian noise can be added to this
base rating to simulate the effects of knowledge source precondition
procedures that are imperfect in their estimation of output hypotheses's
beliefs and of goal satisfaction,

The knowledge sources' precondition procedures use- information
localized to a particular fegion of the data blackboard in estimating
the beiief values of output hypotheses. On the other hand, ¢the

scheduler is in a position to determine how a knowledge source

I 3

2 3 |

.
——a

-3 3 _ 3 __131 _3

—3a T3 ~—3 ~3 ~ 3 T~ 3 T3 "B —a =~ 3 r—3 3

209

A Framework for Organizational Coordination

Table 8: Knowledge Source Instantiation Rating Calculation.

The knowledge source instantiation rating calculation is
basically a weighted sum of a data-directed and a
goal-directed component. The data-directed component captures
the expected belief of an output hypothesis (as specified in
the knowledge source instantiation's output-set attribute).
The goal-directed component measures the ratings of goals that
would be satisfied (at least in part) by an output hypothesis.
The goal-weighting parameter can be adjusted to change the
importance given to producing strongly believed hypotheses
versus satisfying highly-rated goals. Gaussian noise is added
to the rating calculation to simulate Kknowledge source
precondition procedures with imperfect output hypothesis
estimation capabilities.

A Framework for Organizational Coordination 210

The rating of a knowledge source instantiation is calculated as:

Rating(KSI) = N(s,BR(KSI))

where:
N(s,m) =m + [GN(s) * (1 - m?)]
GN(s) = a random variate in [-1,1] drawn from a gaussian

distribution with mean 0 and standard deviation s.
The knowledge source instantiation base rating is:

BR(KSI) = AE(KSI) * { MAX [gw*DD(KSI,o) + (1-gw)*GD(o0)]}

o in O(KSI)
where:
AE(KSI) = the assumed average efficiency (execution cost versus
performance) of the knowledge source executing the KSI
0(KSI) = the set of output hypotheses of the KSI
gw = the goal weighting (a constant in [0,1] that controls the
balance between data- and goal-directed control).
The data-directed component is: DD(KSI,0) = (1-ow)*BV(o) + ow*CV(o)
where:
ow = the coracle weighting (a constant in [0,1] that controls
the degree that the consistency of output hypothesis is
used in the rating calculation)
BV(o) = the (resolved) belief value of the output hypothesis o
Cv(o) = 1 if output hypothesis o is a consistent hypothesis
(based on the consistency blackboard); O otherwise.
The goal-directed component is: GD(o) = MAX [MGR(o) ,WAGR(0)]

where the maximum rated goal satisfied by output hypothesis o is:

MGR(SG) = MAX GR(g)
g in SG(o)
and the weighted average rating of the satisfied goals is:

WAGR(SG) = MIN [1, AVERAGE w¥*GR(g)]
g in SG(o)
the set of goals satisfied (at least in part) by
output hypothesis o

and: SG(o)

GR(g) = the rating of goal g
W = 1.0 if }SG(0)| is 1
1.1 if {SG(o)} is 2
1.2 if 1SG(o)} is 3
1.3 if 1SG(o)} is 4
1.4 if {SG(o)| is 5 or larger.

Table 8: Knowledge Source Instantiation Rating Calculation,

——Ad i a __3

—3 3 .3

—a 3 _ 3

g

—% ~—3 3

A Framework for Organizational Coordination 211

instantiation's expected output hypotheses fit into the overall
developing solution at the node. This difference in viewpoint leads to
an interesting engineering issue. Should the scheduler rely solely on
the myopic estimations of the precondition functions in rating a
knowledge source instantiation or should it be given domain-dependent
knowledge of its own to determine consistencies between knowledge source
instantiations? To experiment with this issue, an oracle weighting in
the data-directed component can be used to introduce the consistency of
each output hypothesis (as specified on the consistency blackboard) into
the rating calculation. As with the knowledge source instantiations
themselves, this consistency information is used to simulate the effects
of developing additional knowledge which can better detect the

consistencies among hypotheses,

4.3 Additional Issues

This section discusses several additional issues associated with

the goal-directed Hearsay-II architecture.

4.3.1 Plans in the goal-directed Hearsay-II architecture.

The explicit goal structure allows the planner to construct plans
consisting of multistep sequences of knowledge source executions. A
prime example is the S:SL:GL, S:GL:VL, EF:VL/VT:VT knowledge source
sequence needed to extend a track into the next time frame.
Unfortunately, the current implementation does not adequately represent
such sequences. What is needed is an extra goal blackboard plane to

contain plans (sequences of goals on goal blackboard). This plan plane

A Framework for Organizational Coordination 212

would contain plans whose goals and knowledge source instantiations
would be associated with particular plans and would be distinguishable
from one another. The scheduler would use these competitive and
cooperative relationships between knowledge sources and goals to

discontinue work on goals in a strategy which has failed.

4.3.2 Balancing the cost of goal processing.

Complex goal processing is not without cost, and as the overhead of
goal processing increases, it is important to balance planning
activities with knowledge source execution. The scheduler should
perform the allocation of processing resources -- both to the planner
and the knowledge sources. It is the scheduler which has access fo the
ratings on knowledge source instantiations and the priorities of goals.
The ratings and the relationships between the goals and knowledge source
instantiations provide the scheduler with the information necessary to
determine the best course for improving the state of the system.
Techniques for reasoning about the balance between planning the
consequences of actions versus performing them to discover the result
are needed. The work on integrating decision theory with heuristic
search by Feldman and Sproull [FELD77] is a first step in this
direction.

Cbmplex goal-processing raises the issue of whether the planner
itself should be implemented as a data-directed system with its own
planning knowledge sources and whether that system should be augmented
with a (meta) goal blackboard and goal-processing mechanisms. Goals

requesting changes on the goal blackboard can be used to explicitly

—3 —3 __3

_—3 & 3

E|

3 31 __3

A Framework for Organizational Coordination 213

represent the problem-solving strategies of the system. Work by Davis,
Barbara and Frederick Hayes-Roth, Stefik, and Erman, London, and Fickas
are representative of similar uses of meta-level problem solving
(DAVI80, HAYE79, STEF80, ERMA81]. Such meta-level goals would represent
strategies for the planner. Subgoaling a high-level, expectation-based
goal to low-level goals and then driving-up the appropriate low-level
hypotheses upward is an example of a useful strategy which could be
represented by a meta-level goal.

If there are a number of meta-level goals, then a strategy for
choosing between them is needed. This raises the problem of controlling
the meta-controller, and so on. One approach is to add control layers
until the highest level controller becomes a simple procedure. A second
approach is to introduce a controller which can reason about its own
control decisions as well as those it is making for the lower levels
(while avoiding problems associated with self-reference). The testbed

has one level of meta-level goals, the organizational structuring level

described in Section 4.4,

4.3.3 The goal satisfaction problem.

An important aspect of the goal-directed Hearsay-II architecture is
determining when a goal is satisfied by hypotheses on the data
blackboard. As discussed earlier in this chapter, it is the blackboard
monitor's responsibility to makg this determination. Given a goal and a
set of hypotheses, it is easy to identify those hypotheses that overlap
the goal's level, active-time-region-list, aﬁd event-classes attributes

(and fall within the goal's inactive-time-region-list attribute). The

A Framework for Organizational Coordination 214

blackboard monitor connects these hypotheses to the goal using the
satisfying-hypotheses goal attribute.

However, two questions remain to be answered. Given a goal and its
set of satisfying hypotheses:

1. Is the goal sufficiently satisfied that executing additional
knowledge sources to work toward the goal would be superfluous?

2. Is the goal sufficiently satisfied that work on higher-level
goals should be allowed to proceed?

As we will see, the answers to these two questions are beyond the modest
capabilities of the blackboard monitor and instead must be addressed by
the local node planner.

The first question is very important if the planner has a number of
knowledge sources at its disposal for working on the goal. We would
like to avoid the creation of identical hypotheses (with identical
beliefs) using different knowledge sources because work on the goal was
not curtailed. The difficulty in determining when a goal has been
nsufficiently satisfied" is due to an incomplete specification of the
goal. When a goal is created from a stimulus hypothesis, it is supplied
with level, active-time-region-list, inactive-time-region-list, and
event-classes attributes. However, the goal does not specify how many
hypotheses could (or should) be created within its boundaries or their
expected belief values.

A simple technique for estimating these missing values is to use
the predicted output hypotheses (and their expected belief values)
provided by the precondition procedures of all knowledge sources able to
work on the goal. If a precondition procedure predicts that its

knowledge source will create a new hypothesis within the boundaries of

2 % 3 ~3 —3 3

A Framework for Organizational Coordination 215

the goal or will substantially increase the belief of an existing
satisfying hypothesis, then work on the goal should not be stopped until
that knowledge source has been executed. Only when the precondition
procedure of all unexecuted knowledge sources predict that their
knowledge source will not contribute new information to the goal can the
goal be considered as satisfied. A satisfied goal must be reactivated
if a new stimulus hypothesis is added, and the precondition procedures
for all knowledge sources that can work on the goal must be reevaluated.

If the precondition procedure estimates can be determined to never
fall short of the knowledge source's actual performance, only truly
superfluous knowledge source executions will be eliminated, and the
hypotheses and belief values satisfying the goal will be equivalent to
executing all the knowledge sources. The closer the estimates are to
the actual knowledge source performance (without falling short of the
actual performance), the better the pruning of superfluous knowledge
source activity.

Although the precondition procedﬁre estimates do aid the planner in
deciding when to curtail work (at least temporarily) on local problem
solving knowledge sources associated with a goal, they are insufficient
for deciding when to stop work on the goal altogether. The precondition
procedure estimates are based on the current input context available to
the knowledge sources. It may be that a knowledge source's input
context is incomplete because data on lower problem solving levels has
not been driven up to the 1level of the input coﬁtext. Stated

differently, there exist unsatisfied 1lower-level goals that can

A Framework for Organizational Coordination 216

contribute to the input context of the knowledge source.® Since
satisfying these lower-level goals can add lead to new information in
the input contexts of the higher-level knowledge sources, a goal should
not be considered "completely satisfied" until its associated
lower-level goals are completely satisfied.

The potential for obtaining additional satisfying hypotheses ffom
other nodes also complicates the goal satisfaction decision. While it
may be reasonable to expect the precondition procedure of local problem
solving knowledge sources to provide reasonably accurate estimates,
accurately estimating what might be received by asking another node to
reply with any hypotheses it has that satisfy the goal is unrealistic,
In addition, a node can receive unsolicited information from another
node that adds new stimulus hypotheses to a goal. In the latter
situation, the node has no choice but to reactive the restimulated goal
(and eventually any higher-level goals that have new information
supplied by working on the restimulated goal). In the former situation,
the node may be able to use beliefs about the other node's problem
solving activities to roughly estimate the information that might be
replied in response to sending a help goal to that node. While this can

be viewed as a problem associated with writing precondition procedures

8. Hayes-Roth and Lesser describe two types of relationships between
knowledge source instantiations and goals, termed direct and indirect
goal satisfaction [HAYE77]. Direct goal satisfaction means that a
knowledge source instantiation is a candidate for achieving a goal
because of its potential for creating hypotheses matching the desired
attributes of the goal. Indirect goal satisfaction means that the
knowledge source instantiation does not directly satisfy the goal,
but increases the probability that the goal will be satisfied by
another knowledge source instantiation by producing hypotheses useful
in the achievement of the goal.

_3% .3 3 . & _3 _3 _3 _13

A Framework for Organizational Coordination 217

for GOAL-SEND knowledge sources, the planner needs to decide whether or
not it is worth asking for help in satisfying a goal or whether the goal
can be sufficiently satisfied by local information.

Deciding if the goal is sufficientl& satisfied for work to begin on
higher-level goals is made easier by the precondition procedure
estimates. If the execution of knowledge sources working is allowed to
begiﬁ as soon as any hypotheses exist in their input contexts can lead
to repeated execution of those knowledge sources as additional low-level
hypotheses are created. On the other hand, delaying work on knowledge
sources associated with a higher-level goal until any related
lower-level goals are completely satisfied reduces the repeated
execution of higher-level knowledge sources, but it also delays the
development of high-level predictive information. For example, if a
signal location hypothesis can be quickly synthesized into one or more
vehicle location hypotheses (assuming the node is working only on the
location levels), the vehicle location hypotheses can be used to predict
what signal location hypotheses are missing and need to be identified.

While determining when higher-level work should be performed is, in
effect, an overall problem solving strategy rather than a simple,
syntactic, goal satisfaction decision, the precondition procedure
estimates can be used by the planner to estimate much additional
improvement might be made in the data associated with low-level goals.

The goal satisfaction issue is a local instance of the overall
network "stopping" problem. A major issue with a functionally accurate,
cooperative distributed problem solving network is determining when (and

if) the nodes have converged to an acceptable solution. It is possible

A Framework for Organizational Coordination 218

for each node toAdecide it has satisfied all its goals without realizing
that other nodes have additional information that could greatly improve
its portion of the answer map. This issue has not been directly
addressed in this research and remains a crucial area of open research
in the area of functionally accurate, cooperétive distributed problem

solving networks.

4.4 A Framework for an Organizational Designer

The preceding sections of this chapter described the local control
framework used at each testbed node, including the goal-directed
Hearsay-I1 architecture, the local node planner, and the interest areas
and subgoaling specifications used to influence the activities of the
node, Still to be discussed is the how organizational structuring
decisions interface with the local control framework. This is the
subject of this section.

Because all activity decisions made by a node are influenced by its
interest areas and subgoaling specifications, a node's organizational
responsibilities can be established and changed by simply modifying
these data structures. These data structures can be viewed as rudiments

of a third blackboard -- an organizational blackboard containing the

organizational roles and responsibilities for the node. The
specification data structures themselves do not provide an explicit,
high-level representation of these organizational roles and
responsibilities, but instead serve as a low-level "job description" of

those activities a node is should be performing and those activities a

’

-3 -3 -3 .3 3 .23

3

A Framework for Organizational Coordination 219

node should be avoiding. While organizational structuring could be
performed by directly changing these structures (and is the approach
used in the experiments reported in Chapter V), an indirect approach
allows the node to adopt or reject its organizational roles..

Instead of modifying the specifications directly, a second,
separate set of node activity specification data structures is kept at
each node, The original interest areas and subgoaling specifications
remain as the behavioral command center of the node. Their settings
directly control the node's activities. The second specifications set
forms the lowest level of the full-fledged organizational blackboard.
They are the result of elaborating higher-level organizationa1 roles and
responsibilities into an "organizational job description", The complete
structure of this organizational blackboard, and the processing needed
to perform the elaboration, remain an open research issue. What is
important - here is that the specifications directly controlling the
behavior of a node and the behavior suggested by the organizational
structure are separated. The node undertakes its organizational
activities only by transferring organizational specifications into its
interest areas and subgoaling specifications.

The activities of a node should also be influenced by its potential
for performing them. A node is continually receiving sensory data and
hypotheses from other nodes, This information provides numerous
opportunities for local node activities, However, the node's interest
areas and subgoaling specifications (possibly set from the
organizational blackboard) may be strongly opposgd to performing these

activities. The node's potential for work is represented on a fourth

A Framework for Organizational Coordination : 220

blackboard, the 1local node focusing blackboard. This blackboard

contains low-level specifications that indicate where the node perceives
there is substantial work it is able to perform. As with the
organizational specifications, these focusing specifications can be
transferred to the node's interest areas and subgoaling specifications,
at which point the node will actively pursue these activities.

Given the above structure, a mechanism implementing node skepticism
cah easily Dbe | added (éee Figure 32). When the roles and
responsibilities represented in the organizational blackboard are in
conflict with the criteria on the 1local node focusing blackboard, an
arbiter for determining the actual interest areas and subgoaling
specifications is needed. This arbiter is, in fact, implementing node
skepticism. Favoring the specifications on the organizational
blackboard make the node's behavior less skeptical (more of a "company
node"), while favoring the local node focusing specifications make the
node more responsive to its ability to immediately perform work.

The existence of the organizational and 1local node focusing
blackboards also help indicate when the portion of the network
organizational structure relating to the node needs changing. A strong
mismatchdbetween the two blackboards is a sign of trouble, and the
information contained in the focusing blackboard can be a valuable aid
in determining new roles and responsibilities.

The next chapter presents experiments performed with the testbed in
which nodes' interest areas and subgoaling specifications were varied
(directly from the environment file). These experiments demonstrate

that node behavior can indeed be controlled using these data structures.

—3 _3

|

3

-3 _3 -3 -3 3 _3

—3 3

—3 _ 3 __3

221

A Framework for Organizational Coordination

Figure 32: The Organizational and Local Node Focusing Blackboards and

Node Skepticism.

The behavior of a node is controlled by its interest areas and
subgoaling specifications. These data structures are modified
by behavioral specifications contained on the organizational
blackboard (representing organizational roles and
responsibilities) and on the local node focusing blackboard
(representing the ability of the node to perform work on
particular parts of the overall problem). Since these two
behavioral specifications are not necessarily in agreement, an
arbiter is required for determining the relative influence of
each, This arbiter is at the heart of node skepticism.

A Framework for Organizational Coordination

ORGAM | ZATIONAL
BLACKBOARD

ARBITER

LOCAL NODE
FOCUS ING
BLACKBOARD

NODE
SKEPTICISH

INTEREST AREAS
AND
SUBGOAL ING
SPECIFICATIONS

i

KS|
ACTIONS

)
I
|
|
|
|
l
|
|
|

LOCAL NODE
FOCUSER

222

Figure 32: The Organizational and Local Node Focusing Blackboards and

Node Skepticism.

3

! ?l

I really think I'm entitled to an answer to that question.

-- HAL in Stanley Kubrick's 2001: A Space Odyssey

CHAPTER v

DISTRIBUTED VEHICLE MONITORING TESTBED EXPERIMENTS

This chapter presents experimental evidence demonstrating the
flexibility of the testbed, the capabilities of the goal-directed
Hearsay-II architecture and its local node planner, and the impact of
organizational structuring decisions on the local control component of a
testbed node.

In the next section, the two distributed vehicle monitoring
environmental scenarios used in these experiments are described. This
is followed by a description of the performance of a centralized (single
node) architecture in these environments, Later sections present the
performance results of four and five node network architectures

operating under different organizational structuring specifications.
[}

5.1 The Environmental Scenarios

The experiments described in this chapter involve two different
distributed vehicle monitoring environments: a straight, single vehicle
pattern with a parallel ghost track (hereafter called the "straight
vehicle" environment) and a bent, single vehicle pattern with a ghost
track extension (called the "bent vehicle" environment). Both

environments are designed to test the network's ability to distinguish

223

Distributed Vehicle Monitoring Testbed Experiments 224

the actual track from a particularly difficult ghost track. To this
end, these environments involve a simple grammar and specific sensory

data ambiguity.

5.1.1 The grammar.

The grammar for these environments is the example grammar from
Chapter II and reproduced here (Figure 33). Pattern classes 1 and 2
represent single vehicles of class 1 and 2, respectively. Pattern class
3 represents a two vehicle pattern containing one vehicle of class 1,
displaced (3,3) units from the center of the pattern, and one of class
2, displaced (-3,3) units. (These displacements are not illustrated in
the figure,) All supports for the two vehicle classes are disjoint
except for signal class 18. Sensing a signal of class 18 provides weak
support for both vehicle classes, and consequently, for all three
pattern classes.

The tracking component of this grammar (also not illustrated)
specifies a maximum velocity for a vehicle as 4 units per time frame

with a maximum acceleration of 2 units per time frame.

5.1.2 The sensors.

The sensor configuration in these environments is shown in
Figure 34, The area to be monitored is twenty-two units square, with
vertices at (0,00, (22,0), (22,22), and (0,22). Four sensors with
identical characteristics are located at (6,16), (16,16), (6,6), and
(16,6). Each sensor uniformly covers a twelve unit square area with the
sensor at its center, This leads to a two unit overlap among the

sensors' coverages, Overlapping sensor coverage 1is not a problem

3 __3

3 1

—3 3 _3 3

E|

~—3 —3 ~3 T3 ~3 73 % —3 —3 31 3 ~F ~¥ T3 —1 T3F 3 —§ 3

Distributed Vehicle Monitoring Testbed Experiments 225

O Q G

‘ ' ‘ll' ‘I!’ vehicle

group

©]010I0I0IOIOIOIO Rammti

Figure 33: Grammar Used in the Testbed Experiments.

This 1illustrative grammar contains three pattern classes.
Pattern classes 1 and 2 represent single vehicles of class 1
and 2, respectively. Pattern class 3 represents a two vehicle
pattern containing one vehicle of class 1 and one of class 2.
The appearance of signal class 18 in the supports of both
vehicle classes adds minor confusion.

solving requirement and is actually a source of redundant processing in
the multinode experiments.

In order to precisely control the ambiguity present in these
environments, the random shifting of signal location hypotheses in
location and frequency class (as described in Section 2.3.4) is turned

off. All supporting signal location hypotheses of an actual or ghost

Distributed Vehicle Monitoring Testbed Experiments 226
SENSOR 2
SENSOR 3 SENSOR 4
g T S R
0 10 12 22

Figure 34: Sensor Configuration.

The four sensors covering the (0,0) to (22,22) monitoring area
The area covered by

(location (0,0) is at the lower left).
Sensor 1 at location (6,16) is shaded.

3 3 3 _3 __3

—3 3 2 _3

—3 3% 3 _ 3 3 __2 _3 3 3 _3

Distributed Vehicle Monitoring Testbed Experiments 227

vehicle are generated by the sensors at their specified position,

frequency, and belief.

5.1.3 Knowledge sources.

The generation of the answer map is restricted to the

Signal Graup Vehicle Vehicle Pattern
Location -> Location -> Location -> Track -=> Track

synthesis path in these experiments. This path is interesting because
tracking is performed only once a vehicle has been identified. Tracking
at such a high abstraction level is appropriate when identification of
vehicle types is less difficult than tracking their movements.

The basic testbed problem solving knowledge sources enabled in
these experiments are listed in Table 9. In these experiments, each
basic problem solving knowledge source requires one processing time unit
to execute, no matter what work it performs. This is specified in the
environment file by setting the runtime of each knowledge source to have
a fixed overhead of one time unit and a multiplier of zero time units
for each stimulus hypothesis (see the Knowledge-Source-Set Definitions
description in Appendix A). This uniform execution time provides a
convenient means for referring to processing time in the network (as
distinet from environmental time, measured in time frames). A network
cycle, or simply cycle, is defined to be one processing time unit
expended at each node in the network. Since the basic problem solving
knowledge source requires one processing time unit, three network cycles
in a two node network indicates that a maximum of six knowledge source
instantiations can be executed. If a node has no work to perform during

a cycle, its potential knowledge source execution is lost.

Distributed Vehicle

Monitoring Testbed Experiments

Knowledge Sources

Forward
Location Forward Forward Location-to-Track
Synthesis: Extension: Merging: Joining:
S:SL:GL EF:VT/VL:VT MF:VT:VT JF:VL/VT:VT
S:GL:VL MF:PT:PT
Track Backward Backward Location-to-Track
Formation: Extension: Merging: Joining:
FT:VL:VT EB:VT/VL:VT MB:VT:VT JB:VL/VT:VT
MB:VT:VT
Track Hypothesis Hypothesis
Synthesis: Transmission: Reception:
S:VT:PT HYP-SEND:VT:VT HYP-RECEIVE:VT:VT

Table 9: Knowledge Sources Used in the Testbed Experiments.

The fourteen basic problem solving knowledge sources used in
the testbed experiments described in this chapter.

Except for the FRONTEND and SENSORS knowledge sources, the
name each knowledge source has the form:

type :

input-level(s) : output-level,

228

The resolver stage of each knowledge source is set to leave the

beliefs of the output hypotheses generated by the candidate generator

stage unchanged. This means that these experiments use only the simple

knowledge incorporated in the candidate generators and do not use the

interpretation contained on the consistency blackboard in generating an

answer map. 1

1. The candidate generator and resolver stages of knowledge sources are
discussed in Section 2.3.7.

Distributed Vehicle Monitoring Testbed Experiments 229

In these experiments, track merging is performed at both the
vehicle track and the pattern track levels. This is interesting for
several reasons.

First, merge knowledge sources are redundant in a single node
network. Since all supporting location data is available at the node,
the track extension and location joining knowledge sources can be used
to extend any tracks created by the track formation knowledge source,
FT:VL:VT. The presence of merge knowledge sources provi§es minor
optimization since two overlapping or abutting vehicle track segments
(formed opportunistically from stronger supporting data -- see below)
can be spliced together without recomputing their structure using
extends and joins.

The major éeason the merge knowledge sources are included is for
the multinode network experiments. In these experiments hypotheses are
communicated only at the vehicle track level. Without merges, a node
receiving a vehicle track segment from another node would be unable to
incorporate it because of the lack of the underlying supporting location
hypotheses needed by extends and joins.

A second point of interest is why track merge knowledge sources are
also included at the pattern track level. A key issue in controlling
the activities of a testbed node is how the space of possible
interpretations should be searched. A completely breadth-first search
in which all signal location data is exhaustively synthesized to pattern
track hypotheses 1is computationally unrealistic. Instead, a more
depth-first opportunistic strategy is used; signal location hypotheses

with higher beliefs are synthesized to higher abstraction levels before

Distributed Vehicle Monitoring Testbed Experiments 230

work begins on lower believed signal location hypotheses, This is
implemented in the testbed by increasing the importance of knowledge
sources working at higher abstraction levels by changing the weights
associated with the local processing interest areas (see Table 8 in
Chapter 1IV).

