(=

An Approach to High-Level Debugging
of Distributed Systems

Peter Bates ¥
Jack C. Wileden ¥*¥

COINS Technical Report 82-35
December 1982

Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01003

¥Supported in part by the National Science Foundation under Grant
MCS-8006327 and by the Defense Advanced Research Projects Agency
(DOD), monitored by the Office of Naval Research under Contract
NRO49-0U 1,

¥*¥Supported in part by the National Aeronautics and Space
Administration under grant NAG1-115.



An Approach to High-Level Debugging
of Distributed Systems

Peter Bates and Jack C. Wileden

Department of Computer and Information Science
University of Massachusetts

Abstract

As part of a study of methods and strategies for
problem solving in a distributed environment, we have been
investigating techniques suitable for use in debugging
programs written for implementation on distributed
processing networks.

Traditional debugging methods emphasize techniques that
apply at the level of computation units and tend to give the
user only a low-level viewpoint on a system. Users of such
debugging methods are forced to synthesize a more coherent,
higher-level, view of the system activity without any help
or support from the debugging tools. This higher-level view
is generally necessary to gaining an understanding of errors
and to effecting their correction. We believe that the lack
of support for higher-level views of system behavior make
traditional techniques inadequate for debugging distributed
programs.

In this paper we consider the Behavioral Abstraction
approach to high-level debugging of distributed systems.
Behavioral Abstraction and the Event Definition Language
that is used in presenting this approach as a debugging tool
are discussed. In particular, issues related to recognizing
the occurrence of abstracted behaviors, a fundamental
capability required in tools providing debugging aid through
the Behavioral Abstraction approach, are considered.



1.0 Introduction

As part of a study of methods and strategies for problem solving
in a distributed environment [Less80], we have been investigating
techniques suitable for use in debugging programs written for

implementation on distributed processing networks.

Traditional debugging methods emphasize techniques that
apply at the level of computation units and generally allow users
to examine, and possibly alter, the state of a computation.
Interactive debugging monitors are probably the most powerful
implementations of the traditional method and usually permit a
user to examine an