In the experiments reported in this chapter,'a strong bias for work
at higher levels is used, resulting in an almost depth-first search of
the space of interpretations. This greatly reduces the number of
knowledge sources that are executed if a suitable solution path-is
selected. Knowledge sources working on the vehicle track 1level are
given only 0.5 the importance of knowledge sources working at the
pattern track level. The weighting used for the vehicle location level
is 0.1 that of the pattern track level, and the weighting used for the
signal location and group location levels 0.05 that of the pattern track
level. Such a strong depth-first tendency would result in the following
behavior if the pattern track merge knowledge sources were omitted in
these experiments.

Assume two mergable vehicle track hypotheses are created. The
planner can instantiate a track synthesis (S:VT:PT) knowledge source for
each vehicle track hypothesis and a track merge (MF:VT:VT) knowledge
source to merge the two vehicle track hypotheses. Since the scheduler
is biased to push results to higher levels, the two synthesis knowledge
sources are executed first. However, without a track merge knowledge
source at the pattern track 1level the two mergable pattern track
hypotheses cannot be combined into a single track hypothesis.

Eventually the vehicle track merge knowledge source may be run and the

—3

3 __3

o

3 3 _3 -3 ¥ _3 '_» _3 _¥ _3

Distributed Vehicle Monitoring Testbed Experiments 231

merged vehicle track synthesized to a pattern track hypothesis, but this
behavior is far from desirable. With the pattern track merge knowledge
sources the merge is performed at the pattern track level, directly
following the synthesis of the two pattern track hypotheses.

Such an almost dgpth—first behavior was selected for these
experiments to accentuate the effects of goal processing, both positive
and negative. When subgoaling from the developing high-level solution,
the first hypotheses created at the higher levels can have a significant
impact on the future processing at the node. If these hypotheses are
part of the actual interpretation, the node will focus on the correct
solution. If they are incorrect, the node will follow this false path.
The two environmental scenarios created for these experiments are
designed with this in mind. They are described in the following

sections.

5.1.4 The straight vehicle environment.

The straight vehicle environment is designed to test the network's
ability to use prediction to extend strongly sensed portions of an
actual vehicle track through weakly sensed portions in the presence of a
moderately sensed "ghost" track. Ghost tracks are a particularly
problematic phenomenon in the distributed vehicle monitoring domain,
caused by multiple proéagation paths of the actual signals and by
geometrical ambiguity in combining signals from multiple vehicles. The
ghost track in this environment mirrors the actual vehicle track for
eight consecutive time frames. This is unusual. Typically ghosts

behave as normal vehicles for a brief period only to abruptly disappear

Distributed Vehicle Monitoring Testbed Experiments 232

or to turn at sharp angles and accelerate to infinite velocity [GREE82].
The ghost in this environment represents a "worst-case" situation,
appearing as a normal vehicle with moderately strong sensory support.

In fact, the labels "actual" and "ghost" associated with the tracks
represent Ehe' interpretations, nay intentions, of the author in
specifying the environments. While the signal 1location data does
support the actual track slightly better than the ghost track, which
label should be associated with which track or whether they should both
be labelled as ghost or actual vehicles is a difficult question because
the actual number of patterns (or vehicles) in the environment is not
known by the network. Therefore, the selection of the pattern track
hypothesis with the highest belief is not sufficient. Additional
processing to determine which detected patterns are considered "real"
must be performed.

This additional "answer map generation" level of problem solving is
not included in the testbed. Since the testbed is being used for
investigating network coordination techniques, our main interest is in
the behavior of the network during the course of problem solving., 1In
the experiments reported in this chapter, the network is run until all
"correct" pattern track hypotheses (as specified by the consistency
blackboard) are created above a specified threshold.

The signal 1location data generated by the sensors is shown in
Figure 35. The signal location hypotheses associated with the actual

vehicle track (vehicle class 1) are detected as follows:

—3 3 _3 3 3 _3

...........................

Distributed Vehicle Monitoring Testbed Experiments

...........

233

................................

...

e

Figure 35: Straight Vehicle Environment: Sensory data.

Both ends of the actual vehicle track (vehicle class 1) are
sensed strongly with signal location hypothesis beliefs of
5000 (on a scale from zero to 10000), but the middle portion
is sensed weakly with signal location beliefs of 2000. The
parallel "ghost" track (also vehicle class 1) is sensed
moderately with signal location beliefs of 4100, and the
"ghost" track is close enough to the actual track to be
connected with it. The semsory signal location hypotheses are
indicated by squares, with the actual vehicle track indicated
by 1lines connecting the signal hypotheses. In this
environment, prediction from the strong ends of the actual
track can help determine that the track continues through the
Wweaker central portion.

Distributed Vehicle Monitoring Testbed Experiments 234
Sensed
Time Position Belief
1 (6, 2) 5000
2 (8, W) 5000
3 (10, 6) 5000
4 (12, 8) 2000
5 (14,10) 2000
6 (16,12) 5000
7 (18,14) 5000
8 (20,16) 5000

The parallel ghost track (also vehicle class 1) is close enough to the
actual track to be connected with it and its signal location hypotheses

are sensed as:

Sensed

Time Position Belief
1 (4, 4) 4100
2 (6, 6) 4100
3 (8, 8) 4100
y (10,10) - 4100
5 (12,12) 4100
6 (14,14) 4100
7 (16,16) 4100
8 (18,18) 4100

In this enviromment, predicting from the strong ends of the actual track
that the track continues through the weaker central region can

significantly reduce the effort needed to determine the track.

5.1.5 The bent vehicle environment,

In the bent vehicle environment, the actual vehicle track bends to
such a degree that predicting that the track continues in a straight
line can falsely lead the system to use the ghost track (Figure 36).
Again both ends of the actual vehicle track are sensed strongly and the
middle portion (where the change in direction occurs) is sensed weakly.

The signal location hypotheses associated with the actual vehicle (of

3 3 _3

3

E]

iy

3

-3 -3 -3 -3 3 _3 __13

~ 2

~4 —3% ~—3 3§ — 3% ~8%8 —3% T3 —9% 783 —3 "3 T3 T3 T3 73§ T3 3 3

Distributed Vehicle Mofiitoritig Tesdtbed Experiments

........

235

.................................

Figure 36: Bent Vehicle Environment: Sensory Data.

Both ends of the actual vehicle track (vehicle class 1) are
sensed strongly with signal location hypotheésis beliefs of
5000 (on a scale from zéro to 10000), but the middle portion
is Serised wéakly with signal locition beliefs of 2000. The
ghost track (also vehicle ¢lass 1) exténding in the original
direction of the actual track is sensed moderately with signal
location beliefs of 4100. 1In this environment, prediction
from the actual track can falsely direct activity to the ghost
track.

Distributed Vehicle Monitoring Testbed Experiments 236

class 1) are sensed as:

Sensed
Time Position Belief
1 (6, 2 5000
2 (8, u) 5000
3 (10, 6) 5000
y (12, 8) 2000
5 (12,11 2000
' 6 (12,14) 5000
7 (12,17) 5000
8 (12,20) 5000

In this environment, the moderate ghost track continues in the original
direction of the actual vehicle track. Its signal location hypotheses

are sensed as:

Sensed
Time Position Belief
5 (14,10) 4100
6 (16,12) 4100
7 (18,14) 4100
8 (20,16) 4100

The purpose of this environment is to investigate the dangers of relying

too strongly on prediction,

5.2 Experiments with the Goal-Directed Hearsay-II Architecture

This section describes experiments performed on a single node
(centrali;ed) testbed network configuration. The purpose of these
experiments is to experiment with the goal-directed Hearsay-II
architecture separately from the issues of a distributed network. In
these experiments all four sensors report to the single node which
generates the answer map. A table summarizing the results of these

experiments is presented in Section 5.2.7.

_3 3 __3 _3

Distributed Vehicle Monitering Testbed Experiments 237

5.2.1 Local coordination strategies.

In these experiments the local node planner is instructed (via the

2 contained in the environment file) +to

subgoaling specifications
generate subgoals from vehicle track and pattern track goals created
from internal data-directed events., Vehicle track goals have subgoals
generated at the vehicle location, group location, and signal location
levels and pattern track goals have subgoals generated at the vehicle
track, vehicle location, group 1location, and signal location levels.
These subgoals are given the same rating and cover the same time frames
and blackboard regions as the high level goal.

Two different 1local coordination strategies were explored by
changing (again in the énvironment file) the subgoaling threshold used
by the planner. 1In the first strategy the threshold is set at 10000,
indieating that only those vehicle track and pattern track goals rated
at 10000 should be subgoaled. This setting effectively eliminates the
generation of any subgoals and knowledge sources are scheduled solely on
the basis of data-directed events.

In the second strategy the threshold is set at zero, indicating
that any vehicle track or pattern track goal with a positive value
should be subgoaled. This setting effectively causes the generation of
subgoals from all vehicle track and pattern track goals. The higher
ratings of these subgoals, stemming from the general increase in the
beliefs of hypotheses at higher abstraction levels, causes the ratings

of knowledge source instantiations contributing to vehicle track or

2. See Section 4.2.7.

Distributed Vehicle Monitoring Testbed Experiments 238

pattern track goals to be increased.

In most of the experiments reported in this chapter, a goal
weighting of 8000 is used in the knowledge source instantiatioh rating
calculation. (Experiments in which the goal weighting is varied are
discussed in Section 5.2.6.) A goal weighting of zero specifies that
the predicted beliefs of the hypotheses generated by the knowledge
source instantiation are used for scheduling. A weighting of 10000
specifies that the rating of the goals the knowledge source
instantiation is attempting to achieve is used for scheduling. The 8000
weighting specifies that 20 percent of the former and 83 percent of the

latter be used in rating knowledge source instantiations (see Section

4.2.9).

5.2.2 Straight vehicle environment.

Without focusing through the creation of subgoals, the system
executes 157 knowledge source instantiations (excluding the FRONTEND and
SENSORS) to completely generate the correct track (Figures 37 through
42)., With focusing based on subgoaling from the vehicle track and
pattern track levels the system executes 52 knowledge source
instantiations (Figures 43 through u5).

This significant difference comes from the system performing the
complete generation of the actual pattern track hypothesis (at which
point it is stopped) before the expenditure of considerable effort in
attempting to develop track hypotheses that integrate high belief data
from the actual track with medium belief false data and on the medium

belief false data. Without subgoaling, these activities seem reasonable

3

-3

Distributed Vehicle Monitoring Testbed Experiments 239

.......................

.................

o

In the first 30 knowledge source executions, the system first
synthesizes vehicle location hypotheses from the strongly
sensed portions of the actual vehicle track and then forms
pattern track hypotheses out of these hypotheses,. (The
lighter tracks to the upper left are weakly hypothesized
pattern class 3 hypotheses generated from the single support
of vehicle type 1.)

Figure 37: Straight Vehiecle Environment without Subgoaling: Cycle 30.

Distributed Vehicle Monitoring Testbed Experiments

240

The system next synthesizes all vehicle location hypotheses of
the ghost track and uses these in forming vehicle track
hypotheses with some of the strongly sensed portions of the
actual vehicle track. (The narrow tracks represent vehicle
track hypotheses and the wider tracks pattern track
hypotheses.)

Figure 38: Straight Vehicle Environment without Subgoaling: Cycle 61.

3 3 3 _3

3

3 3 __13

3 3 3 _3

—3 _ 3

Distributed Vehicle Monitoring Testbed Experiments

Figure 39: Straight Vehicle Environment without Subgoaling: Cycle 62.

The next knowledge source instantiation continues forming
vehicle track hypotheses with other strongly sensed portions
of the actual vehicle track.

241

Distributed Vehicle Monitoring Testbed Experiments 242

.........

AN INNNRIRINI PPN
? 3
gb:

Figure 40: Straight Vehicle Environment without Subgoaling: Cycle 63.

The next knowledge source instantiation completes formation of
vehicle track hypotheses of the ghost track. Although the
figure makes it appear as if there is a single vehicle track
hypothesis representing the entire ghost track, there are
actually a number of shorter hypotheses which have not yet
been merged together.

3 3

3

_3

Distributed Vehicle Monitoring Testbed Experiments

243

/

L Z
,m;x%@;za
| P

RIS

Y

S

“
7 %
-l

NN
W,

4’/;%%:{:;,
|7 % //

w

3,

‘\?3\‘=

EN
.:\

SRR
: \
U\

.

essnsssssnssesscsssantanns

AR é
PN

A,
AR,

RN

y
Lk L /

Y

\

7

,"-l‘?‘: = 4 r/::: o ;_4‘,’/ £
2 2 iz 3
P e w aad
s P g 1
P Z :’/ S5 S
VA S S b b3 5
'_d: ” ol b -
2 A L & x
% / s :

>
RN

SO
iy
N,

tes
o
X

%3

23
5
Pt
§
fo

r s

b

3%

L%

53

PETTre:

Figure 41: Straight Vehicle Environment without Subgoaling: Cycle 73.

Because the central portion of the actual track is believed so
weakly, the next 10 knowledge source instantiations are spent
forming pattern track hypotheses from the ghost vehicle track
hypotheses.

Distributed Vehicle Monitoring Testbed Experiments 244

\\\
\\\\\\\>

N
\
\g.
\
N

A

N\

W
W

%\\\

it

N

i

AN
NI
<

§\
-.%- b
_y
3\‘{
\§
‘sx
N\

W

3

. Z
Z

0\

QR
A\

..................................

o A A
4 s
K pd Z,
”:/,zw;:ﬁéaf////://f{/
Z

W
Z G 8
7z 7 ay
gtz il
s Z 50
............................. G TR
P ~ 27

“/2 2,
zaz%%z%az%%;

7

.......

Figure 42: Straight Vehicle Environment without Subgoaling: Solution at

Cycle 157.

The weaker central portion of the actual track is finally
worked on and the complete vehicle track and pattern track
hypotheses for the actual track are generated. The complete
actual pattern track hypothesis is generated in cycle 157.

3

3 3 3 _3

3

Distributed Vehicle Monitoring Testbed Experiments

245

Figure U43: Straight Vehicle Environment with Subgoaling: Cycle 23.

In the first 23 knowledge source executions, the system
synthesizes vehicle location hypotheses from the strongly
sensed portions of the actual wvehicle track and then forms
pattern track hypotheses out of these hypotheses.

Distributed Vehicle Monitoring Testbed Experiments 2u6

/%@

L7

ﬁ

.........................

Figure 44: Straight Vehicle Environment with Subgoaling: Cycle 38.

Subgoals generated to extend these pattern track hypotheses
(both forward and backward in time) raise the ratings on
knowledge source instantiations working on the weaker portions
of the actual track and the system next synthesizes vehicle
location hypotheses extending through the weaker central
portion of the actual track.

3 _3 _3 _3

3

Distributed Vehicle Monitoring Testbed Experiments 247

Figure 45: Straight Vehicle Environment with Subgoaling: Solution at
Cycle 52,

The remaining knowledge source instantiations merge the
vehicle track and pattern track hypotheses together,
eventually generating the complete actual pattern track
hypothesis. The use of subgoaling has changed the ordering of
knowledge source instantiations to such a degree that the
actual pattern track hypothesis is generated before any work
at all is performed on the ghost track. (Normally, processing
would be allowed to continue beyond this cyecle, since the
system needs to determine if there is other sensory data in
the environment worth investigating.)

Distributed Vehicle Monitoring Testbed Experiments 248

from the scheduler's local view of the predicted effects of knowledge
source activity. However, by affecting the decisions of the scheduler
with subgoals representing predictions from vehicle track and pattern
track hypotheses, the system is able to continue its efforts to develop
the actual pattern track hypothesis before considering the moderately
believed ghost track data. Normally, processing would continue after
the actual pattern track has been generated, since the system needs to
determine if there is other sensory data in the environment worth
investigating.

While the number of knowledge source executions executed before the
complete actual pattern track hypothesis is created shows a significant
reordering of the sequence of knowledge source executions there are
other important differences in these experiments, In a Hearsay-II
system, creation of a hypothesis on the data blackboard involves a
substantial overhead. Without subgoaling, the system creates 313
hypotheses before it is stopped. With subgoaling, the system creates
only 157 hypotheses. The beliefs associated with the actual and ghost
pattern track hypotheses when the system is stopped are also important.
Without subgoaling, the system places a belief of 4499 on the actual
pattern track hypothesis and a belief of 4098 on the ghost pattern track
hypothesis. With subgoaling, the system places a belief of 4666 on the
actual pattern track hypothesis and is stopped before it creates a ghost
pattern track hypothesis.

To help place these numbers in perspective, the experiments were
rerun to exhaustion by setting the solution threshold to 10000 (an

unattainable belief). Without subgoaling the éomplebe generation of all

—3 3

Distributed Vehicle Monitoring Testbed Experiments . 249

hypotheses from the sensory data requires 323 cycles and the system
creates 552 hypotheses, places a belief of 4952 on the actual pattern
track hypothesis, and places a belief of 4098 on the ghost pattern track
hypothesis. With subgoaling the complete generation of all hypotheses
from the sensory data requires 322 cycles and the system creates 572
hypotheses, places a belief of 4952 on the actual pattern track
hypothesis, and places a belief of 4100 on the ghost pattern track
hypothesis, The negligible differences between these two experiments
are due to asymmetries in the simple knowledge used in the knowledge
sources' candidate generators: a knowledge source may generate a
slightly different belief for a created hypothesis if the supports are
added by multiple invocations of the knowledge source than if all the

supports are available in a single invecation.

5.2.3 Bent vehicle environment.

The bent vehicle environment is designed to thwart subgoal focusing
through the prediction of uniform vehicle movement. Instead of
continuing in the same direction, the actual track makes a sharp bend in
the middle of the weakly sensed area. To make matters worse, a ghost
track extends in the original direction of the actual track.

Without focusing through the creation of subgoals, the system
executes 116 knowledge source instantiations to completely generate the
correct track, creates 258 hypotheses, places a belief of 4912 on the
actual pattern track hypothesis, and places a belief of 4752 on the
ghost pattern track hypothesis (Figures 46 through 52). With fbcusing

based on subgoaling from the vehicle track level the system executes 65

Distributed Vehicle Monitoring Testbed Experiments

.....

.........

250

%
...... €0 ZZ sev nenpen seeoy
Z i
Z H
Z H
Z 5
?' e‘%&k
4 SRR
% e
Z =
Z =
Z
Z E
Z b
gw‘;
7 N
7z A%
3:.:'3
b
%
§7.
&
=
§@,§
................ e do .m§§
W ‘
g
o
g
Z
Z
75 b
/;/ -':_%-&Ei
y 4
e
7 7
Y R
7 45
£ ﬁy
> ‘,. lé
55
I 4
o
P4
T

Figure 46: Bent Vehicle Environment without Subgoaling: Cycle 28.

In the first 28 knowledge source executions,
synthesizes pattern track hypotheses from the strongly sensed
portions of the actual track.

the system

-3 -3 3 3 3 3 3

— 3

3 __3 3 3

3

3 3 3

3

—3 ™ ~—3% —™3 —9% ~3 ~—~3§ ~—3 9y —3 ~—3 T3I ~—3FJ TI T3 —3 ~—3 ™—3 T3

Distributed Vehicle Monitoring Testbed Experiments

251

........................

AR SR

W%w.mmu.»

NI
eetesseraiecsnses:

éf

rern
v
p)

Figure 47: Bent Vehicle Environment without' Subgoaling: Cycle 45,

The system next synthesizes all vehicle location hypotheses of
the ghost extension and forms a vehicle track hypothesis from
the first ghost 1location to the strong end of the actual

track.

Distributed Vehicle Monitoring Testbed Experiments

252

.....................................

’/,.
Z
Z
7 -
A SR
% ths
Z
z
A
Al
A3
Y
Y
%
. %Eg 3
® N/
g 5]
7
y
y]
/"/
g§§$7 %
- P B

Figure 48: Bent Vehicle Environment without Subgoaling: Cycle U46.

The system next forms an additional vehicle track hypothesis

using the ghost vehicle location hypotheses.

-

Distributed Vehicle Monitoring Testbed Experiments 253

N

.

%
g
H

i

H

:

:

N

\&\\}_‘ AR AN AN
) e

s

“h\\e.‘\\ 3

- 3
P i
7 :
y s
4 f
. H
G :
i S
7 s
2 Al

BT T T T PP PT T T PP R

Figure 49: Bent Vehicle Environment without Subgoaling: Cycle 52.

The ghost extension is completed and pattern track hypotheses
are synthesized from all vehicle track hypotheses.

Distributed Vehicle Monitoring Testbed Experiments 254

SHHETIRIRRGR

QN

W

Y X ',\
*S&"\.'\ EANORINARN

.\\\}\\-

gm%mm%§§MMmmmu

Paced
RGN AR
h 2 4
2
Ny

\\\\ \\\\\\\\\‘
NeBLELR2
A\

%§§m”mmn

R

Y
%

.................................

Figure 50: Bent Vehicle Environment without Subgoaling: Cycle T1.

The system finally begins

to work in the weak central region,

forming pattern track hypotheses from both the ghost extension

and the actual track.

-3 3 __13

2

-3 __3 _ 13

-

—3 T3 E

Pistributed Vehicle Monitoring Testbed Experiments

255

AR RN

\)
R

-
.s\\\\\\{:’\

VAR

AN

Figure 51: Bent Vehicle Environment without Subgoaling: Cycle 74,

Additional vehicle track hypotheses are made, including the

last section of the actual track.

 f— § - ¥ § © - F [¢ ¢ ¥ e [b BT g8

256

Solution at

ﬁ“fﬁs ...vq

*ﬂ %m#%%ﬁ»&mﬁ%.é&&&ﬁ?&%r%%»gw R .”..& NNW)

//o// u Lt
: Dy,
A xwﬁ
Y

,,,,,//,%,,, //./

?

NN

Cycle 116.

AN AN w .
zﬁ&zZZZﬁ42222&42&42?52394220Aazrézzzzay, S Y

/ h
\ %

Bent Vehicle Environment without Subgoaling

4
%

Pattern track hypotheses are synthesized from the remaining

vehicle track hypotheses and these hypotheses are merged into
the complete actual pattern track hypothesis and the ghost

pattern track extension.

Distributed Vehicle Monitoring Testbed Experiments
Figure 52

Distributed Vehicle Monitoring Testbed Experiments 257

knowledge source instantiations, creates 173 hypotheses, places a belief
of 4416 on the actual pattern track hypothesis, and is stopped before
creating the ghost pattern track hypothesis (Figures 53 through 56).

Despite the bend in the actual track, the use of subgoaling
effectively changed the ordering of knowledge source instantiations to
allow cémplebion of the actual track before any work was begun on the
ghost extension. This level of performance was better than expected.
It was expected that subgoaling from predicted vehicle track and pattern
track extension goals would lead the system to work on the ghost track
extension, causing the performance of the system with and without
subgoaling to be more similar. (But see the real-time experiments,
reported in the next section),

Again these experiments were rerun to exhaustion by setting the
solution threshold at 10000. Without subgoaling the system executes 184
knowledge source instantiations, creates 384 hypotheses, places a belief
of 4912 on the actual pattern track hypothesis, and places a belief of
4752 on the ghost pattern track hypothesis. With subgoaling the system
executes 164 knowledge source instantiations, creates 390 hypotheses,
places a belief of 4416 on the actual pattern track hypothesis, and
places a belief of 4304 on the ghost pattern track hypothesis. The
difference in these results needs a bit of explanation.

Even though both of the exhaustive search experiments ran until
there was no longer any work left to be performed, they searched the
space of possible solutions very differently. Even when subgoaling is
turned off, the planner in the goal-directed Hearsay-II architecture is

using data-directed goals as 1local contexts for determining which

Distributed Vehicle Monitoring Testbed Experiments

258

AN A
i)

SRR

AR
N

20,
%3
e

7

Figure 53: Bent Vehicle Environment with Subgoaling: Cycle 28.

In the first 28 knowledge source executions, the system
synthesizes pattern track hypotheses from the strongly sensed
portions of the actual track. ‘

_Y 3 .32 _3 __3 _3

—3 __3

1 3

-3 1 3 -3 i --» 3 X _ 3

—3 — 3 T 3 T3 " » —a —a ~— =3 7 a — 1

Distributed Vehicle Monitoring Testbed Experiments

259

SO IR

...................................

Figure 54: Bent Vehicle Environment with Subgoaling: Cycle 35.

Subgoals from pattern track extension goals raise the ratings
of synthesis knowledge source instantiations working on the
weak portion of the actual track. Vehicle location hypotheses
are synthesized for both weak locations and a vehicle track
extension is hypothesized.

Distributed Vehicle Monitoring Testbed Experiments

OO

260

A2
SRR S
N

¥ 2
Ll

oo
42"

@

%
)
SR

&

Figure 55: Bent Vehicle Environment with Subgoaling: Cycle 36.

A spanning set of vehicle track hypotheses for the actual

track is completed.

)

(3 3 i3 __ 3

3 3 -3 -3 3 '3 3 1

-5 __%

3 3 r’?g 3 3 —3 —3 3 3 —3 —3 3 —3

Distributed Vehicle Monitoring Testbed Experiments

261

\\.\\\'.\\\\\‘S\\\\\\\\\\\\\\\\2\\\}.\\\%\\\\\\\\\\\.\\\“x\\‘.\\\‘i\\\\\\\:V

......

BN

Figure 56: Bent Vehicle Environment with Subgoaling: Solution at
Cycle 65.

The vehicle track hypotheses are synthesized and merged into a
complete pattern track hypothesis for the actual track.
Despite the bend in the actual track, the use of subgoaling
effectively changed the ordering of knowledge source
instantiations to allow completion of the actual track before
any work was begun on the ghost extension. This level of
performance was better than expected.

Distributed Vehicle Monitoring Testbed Experiments 262

knowledge sources should be executed. When the ratings of goals are
changed through subgoaling, some goals that were worked on early in one
experiment are delayed in the other and vice versa. The delayed goals
continue to acquire additional stimulus hypotheses before the knowledge
source instantiation is executed. These additional hypotheses provide a
different input context for the knowledge source. Goals which are
highly rated may have their knowledge source instantiation executed
before additional stimulus hypotheses arrive. These' latter stimulus
hypotheses cause the goal to be reactivated and possibly worked on by a
different knowledge source instantiation.in the newer context. These
timing differences between the two experiments, coupled with asymmetries
in the candidate generators, lead to the different results. It should
be noted that although the absolute values of the beliefs of the actual
and ghost pattern track hypotheses are different in the two experiments,
the relative difference between the actual and ghost hypothesis beliefs
remain unchanged. Therefore, the actual belief values placed on
hypotheses are less significant than the relative relationship among the

beliefs when comparing the performance of testbed experiments.

5.2.4 Real-time experiments.

In the previous experiments, all sensory data were available at the
start of the run. Such "batch" mode experiments allow the system to
work wherever the data are the strongest. A set of experiments in which
the data for each time -frame are inserted every fifth cyecle was
performed to investigatg how the system performs in a "real-time"

setting. (Again this is a simple change to the environment file.) The

|

! 31 & __3

3

3

7

% T3 ~— 3 T3 "3

Distributed Vehicle Monitoring Testbed Experiments 263

four non-exhaustive experiments described above were rerun with all
parameters unchanged except for the real-time insertion of signal

location hypotheses.

Straight vehicle environment.

Real-time insertion of sensory signal location hypotheses improved
the performance of the system, both with and without the use of
subgodling. Without subgoaling the system executes 152 knowledge source
instantiations (a speed-up of 5 cycles over the batch mode experiment);
creates 301 hypotheses, places a belief of 4443 on the actual pattern
track hypothesis, and places a belief of 4100 on the ghost pattern track
hypothesis. With subgoaling the improvement is even greater. The
system executes 39 knowledge sourceé instantiations (a speed-up of 13
cycles over the batch mode experiment), creates 135 hypotheses, places a
belief of 4712 on the actual pattefn track hypothesis, and is stopped

before creating a ghost pattern track hypothesis.

Bent vehicle environment.

Without subgoaling the real-time bent vehicle environment executes
114 knowledge source instantiations (a speed-up of two cycles over the
batch mode experiment), creates 247 hypotheses, places a belief of 4704
on the actual pattern track hypothesis, and places a belief of 4160 on
the ghost pattern track hypothesis (Figures 57 through 63). With
subgoaling the real-time bent vehicle environment executes 76 knowledge
source instantiations (an increase in 11 cycles over the batch mode
experiment), creates 175 hypotheses, places a belief of 4912 on the

actual pattérn track hypothesis, and places a belief of #4056 on the

Distributed Vehicle Monitoring Testbed Experiments

264

.....................

Figure 57: Real-Time Bent Vehicle Environment without Subgoaling:
Cycle 18.

The system first synthesizes a pattern track hypothesis from
the first strong portion of the actual track and, as new data
arrives, synthesizes vehicle 1location hypotheses from the
ghost extension. (Vehicle location hypotheses are indicated
by circular symbols and signal location hypotheses by square
symbols.)

. » _ 3 _3 _3 _4 -3 _3 __3 3 3 _

=

Distributed Vehicle Monitoring Testbed Experiments 265

3

ANNRHRINNRRRR

e
&

&
5%
.. §§%
#

yd #

.{/
S Y
e >
&

L

Figure 58: Real-Time Bent Vehicle Environment without Subgoaling:
Cycle 29.

The second strong portion of the actual track is sensed and
the system drops work on the ghost extension to synthesize a
pattéern track hypothesis for part of the second strong
portion.

Distributed Vehicle Monitoring Testbed Experiments

266

i

N

AVYs

G SRR

\&\\\‘S\\\.\’:vl\\\\}ti\‘t{\\\"t-X\\\\\‘K\\\\\‘t{-'
N i
Wt

B
SO

R

e T
{1\#.

o
2 8‘)

od
fg
Pt

..

Figure 59: Real-Time Bent Vehicle Environment without Subgoaling:

Cycle 36.

The system forms a pattern track hypothesis connecting the
second strong portion of the actual track with part of the
ghost extension and, once the last time frame has been
received, synthesizes a pattern track hypothesis for the
remainder of the second strong portion.

|

. 2 _3 _% __ 2 _3 _& _3 3 __» __» _3 _ &z __3 _3

3

Distributed Vehicle Monitoring Testbed Experiments 267

AR RN N

F b R senmnene

Figure 60: Real-Time Bent Vehicle Environment without Subgoaling:

Cycle 41,

The system forms pattern track hypotheses for a complete track
which include part of the actual track data and part of the

ghost extension.

Distributed Vehicle Monitoring Testbed Experiments 268

wWad,
~

AR

AR S SN

.~\\&\\"‘\\\

WA

3 3 3 _.3

3 3

4 3 __ 3

Figure 61: Real-Time Bent Vehicle Environment without Subgoaling:
Cycle Tu.

The system forms pattern track hypotheses for the remainder of
the ghost extension.

269

tsssrsssasessressnrsrranans

PR

3
frrsssmrnne e e nx«nﬁmmﬁqﬁsﬁg 1 s
a. H :

plv

N N\ B
, n.ﬁ.%//ﬂ/ / o y .”.w

R
B ZZVV////,V/ DEEINHANARN ?/z/ﬁk.?f??/////

¢ RN

o) Y

Real-Time Bent Vehicle Environment without Subgoaling
Cycle Q7.

Distributed Vehicle Monitoring Testbed Experiments

Figure 62

system uses the weaker portion of the actual track in
forming a track with the second strong portion of the actual

track and with the ghost extension.

The

Distributed Vehicle Monitoring Testbed Experiments 270

O R SR N

SN

N
, N

.................................

Figure 63: Real-Time Bent Vehicle Environment without Subgoaling:
Solution at Cycle 114,

Working backward in time, the system eventually includes the
remaining weak time frame of the actual track in the complete
actual pattern track hypothesis, The real-time experiment
required two less knowledge source executions than the batch
mode experiment.

.' ‘g

Distributed Vehicle Monitoring Testbed Experiments 271

ghost pattern track hypothesis before the system is stopped (Figures 64
through 69). The delay in sensing the second strong portion of the
actual track allows the extension of the beginning of the actual track
along the ghost extension. The strong depth-first predictive effect of
subgoaling has, in this case, lead the system away from the actual
track. However, even in this difficult environment the system with

subgoaling significantly outperforms the system without subgoaling.

5.2.5 The cost of goal processing.

A continuing issue in artificial intelligence is whether quickly
searching many possibilities is more effective than making more informed
(and expensive) decisions about where to spend problem solving effort.
The balance Dbetween "speed" and ‘"smarts" is basically one of
optimization and depends on the specifics of the problem solving
situation. The goal-directed Hearsay-II architecture and planner
provide the capability of making more informed 1local coordination
decisions than the data-directed Hearsay-II architecture, These
decisions are not without cost, and this section considers if this
expenditure is more than rewarded with a lower total problem solving and
coordination cost.

Various metrics can. be developed for comparing the cost of
subgoaling in these experiments. The most obvious comparison would be
to compare the execution time required by the testbed in the runs with
and without subgoaling. However, this metric would be misleading, since
knowledge sources are simulated by syntactic candidate generators whose

powers are varied using information on the consistency blackboard and

Distributed Vehicle Monitoring Testbed Experiments

272

...

Figure 64: Real-Time Bent Vehicle Environment with Subgoaling:
Cycle 16.

The system first éynthesizes a pattern track hypothesis from
the first strong portion of the actual track and, as the next
time frame arrives, extends a pattern track hypothesis to
include the first weak location in the actual track (the only
possibility).

3 .3 3 _3

3 -3 3 _3 _3 .3 __32

—2 -3 3 3 -3 3 3 3

Distributed Vehicle Monitoring Testbed Experiments 273

..............

Figure 65: Real-Time Bent Vehicle Environment with Subgoaling:
Cycle 29.

As additional time frames arrive, subgoaling the high level
extension goals of the pattern track hypotheses causes the
system to continue with the ghost extension even though
stronger signal location hypotheses at the end of the actual
track are available.

Distributed Vehicle Monitoring Testbed Experiments

274

..

..............

Figure 66: Real-Time Bent Vehicle Environment with Subgoaling:
Cycle 39.

Synthesis of the ghost track extension continues through the
last time frame.

—3 3

.3 3 3 .3

—2 7 3 _3

Distributed Vehicle Monitoring Testbed Experiments

Figure 67: Real-Time Bent Vehicle Environment with Subgoaling:
Cycle 49,

The system begins synthesizing Thigher 1level location
hypotheses from the remaining signal location data. Since the
second weak location of the actual track is also within the
extension goals generated from the existing pattern track
hypotheses, vehicle track hypotheses including it are created.

275

Distributed Vehicle Monitoring Testbed Experiments

276

.....

R

b

”&\%

Figure 68: Real-Time Bent Vehicle Environment with Subgoaling:
Cycle 63.

The system continues forming pattern track hypotheses with the
remaining actual track data.

)

3 3 3

3 3 3

—r % __3 3 3

277

Distributed Vehicle Monitoring Testbed Experiments

“........... .
{ : H H
i i H 3
i i H :
i i
H H 3
: ; :
: H H
H H H
:
: :
H /..h. m
,,/ H

I - W :
R i -4

£33 %

i N N i
2%32223232%322%22&&32?Aﬁﬁ%ZZzZZZEZﬁZZ@y/ i
: . : RN

s H N4
: 3 : ht //

H . H
$:
ahas =

Solution

Real-Time Bent Vehicle Environment with Subgoaling

Figure 69

at Cyecle 76.

The complete actual pattern track hypothesis is generated in

cycles

11 cycles 1longer than the 65
required in the "batch" mode experiment with subgoaling.

is

This

cycle 76.

Distributed Vehicle Monitoring Testbed Experiments 278

the planner is an actual problem solving module that performs its entire
task. 1In addition, the model of each knowledge source instaﬁtiation's
predicted behavior is obtained by actually preexecuting the knowledge
source instantiation rather than executing a faster (but potentially
less accurate) precondition process to estimate the behavior of the
knowledge source. This technique allows the planner and scheduler to
have as accurate a model of what a given knowledge source will do as is
desired. (In these experiments the actual beliefs of the output
hypotheses of a knowledge source are used by the planner and scheduler.)
These additional activities would be difficult to factor out of any
execution time measurement of the cost of subgoaling.

One reasonable metric is to measure the number of executed
knowledge source instantiations and the number of subgoaling activities
performed by the planner. If the average cost of executing a knowledge
source instantiation is CostKSI and the averaée cost of subgoaling a

vehicle track or pattern track goal (hereafter called a subgoal action)

is CostSA then the cost of running the system with and without
subgoaling are equal when:

CostKSI * #KSIs . =
no subgoaling

CostKSI * #KSIssubgoaling + CostSA * #SAs,

The ratio of the costs is then:

CostSA #KSIs, subgoaling = PKSISgybgoaling
CostKSI ~ #SAs °

This ratio has the following values in the above experiments:

3 3 .3 __3

2 3 __3 ! 3y __3

—d

Distributed Vehicle Monitoring Testbed Experiments 279

Sensory Reduction Subgoal Cost

Environment Data in KSIs Actions Ratio
straight batch 105 39 2.7
straight real-time 113 27 4.2

bent batch 51 55 0.9
bent real-time 38 66 0.6

Even in the bent, real-time environment where subgoaling is the least
effective, the cost of a subgoaling action would have to be 60 percent
of the cost of executing an average knowledge source instantiation for
subgoaling to lose in total execution time. If knowledge source
instantiations perform significant computation (as is the norm with
Hearsay~II systems) the cost of a subgoaling action will tend to be a
small percentage of the cost of executing a knowledge source
instantiation. This analysis assumes that the saved cost of knowledge
source instantiations eliminated by subgoaling is close to the average

cost of executing a knowledge source instantiation.

5.2.6 The balance between data-directed and goal-directed control.

To explore the balance between data-directed and goal-directed
control a set of experiments was performed in which the weight given by
the scheduler to the beliefs of created hypotheses versus the importance

of created goals was varied.

Straight vehicle environment.

The results with the straight vehicle environment were:

Distributed Vehicle Monitoring Testbed Experiments 280

Actual Ghost
Goal Executed Created Track Track

Weight KSIs Hyps Belief Belief
0 123 300 4222 4100
2000 130 304 Y222 4100
4000 52 153 4221 -
6000 52 152 4041 -
8000 52 157 4666 -
10000 75 207 4777 -

When the system is heavily data-directed or goal-directed it per formed
worse than when there is a balance of the two. This behavior stems from
the predictions provided by subgoaling vehicle track hypotheses. With
the goal weight set to zero the system is essentially operating without
subgoaling.3 As the goal weight is increased, predictions from the
strong portion of the actual track sharply reduce the number of executed
knowledge source instantiations needed to generate the actual vehicle
track, When activity becomes entirely goal-directed, false predictions
made from the ghost track lead the system to again work on the ghost
track before completing the actual track. With the straight vehicle
environment there is a wide range of intermediate goal weights with

similar system performances.

3. There is a slight speed-up over no subgoaling due to the
restimulation of lower 1level data-directed goals by newly-created
subgoals. This reactivates the planner and can cause it to schedule
a different knowledge source for the goal.

3

3 -3 __3

3

Distributed Vehicle Monitoring Testbed Experiments 281

Bent vehicle environment.

The results with the bent vehicle environment were:

Actual Ghost
Goal Executed Created Track Track

Weight KSIs Hyps Belief Belief
0 89 219 4520 4296
2000 86 223 4520 4496
4000 90 202 4680 4304
6000 95 207 4632 4376
8000 65 173 4416 -
10000 76 208 4656 3800%

* This track includes time frames 1 through 5 only.

With the bent vehicle environment, the system is more sensitive to the
setting of the goal weight. The weightings of 6000 and below all
performed poorly with respect to the 8000 setting. At 10000 the system
again performed worse than at 8000, although better than the 1lower
weightings. It may seem surprising that a heavily goal-directed
weighting would perform so much better than a data-directed weighting in
the bent vehicle environment where predictions can falsely lead the
system to use the ghost track extension. The explanation is that a
fairly strong prediction component from the second strong portion of the
actual vehicle track is required to avoid work on the ghost extension.
The lower goal weightings simply do not provide enough of this

prediction.

Distributed Vehicle Monitoring Testbed Experiments 282

5.2.7 Summary of single node experiments.

The single node experiments reported in this section demonstrate
that the goal-directed Hearsay-II architecture, and particularly the use
of subgoaling as a focusing technique, can be used to direct the problem
solving activities of a node through the use of goals. ‘For direct
comparison, the results of the single node experiments are summarized in
‘Table 10.

The goal-directed Hearsay-II architecture was used in the single
node problem solving experiments to plan interpretation activities that
are both coordinated and purposeful. However, the architecture also
implements network coordination decisions in distributed testbed
configurations. This is the subject of the experiments reported in the

next section.

5.3 Multinode Experiments

This section describes experiments performed with a distributed
testbed network configuration. The purpose of these experiments is to
compare the performance of the single node experiments with different
distributed network architectures and organizational problem solving

strategies., First, the network architectures are presented.

5.3.1 Multinode architectures,

Two different distributed network architectures were used in these
experiments: a laterally-organized, four-node network with broadcast
communication among nodes at the vehicle track level and a

hierarchically-organized, five-node network in which the fifth node acts

.3 3 3 _3

3 _3 __3 _3

0L a1qey]

*squantdadxg apoN oT13uis Jo Ageumng

SUMMARY OF SINGLE NODE EXPERIMENTS

Actual Ghost

Subgoal Goal Sensory Solution Executed Created Subgoaled Track Track

Environment Threshold Weight Data Threshold KSIs Hyps Goals Belief Belief
straight 10000 8000 batch 10000 323 552 0 4952 4098
straight 0 8000 batch 10000 322 572 313 4952 4100
straight 10000 8000 batch 4000 157 313 0 4499 4098
straight 0 0 batch 4000 123 300 136 4222 4100
straight 0 2000 batch 4000 130 304 135 4222 4100
straight 0 4000 batch 4000 52 153 37 4221 -
straight 0 6000 batch 4000 52 152 35 4ou1 -
straight 0 8000 batch 4000 52 157 39 4666 -
straight 0 10000 batch 4000 75 207 70 47717 -
straight 10000 8000 real-time 4000 152 301 0 4yy3 4100
straight 0 8000 real-time 4000 39 135 27 4712 -
bent 10000 8000 batch 10000 184 384 0 4912 4752
bent 0 8000 batch 10000 164 390 192 4416 4304
bent 10000 8000 batch 4000 116 258 0 4912 4752
bent 0 0 batch 4000 89 219 T4 4520 4296
bent 0 2000 batch 4000 86 223 76 4520 4496
bent 0 4000 batch 4000 90 202 67 4680 4304
bent 0 6000 batch 4000 95 207 67 4632 4376
bent 0 8000 batch 4000 65 173 55 4316 -

bent 0 10000 batch 4000 76 208 67 4656 3800%
bent 10000 8000 real-time 4000 114 247 0 4700 4160
bent 0 8000 real-time 4000 76 175 66 4912 4056

#

This track includes time frames 1 through 5 only..

squawtaadxy peq3sal BuTJO3TUON STOTYSA Pe3INQTLISTd

€82

Distributed Vehicle Monitoring Testbed Experiments 284

as an integrating node. In all of these experiments the balance between
data-directed and goal-directed control is specified by a goal weight of
8000 and all sensory signal location hypotheses are available when other
processing begins ("batch" mode). The network is stopped when one of
the nodes generates the complete actual pattern track hypothesis (as

specified by the consistency blackboard) with a belief above 4000.

Internode communication.

Communication among nodes in these experiments is modeled as a
limited broadcast channel, although the limitation is relatively minor.
During every second network cycle, a node can transmit up to two
hypotheses and two goals to other nodes. A similar restriction is
placed on the receiving end; every second eycle up to two hypotheses and
two goals can be received from other nodes. A communication channel
delay of one network cycle is placed between transmission and reception
of a message (a hypothesis or a goal).

In these experiments messages are not lost, but are queued in order
of belief (for hypotheses) or rating (for goals) until they can be
transmitted or received. Knowledge sources involved in transmitting or
receiving hypotheses or goals are not charged for their time in these
experiments, so a node can send and receive up to its limit and still
execute one knowledge source instantiation during its network cycle.

These parameters are specified as part of the environment file.
The particular settings selected for these experiments are fairly
unrestrictive, providing an estimate for the basic problem solving

requirements of the network rather than its performance with limited

3

3

Distributed Vehicle Monitoring Testbed Experiments 285

communication resources.

The four-node, lateral network.

In the four-node network each node is positioned near one of the
sensors and receives signal location hypotheses from that sensor only.
The interest areas of each node specify that it is to synthesize its
sensory data to the vehicle track level and transmit any of these
vehicle track hypotheses that can be extended into the sensory area of
another node to that node. Each node is also directed to attempt to
generate hypotheses at both the vehicle track and pattern track levels

which span the entire monitoring area. This means that each node is in

a race with the other three to generate the complete answer map.

The five-node, hierarchical network.

In the five-node network four of the nodes are positioned near one
of the sensors and receive signalvlocation hypotheses only from that
sensor, .(Their signal location input is identical to the four-node
network.) The fifth node receives no sensory data. Instead, it is
instructed through its interest areas to work only at the vehicle track
and pattern track levels with vehicle track hypotheses received from the
other four nodes. The four nodes with sensory data are assigned the
role of synthesizing their signal location hypotheses to the vehicle
track level and transmitting them to the fifth node. 1In the five-node
network configuration, these four nodes do not work outside the area of
their sensory data at any blackboard level and do no work at the pattern

track level.

Distributed Vehicle Monitoring Testbed Experiments 286

5.3.2 Different four-node organizational problem solving strategies.

Within the four-node network configuration, a number of different
organizational problem solving strategies were tried. Parameters that
are varied include whether communication is voluntary (a node transmits
vehicle track hypotheses at its pleasure) or requested (a node transmits
vehicle track hypotheses only when that information is requested by
another node), whether a node is self-directed or externally-directed in
its activities, aﬁd whether hypotheses or goals are used for network
coordination. Combined strategies are also tried.

Next, the particulars of the various four-node organizational
problem solving strategies are described, The results of the

experiments are presented last.

Voluntary hypothesis communication with self-directed control,

Voluntary communication with self-directed control is specified by
enabling two additional knowledge sources at each node, HYP:SEND:VT:VT
and HYP:RECEIVE:VT:VT. Each node is also given hypothesis transmission
interest areas specifying transmission of any vehicle track hypothesis
with a belief above zero (effectively all) that can be extended into the
area covered by another node's sensor to that other node. Hypothesis
reception interest areas to receive these hypotheses are also supplied
to each node.

To keep the node entirely self-directed in 1its coordination
decisions, the blackboard monitor and planner are instructed (using the
focusing-weight interest area parameter) to reduce the rating of goals

generated directly from received vehicle track hypotheses to 30 percent

3 8 _3

3

5]

—3 3 -3 3 3 __a __3

: J '._._g \-—_—j L.——-—i%

Distributed Vehicle Monitoring Testbed Experiments 287

of their normal rating. (The actual percentage is not significant, only
that it is small.) Since a goal weighting of 80 percent is used in the
knowledge source instantiation rating calculation, it is unlikely that a
node will use the receipt of a vehicle track hypothesis to directly
change its scheduled activities. The beliefs of received vehicle track
hypotheses, however, are not reduced. This means that the node can use
reeeivea information in extending its own hypotheses without having to
find local information that can be combined with the received
hypotheses. This separation of belief in the data from focusing
priority fits nicely into the goal-directed architecture.

Two variants of this strategy are tried, one with and one without
subgoaling of internally-generated vehicle track and pattern track

hypotheses, by setting the internal subgoal threshold at zero and 10000.

Voluntary communication with externally-directed control.

Voluntary communication with externally-directed control also
requires the two additional knowledge sources, HYP:SEND:VT:VT and
HYP:RECEIVE:VT:VT, at each node. Again, each node is given hypothesis
transmission and hypothesis reception interest areas specifying
communication of vehicle track hypotheses that can be extended into the
area covered by another node's sensor to that other node.

Externally-directed control is obtained by instructing the planner
to subgoal only those goals generated from the receipt of vehicle track
hypotheses (by setting the subgoal threshold to 10000 for internally
generated goals and to zero for goals generated from received

hypotheses) . In this strategy the ratings of goals generated from

Distributed Vehicle Monitoring Testbed Experiments 288

received vehicle track hypotheses are not reduced from their normal
values. The receipt of a highly-believed hypothesis from another node
causes the receiving node to try its best to find something that can be

combined with the received hypothesis.

Voluntary communication - with both self-directed and

externally-directed control.

This strategy is a combination of the above strategies. It is
obtained by setting both the internal and received hypothesis subgoaling
thresholds to zero. Each node works on whatever goals have the highest
ratings, without regard to whether they are internally or externally
generated. Again goals generated from received vehicle track hypotheses

are rated at their normal values.

Requested communication with self-directed control.

Instead of using the communication knowledge source,
HYP-SEND:VT:VT, this strategy requires GOAL-SEND:VT:VT,
GOAL-RECEIVE:VT:VT, HYP-REPLY:VT:VT in addition to HYP-RECEIVE:VT:VT.
Each node processes its local sensory data to the vehicle track level,
but rather than voluntarily transmitting vehicle track hypotheses, any
vehicle track goals that are within the sensory area of anothef node are
sent to that node, When a node creates a vehicle track hypothesis that
satisfies one of these received goals it wuses HYP-REPLY:VT:VT to
transmit the hypothesis to the originator of the goal.

Two variants of this strategy, one with and one without internal

subgoaling, are tried. Received vehicle track goals are not subgoaled.

3 __3 __3

32 2 _3

—® -3 .3 -3 3 3

3

Distributed Vehicle Monitoring Testbed Experiments 289

Requested communication with externally-directed control.

This strategy is similar to the requested communication with
self-directed control. -The only difference is that internal subgoaling
is disabled and received goal subgoaling is enabled by setting the
threshold for received goals from 10000 to zero. This means that only

requests for hypotheses from other nodes are used.for local focusing.

Requested communication with both self-directed and

externally-directed control.

This strategy is a combination of the above two strategies. It is
obtained by setting both the internal and received goal subgoaling
thresholds to zero. Again each node works on whatever goals have the
highest rating, without regard to whether they are internally or

externally generated.

5.3.3 Results of the four-node network experiments on the straight

vehicle environment.

Each of the organizational problem solving strategies was run using
the straight vehicle environment. The results are shown in Table 11.
The use of internal subgoaling (as shown in the two voluntary hypothesis
communication with self-directed control strategies) results in a
sizable improvement in the experiment with subgoaling. Not only is the
number of network cycles reduced, but less than one-half the number of
hypotheses are transmitted when subgoaling is used. In a communication
limited situation, this reduction in communication requirements can be

very important.

Ll 81qel

*squaLT4Ddxy NJIOMASN apoN-4nogd JOo AJeumng

a2 _3

Problem Internal Hyp Goal Actual Ghost
Solving Subgoal Subgoal Subgoal Network Sent Sent Track Track

Environment Strategy Threshold Threshold Threshold Cycles Hyps Goals Belief Belief

SUMMARY OF FOUR NODE EXPERIMENTS

Received Received

straight VH,SD 10000 10000 10000 54 21 0 4586(3) o
straight VH, SD 0 10000 10000 33 23 0 h246(3) bk
straight VH,ED 10000 0 10000 86 39 0 hg4u(1) b
straight VH, S&ED 0 0 10000 79 45 0 4833(4) 4100(1-4)%
straight RH,SD 10000 10000 10000 43 41 59 4912(3) 4100(2)
straight RH,SD 0 10000 10000 32 32 80 u872(3) L
straight RH,ED 10000 10000 0 83 35 133 4928(2) bl
straight RH, S&ED 0 10000 0 75 40 78 u4850(1) 4100(2-4)*%
Strategies:

VH
RH

SD
ED
S&ED

Voluntary Hypothesis Communication
Requested Hypothesis Communication

squawtJadxy paqasol BuTJO3ITUOW OTOTYSA Pe3nNqQIJISIg

Self-Directed Control
Externally-Directed Control
Combined Self- and Externally-Directed Control

The numbers in parentheses following the actual and ghost track beliefs are the nodes where
the hypothesis resides.

*# This track is incomplete.
%% Ghost track hypotheses less than 5 time frames long are not considered.

062

.3 3 __3 i 3 __3» _3 _3 ._» ‘_® B3 _3 __13 3

Distributed Vehicle Monitoring Testbed Experiments 291

Comparing the performance of the four-node network in the
voluntary, self-directed problem solving strategy with the performance
of the single node network shows a speed-up of 66 percent without
subgoaling and 37 percent with subgoaling. This means that the
distributed interpretation without the use of subgoaling took 1.4 times
as much processing as the centralized interpretation without subgoaling.
With subgoaling the distributed interpretation took 2.5 times as much
processing. While these figures would be disappointing in a parallel
processing system, they are not unreasonable in a distributed problem
solving network where the distribution of input data is not well-suited
to parallelism. 1In fact, the distraction experiment (discussed below)
shows that Node 1 is not contributing anything useful to the solution.
Only two nodes (Nodes 2 and 3) receive large amounts of sensory data.
It is the time needed for them to synthesize this data that limits the
amount of parallelism in the network.

Whether the network used voluntary or requested communication of
hypotheses had little effect on the number of network cycles required to
generate an answer when subgoaling was used. When subgoaling was not
used, the requested communication strategy resulted in fewer network
cycles at the expense of additional hypothesis and goal communication.

Whether the strategy was self-directed or externally-directed had a
much greater effect on network performance. The completely
externally-directed strategies performed much worse than the completely

data-directed strategies, with the combined strategies in between.

Distributed Vehicle Monitoring Testbed Experiments 292

Distraction.

Why does externally-directed control perform so poorly in these
experiments? A closer inspection reveals why. Node 1 (the node
associated with Sensor 1, at the upper left of the figures) senses
signal location hypotheses in only two time frames. Its signal location
hypotheses are associated with the false ghost track. It does not sense
the signal hypotheses associated with the actual vehicle track at all.
Having no other work to perform, Node 1 quickly forms a two time-frame
segment of the ghost track and transmits it to the other three nodes.
Due to their bias to external direction and the higher belief associated
with higher level hypotheses, these nodes suspend their lower level work
on the actual track and attempt to extend the ghost track, resulting in
inappropriate knowledge source activities and lost time. This is a
prime example of distraction.

To verify that distracting information received from Nodé 1 is
indeed the cause of the poor performance of the externally-directed
strategies, the requested communication with both self-directed and
externally-directed control was rerun with all knowledge sources at
Node 1 disabled (simulating processor failure at Node 1). The number of
network éycles was reduced from 75 with Node 1 to 38 without Node 1.
The belief of the actual pattern track hypothesis was basically
unchanged: 4850 with Node 1 and 4818 without it. In the straight
vehicle environment, the network actually performs much better without
Node 1, even though the remaining nodes still receive all signal

location hypotheses associated with the ghost track (see Figure 35).

2

Distributed Vehicle Monitoring Testbed Experiments 293

5.3.4 Different five-node organizational problem solving strategies.

Within the five-node network configuration, a number of different
organizational problem solving strategies were tried. Parameters that
are varied include whether communication with the integrating node is

entirely voluntary or a mixed initiative combination of voluntary and

requested hypotheses (a node volunteers only its highest rated
hypotheses and awaits requests from the fifth node before transmitting
any other hypotheses) and whether the four "worker" nodes are
self-directed or externally~-directed by the integrating node. 1In these
experiments, only goals are used by the integrating node for
coordinating the activities of the worker nodes.

The particulars of the various five-node network problem solving

strategies are described, followed by the results of the experiments.

Voluntary communication with self-directed control.

Voluntary communication with self-directed control is specified by
enabling the HYP-SEND:VT:VT knowledge source at each worker node and the
HYP-RECEIVE:VT:VT knowledge source at the integrating node. Hypothesis
transmission interest areas specifying the transmission of vehicle track
hypotheses to the integrating node are also given to the worker nodes.
The integrating node is given a hypothesis reception interest area
specifying the reception of hypotheses from the other four nodes. The
worker nodes only have processing interest areas for the signal
location, group location, vehicle 1location, and vehicle track levels.,
These interest areas are restricted to the area of the sensor attached

to the node. The integratfng node has interest areas on the vehicle

Distributed Vehicle Monitoring Testbed Experiments 294

track and pattern track levels that span the entire monitoring area.

Since communication is only outward from a worker node, each worker
node in this strategy decides what activities to perform based solely on
its own sensory data. In effect, this means that the local activities
of worker nodes are determined without a view of the developing answer
map (55 was the case in the four-node configuration).

This strategy is tried with and without internal subgoaling.

Mixed-initiative communication with self-directed control,

In this strategy, the integrating node transmits goals to the
worker nodes informing them of its needs. These goals are not
subgoaled, but their ratings are not lowered from their normal value.
This means that the scheduling of vehicle track level knowledge sources
can be biased by the integrating node, but lower level processing is
still self-directed.

To implement this strategy the GOAL-RECEIVE:VT:VT and
HYP-REPLY:VT:VT knowledge sources are enabled at each worker node and
the GOAL-SEND:VT:VT knowledge source is enabled at the integrating node.
Appropriate goél send and goal receive interest areas are also supplied
to the integrating and worker nodes.

This strategy is run with internal subgoaling of locally generated

vehicle track goals,

‘ 3 3 __ A 3

—_3 -3 -3 _3 3 3 _3

3

3

3

-3 _3 .3 _3

Distributed Vehicle Monitoring Testbed Experiments 295

Mixed-initiative communication with externally-directed control.

This strategy is identical to the above strategy except that
internal subgoaling is turned off and received goal subgoaling is turned
on, This means that activities at all levels of worker nodes is

controlled by the integrating node.

Mixed-initiative communication with both self-directed and

externally-directed control.

This strategy is a combination of the above two strategies. Both
internal and received goal subgoaling are enabled. Each worker node
attempts to achieve whatever goals have the highest rating, regardless

of their source.

5.3.5 Results of the five-node network experiments on the straight

vehicle environment.

Each of the organizational problem solving strategies was run using
the straight vehicle environment. The results are shown in Table 12,
Internal subgoaling again results in a reduction in the number of
network cycles and a significant reduction in the number of transmitted
hypotheses.

Comparing the performance of the five-node network in the
voluntary, self-directed problem solving strategy with the performance
of the single node network shows a speed-up of 76 percent without
subgoaling and 48 percent with subgoaling. This means that the
distributed interpretation without the use of subgoaling took 1.2 times
as much processing as the centralized interpretation without subgoaling.

With subgoaling the distributed interpretation took 2.6 times as much

cl 31qe]

Problem Internal Hyp Goal Actual Ghost
Solving Subgoal Subgoal Subgoal Network Sent Sent Track Track
Environment Strategy Threshold Threshold Threshold Cycles Hyps Goals Belief Belief

SUMMARY OF FIVE NODE EXPERIMENTS

Received Received

squautJadxy paqisa] ButrJOj3TUOW STOTUSA PeINQTIISIQ

The complete actual track is generated at Node 5.

[72]

[

:

: straight - VH,SD 10000 10000 10000 37 43 0 4879 %
o straight VH, SD 0 10000 10000 27 20 0 4499 *
™ straight MH, SD 0 10000 10000 25 18 14 4415 *
. straight MH,ED 10000 10000 0 40 33 30 4518 *
s straight MH,S&ED 0 10000 0 29 22 18 4499 *
>

[

Q.

®

> Strategies:

g VH Voluntary Hypothesis Communication

i MH Mixed-Inititive Hypothesis Communication

° SD Self-Directed Control ‘

® ED Externally-Directed Control

g. S&ED Combined Self- and Externally-Directed Control

3

ct

/]

% Ghost track hypotheses less than 5 time frames long are not considered.

962

3] 3 ‘3 3 __3 __B 3) _ 3 _3 3 _3 3 __3B

Distributed Vehicle Monitoring Testbed Experiments 297

processing. These values are comparable with the four-node network.
Whether the network used voluntary or mixed-initiative
communication of hypotheses had little effect on the number of network
cycles required to generate an answer when subgoaling was used. As with
the ‘fouf-node network experiments, whether the strategy was
self-directed or externally-directed had a much greater effect on
network performance, The completely externally-directed strategies
performed much worse than the completely data-directed strategies, with

the combined strategies in between,

Distraction revisited.

Once again the more externally-directed organizational problem
solving strategies performed poorly on the straight vehicle enviromment.
In this case the information received by the integrating node (Node 5)
from Node 1 causes it to make inappropriate coordination decisions for
the other three worker nodes. Instead of distracting hypotheses
directly from Node 1, this time the distraction takes the indirect form
of distracting goals received from Node 5.

The mixed-initiative communication with externally-directed control
experiment was rerun with the knowledge sources at Node 1 disabled.
Again the loss of Node 1 improved the performance of the network by
eliminating its distracting influence. The number of network cycles was
reduced from 40 with Node 1 to 29 without Node 1. In this case the
belief of the actual pattern track hypothesis increased from 4499 to
4796. The network again performed much better without the distractions

from Node 1.

Distributed Vehicle Monitoring Testbed Experiments ‘ 298

5.3.6 Comparing the four-node and five-node architectures.

When the additional processing provided by the fifth node is taken
into account, the performance of the lateral four-node network was
basically identical with the performance of the hierarchical five-node
network iﬁ comparable self-directed experiments. Normalizing the number
of network cycles by multiplying the four-node experiment éycles by
four-fifths results in the side-by-side comparison of similar
experiments shown in Table 13. The five-node network does appear to
perform better than the four-node network in the externally-directed
strategies. When a node in the four-node network receives distracting
information it generally processes it to the pattern track level before

resuming work on its own lower level hypotheses (due to the generally

Problem Normalized
Solving Internal Four-Node Five-Node
Strategy Subgoaling Network Cycles Network Cycles

VH, SD no 43,2 37
VH,SD yes 26.4 27
RH,SD yes 25.6 25
RH,ED no 66.4 40
RH, S&ED yes 60.0 29

Table 13: Network Cycle Comparison of the Four- and Five-Node
Experiments.

Strategies:
VH Voluntary Hypothesis Communication
RH Requested/Mixed Initiative Hypothesis
Communication

SD Self-Directed Control
ED Externally-Directed Control
S&ED Combined Self- and Externally-Directed
Control

3 3 __3 __3

3 -3 __3 _3

—3 __3

3 __3

— —3 —3 3 3% —3 —3 —3 —3 —3 T3 TF ~3I T3 % —3 —3 —3 3

Distributed Vehicle Monitoring Testbed Experiments 299

higher belief assqciated with higher abstraction levels). A worker node
in the five-node network only processes distracting information to the
vehicle track 1level, and then sends the information on to the
integrating node. Thus the worker node can resume its activities sooner
than a node in the four-node architecture. The integrating node, while
distracted at the vehicle track level, is not synthesizing low level
data and is similarly less affected by the distracting information.
While the experiments reported in this chapter indicate the
flexibility of the distributed vehicle monitoring testbed as a research
tool for exploring varied problem solving network architectures and
organizational structures, they do not provide sufficient data for
drawing any conclusions on the particular benefits of particular
organizational‘ structures. These experiments were performed with a
simple grammar in a single environmental scenario with fairly
unrestricted communication. In the next section, the potential for
using the testbed to begin to explore the effectiveness of different
organizational structures in different problem solving situations is

discussed as well as the problems facing such an investigation.

5.4 Future Directions in Evaluating the Effect of Organizational

Structuring

The distributed vehicle monitoring testbed can be a useful tool in

evaluating the effect of organizational structuring in different
distributed problem solving situations. The simple experiments reparted

in this chapter are a tiny, first step in that direction. Additional

Distributed Vehicle Monitoring Testbed Experiments 300

experiments varying the amount of internode communication, the power of
the knowledge sources, the synthesis paths through the blackboard, and
the complexity of the grammar and environment are needed.

Particularly important is exploration of larger networks. A four
or five node network simply has too few nodes for organizational
structuring decisions to have a significant impact. Experiments with
tens or even hundreds of nodes are needed before the full effect of
organizational structuring will be seen.

Larger networks will involve more complex organizational structures
and will provide sufficient redundancy to explore reliability issues
when nodes and communication channels fail as well as the use of node
skepticism, However, before an extensive set of experiments is
performed, a means of quantifying the effectiveness of a particular
organizational structure in a particular environmental setting is
needed.

The bottom-line of any organizational effectiveness measure is
whether the network is able to perform the task. There are at least
three components to such a performance measure: response time, accuracy,
and network robustness,

In the distributed vehicle monitoring task, response time

determines the timeliness of the answer map. Figure 70 illustrates a
typical response time acceptability function. If the answer map lags
real-time by less than t:1, network performance is perfectly acceptable.
As the response time goes past t:1, the acceptability drops. If the

response time exceeds t:2, the network performance is unacceptable.

3

3

3

3

3

—3 __3 __3 __3

Distributed Vehicle Monitoring Testbed Experiments 301

perfectly
acceptable

PERFORMANCE
ACCEPTABILITY

unacceptable

RESPONSE TIME

Figure 70: Typical Network Response Time Requirements.

A typical response time acceptability function. If the answer
map lags real-time by less than t:1, network performance is
perfectly acceptable. As the response time goes past t:1, the
acceptability drops. 1If the response time exceeds t:2, the
network performance is unacceptable.

In assessing the accuracy of the distributed vehicle monitoring
network, four kinds of errors must be taken into account:

1. missing a pattern;

2. detecting a non-existent pattern;

3. incorrectly identifying a pattern;

4, inaccurately locating a pattern.
Each kind of error could have a different associated performance
penalty.

Network robustness in distributed problem solving networks is

somewhat like insurance; if it isn't needed, resources expended for
network robustness have been wasted. An important aspect of the
distributed vehicle monitoring task is that the network be able to

withstand a certain degree of component failure. The network robustness

Distributed Vehicle Monitoring Testbed Experiments 302

measure must take into account the potential robustness that 1is
achieved. If the potential robustness is below design 1levels, the
organizational performance should be penalized.

While the above components are useful for analyzing organizational
performance in retrospect, a measure which can be applied while problem
solving is underway is needed. One appboach is to measure the
expenditure of network resources and the progress of network problem
solving.

Since limited node interaction is the driving characteristic of
distributed problem solving, use of the communications channel has a
major impact on the effectiveness of an distributed problem solving
organization. Unfortunately, it is difficult to assess this impact.
Tenny, discussing the problem in the context of formal decentralized
control theory, states that "the inclusion of communication costs or
constraints.is extremely difficult to do analytically in a way which
permits reasonable solutions to emerge" [TENNT791. The reason is that

the communications channel is a non-storable resource. If the channel

is unused during a period of time, that potential usage is lost forever;
it cannot be saved for a future eventuality. Given that restricted
communication is such a significant aspect of distributed problem
solving, it might appear that the network should attempt to use the
channel as much as possible to avoid wasting such a precious resource.
On the other hand, if the communication channel 1is saturated with
routine interactions, a critical message may not be communicated in a

timely fashion.

Distributed Vehicle Monitoring Testbed Experiments 303

One approach to measuring the "cost" of using the'resource is to
assign a usage cost to every message. However, such an approach does
not recognize the non-storable nature of the communications resource.
If the message can be sent without affecting the communications of other
nodes its cost is essentially nil.

A contention costing approach where the organization is penalized
for interfering messages would seem to be a better choice. One possible
scheme would charge a fixed penalty for each interference. However,
this scheme does not distinguish between interfering "routine"
communications and interference with a message of critical importance.
Another approach is to vary the penalty based upon some measure of the
impact of each message. A low impact message is penalized for any high
impact messages which it blocks. The penalty is the difference between
the blocked messages' impacts and the low impact message. High impact
messages are not penalized for blocking lower impact messages.

Processing is also a non-storable resource, and measuring
processing expenditures requires a similar approach. A node should not
be penalized for performing superfluous activities if it would otherwise
be idle or for performing redundant activities that are needed to
maintain specified network performance levels, Evaluating appropriate
expenditures of processing resources requires detailed information about
the relationship among the processing activities in the network and
about the activities necessary to generate a solution effectively.

In short, evaluating the performance of an organizational structure
in a functionally accurate, cooperative distributed problem solving

network is not simply a matter of "metering" resource expenditures with

Distributed Vehicle Monitoring Testbed Experiments 304

a goal of minimizing their use., 1Instead, a useful evaluation requires
understanding if all available resources are spent wisely in generating
the solution. This requires a deep understanding of the relationship
among activities in the network -~ an understanding that is central to
not only the evaluation of organizational structures, but to the
detection and correction of network hardware and problem solving errors

and to load-balancing among nodes.

—3 _3

y _ 3 _3 __3 _3 _3

_3 3

3

—3

Goals, like dreams, are not always realized.

-- Ya, Z. Tsypkin

CHAPTER VI

THE END OF A BEGINNING

In this chapter we first summarize what has been covered and then
look at likely avenues for continued effort., We close the dissertation
with a discussion of the problem of developing an organizational
designer and the potential for transferring organizational structuring
ideas from business and management organizations and other "Ynatural

distributed systems" to distributed problem solving networks.

6.1 A Look Back

We began with the problem of achieving coordinated activity among
the nodes in a distributed problem solving network. Internode
communication in these networks was seen as the major issue since it is
both limited and potentially unreliable. Limited node interaction makes
it infeasible to keep every node fully abreast of the information
possessed by other nodes in the network or of their present and planned
activities, Node activity is, by necessity, loosely-coupled.

The contract net and self-directed approaches to the network
coordination problem were discussed. Both approaches attempt to deal
with the problem of obtaining coordinated node activities with

decentralized and interaction-limited decisionmaking. A general view of

305

The End of a Beginning ‘ 306

h]

y
coordination that integrates both approaches was describgd. However,

all these approaches lacked a shared high-level view of hpw the network
.is attempting to solve the problem and of the general roles and
responsibilities of each node. Adequate coordination is difficult
without such a shared view.

Organizational self-design was advanced as a multilevel approach to
coordinating a distributed problem solving network. An organizational
structure provides a shared high-level view of the information and
control relationships among the nodes. Each node is responsible for
elaborating these relationships into precise activities to be performed
by the node, The idea is to include in the organizational structure
those decisions that are not quickly outdated and that pertain to large
numbers of nodes, The development and use of an organizational
structure as a guide for coordination is considered to be less complex
and dynamic than directly coordinating every activity in the network.

Organizational structuring decisions often have to be made using
incomplete and inaccurate information about the problem solving
situation. There can be times when the decisions are inappropriate for
particular nodes or for the network as a whole, Therefore, the
organizational structure is taken to be a guide rather than a rigid
structure,. The network is viewed as a society of skeptical nodes
working within the framework of an organizational structure but always
alert for signs of trouble.

A major theme throughout the dissertation is that sophisticated
local control capabilities are necessary to perform these activities.

Complex network behavior cannot be obtained from large numbers of simple

—3 3 _ 3 ___3

3

£y

The End of a Beginning 307

nodes. The "magic" is in the glue that binds the nodes together. And
that glue must come from the individual nodes themselves.

A framework providing the necessary local control capabilities was
developed and implemented in the Distributed Vehicle Monitoring Testbed,
a simulated distributed interpretation network desighed for empirical
evaluation of network coordination strategies. The control framework is
based on the Hearsay-II architecture, extended to accommodate
goal-directed control and a local node planner. This architecture
allows each node to be responsive to both data and goals (representing
requests to create or communicate particular types of data) and to plan
sequences of activities to achieve its goals.,

The activities of each node's 1local planner and communication
knowledge sources are influenced by a set of interest area and
subgoaling specifications. These nonprocedural specifications can be
inspected and dynamically modified to change the behavior of the node.
Interest area specifications form the interface between the node's local
control machinery and an organizational designer.

The capabilities of the framework were illustrated with a number of
testbed experiments using different organizational structures in one-,
four-, and five-node distributed networks. The single node experiments
demonstrated that the goal-directed Hearsay-II architecture and 1local
node planner, and particularly the use of subgoaling as a focusing
technique, can be used to direct the problem solving activities of a

node through the use of goals,

The End of a Beginning 308

The four-node and five-node network experiments indicated that
different organizational structures and cooperation strategies do make a
difference in network problem solving performance. These experiments
also illustrated the problem of distraction, where one node communicated
purely incorrect hypotheses that temporarily drew the other nodes away
from working on the correct solution. The experiments suggested that
organizational structures which divide the effort spent on distracting
information among nodes (as was the case with the five-node hierarchical

organization) are less affected by the distracting information.

6.2 A Look Ahead

Because this work represents only the first step toward a
distributed problem solving network that is able to design, implement,
and change its own organizational structure, a number of open research
issues remain, Many of these issues involve the framework implemented
in the Distributed Vehicle Monitoring Testbed.

Perhaps the most obvious area of future work involves applying the
testbed and the framework to larger network experiments. As discussed
in Chapter V, a four or five node network simply has too few nodes for
organizational structuring decisions to have a significant impact.
Experiments with tens or even hundreds of nodes are needed before the
full effect of organizational structuring will be seen. Larger networks
will require more complex organizational structures and will provide
sufficient redundancy to explore reliability issues when nodes and

communication channels fail as well as the use of node skepticism (see

_ 3 3 3 _13

3

3 3 3 3 3

3

IW

)

~=3

—3

3

The End of a Beginning 309

below) .

Additional experiments also need to be performed in which the many
parameters in the testbed are varied, In particular, the changes in
problem solving behavior as internode communication is restricted should
be very interesting. (Recall that the experiments presented in
Chapter V7 used a fairly unrestricted communication channel.)
Exploration of these issues using the testbed is just beginning.

Increasing the sophistication of the local node planner is an area
with the potential for considerable rewards. Major improvements in
distributed problem solving activity were gained from a very simple
planner, The goal-directed Hearsay-II architecture provides a rich
source of planning information that could be used to plan the
interpretation activities of each node. Of course as planning
capabilities are increased, techniques for adequately costing and
controlling the overhead associated these activities are needed.

The goal satisfaction ‘problem (and at the macro 1level the
distributed "stopping" problem) is a related area requiring additional
work. These problems were discussed in Section 4.3.3.

A limitation in the testbed architecture is the inability of a node
to represent negative evidence for a particular hypothesis internally or
to communicate negative evidence to other nodes. There is an important
distinction between information indicating that a particular hypothesis
is inconsistent with other hypotheses and the lack of information
altogether. The use of a single belief value in Hearsay-II (and other
single belief systems) leads to a confused representation of this

distinction. The ability to communicate negative information appears to

The End of a Beginning 310

be very useful in a distributed problem solving environment where nodes
can develop incorrect hypotheses due to incomplete local information.

For example, suppose a testbed node has knowledge that it is very
unlikely for vehicles to move through a particular region of its
immediate environment and that this information is not known by other
nodes. (For now, we ignore how this information might be represented
and applied within the node.) This node receives a vehicle track
hypothesis from another node that is contained within this "unlikely"
region. How can the node inform the other node that, from its 1local
perspectiye, this track appears to be incorrect?

One approach is to use a two-valued belief system for hypotheses,
one value representing the support for a hypothesis and the other
representing negative evidence for the hypothesis's existence [BARNS81,
GARV81, LOWR82]. Use of such a belief system in the testbed would
require extensions to the basic testbed architecture, the network
problem solving state meaéures, the knowledge sources, and the planner
but would allow negative evidence to be developed and exchanged among
nodes.

As was illustrated in the simple example in Section 3.2, it is not
always sufficient to communicate a hypothesis's characteristics and its
belief to another node. A description of the reasoning involved in
creating the hypothesis can also be needed for the receiving node to
decide what new, independent information 1is represented in the
hypothesis, Although dependent versus independent information is an
issue for centralized problem solving systems, the overlapping and

partially dependent local views that arise in distributed problem

—3 2 __3

jy 3 _ 3 __3 __3

|

2

3 __3

4

1

The End of a Beginning 31

solving networks increase its importance.

A neglected area of testbed developmént has been the communication
knowledge sources. The communication knowledge sources in the testbed
are very primitive. Transmission knowledge sources do not modify their
transmission criteria based on channel loads and do not evaluate whether
or not a particular candidate for transmission could be deduced by the
receiving node from previous communications with that node. Since the
communications resource is so critical to a distributed problem solving
network, efforts spent here should result in substantial improvements in
network problem solving.

As noted by Sacerdoti, language understanding research is directly
relevant to distributed problem solving networks due to the limitations
on communication [SACE78]. Particularly appropriate is the computer
implementation of Searle's model of speech acts [SEAR70] by Allen and
Cohen. Allen's work focused on the recognition of the intended goals by
the listener, and Cohen's work focused on the planning of what to say to
achieve particular communication goals [ALLE79, COHE78]. Communication
knowledge sources that implement parsimonious high-level internode
communication have considerable potential in the distributed
environment. In fact, much of the planning activity required for
high-level message generation and recognition may already exist on the
data and goal blackboards.

There were occasions (in the early morning hpurs of testbed
implementation) when the functionally accurate, cooperative capabilities
of the testbed worked all too well, and the network generated reasonable

solutions despite major conceptual and programming errors. Once gross

The End of a Beginning 312

"holes" among the knowledge sources were eliminated, the network did not
crash or fail to develop a solution but rather tended to use its
functionally accurate capabilities to work around conceptual and
programming errors. Instead of obviously failing, the netwbrk simply
took longer to generate the solution. Identifying such errors required
detailed (and tedious) inspection of the individual activities of each
the node. When a number of functionally accurate, cooperative nodes are
combined to form a large network, the problem of monitoring and
debugging network activities becomes a major practical issue, Bates,
Wileden, and Lesser describe an event monitoring facility (in which
high-level events can be specified using combinations of primitive
individual node activities) and its potential application in the testbed
[BATE81].

The major motivation for this dissertation has been the eventual
development of an organizational self-designer for a distributed problem
solving network. Now that the computational framework to support an
organizational self-designer has been built, the problem of providing an
organizational designer <can be addressed. A discussion of
organizational design for distributed problem solving networks concludes
this chapter.

The last area of future work on this list is exploration of the
advantages, disadvantages, and control of node skepticism in large

distributed problem solving network networks,

—d 3

:5'

3

The End of a Beginning 313

6.3 Some Thoughts on Organizational Design for Distributed Problem

Solving Networks

You have to tell the truth the way you see it. And yet you

have to be tolerant of the fact that neither you nor the man

you are arguing with is going to get it right.

—— Jacob Bronowski

During the process of developing the computational machinery
described in the preceding chapters, the problem of actually performing
the organizational design was not completely forgotten. Now that that
machinery is in place, it is tempting to consider the issues facing
organizational design for distributed problem solving networks. In the
remaining pages, we give in to this temptation and briefly speculate on
the future of organizational design in distributed problem solving
networks.

A major obstacle in organizational design for distributed problem
solving networks is that networks of significant size and complexity
have not yet been constructed. We are in the difficult situation of
developing an organizational structuring repertoire for networks whose
properties can only be estimated.

Fortunately, organizational structuring is not unique to.
distributed problem solving networks. In the next sections,
organizational structuring concepts used in business and management
organizations and identified in natural and social systems is briefly

reviewed, with an emphasis on the potential application of those

The End of a Beginning 314

concepts to distributed problem solving networks.! As we will see, an
important issue is identifying the similarities and diversities between
the organizational requirements of these systems and distributed problem
solving networks. Some speculations on the similarities and diversities

are made in the concluding section,

6.3.1 Business and management organizations.

Organizational design decisions are faced regularly in business
organizations where the pressures of efficiency can be severe, In
response to the need to develop effective organizational structures, a
substantial body of knowledge has been developed. Galb;aith in Chapter

2 of Organization Design presents a concise review of the development of

management theory [GALB77]. We begin with a brief summary of his
review.
Classical management theory has its roots in the concept of

division of labor, where the overall task of the organization is divided

into subtasks, each to bevassigned to an individual. Rather than having
each individual perform all the organization's activities on a portion
of the overall task (the approach suggested for distributed problem
solving networks in Chapter I), it was usually recommended that the task
bg partitioned such that each individual performed only a portion of the

activities on the entire task. Such horizontal division of labor was

based on the premise that each individual would become highly skilled at

his smaller, more specialized task, that the transition time between

1. Fox presents an extended discussion of the- application of
organizational theory to the problem of developing large and complex
software systems [FOX79].

N |

.3 .3 3 3 3 _ 1

3

The End of a Beginning 315

activities would be minimized, and that more efficient and that
specialized tools would be developed for these smaller tasks.

While horizontal division of labor often increased the production
per individual, it also increased the interdependence among individuals.
Rather than only affecting his own production, each individual affects
the production of those who rely upon his activities:. To coordinate thé
various activities, a second form of division of labor, termed vertical

division of 1labor, was developed. In this structure, the task of

coordinating the basic activities involved in the overall task was
assigned to separate, managerial specialists. As Galbraith notes, "the
horizontal division of 1labor must meet the economic constraint of
increasing output by an amount sufficient enough to pay for someone who
does none of the work but must be present to coordinate the work"
(GALB771].

Overspecialization is also a danger of horizontal division of
labor. While some specialization can lead to increased overall
productivity, overspecialization causes the productivity increases to be
offset by motivational problems (a lack of job satisfaction) and idle
time (if the specialty is not in constant demand).

An important issue with vertical division of labor is how ¢to
partition the managerial activities and decisionmaking responsibilities,
Two fundamental principles were developed. The first principle, unity
of command, states that each individual should have a single superior
responsible for resolving conflicts in his activities. The second,
scalar, principle states that authority should flow in a unbroken line

from the chief executive to the lowest worker., These two principles led

The End of a Beginning 316

to a representation of the organization as a hierarchy of authority.

An important variable in such a hierarchy is the span of control of a

supervisor, the number of subordinates that can be coordinated by a
single supervisor.

A problem with the purely hierarchical authority structure is that
it stresses responsibility relationships and not the sharing of
expertise (such as an expert in energy savings making energy-related
decisions throughout the organization). Classical management theory's
solution was the formation of the line-staff organization, Experts
(staff) were made available as advisers to the (line) managers who
remained responsible for making the decisions. (In practice the
distinction between 1line and staff roles tends to be fuzzy.) An
important design variable in the line-staff organization is where the
expertise is to be made available to the 1line managers. If the
expertise is made available at the top of the authority pyramid, the
organization is termed "centralized"., Organizations where the expertise
is made available at the lower levels are termed "decentralized". The
appropriate degree of centralization/decentralization was dependent on
the organizational situation. However, decisionmaking in decentralized
organizations tended to be more fragmented and uncoordinated.
Partitioning the organization into departments was viewed as a means of
localizing the uncoordinated effects of decentralized decisionmaking.

So what does classical management theory have to say about
organizational structuring in distributed problem solving networks? The
basic division of 1labor and availability of skilled expertise are

sharply different in distributed problem solving networks and the

—3d 3 __3 __13 3 3 +___3 3 3 __3F "3 3

-3 3 5 _3

—3 _ 3

-3

—3 T3 —3% T3 —T3% T % ~—» 8% —3 T>» —3 ~ % T3 —3 —3 73 <—3F —3 3

The End of a Beginning 317

organizations addressed by classical management theory. 1In addition, it
is much mofe likely that each node in the distributed problem solving
network will spend a portion of its effort dealing with the
organizational coordination rather than having a clear division between
worker nodes and manager nodes.? The key issue is how closely the
distributed vehicle monitoring task fits the organizational tasks
considered by classical management theory. Unlike many organizations
that are concerned with producing géods or services, the testbed's
productive energies are spent attempting to acquire a sufficiently
global view of activity in the environment for deciding "what is out
there”, 1In a sense, the testbed has a relatively trivial production
component and a substantial internal information processing component.
It is the essence of the internal information and decision processes of
business organizations operating in uncertain task environments.

Galbraith 1lists five design strategies that can be used by an
organization to handle the increased information processing requirements
of decision making caused by uncertainty [GALB77]:

Environmental Management — An organization can reduce its

need for information processing
by modifying the environment in
which it resides.

2. An intriguing question is whether distributed problem solving
networks should be constructed with sensorless "manager" nodes whose
computational responsibility is coordinating the other nodes or
whether all nodes should have the capability of receiving sensory
information and of coordinating the network. The latter approach
would appear to make more use of system resources since nodes with
little sensory information could undertake greater responsibility for
coordinating and monitoring the performance of the network. 1In this
structure the notion of redundancy of potential command [McCU65]
applies not only to the problem solving but to organizational
coordination as well.

The End of a Beginning 318

Creation of Slack Resources -~ An organization can reduce its
need for information processing
by decreasing its level of
performance by using additional,
slack, resources (such as time,
equipment, and personnel) or by
reducing the overall quality of
its output.

Creation of Self-Contained Tasks

An organization can reduce 1its
need for information processing
by choosing another decomposition
in which tasks are more
self-contained.

Improving Vertical Information Flow -- An organization can increase its
capacity to process information
by collecting information at the
points of origin and directing it
to the appropriate individuals in
the organization and by the use
of abstraction.

Creation of Lateral Relations -- An organization can increase its
capacity to process information

by placing in direct contact

individuals which share .a common
problem.

Galbraith draws upon Simon's work which recognized the 1limited
information processing capabilities of individuals [SIMO57, SIM069].

Termed bounded rationality, this limitation applies to both the amount

of input information which can be effectively used to make decisions and
the amount of control which can be effectively exercised by an
individual. Bounded rationality has severe implications on the quality
of decision making when a large amount of uncertainty is present, for
"the greater the task uncertainty, the greater the amount of information
that must be processed ... to achieve a given level of performance"
[GALB73]. A motivation for variations in organizational structures is

to provide additional information processing capacity to handle the

.3 3

3 3 _ 12

N | 3 3 D>

3 __ 3 _z _a __3 2

~3 T3% —31 —3 —3 —3 3 —3 3

The End of a Beginning 319

greater uncertainty within the bounded rationality of the organization's
individual members.

While several of Galbraith's design strategies are iﬁappropriate in
the distributed vehicle monitoring domain (in particular environmental
management and the procurement of additional network resources), they do
prescribe the information processing and communication options available
to the organizational designer. Particularly relevant is Galbraith's
warning that "the organization must adopt at least one of the five
Strategies when faced with greater uncertainty. If it does not
consciously choose one of the five, the slack, reduced performance
standards will happen automatically" [GALBT77].

An important issue in organizational design for the testbed is the
speed at which the vehicles move in the environment. Such rapid changes
in the environment require a matching speed of organizational change in
the testbed. (unless sufficient slack resources are allocated
throughout the network to handle congested vehicle traffic without
organizational change -- an uninteresting and potentially expensive
approach) . An interesting research question is whether an
organizational structure can be developed for the testbed that can be
adapted to fit the changing vehicle traffic or whether new
organizational structures have to be designed and implemented when the
environment changes substantially. Another question is whether the
organizational situations encountered in the distributed vehicle
monitoring domain are sufficiently recurrent that programmed
organizational decisions can be used, It has been recognized that

organizations operating in uncertain environments perform poorly if they

The End of a Beginning 320

rely too heavily on programming [LAWR67]. Organizations that perform
well in uncertain environments tend to have a high level of general
knowledge throughout the organization and a 1low reliance on
predetermined formal rules. Hagafors presents a concise survey of the
issues related to programmed versus unprogrammed organizational
decisionmaking [HAGA82].

In the next section, we briefly look at the organization of
biological and social systems with particular attention to the problem

of organizational design in uncertain and rapidly changing environments.

6.3.2 Biological and social systems.

The work of Beer on '"managerial cybernetics" [BEER78, BEER79,
BEER81] forms a transition Dbetween business and management
organizational systems and biological and social systems. Beer's goal
is to bring cybernetic validity to the design of new managerial control
techniques that allow the organizational structure of the firm to be
adapted on a "second-by-second" basis. He suggests that the human
nervous system provides a model for coordinating and regulating a
complex organization and that management organizations should embody
this same logical structure. Although Beer cautions against simply
using the neural model as a metaphor for organizing, we survey here only
a few of the model's high-level principles and do not suggest that the
structure of any organizational self-designer for distributed problem

solving networks should be directly patterned after the model.

) ._3

—2» 3y 2 3 > __3

J %]

3 3 3 3

~3 —3 —3 ~1 T3) T3 T3 3 3

The End of a Beginning 321

Much of the organizational philosophy presented in phe preceding
chapters is in the style of Beer's model. In particular, he stresses
the need for autonomous elements (our network nodes) that are able to
function with minimal intervention from higher (organizational) level
elements. While our main motivation for autonomous nodes stemmed from
the limited and unreliable nature of internode communication, autonomy
in Beer's model stems from the need to reduce the control required of
higher level organizational elements.

Beer also discusses the need for interpreting higher-level
(organizational) instructions into more detailed patterns of activity at
the lower levels. This requires some sophistication at the lower levels
along the same lines as the coordination framework developed for the
testbed. He describes the need for organizing the system, not in full,
but only somewhat (our high-level organizational structure) and then
letting the lower level components tune the dynamics of the system in
the directions it needs to go. Beer also notes the importance of
lower-level components in initiating feedback information to the
higher-level (organizational) components to be used in making predictive
plans. This aspect was not developed in the testbed coordination
framework., As mentioned in Chapter III, Beer describes the need for
balancing the tension between the performance of potential elemental

actions (which he terms the operational force) and the need for system

viability and coordination (which he terms the coherence force). This

tension serves as the basis for node skepticism.

The End of a Beginning 322

Beer's cybernetic organization model also suggests some
characteristics for an organizational self-designer., 1In particular, the
organizational self-design component is viewed as an autonomous system
in its own right and not as a component of the basic problem solving
network. 1In his model, each level in the organization is an autonomous
system and has the same basic structure. The model is recursively
applied at all organizational levels, with the coordination components
of one level being the basic working components at the next higher
level. Rather than constructing a classical hierarchical organizational
structure, Beer advocates the recursive application of his model at each
level.3 Where interaction in a hierarchy tends to be greater between
levels, Beer suggests that interaction in the recursive structure is
greater laterally, within each level. In addition, each level is an
autonomous system in its own right, able to cope with changes either
above or below, rather than a mere component in the overall
organization,

Beer's approach is, to say the least, interesting. Even more
exciting is the potential for using the testbed to experiment with his
ideas and to compare and contrast their performance with the performance
of more traditional organizing techniques.

The work of Crane suggests that neural organization and functioning
can be better understood through the use of sound analogies with social

organization and functioning [CRAN78]. In a sense, the direction of

3. Beer does not speak highly of organizational charts, stating that
they "specify 'responsibility' or the 'chain of command', instead of
the machinery that makes the firm tick™ [BEER81].

/i3 _ 3 3 __13

3 3 3 _. 32

A _® _1

—3

The End of a Beginning 323

knowledge transfer in Crane's work is in the opposite direction of
Beer's approach. However, many concepts are common to both approaches.
Autonomy of individual elements is central to Crane's approach as is the
tension between local and system-wide activity decisions. Crane states
that "an individual may undertake an activity because he is capable of
doing it, or because it is in the-best interests of society that he do
it; at the same time he may not want to do it" [CRAN78]. We have

discussed previously (in Section 3.,2) Crane's notion of dual-directed

control, the important balance between top-down and bottom-up control,

and its relationship to node skepticism. Crane also stresses the use of
information brokers to bring together producers and consumers of
information [CRAN80]. Such "broker nodes" might prove useful in very

large distributed problem solving network organizations.

6.3.3 Parting thoughts.

Local autonomy and the elaboration of high-level decisions under
the tension of local and organizational demands is a common theme in
these approaches to organizational structuring. Local elements are not
simpletons carrying out orders received from above, but are
sophisticated systems in their own right, making sophisticated decisions
and understanding the reasoning behind these decisions, The
coordination framework developed for the testbed, with its
decisionmaking machinery provided by the goal-directed architecture and

planner, appears to be on target with this viewpoint.

The End of a Beginning 324

But what of the future development of an organizational
self-designer? Crane states that "computers, brains, and societies are
each intimately involved with information, language, and meaning, and
insight into any one area can potentially help to illuminate the other
two" and he predicts that there will be a "lively exchange of insights
among the organizational structures of individuals, societies, and
computers" [CRANT8]. At the 1level of general insights, Crane's
statement is undeniably accurate. The important question, however, is
how deeply does this relationship hold. Are the organizational problems
and constraints facing business organizations similar enough to those
facing society or distributed probiem solving networks or those
addressed in the brain that detailed techniques can be transferred from
one area to the others? Can an organizational self-designer for a
distributed problem solving network be constructed from borrowed parts?

Each area should look to the others -- not for the ultimate
solutions, for they do not yet exist -- but for fresh and illuminating
ways of looking at common problems and for identifying and understanding
the unique characteristics of each area. The designers of an
organizational designer for distributed problem solving networks do not
need to reinvent the principles of organizational design, they are
fortunate indeed to have a rich source of ideas to draw from, but they
do need to identify the problems unique to coordinating these systems
and to add their own insights and contributions to the science of

organization.

~.>» _ 4 ._.®» _% __% __®% .3 _» _3» _.2 _ 8% _3 _3 _-3 /-3 _3 3 __3

—3

Environment File Description 325

APPENDIX A

ENVIRONMENT FILE DESCRIPTION

This appendix contains a description of an environment file, the

input file for a distributed vehicle monitoring testbed run.

WO Ve DL 90 Te WS W WE W WS WS GE VS WS WS VO WP WS WO WS Ve VS WE Ve WE Ve WE WO WS Ve WO W wo WS we G we ws

{HENVIRONMENT-FILE##

HRRRERER RN I T2 0030000003000 00003606 06 3006 90 30 300000 909096 3036 96 36 06 96 36 3 30 3696 90 36 96 3636 9 3036 96 36 3 96 360 30 0
BRI I 0000000302000 002030000000 00000000 30 0030 3030 3000 3000 3630 38 36 36 36 38 30 30 3000 36 90 96 38 36 38 3% 06 36 3 3 36 3 3 3 3 % ¥

#* % . #%
bl TEMPLATE LA
L ENVIRONMENT FILE L
#*# #%

T T I0T00 36 36366300036 0000 0006 300020300000 306 3000 30 0000 00 6 30 96 36 36 96 0 30 96 36 96 06 36 36 9 36 96 36 36 96 38 9 3 36 3 34 34
HRBRRRRNW R ETIN NI 000000363036 00 00363636 30 36 36 00 28 36 30 96 96 96 36 20 90 6 6 38 38 36 08 38 38 96 36 36 36 36 36 3% 3 9 3 3% ¥

This template file, last modified APR-26-1982, defines the
format of environment files. An environment file contains the
following major sections:

DATA DEFINITIONS defines the basic data types used in
environment files;

ENVIRONMENT-ID AND COMMENTS
specifies the name of the environment file and
a brief description;

SYSTEM DATA specifies some basic parameters of the testbed;

GRAMMAR DEFINITION specifies the grammer: its name, the event
relationship among event classes at different
blackboard levels, and the maximum velocity and
acceleration of vehicles;

NODE DEFINITIONS specifies the node configuration: where each
node is located and how it behaves;

SENSOR DEFINITIONS specifies the sensor configuration: where each
sensor is located and how it behaves;

COMMUNICATION RELIABILITY DATA
specifies the chance of message loss between
nodes;

Environment File Description ‘ 326

“@e WO e WO We WO Ve WO GO WS We WO WS VO WO WO VS VWE We VE VO Ve WO GO VS VO WL We W VO GO VP GF WO B WS wo W

GONSISTENCY DATA specifies what hypotheses are considered
consistent by the testbed (defines the

consistency blackboard);

ENVIRONMENT DATA specifies what is sensed in the environment.

*llll*l!***il***ii!*i!**********li***li***i**l*!*i*!i!*i****i*l*lli**

DATA DEFINITIONS

ﬁ*!ﬁ*i*i*iili*il***i**&!**i!**i******liii******i!**i**i***l***!*l!***

INTEGER CONSTANTS

begin-coordinate
begin-time
end-coordinate

end-time
max-acceleration
max-velocity
reception-latency
receptions-per-period
transmission-latency
transmissions-per-period

The following constants are not explicitly included in the
environment file but are computed from the supplied information:

#-event-classes
#-interest-areas
f!-knowledge-source-sets
#-node~classes

f##-nodes
#-sensor-classes
fl-sensors
#-topological-roles

4 _.3 _» _84% __¥ _p» .2 _3 % _F .9 _3 _3 >3 T I _3

' .-,?

—3 ~=3 3 —3

Environment File Description 327

WE we WO BE Ve VO W W VO WL WO UL WL WS WS TE WO WP B DS VO Ve W WL WS W Ve BE WS WE WO Ve WP GO WO GBS e W WS We We WE VI VI W WS we we we we wo

belief
consistency
coordinate

credibility
event-class
event-class-list
focusing-weight
group-class

id

interest-area

w o n o N

BASE DATA TYPES

an integer in the range [0..10000]

an integer in the range (0..10000]

an integer in the range
[(begin-coordinate..end-coordinate]

an integer in the range [-10000..10000]

an integer in the range [1..#-event-classes]

a list of event-classes or *all

an integer in the range [-10000..10000]

an event-class

a string of characters

an integer in the range [1..#-interest-areas]

knowledge-source-set

level

level-list

an integer in the range
[1..#-knowledge-source-sets]
an element of the set
{sl st gl gt vl vt pl pt}
a list of levels or *all

level-size-weight-list

location

node
node-class
node-list
pattern-class
power
probability
region

region-list
seed

sensor
sensor-class
sensor-list
signal-class
size

size-weight-list
threshold
time

time-list
time-location

time-location-list

topological-role
vehicle-class
weight

a level and a size-weight-list

a pair of coordinates,
(x-coordinate y-coordinate)

an integer in the range [1..#-nodes]

an integer in the range [1..#-node-classes]

a list of nodes or ¥all

an event-class

an integer in the range [-~10000..10000]

an integer in the range [0..10000]

a quadruple of coordinates,
(x-min y-min x-max y-max)

a list of regions or ¥all

an integer in the range [0..131072]

an integer in the range [1..#~-sensors]

an integer in the range [1..#-sensor-classes])

a list of sensors or #¥all

an event-class

an integer in the range
[1..system-location-range]

a list of pairs (size weight) or nil

an integer in the range [-10000..10000]

an integer in the range
[begin-time..end-time]

a list of times or ¥*all

a pair consisting of a time and a location,
(time (x-location y-location))

a list of time-locations

an integer in the range [1..#-topological-roles]
an event-class

an integer in the range [0..10000]

Environment File Description 328

1 @¢ 2¢ wo we we ws weo

™M @6 96 96 9o We 90 (" we We B¢ we Wé Be Vs 0o Wy we e

!i*****l******l*****************************i*&****ﬁlii*%**lili*l*&l*

ENVIRONMENT-ID AND COMMENTS

i*ii*!***l*i*i****i!**!**l******l****i****i**!l********i****Il**i***i

"environment-id"
nfirst line of comments"

#last line of comments"]

Comments are printed out at the beginning of testbed output.

JH 3063360606 96 36 96 36 96 36 36 96 3636 36 3006 30 96 36 36 6 36 36 36 36 38 36 36 30 36 36 36 36 00 36 96 36 96 36 36 36 36 6 36 36 46 36 30 36 36 96 30 36 0 30 96 36 38 30 6 00 06 6

SYSTEM DATA

69636 9 9 2 36 38 36 3 36 30 36 36 96 36 36 30 36 3 3 36 30 36 36 38 36 36 36 36 36 30 36 36 38 30 96 36 30 30 36 30 36 90 30 36 38 36 36 30 3¢ 36 3 30 3¢ 36 96 3 6 36 6 3 6 36 36 30 3¢ 34

RANDOM SEED
seed]

Initializes the pseudo-random number generator at the start of the
run.

GLOBAL TESTBED PARAMETERS

scheduler-power
scheduler-belief-weight
reflection-threshold
scheduler-threshold
modification-threshold
knowledge-source-instantiation-threshold
goal-weight
internal-subgoal-threshold
received-hypothesis-subgoal-threshold
received-goal-subgoal-threshold
hypothesis-insertion-threshold
goal-creation-threshold
transmission-latency
transmission-rate

reception-latency

reception-rate

¥ 3 3% __ 3

-—? -3 _3 .2 _3 _3 __3 __3 _ 32

— 2y 3 7z

|

—3 T3 Y 3

3 P~«§ % r—fg r‘*% r“*gk ﬁ~4§ — % c—>—§ 3 r4~§

Environment File Deseription

F ee @0 we we @6 M1 we 9o “o o we we we we

Fee @¢ s ws we we

M ee ws we

-e

329

RN T30 0630303000300 0030003000 0030 303006 30 38 96 3036 00 06 30 00 3000 36 00 98 6 30 30 36 3 38 38 36 30 36 98 9 36 96 36 90 6 98 38 3 %

GRAMMAR DEFINITION

RARRERRRRRRREN BN T T 0030 303 30 3090 90 9600 90 36 30 96 30 90 36 36 90 36 38 96 36 36 96 3036 9 366 30 36 30 9 6 ¢

GRAMMAR-ID
"grammar-id"]
The name of this grammar.

PATTERN-CLASS TO VEHICLE-CLASS RELATION

(pattern-class ((vehicle-class location)
(vehicle-class location)
(vehicle-class location)))

(pattern-class ((vehicle-class location)
(vehicle-class location)
(vehicle-class location)))

(pattern-class ((vehicle-class location)
(vehicle-class location)

, (vehicle-class location)))]

The location of a vehicle in a pattern is specified relative
to the center of the pattern,

VEHICLE-CLASS TO GROUP-CLASS RELATION

(vehicle-class (group-class group-class ... group-class))
(vehicle-class (group-class group-class ... group-class))

(vehicle-class (group-class group-class ... group-class))]
GROUP-CLASS TO SIGNAL-CLASS RELATION

(group-class (signal-class signal-class ... signal-class))
(group-class (signal-class signal-class ... signal-class))

(group-class (signal-class signal-class ... signal-class))]

Environment File Description

@6 We W Ws $o wv $° Ve 9o Bs we [Tlws v

®e o 9o we we we we we we

330

MAX VELOCITY AND ACCELERATION

max-velocity max-acceleration]

specify the tracking component of the grammar

639036 3636 6 36 96 38 36 3638 36 96 36 36 36 38 38 38 6 36 30 36 3 36 36 0 38 96 35 36 36 36 36 36 30 26 30 96 36 36 30 90 30 36 I 6 36 36 38 36 30 36 30 96 90 36 36 36 30 36 90 30 36 30 3¢ 4

NODE DEFINITIONS

63836 36 36 3036 25 36 36 3 3 3 3 38 35 38 36 96 36 36 26 16 36 3 36 36 38 36 96 31 36 38 36 36 38 96 6 36 36 38 36 96 36 30 36 3 38 36 3 36 36 36 3 38 36 3¢ 30 3 36 96 36 3 3 3 9 3¢ 0

(interest-area

(interest-area

(interest-area

and time-and-region-lists is a list of pairs,

INTEREST-AREA DEFINITIONS

(level-list
(level-list

(level-list
(level-list
(level-1list

(level-list

(level-list
(level-list

(level-list

event-class-list
event-class-list

event-class-list
event-class-list
event-class-list

event-class-list

event-class-list
event-class-list

event-class-list

((time-list region-list)
(time-list region-list)

(time-list region-list))

time-and-region-lists)
time-and-region-lists)

time-and-region-lists))
time-and-region-lists)
time-and-region-lists)

time-and-region-lists))

time-and-region-lists)
time-and-region-lists)

time-and-region-lists))]

Note: a region is specified relative to a node's center as a list.

—3

3 ¥ __3

—® 3 3 _.3J _3 __3 __3

> 2 3 __» _2

3 :_-Hg

Environment File Description

Mlees we

T 46 ws we @o e we o we wo we 90

“s We Ve we We we W we we

KNOWLEDGE-SOURCE-SET DEFINITIONS

(knowledge-source-set
(knowledge-source-name goodness
(knowledge-source-name goodness
(knowledge-source-name goodness

(knowledge-source-set
(knowledge-source-name goodness
(knowledge-source-name goodness
(knowledge-source-name goodness

(knowledge-source-set
(knowledge-source-name goodness
(knowledge-source-name goodness

(knowledge~source-name goodness

resolving-power
resolving-power

resolving-power

resolving-power
resolving-power

resolving-power

resolving-power
resolving-power

resolving-power

331

runtime)
runtime)

runtime))

runtime)
runtime)

runtime))

runtime)
runtime)

runtime))]

Knowledge sources in a knowledge-source-set are specified in order
of decreasing priority for the planner.
goodness is an integer in the range [0..10000] used to weight the
knowledge source rating calculated by the scheduler.
runtime is a list of two constants (const-1 const-2) used to

determine the runtime of a knowledge

source as:

(const-1) * (#-stimulus-hyps) + (const-2).

TOPOLOGICAL-ROLE DEFINITIONS

(topological-role node-list up-data same-level-data down-data)
(topological-role node-list up-data same-level-data down-data)

(topological-role node-list up-data same-level-data down-data)]

where up-data, same-level-data, and down-data are lists of the form:

((level-list avg-number-paths)...(level-list avg-number-paths))

and avg-number-paths is a floating-point number.

Topological roles are used to classify nodes for measurement purposes.

Environment File Description

WE We WE B GO Ve WP W Ve WL Ve WS YO VY G WE VO WO WO WE WP WO VS VO Ve WS W we we

NODE-CLASS DEFINITIONS

(node-class knowledge-source-set cset-region
local-processing-interest-areas
topological-role subgoal-data)

(node-class knowledge-source-set cset-region
local-processing-interest-areas
topological-role subgoal-data)

(node-class knowledge-source-set cset-region
local-processing-interest-areas
topological-role subgoal-data)]

where: .
cset-region is a region specified relative to a node's location;
local-processing-interest-areas is a list:

((interest-area weight)...(interest-area weight))

of pairs of an interest-area and associated weights;
subgoal-data is a list of pairs:

(subgoal-level-list level-size-weight-list)

subgoal-level-list is a list of levels from which subgoals will be
created;
level-size-weight-list is a pair:

(level-list (list of size-weights));

level-list is a list of levels at which the subgoals will be created
for each of the top-level goals;

size-weight is a pair of size-shrink-factor and a weight;

size-shrink-facétor determines by how much a region will be reduced
for the subgoal at that level and the weight multiplies the
original top-goal rating to get the new subgoal rating.

Note: If the level-size-weight-list is nil then all the subgoals will
be created at all the levels below the top-goal-level which are
in the interest area with the same region and rating as the
top-goal.

332

3 32 _3 3 .3 .2

. ® _ 3 _3 3 _F ._23 _ 3 _2

3 > 3 3

—3

~—3

2 s M Tian

Environment File Description

' NODE DATA

[(node node-class location sensor-list hyp-send-interest-areas
hyp-receive-interest-areas goal-send-interest-areas
goal-help-interest-areas goal-receive-interest-areas
sensed-times-list)

(node node-class location sensor-list hyp-send-interest-areas
hyp-receive-interest-areas goal-send-interest-areas
goal-help-interest-areas goal-receive-interest-areas
sensed-times-list)

(node node-class location sensor-list hyp-send-interest-areas
hyp-receive-interest-areas goal-send-interest-areas
goal-help-interest-areas goal-receive-interest-areas
sensed-times-list)

where hyp-send-interest-areas, goal-send-interest-areas and

goal-help-interest-areas are lists:

((node-list (interest-area threshold weight)
(interest-area threshold weight))
(node-list (interest-area threshold weight)

(interest-area threshold weight))

(node-1ist (interest-area threshold weight)

(interest-area threshold weight)))

WO e WO Ve We We We We wo we we we we we LI

333

Environment File Description

and hyp-receive-interest-areas is a list:

((node-list (interest-area threshold weight
focusing-weight)

(interest-area threshold weight
focusing-weight))

(node-list (interest-area threshold weight
focusing-weight)
(interest-area threshold weight
focusing-weight))

(node-list (interest-area threshold weight
focusing-weight)
(interest-area threshold weight
focusing-weight)))

and goal-receive-interest-areas is a list:

((node-list (interest-area threshold weight
Eiﬁterest-area threshold weight

(node-list (interest-area threshold weight

Eiaterest-area threshold weight

Eﬁéde-list (interest-area threshold weight

(interest-area threshold weight
and sensed-times-list is a list:

((node-clock-time time-frame-list) ...)

WE W WE WP W Ve WL W GO e W WO G WO W Ve GO WS WO WS Ve B W Ve GE B WS WE Ve GO G We GO Ve We GO

334

credibility

credibility

credibility
credibility
credibility

credibility

credibility)

credibility))
credibility)

credibility))
credibility)

credibility)))

3 .3 .7) __2

3 3 o3 3

3 3 _—») _23

3 > __3 3

3

T3

Environment File Description 335

FHIIEI 00000030 00 3030 303500 30 0 0 0020 30 30 38 30 30 3030 38 38 38 3000 98 30 38 38 38 96 08 00 90 30 00 3636 30 6 6 30 30 38 30 38 36 36 38 38 3 3 38 38 3 3 3 3% 3 #

SENSOR DEFINITIONS

FI0 T3 30 000030 30000 30 06 3000 3% 3000238360 300600 30 30 0028 36 36 90 36 36 36 38 36 36 30 36 36 36 36 30 38 36 38 9 36 6 36 38 30 36 36 38 96 3 36 3 3 3 % 3% % %

SENSOR-CLASS DEFINITIONS

9o w0 0 0o wo we @8 we

(sensor-class tolerance location-mask signal-mask)
(sensor-class tolerance location-mask signal-mask)

ee e

(sensor-class tolerance location-mask signal-mask)]

where:
tolerance is an integer specifying the spatial range of a sensor
location-mask is a list:

((lm11 lm12 ... lm1L)
(im21 1m22 ... 1lm2L)

(lmL1 1mL2 ... 1lmLL))
of location-mask-values in the range 0..8 (L = 2%tolerance + 1);
signal-mask is a list, (sm1 sm2 ... smS), of signal-mask-values in
the range 0..2 (S = #-event-classes).

SENSOR DATA

™96 9o ¢ 90 ©e ©e B0 We Ve W VI Ve Ve ws Ve W

(sensor sensor-class location

prob-true-location prob-true-signal sensor-weight)
(sensor sensor-class location

prob-true-location prob-true-signal sensor-weight)
(sensor sensor-class location

prob-true-location prob-true-signal sensor-weight)]

Environment File Description

M ee ©¢ 96 we wes 9o ws we

Ml es we we we weo

M 9o 90 0 we wo wo @0 we we we weo

e we we ws wo

.o

*****&Ili!*ii**ill*l**l**!!l*******l********i*l**!*i**i********!li***

COMMUNICATION RELIABILITY DATA

******i*****!*************!*******************l*********l********l***

HYP COMMUNICATION ERRORS

(from-node-list to-node-list probability-of-error)
(from-node-1ist to-node-list probability-of-error)

(from-node-list to-node-list probability-of-error)]

]
o
.

Communication links not mentioned have probability-of-error
GOAL COMMUNICATION ERRORS

(from-node-list to-node-list probability-of-error)
(from-node-1ist to-node-list probability-of-error)

oo e

(from-node-1ist to-node-list probability-of-error)]

Communication links not mentioned have probability-of-error = 0.

J 0300303696303 36 38 36 30 30 36 36 36 6 36 36 36 36 36 98 38 38 36 30 30 96 36 36 38 38 36 9636 36 38 38 36 36 36 96 6 36 36 38 36 36 38 36 36 3 30 06 3 06 06 36 0 6 36 20 36 36 3¢ 3¢ ¥

CONSISTENCY DATA

636 35 36 38 31 96 36 36 38 36 36 3 38 36 96 36 38 3 36 3¢ 36 3 6 96 36 36 36 96 30 38 36 34 30 36 36 36 30 36 36 3 30 36 3¢ 30 38 36 36 36 36 36 0 30 30 30 3¢ 30 0 06 30 I8 06 96 38 2 6 3 3¢ ¢

CBB PT

(event-class time-location-list true?)
(event-class time-location-list true?)

(event-class time-location-list true?)]
true? has a value of t if data is true, nil if false but consistent.
CBB PL

(event-class time-location-list)
(event-class time-location-list)

(event-class time-location-list)]

336

3 -3 2

i3 .3 3 _- 3

-3 _3

&

—2 3 3

—3 3 3

—3 3 3 __3

Environment File Description

Miee we

Moo wo e MFlee ws we M ees 9o we

™ee we we

rles we we

(event-class
(event-class

(event-class

(event-class
(event-class

(event-class

(event-class
(event-class

(event-class

(event-class
(event-class

(event-class

(event-class
(event-class

oo e

(event-class

(event-class
(event-class

(event-class

CBB VT

time-location-1list)
time-location-list)

time-location-list)]
CBB VL

time-location-list)
time-location-list)

time-location-list)]
CBB GT

time-location-list)
time-location-list)

time-location~list)]
CBB GL

time-location-list)
time-location-list)

time-location-list)]
CBB ST

time-location-list)
time-location-list)

time-location-list)]
CBB SL

time-location-list)
time-location-list)

time-location-list)]

Environment File Description

1 we ws 0 9o We Ws ws B

™ ee ws we

338

l***l*i**i**ﬁl*il*%!**i*ll**liiﬁ*i&**i***l***ll****!i*******!i*i*i***

ENVIRONMENT DATA

*i!!*i**!&**lil}'ﬁ***i*lii!*iii*l**!******i!i*l!*****l**!*!*li*l*****

(event—-class ((time-location-list belief sensor-list)
(time-location-list belief sensor-list)

' PATTERN DATA

(time-location-list belief sensor-list)

))

(event-class((time-location-list belief sensor-list)

(event-class

(event-class

(event-class

(event-class

(time-location-list belief

(time-location-list belief sensor-list)))

((time-location-list belief sensor-list)

(time-location-list belief

(time-location-list belief sensor-list)))

VEHICLE DATA

(time-location-1list belief
(time-location-list belief

ese

(time-location-list belief

(time-location-list belief
(time-location-list belief

(time-location-list belief

(time-location-list belief
(time-location-list belief

(time-location-list belief

sensor-list)

sensor-list)

sensor-list)
sensor-1list)

sensor-list)

sensor-list)
sensor-1list)

sensor-list)

sensor-list)
sensor-list)

sensor-list)

.3 3 _2

3 .4 13 _.2

3 3 3 __3 _23

3

Environment File Description

es we we

“e we we we

(event-class

(event-class

(event-class

(event-class

(event-class

(event-class

GROUP DATA

(time-location-list
(time-location-list

(time-=location-1list

(time-location-list
(time-location-list

(time-location-list

(time-location-list
(time-location-list

(time-location-list

SIGNAL DATA

(time-location-list
(time-location-list

(time-location-list

(time-location-list
(time-location-list

(time-location-list

(time-location-list
(time-location-list

s

(time-location-list

belief
belief

belief

belief
belief

belief

belief
belief

belief

belief
belief

belief

belief
belief

belief

belief
belief

belief

sensor-list)
sensor-list)

sensor-list)

sensor-list)
sensor-list)

sensor-list)

sensor-list)
sensor-list)

sensor-list)

sensor-list)
sensor-list)

sensor-list)

sensor-list)
sensor-list)

sensor-list)

sensor-list)
sensor-list)

sensor-list)

#%%%% End of Environment File #¥##%

##ENVIRONMENT-FILE##

339

Distributed Vehicle Monitoring Testbed Attribute Descriptions 340

APPENDIX B

DISTRIBUTED VEHICLE MONITORING TESTBED ATTRIBUTE DESCRIPTIONS

The major data structures in the distributed vehicle monitoring
testbed are: competitor sets, global-hypotheses, goals, hypotheses,
interest areas, knowledge sources, knowledge source instantiations,
information about each node, and information about each sensor. This
appendix lists most of the attributes in each of these data structures

with a brief description of each attribute,.

B.1 Competitor 3Set Attributes

Competitor sets are used for calculating the node and network
performance measures used in the testbed. A competitor set contains all
alternative global-hypotheses (see below) describing possible
interpretations for mutually-exclusive aspects of the sensory data. The
competitor set structure for all sensor level hypotheses in the testbed
is precomputed by the frontend at the beginning of an experimental run
using consistency information supplied in the environment file.
ghyps: {link]

An ordered set of global hypothesis names which -comprise this

competitor set.
reliabilities:

A vector containing the reliability measures for this competitor
set at each node and for the entire network.

4 3 __A

-3 _ 3 ‘'3 3 __3 _3

3 _ 3

~—3 3

ﬁ~—§ —3 r——§ f—ﬂg rfja r——§ —3 r*fg

T3

Distributed Vehicle Monitoring Testbed Attribute Descriptions 341

B.2 Global-Hypothesis Attributes

Global-hypotheses are also used in calculating the node and network
performance measures in the testbed as well as the effect of
transmitting a hypothesis to another node. There is one
global-hypothesis for each unique hypothesis in the network.
Global-hypotheses connect hypotheses at different nodes that have
identical level, time-belief-list, and event-class attributes with their

appropriate competitor sets.

csets: [1ink]
An ordered set of competitor set names which contain this
global-hypothesis.

event-class:
The event-class number of the global-hypothesis,

node-hyps: [1ink]

A vector of ordered sets of hypothesis names which have this
global-hypothesis as a global-hypothesis attribute or as a
hidden-support attribute.

time-location-list:
An ordered set of time-location pairs of this global-hypothesis.

B.3 Goal Attributes

active-time-region-list:
An ordered set of the active time-region pairs of the goal (see
Section 4.2.3). :

creating-ksis: {link]
An ordered set of the names of all knowledge source instantiations
which created (stimulated) this goal.

event-classes:
An ordered set of event-class numbers indicating the desired

hypothesis event-classes represented by this goal.

extension-direction:
The direction of extension (forward, backward, neither) for this

goal (track extension goals only).

Distributed Vehicle Monitoring Testbed Attribute Descriptions 342

inactive-time-region-list: _
An ordered set of the active time-regions of this goal (see Section
4.2.,") L]

level:
The level (sl, st, gl, gt, vl, vt, pl, pt) indicating the desired

hypothesis level represented by the goal.

next-ks:
The index of the next knowledge source at the node which the
planner should use to attempt to satisfy this goal.

node:
The node number at which this goal resides.

overlapping-goals: [1ink]
An ordered set of goal names which spatially overlap the
active-time-region-list of this goal during the same time frames.

rating:
The rating of this goal.

received-from:
An ordered set of node numbers which have sent this goal to the
node.

result-to:
An ordered set of node numbers which desire reception of hypotheses
satisfying this goal.

satisfying-hyps: [link]
An ordered set of hypothesis names which contribute to the
satisfaction of this goal.

seen-by:
An ordered set of node numbers which have seen this goal.

stimulated-ksis: [1link]
An ordered set of knowledge source instantiation names which have
been stimulated by this goal.

stimulus-hyps: ' (1link]
An ordered set of hypothesis names which have stimulated this goal.

subgoals: [link]
An ordered set of goal names which are subgoals of this goal.

supergoals: [1link]
An ordered set of goal names of which this goal is a subgoal.

3 .3 __3

'3 3 32 3

-3 3 3 _ 3 __3

—3 3

31 3 13

Distributed Vehicle Monitoring Testbed Attribute Descriptions 343

B.4 Hypothesis Attributes

backward-velocity:

The (x,y) component velocity of this hypothesis at its earliest
time frame (track hypotheses only).

belief:
The belief value of this hypothesis.

blackboard:

The name of the blackboard on which this hypothesis is located or
nil if it is not yet on a blackboard.

consistency-hyp: [link]

The name of the hypothesis which indicates this hypothesis to be
consistent.

consistent-hyps: [link]
An ordered set of hypothesis names which are indicated as
consistent by this hypothesis (consistency blackboard hypotheses
only).

creating-ksis: [1ink]
An ordered set of the names of all knowledge source instantiations
which created this hypothesis or created a hypothesis which was
merged with this hypothesis.

event-class:
The event class number of this hypothesis.

forward-velocity:
The (x,y) component velocity of this hypothesis at its latest time
frame (track hypotheses only).

ghyp: {1link]
The name of the global-hypothesis of this hypothesis (signal
location hypotheses only).

hidden-supports: {1ink]
An ordered set of global-hypothesis names which indicate the hidden
supports of this hypothesis (received hypotheses only).

level:
The level (sl, st, gl, gt, vl, vt, pl, pt) on which this hypothesis
is located.

local-reflected-reliability:

The [0-10,000] local reflected reliability of this hypothesis (used
in computing local knowledge source power measures).

Distributed Vehicle Monitoring Testbed Attribute Descriptions 344

node:
The node number at which this hypothesis is located.

received-from: :
An ordered set of node numbers which transmitted this hypothesis to

the node.

reflected-reliability:
The ([0-10,000] reflected reliability of this hypothesis (used in
computing the state of problem solving in the node and network) .

satisfied-goals: [1ink]
An ordered set of goal names which are satisfied (at least in part)
by this hypothesis.

seen-by:

An ordered set of node numbers which have seen this hypothesis,

sensor-id:
The sensor identification number of the sensor which produced the
hypothesis (signal location hypotheses only).

stimulated-goals: (link]
An ordered set of the goal names which have been stimulated by the
creation/modification of this hypothesis.

stimulated-ksis: [1link]
An ordered set of the knowledge source instantiation names which
have been stimulated by the insertion of this hypothesis.

supported-hyps: : [link]
An ordered set of the hypothesis names which are supported by this
hypothesis.

supporting-hyps: {1link]
An ordered set of the hypothesis names which support this
hypothesis.

time-location-list:
An ordered set of the time/location pairs of this hypothesis,

time-beliefs:
An ordered list of the beliefs of this hypothesis for each time
frame (used to represent non-uniform belief within a track
hypothesis),

true?:
t if this hypothesis is true, nil if it is false.

-3 3 _» _3 __.» A _3 ._3 3 __3

-3 '3 i3 3

3

3

T“"‘%,

Distributed Vehicle Monitoring Testbed Attribute Descriptions 345

B.5 Knowledge Source Attributes

consistent-instantiation-counts:
A vector containing the number of instantiations at each node of
this knowledge source creating at least one false, but consistent,
output hypothesis and no true output hypotheses.

consistent-invocation-counts:
A vector containing the number of invocations at each node of this
knowledge source creating at least one false, but consistent,
output hypothesis and no true output hypotheses.

false-instantiation-counts:
A vector containing the number of instantiations at each node of
this knowledge source creating only false output hypotheses,

false-invocation-counts:
A vector containing the number of invocations at each node of this
knowledge source creating only false output hypotheses.

global-powers:
A vector of the total (accumulated) global power measures of this
knowledge source at each node.

goodnesses:
A vector of knowledge source efficiency weightings at each node for

this knowledge source (used in calculating the ratings of knowledge
source instantiations).

instantiations: : (link]
A vector of ordered sets of the names of instantiations of this
knowledge source at each node.

instantiation-counts:
A vector of the number of instantiations of this knowledge source
at each node.

invocations: [1link]
A vector of ordered sets of the names of executions of this

knowledge source at each node,

invocation-counts:
A vector of the number of invocations of this knowledge source at

each node.

local-powers: ‘
A vector of the total (accumulated) local power measures of this

knowledge source at each node.

Distributed Vehicle Monitoring Testbed Attribute Descriptions 346

precondition-function:
The name of the precondition function for this knowledge source (or
nil, if no precondition function is to be executed for this
knowledge source).

resolver-powers:
A vector of the resolver powers to be used for this knowledge
source at each node.

true-instantiation-counts:
A vector containing the number of instantiations at each node of
this knowledge source creating only true hypotheses.

true-invocation-counts:
A vector containing the number of invocations at each node of this
knowledge source creating only true hypotheses.

type:
The type of this knowledge source (communication, extension,
external, or synthesis).

B.6 Knowledge Source Instantiation Attributes

created-goals: [1link]

An ordered set of goal names which were created by this knowledge
source instantiation.

created-hyps: [link]
An ordered set of hypothesis names which were created by this
knowledge source instantiation or which were the result of a merger
with a hypothesis created by this knowledge source instantiation.

global-power:

The instantaneous global power measure of this knowledge source
instantiation.

invocation-time:

The internal clock time when this knowledge source instantiation
began execution.

ks: (link]
The name of the knowledge source of which this knowledge source
instantiation is an instance,

local-power:

The instantaneous local power measure of this knowledge source
instantiation.

—3% __A

Distributed Vehicle Monitoring Testbed Attribute Descriptions 347

next-ksi: [1ink]
The name of the knowledge source instantiation which follows this
knowledge source instantiation on a scheduling queue.

node:
The node number at which this knowledge source instantiation is
located.

output-set:
The response frame for this knowledge source instantiation (since

knowledge source instantiations are actually executed in the
precondition procedure in the testbed, the output-set contains an
specification of the hypotheses to be created by this knowledge
source instantiation).

rating:
The [-10,000-10,000] rating of this knowledge source instantiation.

stimulus-goals: [1link]
An ordered set of goal names which stimulated this knowledge source
instantiation.

stimulus-hyps: [link]
An ordered set of hyp names which stimulated this knowledge source
instantiation.

B.7 Node Attributes

area-csets: [1ink]

consistent-goal-counts:
A vector containing the number of false, but consistent, goals

created at each level at this node.

consistent-hyp-counts:
A vector containing the number of false, but consistent, hypotheses
created at each level at this node.

consistent-ks-instantiation-counts:
A vector containing the number of false, but consistent, knowledge
sources instantiated at each level at this node.

consistent-ks-invocation-counts:
A vector containing the number of false, but consistent, knowledge
sources invoked at each level at this node.

consistent-received-goal-counts:
A vector containing the number of false, but consistent, goals

received at each level at this node.

Distributed Vehicle Monitoring Testbed Attribute Descriptions 348

consistent-received-hyp-counts:)
A vector containing the number of false, but consistent, goals

received at each level at this node.

consistent-transmitted-goal-counts:
A vector containing the number of false, but consistent, goals
transmitted at each level from this node.

consistent-transmitted-hyp-counts:
A vector containing the number of false, but consistent, hypotheses
transmitted from each level at this node.

cset-time-region-list:
The time-frame/region pairs defining what competitor sets are used
to measure the problem solving state for this node.

current-time:
The current internal clock time at the node.

false~-goal-counts:
A vector containing the number of false goals created at each level
at this node.

false-hyp-counts:
A vector containing the number of false hypotheses created at each
level at this node.

false-ks-instantiation-counts:
A vector containing the number of false knowledge sources
instantiated at each level at this node.

false-ks-invocation-counts:

A vector containing the number of false knowledge sources invoked

at each level at this node.

false-received-goal-counts:
A vector containing the number of false goals received at each
level at this node.

false-received-hyp-counts:
A vector containing the number of false hypotheses received at each
level at this node.

false-transmitted-goal-counts:
A vector containing the number of false goals transmitted from each
level at this node.

false-transmitted-hyp-counts:
A vector containing the number of false hypotheses transmitted from
each level at this node,

.3 _-3 .3 3 __3

.3 3 __3

L3 3 3 -2 _3» 3 3 3 _ 3

—3 __3

Distributed Vehicle Monitoring Testbed Attribute Descriptions 349

goal-directed-goal-counts:

A vector containing the number of subgoals created at each level at
this node.

goal-help-levels:

A list of level names for transmitting help goals (used as a filter
for goal-help-interest-areas),

goal-help-interest-areas:
The help goal transmission interest areas for this node.

goal-message-buffer:
The message buffer for received goals.

goal-receive-interest-areas:
The goal reception interest areas for this node.

goal-send-levels:

A list of level names for transmitting goals (used as a filter for
goal-send-interest-areas).

goal-send~interest-areas:
The goal transmission interest areas for this node.

hyp-message-buffer:
The message buffer for received hypotheses.

hyp—receive-intérest-areas:

The hypothesis reception interest areas for this node.

hyp-send-levels:

A list of level names for transmitting hypotheses (used as a filter
for goal-help-interest-areas).

hyp-send-interest-areas:

The hypothesis transmission interest areas for this node,

initial-measure:

The initial problem solving state for this node (based solely on
the quality of the sensory data).

interest-area-weight-list:

internal-subgoal-data:

Describes to the planner where and how subgoaling is to be
performed.

ks-instantiation-counts:

A vector containing the total number of knowledge sources
instantiated at each level at this node.

Distributed Vehicle Monitoring Testbed Attribute Descriptions 350

ks-invocation-counts:
A vector containing the total number of knowledge sources invoked
at each level at this node.

kss: [(link]
The knowledge sources available at this node (in priority order).

location:
The spatial (x, y) location of this node.

last-reception-time:
The time when the most recent hypothesis or goal was received at
this node.

last-transmission-cycle:
The time when the most recent hypothesis or goal was transmitted at
this node,

measure:
The current problem solving state measure at this node.

merged-goal-counts: -
A vector containing the number of merged goals at each level at
this node.

merged-hyp-counts:
A vector containing the number of merged hypotheses at each level
at this node.

pending-local-ksi: (1ink]
The next non-communication knowledge source instantiation to be
executed at this node.

pending-receive-ksi: [1link]
The next reception knowledge source instantiation to be executed at
this node.

pending-send-ksi: {1link]

The next transmission knowledge source instantiation to be executed
at this node.

scheduler-threshold:
The minimum knowledge source instantiation rating required for a
knowledge source instantiation to be executed at this node.

sensed-times:

A list of time frames that have been sensed by sensors reporting to
this node.

2 3 3 3 _32

3 3 3 _3

3

Distributed Vehicle Monitoring Testbed Attribute Descriptions 351

sensor-list:
An ordered set of sensor numbers that report to this node.

true-goal-counts:

A vector containing the number of true goals created at each level
at this node.

true-hyp-counts:

A vector containing the number of true hypotheses created at each
level at this node.

true-ks—-instantiation-counts:

A vector containing the number of true knowledge sources
instantiated at each level at this node.

true-ks-invocation-counts:

A vector containing the number of true knowledge sources invoked at
each level at this node.

true-received-goal-counts:

A vector containing the number of true goals received at each level
at this node.

true-received-hyp-counts:

A vector containing the number of true hypotheses received at each
level at this node,

true-transmitted-goal-counts:

A vector containing the number of true goals transmitted from each
level at this node.

true-transmitted-hyp-counts:

A vector containing the number of true hypotheses transmitted from
each level at this node.

B.8 Sensor Attributes

consistent-signal-count:

The number of false, but consistent, signals generated by this
sensor.

false-signal-count:

The number of false signals generated by this sensor.

frequency-mask:

A vector specifying the number of signals (at most one being
correct) generated from a simulated signal of each possible
frequency event class.

Distributed Vehicle Monitoring Testbed Attribute Descriptions 352

location:
The (x, y) location of this sensor.

location-mask:
An array specifying the number of signals (at most one being
correct) generated from a simulated signal located at a particular
location relative to the sensor itself,

nodes:
An ordered set of node numbers to which this sensor reports.

probability-true-location:
The probability that a signal generated by the sensor is correctly
positioned with respect to the simulated vehicle.

probability-true-frequency:
The probability that a signal generated by the sensor has the
correct frequency with respect to the vehicle.

true-signal-count:
The number of true signals generated by this sensor.

weight:
A multiplier applied to the beliefs of signal location hypotheses
produced by this sensor,

‘.2 _-2 3 -3 __3

—3 3 2

.3 _3 _3 _3 __.3 _3 _3 _3

—3 3 3

An Annotated Portion of a Network Trace 353

APPENDIX C

AN ANNOTATED PORTION OF A NETWORK TRACE

This appendix contains a short portion of a trace listing produced
by the Distributed Vehicle Monitoring Testbed. Major activities have
been annotated. The trace is from the straight vehicle environment with
subgoaling experiment described in Chapter V, and the portion reproduced
here shows the activities involved in forming and extending vehicle
track hypotheses as well as the subgoaling activities performed by the
local node planner,

Each 1line in the trace represents a primitive action in the
testbed. (Not all primitive actions are included in this annotated
segment.) Each line begins with an asterisk, a plus sign, or a minus
sign denoting whether the entity is dealing with true, false but
consistent, or false data, respectively (as indicated by the information
on the consistency blackboard). The various fields assoéiated with each

traced action are indicated below:1

1. In the trace ndq" means "data-directed” and "gd" means
"goal-directed".

BLACKBOARD EVENT -->

CREATED DD GOAL ==->

CREATED GD GOAL ——=>

CREATED HYP —ww—=—=>

INSTANTIATED KSI -=>

INVOKED KSI —===- -

MERGED GD GOAL —~==>

MERGED KSI —————ee- >

RERATED GD GOAL —->

RERATED KSI —==ee==>

SUPPORTING HYP —=-=>

An Annotated Portion of a Network Trace

event-type level stimulus-hyps/stimulus-goals

goal-name level active-time-region-list
event-classes {goal-rating}

goal-name level active-time-region-list
event-classes {goal-rating}

hyp-name level time-location-list event-class
{belief}

ksi-name ks-type stimulus-goals stimulus-hyps
<goal-directed-rating data-directed-rating>
{overall-ksi-rating}

ksi-name ks-type stimulus-goals stimulus-hyps
{ksi-rating}

goal-name level active-time-region-list
event-classes {goal-rating}

ksi-name ks-type stimulus-goals stimulus-hyps

goal-name level active-time-location-list
event-classes stimulus-hyps stimulated-ksis
{old-rating to new-rating}

ksi-name ks-type stimulus-goals stimulus-hyps
<new-gd-rating-component
new-dd-rating-component>

{old-rating to new-rating}

supporting-hyp-name level time-location-list
event-class {belief}

354

—3 -3 3 __3

E]

-—3 _3 3 _3 3

3

—3 -3 3 __3

An Annotated Portion of a Network Trace 355

———---—- Executing Node 1 — Time Frame 8 -- System Cycle 26 =——————-

; the vehicle track formation knowledge source begins execution
; with a vehicle location hypothesis at time frame 2 as its
; Stimulus hypothesis.

* INVOKED KSI ===———=> ksi0070 s:vl:vt (g0101 g0105) (ho254) {6602}
+ @ vehicle track in time frames 1 and 2 is created
® CREATED HYP ———eme > h0258 vt ((1 (6 2)) (2 (8 #4))) 1 {9766}
with two supporting hypotheses (one in each time frame).
* SUPPORTING HYP ———-> h0246 vl ((1 (6 2))) 1 {9844}
* SUPPORTING HYP ---=> h0254 vl ((2 (8 4))) 1 {9844}

; a hypothesis creation blackboard event is signalled.
* BLACKBOARD EVENT --> hyp-creation vt (h0258)
; a goal specifying extension of the newly created track into
+ the next time frame is created.
% CREATED DD GOAL —-> g0117 vt ((3 (8 4 12 8))) (1) {4883}
; a knowledge source instantiation is scheduled to attempt
s to achieve the goal.
* INSTANTIATED KSI —> ksi0072 ef:vt:vt (g0117) (h0258) <6791 9792>
{7390}
+ the extension goal is subgoaled to lower location levels.
; at the vehicle location level an identical goal is found,
; and so the existing goal is rerated.
* RERATED GD GOAL ---> g0054 vl ((3 (9 5 11 7))) (1) (h0217 ho242)
(ksi0047) {875 to 4883}
; the remaining subgoals are created.
CREATED GD GOAL —-> g0118 gl ((3 (95 11 7))) (1 2 356 7) {4883}
CREATED GD GOAL ---> g0119 sl ((3 (9511 7))) (1235679 101
13 14 15 17 18 19) {u883} :
; returning to the original vehicle track hypothesis creation
; event, a goal to synthesize a single vehicle pattern track
s+ hypothesis is created
* CREATED DD GOAL ——-> g0120 pt ((1 (2 1 10 6)) (2 (4 1 12 8))) (1)
{97661
s and a knowledge source is instantiated to achieve that goal.
* INSTANTIATED KSI -=> ksi0073 s:vt:pt (g0120) (h0258) <9766 9766>
{9765}
;s a two-vehicle pattern track goal is also created.
% CREATED DD GOAL ---> g0121 pt ((1 (1 17 9)) (2 (1 39 11))) (3)
{97661}
s a pending knowledge source instantiation is found that
; can also achieve this goal (the knowledge source instantiation
; scheduled to achieve the single vehicle goal).
* MERGED KSI ~=w==—- -=> ksi0073 s:vt:pt (g0120 g0121) (h0258)
a second vehicle track hypothesis is formed by the executing
knowledge source instantiation using the stimulus hypothesis
; in time frame 2, this time in time frames 2 and 3.

* CREATED HYP —————— > h0259 vt ((2 (8 4)) (3 (10 6))) 1 {9766}
* SUPPORTING HYP -—-=> h0254 vl ((2 (8 4))) 1 {9844}
% SUPPORTING HYP ----> h0248 v1 ((3 (10 6))) 1 {9844}

; the hypothesis creation event is signalled

An Annotated Portion of a Network Trace 356

x® % K %

BLACKBOARD EVENT --> hyp-creation vt (h0259)
; and a goal to extend the track backward in time is created.
CREATED DD GOAL —-> g012u vt ((1 (4 1 8 4))) (1) {4883}
: a knowledge source instantiation is scheduled to achieve it.
INSTANTIATED KSI --> ksiOO74 eb:vt:vt (g0124) (h0259) <6799 9792>
{7397}
s+ and the goal is subgoaled.
CREATED GD GOAL —-=> g0125 vl ((1 (5 2 7 3))) (1) {4883}
CREATED GD GOAL —--=> g0126 gl ((1 (52 7 3))) (1 2 35 6 T7) {u883}
CREATED GD GOAL —-> g0127 s1 ((1 (527 3))) (1235679 10 11 13
14 15 17 18 19) {4883}
; a goal to extend the track forward in time is created and
; subgoaled. ‘
CREATED DD GOAL ——-> g0128 vt ((4 (10 6 14 10))) (1) {4883}
CREATED GD GOAL ---=> g0129 vl ((4 (11 7 13 9))) (1) {4883}
CREATED GD GOAL —-> g0130 gl ((4 (11 7 13 9))) (1 2 35 6 7) {4883}
; subgoaling raises the rating of two pending knowledge source

: instantiations (slightly).

’
RERATED KSI —=—=w-- > ksi0022 s:sl:gl (g0019 g0087 g0130) (ho122
h0124) <u883 3600> {U595 to 4626}
RERATED KSI ------—-> ksi0023 s:sl:gl (g0020 g0021 g0087 g0130) (h0126

h0128 h0130) <4883 4880> {4851 to 4882}
CREATED GD GOAL -—=> g0131 sl ((4 (11 713 9)) (1235679 10 11
13 14 15 17 18 19) {4883}
a goal to synthesize a single vehicle pattern track is

; created.
CREATED DD GOAL ——=> g0132 pt ((2 (4 1 12 8)) (3 (6 2 14 10))) (1)
{97661
INSTANTIATED KSI —-> ksi0075 s:vt:pt (g0132) (h0259) <9766 9766>
{97651}
; a goal to synthesize a two-vehicle pattern track is
s created.
CREATED DD GOAL ---> g0133 pt ((2 (1 3 9 11)) (3 (3 5 11 13))) (3)
{9766}

; and the previous knowledge source instantiation is found to
; also achieve it.
MERGED KSI ~==—w===> ksi0075 s:vt:pt (g0132 g0133) (h0259)

-------- Executing Node 1 —- Time Frame 8 -- System Cycle 27 ———————-

; another vehicle track formation knowledge source begins
; execution.

INVOKED KSI ——=——— > ksi0071 s:vl:vt (g0109 g0113) (h0256) {6602}
; a vehicle track in time frames 6 and 7 is created

CREATED HYP w===-=-=> h0260 vt ((6 (16 12)) (7 (18 14))) 1 {9766}

SUPPORTING HYP ---=> h0250 vl ((6 (16 12))) 1 {9844}

SUPPORTING HYP —-~-> h0256 v1 ((7 (18 14))) 1 {9844}

BLACKBOARD EVENT --> hyp-creation vt (h0260)
; a goal specifying extension of the newly created track into
s the previous time frame is created

CREATED DD GOAL ---> g0136 vt ((5 (12 8 16 12))) (1) {4883}

-3 3 __2

3

—d 3 3 3 3

An Annotated Portion of a Network Trace 357

s and subgoaled.
CREATED GD GOAL —-> g0137 vl ((5 (13 9 15 11))) (1) {4883}
CREATED GD GOAL ---> g0138 gl ((5 (13 9 15 11))) (1 2 35 6 7) {4883}

* RERATED KSI ———eeee > ksi0026 s:sl:gl (g0025 g0091 g0138) (h0132
h0133) <4883 3600> {4595 to 4626} .
Fm * RERATED KSI —--——--> ksi0027 s:sl:gl (g0026 g0027 g0091 g0138) (h0136
h0138 h0140) <4883 u4880> {u4851 to 4882}

CREATED GD GOAL —-> g0139 sl ((5 (13 9 15 11))) (12356 7 9 10 11
13 14 15 17 18 19) {u4883}
a goal specifying extension of the newly created track into
+ the next time frame is created
® CREATED DD GOAL —-> g0140 vt ((8 (18 14 21 18))) (1) {4883}
* INSTANTIATED KSI --> ksi0076 ef:vt:vt (g0140) (h0260) <6791 9792>
{7390}
s and subgoaled.
CREATED GD GOAL —-> g0141 vl ((8 (19 15 20 17))) (1) {4883}
CREATED GD GOAL ---> g0142 gl ((8 (19 15 20 17))) (12 356 7)
{4883}
CREATED GD GOAL —-—-> g0143 sl ((8 (19 15 20 17))) (1 2356 7 9 10
11 13 14 15 17 18 19) {4883}
7 @ goal to synthesize a single vehicle pattern track
s hypothesis is created.
* CREATED DD GOAL ---> gO144 pt ((6 (12 8 20 16)) (7 (14 10 21 18)))
(1) {9766}
* INSTANTIATED KSI --> ksiO077 s:vt:pt (g0144) (h0260) <9766 9766>
{9765}
7 a goal to synthesize a two-vehicle pattern track
; hypothesis is created.
* CREATED DD GOAL ---> g0145 pt ((6 (9 11 17 19)) (7 (11 13 19 21)))

(3) {9766}
* MERGED KSI ~———eee- > ksi0077 s:vt:pt (g0144 g0145) (h0260)
+ a second vehicle track hypothesis is formed from the time

_ s frame 7 location hypothesis, this time in time frames 7
' ; and 8.
FM * CREATED HYP ———eeee > h0261 vt ((7 (18 14)) (8 (20 16))) 1 {97661}

% SUPPORTING HYP ——--=> h0256 vl ((7 (18 14))) 1 {9844}

* SUPPORTING HYP ——--=> h0252 vl ((8 (20 16))) 1 {98uu}

*

BLACKBOARD EVENT --> hyp-creation vt (h0261)
7 a goal to extend the track backward in time is created
CREATED DD GOAL ---> g0148 vt ((6 (14 10 18 14))) (1) {4883}
* INSTANTIATED KSI -—-> ksiO078 eb:vt:vt (g0148) (h0261) <6799 9792>
{7397}
; and subgoaled.
* RERATED GD GOAL ——-> g0056 vl ((6 (15 11 17 13))) (1) (h0219 h0243)
(ksi0049) {875 to 4883}
CREATED GD GOAL —-> g0149 gl ((6 (15 11 17 13))) (1 2356 7)
{4883}
CREATED GD GOAL —-> g0150 sl ((6 (15 11 17 13))) (1 2356 7 9 10
11 13 14 15 17 18 19) {u883}
s+ a goal to synthesize a single vehicle pattern track is
; created.

*

An Annotated Portion of a Network Trace 358

CREATED DD GOAL ---> g0151 pt ((7 (14 10 21 18)) (8 (16 12 21 20)))

-3 3 3 __3» __3

(1) {97661
*# TNSTANTIATED KSI -=> ksiO0079 s:vt:pt (g0151) (h0261) <9766 9766>
{9765}
: a goal to synthesize a two-vehicle pattern track is
;s created.
* CREATED DD GOAL —-> g0152 pt ((7 (11 13 19 21)) (8 (13 15 21 21)))
(3) {9766}
* MERGED KSI ~——————- > ksi0079 s:vt:pt (g0151 g0152) (h0261)

e———mm—— Executing Node 1 -- Time Frame 8 -- System Cycle 28 ———————-

: the knowledge source instantiated in cycle 26 to synthesize
s pattern track hypotheses in time frames 1 and 2 begins
; execution,
TNVOKED KSI ———=—=—=—==> ksi0073 s:vt:pt (g0120 g0121)
(h0258) {9953}
: a two-vehicle pattern track hypothesis is created.
— CREATED HYP —==—- -=> h0262 pt ((1 (6 2)) (2 (8 u4))) 3 {4883}
% SUPPORTING HYP -——-> h0258 vt ((1 (6 2)) (2 (8 4))) 1 {9766}
- BLACKBOARD EVENT --=> hyp-creation pt (h0262)
a forward extension goal is created and subgoaled.
- CREATED DD GOAL --=> g0155 pt ((3 (8 4 12 8))) (3) {u883}
CREATED GD GOAL —-> g0156 vt ((3 (6 8 8 10))) (2) {4883}
CREATED GD GOAL ~---> g0157 vt ((3 (12 2 14 4))) (1) {4883}
CREATED GD GOAL —-=> g0158 vl ((3 (6 8 8 10))) (2) {u883}
; this knowledge source instantiation's rating was dramatically
;s increased due to subgoaling (unfortunately it will only
; produce false hypotheses).
- RERATED KSI ~——=—=—=-> ksi0058 s:gl:vl (g0065 g0158) (h0228) <4883 683>
{244 to uou2}
CREATED GD GOAL —--> g0159 gl ((3 (6 8 8 10))) (9 10 11 13 14 15)
{4883}
CREATED GD GOAL —--=> g0160 sl ((3 (6 8 8 10))) (17 18 19 21 22 23 25
26 27 29 30 31 33 34 35) {4883}
CREATED GD GOAL —-> g0161 vl ((3 (12 2 14 4))) (1) {4883}
CREATED GD GOAL ---=> g0162 gl ((3 (12 2 14 ¥))) (1 2 35 6 7) {4883} “
CREATED GD GOAL ——-> g0163 sl ((3 (12 2 14 4))) (12356 7 9 10 11
13 14 15 17 18 19) {4883}
s the single-vehicle pattern track hypothesis is created.
% CREATED HYP =—=——==> h0263 pt ((1 (6 2)) (2 (8 4))) 1 {9766}
* SUPPORTING HYP —=--> h0258 vt ((1 (6 2)) (2 (8 4))) 1 {9766}
¥ BLACKBOARD EVENT —-> hyp-creation pt (h0263)
: a forward extension goal is created and subgoaled.
¥ CREATED DD GOAL ---> g0164 pt ((3 (8 4 12 8))) (1) {9766}
CREATED GD GOAL ---=> g0165 vt ((3 (9 5 11 7))) (1) {97661}
* RERATED KSI ——————=> ksi0072 ef:vt:vt (g0105 g0117 g0165) (h0258)
<9766 9792> {7390 to 9770}
%* RERATED GD GOAL ---=> g0054 vl ((3 (9 5 11 7))) (1) (h0217 h0242)
(ksiood7) {4883 to 97661}
RERATED GD GOAL ---> g0118 gl ((3 (95 11 7))) (1 2 35 6 7) nil nil

3 3 ' 3 |

. 3 3

-3 3 -3 3 3

An Annotated Portion of a Network Trace

W W Wk

{4883 to 9766}
RERATED GD GOAL —-> g0119 s1 ((3 (95 11 7)) (1235679 10 11
13 14 15 17 18 19) nil nil {4883 to 9766}

359

—————-—-- Executing Node 1 — Time Frame 8 -- System Cycle 29 ~—emem—e

; the knowledge source instantiated in cycle 26 to synthesize

; pattern track hypotheses in time frames 1 and 2 begins

s execution.
INVOKED KSI ————eee > ksi0075 s:vt:pt (g0132 g0133)
(h0259) {9953}

; @ two-vehicle pattern track hypothesis is created.
CREATED HYP —eee- —> h0264 pt ((2 (8 4)) (3 (10 6))) 3 {4883}
SUPPORTING HYP ——-=> h0259 vt ((2 (8 4)) (3 (10 6))) 1 {9766}
BLACKBOARD EVENT --> hyp-creation pt (h0264)

; a backward extension goal is created and subgoaled.

CREATED DD GOAL --->
INSTANTIATED KSI -->

CREATED
CREATED
CREATED
CREATED

CREATED

CREATED
CREATED
CREATED

’
CREATED
CREATED
CREATED
CREATED
RERATED

CREATED
CREATED
CREATED

CREATED
CREATED

CREATED

SUPPORTING HYP ----> h0259

GD GOAL
GD GOAL
GD GOAL
GD GOAL

GD GOAL
GD GOAL

GD GOAL
GD GOAL

—_
_—
_—
_—

-_—>
_—>

—

—_—

DD GOAL —--=>
GD GOAL —->
GD GOAL --=>
GD GOAL --=>
KSI —=—eee=>
GD GOAL ——->
GD GOAL ——=>
GD GOAL —->
GD GOAL —-=>
GD GOAL —->

the single-vehicle

HYP --

->

g0166 pt ((1 (4 1 8 4))) (3) {4883}
ksi0080 mb:pt (g0166) (h0264) <10000 4896>

{8979}

g0167 vt
g0168 vt
g0169 vl
g0170 gl
{48831}

g0171 sl
26 27 29
g0172 vl
g0173 gl
g0174 sl
13 14 15

(€1 (25
(1 (8 1
((1 (25
(1 (25

(1 (25
30 31 33
(€1 (8 1
(1 (81
(1 (8 1

4 6))) (2) {4883}
10 0))) (1) {4883}
4 6))) (2) {u883}
4.6))) (9 10 11 13 14 15)

4.6))) (17 18 19 21 22 23 25
34 35) {4883}

10 0))) (1) {4883}

10 0))) (12356 7) {4883}
10 0))) (1235679 10 11

17 18 19) {4883}

s a forward extension goal is created and subgoaled.

g0175 pt ((4 (10 6 14 10))) (3) {4883}
g0176 vt ((4 (8 10 10 12))) (2) {4883}
g0177 vt ((4 (14 4 16 6))) (1) {4883}
g0178 vl ((4 (8 10 10 12))) (2) {u8s3}
ksi0060 s:gl:vl (g0067 g0178) (h0230) <u883 683>
{244 to 4042}
g0179 gl ((4 (8 10 10 12))) (9 10 11 13 14 15)

{4883}
g0180 sl

g0181 vl
g0182 gl
g0183 sl
13 14 15

((4 (8 10 10 12))) (17 18 19 21 22 23
25 26 27 29 30 31 33 34 35) {4883}

(Cy (14 4 16 6))) (1) {4883}

((4 (14 416 6))) (12356 T) {4883}
(C4 (14 416 6))) (1235679 10 11
17 18 19) {4883}

pattern track hypothesis is created.

h0265 pt ((2 (8 4)) (3 (10 6))) 1 {9766}

vt ((2 (8 4)) (3 (10 6))) 1 {9766}

BLACKBOARD EVENT —-> hyp-creation pt (h0265)
: a backward extension goal is created and subgoaled.

CREATED DD GOAL —---> g0184 pt ((1 (4 1 8 4))) (1) {9766}

An Annotated Portion of a Network Trace 360

% TINSTANTIATED KSI --> ksi0081 mb:pt (g0184) (h0265) <10000 9792>

CREATED
* RERATED

RERATED
RERATED

RERATED

{9958}
GD GOAL —-> g0185 vt ((1 (5 2 7 3))) (1) {9766}
KSI —===—==> ksiO074 eb:vt:vt (g0101 g0124 g0185) (h0259)

<9766 9792> {7397 to 9770}

GD GOAL ---> g0125 vl ((1 (5 2 7 3))) (1) nil nil {4883 to
9766}

GD GOAL ——-> g0126 gl ((1 (5 2 7 3))) (1 2 35 6 7) nil nil
{u883 to 9766}

GD GOAL —-> g0127 s1 ((1 (527 3))) (1235679 10 11 13
14 15 17 18 19) nil nil {4883 to 9766}

; a forward extension goal is created and subgoaled.

* CREATED
CREATED
RERATED

RERATED

’

DD GOAL ——-> g0186 pt ((4 (10 6 14 10))) (1) {9766}

GD GOAL —-=> g0187 vt ((4 (11 7 13 9))) (1) {9766}

GD GOAL ---> g0129 vl ((4 (11 7 13 9))) (1) nil nil {4883 to
9766}

GD GOAL —-> g0130 gl ((4 (11 7 13 9))) (1 2 35 6 7) nil
(ksi0022 ksi0023) {4883 to 9766}

; here knowledge source instantiations that will produce
s correct output hypotheses have their ratings increased

; via subgoaling.

* RERATED
* RERATED

RERATED

GD KSI ---=> ksi0022 s:sl:gl (g0019 g0087 g0130) (h0o122
h0124) <9766 3600> {4626 to 8532}

GD KSI —--> ksi0023 s:sl:gl (g0020 g0021 g0087 g0130) (h0126
h0128 h0130) <9766 4880> {4882 to 8788}

GD GOAL ——-> g0131 sl ((4 (11 7 13 9))) (12356 79 10 11

13 14 15 17 18 19) nil nil {4883 to 9766}

-------- Executing Node 1 -- Time Frame 8 -- System Cycle 30 —coe—eea

* INVOKED

the knowledge source instantiated in cycle 27 to synthesize
pattern track hypotheses in time frames 6 and 7 begins
execution.
KSI ———=——==> ksi0077 s:vt:pt (g0144 g0145)

(h0260) {9953}

s a two-vehicle pattern track hypothesis is created.

- CREATED

- CREATED
CREATED
CREATED
CREATED

- RERATED

CREATED

CREATED

CREATED

HYP ———— ——> h0266 pt ((6 (16 12)) (7 (18 14))) 3 {4883}

SUPPORTING HYP ——==> h0260 vt ((6 (16 12)) (7 (18 14))) 1 {97661}
BLACKBOARD EVENT -=> hyp-creation pt (h0266)

a backward extension goal is created and subgoaled.

DD GOAL ---> g0188 pt ((5 (12 8 16 12))) (3) {4883}

GD GOAL —-> g0189 vt ((5 (10 12 12 14))) (2) {4883}

GD GOAL ---=> g0190 vt ((5 (16 6 18 8))) (1) {u883}

GD GOAL ——-=> g0191 v1 ((5 (10 12 12 14))) (2) {4883}

KSI —=————=> ksi0062 s:gl:vl (g0069 g0191) (h0232) <4883 683>
{244 to 4042}

GD GOAL ---=> g0192 gl ((5 (10 12 12 14))) (9 10 11 13 14 15)
{4883}

GD GOAL ---> g0193 sl ((5 (10 12 12 14))) (17 18 19 21 22 23
25 26 27 29 30 31 33 34 35) {4883}

GD GOAL ——=> g0194 v1 ((5 (16 6 18 8))) (1) {4883}

—3 -3 3 __3

3 -3 3]

—3 3 _.3

—4 —3 ~3 —3 ~3 3 T3 ~3 73 "3 "3 73 "3F]} 7P "2 7 I3 3 "3

An Annotated Portion of a Network Trace 361
CREATED GD GOAL ~-=> g0195 gl ((5 (16 6 18 8))) (1 2 356 7) {4883}
CREATED GD GOAL ——-> g0196 s1 ((5 (16 6 18 8))) (12356 7 9 10 11

3

13 14 15 17 18 19) {4883}

; @ forward extension goal is created and subgoaled.

CREATED
CREATED
CREATED
CREATED
CREATED

CREATED

CREATED
CREATED

CREATED

DD GOAL —-> g0197 pt ((8 (18 14 21 18))) (3) {u883}

GD GOAL ---> g0198 vt ((8 (16 18 17 20))) (2) {4883}

GD GOAL ——=> g0199 vt ((8 (22 12 21 14))) (1) {u883}

GD GOAL ---> g0200 vl ((8 (16 18 17 20))) (2) {u883}

GD GOAL —-> g0201 gl ((8 (16 18 17 20))) (9 10 11 13 14 15)
{4883}

GD GOAL ---> g0202 sl ((8 (16 18 17 20))) (17 18 19 21 22 23
25 26 27 29 30 31 33 34 35) {4883}

GD GOAL —-> g0203 vl ((8 (22 12 21 14))) (1) {4883}

GD GOAL --—-> g0204 gl ((8 (22 12 21 14))) (1 2356 7)
{48831}

GD GOAL ——-> g0205 sl ((8 (22 12 21 14))) (12356 79 10
11 13 14 15 17 18 19) {4883}

; the single-vehicle pattern track hypothesis is created.

CREATED

HYP —=eee --> h0267 pt ((6 (16 12)) (7 (18 14))) 1 {9766}

SUPPORTING HYP —--=> h0260 vt ((6 (16 12)) (7 (18 14))) 1 {9766}
BLACKBOARD EVENT --> hyp-creation pt (h0267)

CREATED
CREATED
RERATED
RERATED
RERATED
RERATED

RERATED

a backward extension goal is created and subgoaled.

DD GOAL ---> g0206 pt ((5 (12 8 16 12))) (1) {9766}

GD GOAL ---> g0207 vt ((5 (13 9 15 11))) (1) {9766}

GD GOAL -—> g0137 vl ((5 (13 9 15 11))) (1) nil nil {4883 to
97661

GD GOAL ---> g0138 gl ((5 (13 9 15 11))) (1 2 35 6 7) nil
(ksi0026 ksi0027) {4883 to 9766}

GD KSI ——-=> ksi0026 s:sl:gl (g0025 g0091 g0138) (ho0132
h0133) <9766 3600> {4626 to 8532}
GD KSI -—--=> ksi0027 s:sl:gl (g0026 g0027 g0091 g0138) (h0136

h0138 h0140) <9766 u4880> {4882 to 8788}
GD GOAL —-=> g0139 sl ((5 (13 9 15 11))) (12356 7 9 10 11
13 14 15 17 18 19) nil nil {4883 to 97661}

s a forward extension goal is created and subgoaled.

CREATED
CREATED

DD GOAL ---> g0208 pt ((8 (18 14 21 18))) (1) {9766}
GD GOAL ---> g0209 vt ((8 (19 15 20 17))) (1) {9766}

; another beneficial knowledge source rating increase due to

; subgoaling.

RERATED

RERATED

RERATED

RERATED

KSI =—=—=-=> ksi0076 ef:vt:vt (g0113 g0140 g0209) (h0260)
<9766 9792> {7390 to 9770}

GD GOAL -—-> g0141 vl ((8 (19 15 20 17))) (1) nil nil {4883
to 9766}

GD GOAL -—-> g0142 gl ((8 (19 15 20 17))) (1 2 3 5 6 7) nil
nil {4883 to 9766}

GD GOAL —--> g0143 sl ((8 (19 15 20 17))) (1 2356 7 9 10
11 13 14 15 17 18 19) nil nil {4883 to 9766}

Selected Bibliography 362

SELECTED BIBLIOGRAPHY

Abbreviations.

AAAI-80 Proceedings of the First Annual National Conference on

Artificial Intelligence.
Available from Garcia-Robinson, Inc., 301 Menlo Oaks, Menlo

Park, California, 94025.

AAAI-82 Proceedings of the National Conferehce on Artificial

Intelligence.
Available from William Kaufmann, Inc., 95 First Street, Los

Altos, California, 94022.

IJCAI-75 Advance Papers of the Fourth International Joint Conference on

Artificial Intelligence,

Zerographic or microfilm copies available from University
Microfilms, 300 North Zeeb Road, Ann Arbor, Michigan,
48106.

IJCAI-77 Proceedings of the Fifth International Joint Conference on

Artificial Intelligence.

Available from Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, Pennsylvania,
15213.

IJCAI-T9 Proceedings of the Sixth International Joint Conference on
Artificial Intelligence,
Available from Computer Science Department, Stanford
University, Stanford, California, 94305.

IJCAI-81 Proceedings of the Seventh International Joint Conference on
Artificial Intelligence,
Available from American Association for Artificial
Intelligence, 445 Burgess Drive, Menlo Park, CA, 94025.

-3 3 3 3 __3

3 3 ‘ 3 3

—3 3 _3 __3

Selected Bibliography 363

References,

ALLE79 James F, Allen.
A Plan-Based Approach to Speech Act Recognition.
PhD thesis, University of Toronto, 1979.
Available as Technical Report 131/79, Department of Computer
Science, University of Toronto, Toronto, Canada.

ANTH65 Robert N. Anthony.
Planning and Control Systems: A framework for analysis.,

Division of Research, Harvard Business School, Harvard
University, 1965.

BARN81 Jeffrey A. Barnett.
Computational methods for a mathematical theory of evidence.
In IJCAI-81, pages 868-875.

BARN82 Jeffrey A. Barnett and Lee D. Erman.
Making control decisions in an expert system is a
problem-solving task.
Unpublished working paper, USC/Information Sciences Institute,
4676 Admiralty Way, Marina del Rey, California, 90291, April
1982.

BATE81 Peter C. Bates, Jack C, Wileden, and Victor R. Lesser.
A language to support debugging in distributed systems.
Technical Report 81-7, Department of Computer and Information
Science, University of Massachusetts, Amherst,
Massachusetts, April 1981.

BAUD78 Gerard M. Baudet.
Asynchronous iterative methods for multiprocessors.
Journal of the ACM 25(2):226-244, April 1978.

BEER78 Stafford Beer.
Platform for Change.
Wiley, corrected reprint 1978.

BEER7T9 Stafford Beer,
The Heart of Enterprise.

Wiley, 1979.

BEERS81 Stafford Beer.
Brain of the Firm,
Wiley, second edition 1981.

Selected Bibliography 364

BROO79

BR0O083

CHAPTS

CHUTT

COHE78

CRANT8

CRANSO

DAVI8O0

DAVI81

Richard S. Brooks and Victor R. Lesser.

Distributed problem solving using iterative refinement.

Technical Report 79-14, Department of Computer and Information
Science, University of Massachusetts, Amherst,
Massachusetts, May 1979.

Richard S. Brooks.
Experiments in Distributed Problem Solving with Iterative

Refinement.

_PhD Thesis, University of Massachusetts, 1983.

Available as Technical Report 82-25, Department of Computer and
Information Science, University of Massachusetts, Amherst,
Massachusetts, October 1982.

Alphonse Chapanis
Interactive human communication.
Scientific American 232(3):36-42, March 1975.

W. W, Chu,
Advances in Computer Communications.
Artech House, Dedham, Massachusetts, 1977.

Philip R. Cohen,

On Knowing What to Say: Planning Speech Acts,

PhD thesis, University of Toronto, 1978.

Available as Technical Report 118, Department of Computer
Science, University of Toronto, Toronto, Canada, January
1978.

Hewitt D. Crane.

Beyond the seventh synapse: The neural marketplace of the mind.

Research memorandum, SRI International, Menlo Park, California,
December 1978.

Hewitt D. Crane. The New Social Marketplace: Notes on
effecting social change in America's third century.
Ablex Publishing, 1980.

Randall Davis.
Meta-rules: Reasoning about control.
Artificial Intelligence 15(3):179-222, December 1980.

Randall Davis and Reid G. Smith.

Negotiation as a metaphor for distributed problem solving.

Al Memo 624, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, Massachusetts, May 1981.

3 '3 3 __3 __& __3 3 __3

3

=)

Selected Bibliography 365

ENGE77 . Robert S, Engelmore and H. Penny Nii.
A knowledge based system for the interpretation of protein
Xx-ray crystallographic data.
Technical Report STAN-CS-77-589, Computer Science Department,
Stanford University, Stanford, California, February 1977.

ERMA75 Lee D. Erman and Victor R. Lesser.
A multi-level organization for problem solving using many
diverse cooperating sources of knowledge.
In IJCAI-T5, pages 483-490.

ERMA80 Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and D.
Raj Reddy.
The Hearsay-II speech understanding system: Integrating
knowledge to resolve uncertainty.
Computing Surveys 12(2):213-253, June 1980.

ERMA81 Lee D. Erman, Philip E. London, and Stephen F. Fickas.
The design and an example use of Hearsay-III.
In IJCAI-81, pages 409-415,

FELD77 Jerome A, Feldman and Robert F. Sproull.
Decision theory and artificial intelligence II: The hungry
monkey.
Cognitive Science 1(2):158-192, April 1977.

FELD79 Jerome A, Feldman.
High level programming for distributed computing.
Communications of the ACM 22(6):353-368, June 1979.

FENN77 Richard D. Fennell and Victor R, Lesser.
Parallelism in artificial intelligence problem solving: A case
study of Hearsay-II.
JEEE Transactions on Computers C-26(2):98-111, February 1977.

FOXT9 Mark S. Fox.
Organization structuring: Designing large complex software.
Technical Report CMU-CS-79-155, Department of Computer . Science,
Carnegie-Mellon University, Pittsburgh, Pennsylvania,
December 1979.

FOX81 Mark S. Fox.
An organizational view of distributed systems,
IEEE Transactions on Systems, Man, and Cybernetics SMC-11(1):
70-80, January 1981.

Selected Bibliography 366

GALB73

GALBT7

GARV81

GREES82

HAGA82

HANS78
HAYET77

HAYET79
HEWIT77

KAHNT8

Jay Galbraith.
Designing Complex Organizations.
Addison-Wesley, 1973.

Jay R. Galbraith,
Organization Design.
Addison-Wesley, 1977.

Thomas D. Garvey, John D. Lowrance, and Martin A. Fischler.

An inference technique for integrating knowledge from disparate
sources,

In IJCAI-81, pages 319-325,

Peter E., Green

Distributed acoustic surveillance and tracking.

In Proceedings of the Distributed Sensor Networks Workshop,
pages 117-141, January 1982.

Copies may be available from MIT Lincoln Laboratory, Lexington,
Massachusetts, 02173.

Roger Hagafors.

The character of organizational problems: A classification
system for organizational decision-making.

Technical Report 317, Department of Psychology, University of
Uppsala, Uppsala, Sweden, 1982.

Allen R. Hanson and Edward M. Riseman.

VISIONS: A computer system for interpreting scenes.

In Allen R, Hanson and Edward M. Riseman, editors, Computer
Vision Systems, pages 303-333, Academic Press, 1978.

Frederick Hayes-Roth and Victor R. Lesser.

Focus of attention in the Hearsay-II speech understanding
system,

In IJCAI-77, pages 27-35.

Barbara Hayes-Roth and Frederick Hayes-Roth.
A cognitive model of planning.

Cognitive Science 3(4):275-310, October-December 1979.

Carl Hewitt.

Viewing control structures as patterns of passing messages.
Artificial Intelligence 8(3):323-364, Fall 1977.

R. E. Kahn, S. A. Gronemeyer, J. Burchfiel, and R. C.
Kunzelman.

Advances in packet radio technology.
Proceedings of the IEEE 66(11):1468-1496, November 1978.

—3 _3

)y 3

—_3 -3 3 3 3

Selected Bibliography 367

KASTT4

KILM69

KIMBT75

KOHL81

KORNT9

LACOT78

LAWRGT

LENAT5

LESST77

F. E. Kast and J. E. Rosenzweig.
Organization and Management,
McGraw-Hill, second edition 1974, pages 5T74-575.

W. L. Kilmer, W. S. McCulloch, and J. Blum.

A model of the vertebrate central command system.,

International Journal of Man-Machine Studies 1(3):279-309, July
1969.

S. R. Kimbleton and G. M. Schneider.

Computer communication networks: Approaches, objectives, and
performance considerations.

Computer Surveys 7(3):129-173, September 1975.

Walter H. Kohler

A survey of techniques for synchronization and recovery in
decentralized computer systems.

Computer Surveys 13(2):149-183, June 1981,

William A. Kornfeld.
EITHER: A parallel problem solving system,
In IJCAI-79, pages 490-M92.

R. Lacoss and R. Walton.,

Strawman design of a DSN to detect and track low flying
aireraft.

In Proceedings of the Distributed Sensor Nets Workshop, pages
41-52, December 1978.

Copies may be available from the Computer Science Department,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, 15213.

P. R. Lawrence and J. W. Lorsch,

Organization and Environment: Managing differentiation and
integration.

Division of Research, Harvard Business School, Harvard
University, 1967.

Douglas B. Lenat.
Beings: Knowledge as interacting experts.
In IJCAI-75, pages 126-133.

Victor R. Lesser and Lee D. Erman.
A retrospective view of the Hearsay-II architecture.
In IJCAI-T7, pages T790-800.

LESS80a Victor R. Lesser, Jasmina Pavlin, and Scott Reed.

Quantifying and simulating the behavior of knowledge-based
interpretation systems.
In AAAI-80, pages 111-115, August 1980.

Selected Bibliography 368

LESS80b Victor R. Lesser and Lee D. Erman.

LESS81

LOWR82

MANNT9

MARCS8

McCU65

NADL77

NII78

NII82

An experiment in distributed interpretation.
IEEE Transactions on Computers C-29(12):1144-1163, December
1980.

Victor R. Lesser and Daniel D, Corkill.

Functionally accurate, cooperative distributed systems.

IEEE Transactions on Systems, Man, and Cybernetics SMC-11(1):
81-96, January 1981.

John Douglas Lowrance.

Dependency-Graph Models of Evidential Support.

PhD Thesis, University of Massachusetts, 1982.

Available as Technical Report 82-26, Department of Computer and
Information Science, University of Massachusetts, Amherst,
Massachusetts, September 1982.

William C. Mann.
Design for dialogue comprehension,
In Proceedings of the Seventeenth Annual Meeting of the

Association for Computational Linguistics, August 1979.

James G. March and Herbert A. Simon.

Organizations.
Wiley, 1958.

Warren S, MeCulloch, .

What's in the brain that ink may character?

In Warren S. McCulloch, Embodiments of Mind, pages 387-397, MIT
Press, 1965.

David A. Nadler and Edward E. Lawler, III.

Motivation: A diagnostic approach.

In Richard Hackman, Edward E. Lawler, III, and Lyman W. Porter,
editors, Perspectives on Behavior in Organizations, pages
26-34, McGraw-Hill, 1977.

H. Penny Nii and Edward A. Feigenbaum,

Rule based understanding of signals.

In D. A. Waterman and Frederick Hayes-Roth, editors,
Pattern-Directed Inference Systems, pages U483-501, Academic
Press, 1978.

H. Penny Nii, Edward A, Feigenbaum, John J. Anton, and
A. J. Rockmore.

Signal-to-symbol transformation: HASP/SIAP case study.

Al Magazine 3(2):23-35, Spring 1982.

3 3 __3

3

3 _ 3 _ 3 3 _3

-3 __3 .3 .3 -3 3 __3

Selected Bibliography 369

NILS79 N. J. Nilsson.
A production system for automatic deduction.
In J. E. Hayes, Donald Michie, and L. I. Mikulich, editors,
Machine Intelligence 9, pages 101-126, Halsted Press, 1979.

NILS80a Nils J. Nilsson.
Principles of Artificial Intelligence,
Tioga, Palo Alto, California, 1930.

NILS80b Nils J. Nilsson.
Two heads are better than one.
SIGART Newsletter (73):43, October 1980.

REEDB0 S. Reed and V. R. Lesser.
Division of labor in honey bees and distributed focus of

attention,
Technical Report 80-17, Department of Computer and Information
Science, University of Massachusetts, Amherst,

Massachusetts, September 1981.

RUME76 D. E. Rumelhart.
Toward an interactive model of ‘reading.
Technical Report 56, Center for Human Information Processing,
University of California, San Diego, California, 1976.

SACE78 Earl D. Sacerdoti.
What language understanding research suggests about distributed
artificial intelligence.
In Proceedings of the Distributed Sensor Nets Workshop, pages
8-11, December 1978.
Copies may be available from the Computer Science Department,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, 15213.

SCIE77 Scientific American.
Special issue on microelectronics.
Scientific American 237(3):62-245, September 1977.

SEAR70 John R. Searle.
Speech Acts: An Essay in the Philosophy of Language.
Cambridge University Press, 1970.

SIMO57 Herbert A. Simon.
Models of Man.

Wiley, 1957.

SIM069 Herbert A. Simon,
The Sciences of the Artificial.
MIT Press, 1969.

Selected Bibliography 370

SMIT78

SMIT80

SMIT81

SOLO77

SPROT77

STEF80

TENNT9

ZISM78

Reid Garfield Smith.

A Framework for Problem Solving in a Distributed Processing
Environment.

PhD thesis, Stanford University, 1978.

Available as Technical Report STAN-CS-78-800, Computer Science
Department, Stanford University, Stanford, California,
December 1978.

Reid G. Smith.

The contract net protocol: High-level communication and control
in a distributed problem solver,

IEEE Transactions on Computers C(C-29(12):1104-1113, December
1980.

Reid G. Smith and Randall Davis.

Frameworks for cooperation in distributed problem solving.

IEEE Transactions on Systems, Man, and Cybernetics SMC-11(1):
61-70, January 1981.

Elliot M. Soloway and Edward M. Riseman.
Levels of pattern description in learning.
In IJCAI-77, pages 801-811.

Robert F. Sproull,

Strategy Construction using a Synthesis of Heuristic and
Decision-Theoretic Methods.

PhD thesis, Stanford University, 1977.

Available as Technical Report CSL-77-2, Xerox Palo Alto
Research Center, Palo Alto, California, July 1977.

Mark Jeffrey Stefik.
Planning with Constraints.

PhD thesis, Stanford University, 1980.

Available as Technical Report STAN-CS-80-784, Computer Science
Department, Stanford University, Stanford, California,
January 1980.

Robert R. Tenny.

Distributed Decision Making using a Distributed Model.

PhD thesis, Massachusetts Institute of Technology, 1979.

Available as Technical Report LIDS-TD-938, Laboratory for
Information and Decision Systems, Massachusetts Institute of
Technology, Cambridge, Massachusetts, June 1979.

Michael D. Zisman.

Use of production systems for modeling asynchronous, concurrent
processes.

In D. A. Waterman and Frederick Hayes-Roth, editors,
Pattern-Directed Inference Systems, pages 53-68, Academic
Press, 1978.

—a ___2

3 __3 _3 _3 _3

3

3

Citation Index

ALLE7T9

ANTH6S

CITATION INDEX

BARN81 e e « e e e e
BARN82 e e e e
BATE81 o e e .
BAUDT8 . . & v ¢ v e i i e e e e e e e e
BEER78 ¢« ¢ ¢« v v o v v v . ..
BEERT9 . ¢ & ¢ ¢ v 4 ¢ ¢ v v o o o . .
BEER81 . . s e e e e s e e e e e e e e
BROOTI . & & v v ¢ 6 vt et b e e e e
BROOB3 v v v v v v o v e e o o e
CHAP7TS« . . . o« o e “ e e e e
CHUTT e e e e e e e e e e .
COHE78 . . . s e e e e e a e e . .
CRANT8 « .. . o e e e e
CRANBO e e e e e 0 o e e e s
DAVIBO ¢ e o o s
DAVIBT« .+ ¢ .. o o e o e
ENGETT « ¢ & ¢ « ¢ ¢ o o & o« v e e e e e
ERMABO o . . .
ERMAB1 o e e e s .
FELD77 « . . o« o . .« e
FELD79 . . ¢ ¢« ¢ ¢ v ¢« v v o o o & o o e e
FENNT7T .« . « « « « . . . o« o e . .
FOXT9 ¢ o ¢ v v ¢ 0 v 0 v v 0 o o o .
FOX81 « o e . .
GALBT3 & v ¢« v ¢ v & v v v o o o & . . .
GALBTT '« ¢ ¢« ¢« ¢ v « v ¢« o o & o e s e s e
GARV81 o e e e e e . o« o e
GREE82 e e s s e s e e s e e e
HAGA82 e e e 0. e o e e e e
HANS78 « o e e e e e
HAYETT v & v o v ¢ o v o o v o .« ..
HAYE7T9 e e e e e
HEWIT7T . ¢ ¢ ¢ ¢ ¢« ¢« ¢« v o « o . e e e s
KAHNT8 . . . « « « « « . o« e e e e s

311
122

310

141

312

49

320

320

131, 320, 322
49, 111

49, 111

20

7

311

131, 322-324
323

213
17, 104-105

55, 141
55, 139, 141
141, 213

212

16

49, 56
52, 314
16

318

371

uo 1249 31u-315o 317t 319

310
232

320
55

139, 216
55, 213
15-16

10

Citation Index

KASTT4 . e .
KILM69 .« . .
KIMBTS . .
KOHL81T . . + + &
KORN79 « « « « &
LACOT8 . « « « &
LAWRGT
LENATS . . o e
LESS7T . . o
LESS80a . o« o o
LESS80b . « . + &
LESS81 . . .
LOWR82 . .
MANN79 .« o e
MARC58 . . »
McCU65 . . « . .
NADLTT & o« o o o«
NII7T8 « ¢« ¢ « & &
NII82 . . « « &
NILST9 e e o s
NILS80a . . .« o
NILS8b
REED80 . o
RUMET6 . . .
SACET8 « ¢« ¢« o«
SCIETT . « .
SEART0 . . . o
SIMOST .« « o &« &
SIMO69 . . o o
SMITT78 o« o o
SMIT80 . .« .
SMIT81T . ¢« « «
SOLO77 . . .
SPROTT .« « « « .
STEF80 . . .
TENNT79 . .« e s
ZISMT78 .« e .

372

... e e e e e 26, 125
e e e e e e U £}
e e e e e e e e e . T
e e e e e e e e e e e 47
e e e e e e e e e e e 15
.. e e e e e e e 38
......... . 320
. e « .. 15
e e e c .. . 140
e e e e e e e e e e 81
e e e e e e e e e .. 21, 49, 56, 108, 110
s v e e e e e e e .. 23, U7-u8, 108
e e e e e e e e e ... 310
e e s s o s s e e e s e s 55
e e e e e e e e e e .. 101, 124
e e e e e e .. . 18, 317
e e e e e e . 129
c 38, 55, 140-141
e e e e e e e e e e 140
113
e e e e e e e e e e . U5
e e e e e . . 132
e e e s s s e b e e s e e 129
e e e e . . 55
e e e e e e e e e e e 311
e e e e e e . .7
e e e ... 31
e e e e e e e e e e 9, 318
e e o s e s s e e e e . 318
e e e e e e e e 16, 38, 40, 104
e e e 103
e e e e e e e e . . . 14, 102, 115
C e e e .. . 55
e e e e e e e e e e 101
e s e s e e e e e s e 213
e e e e e e e e e 302
............. 15

1

—3 /.3

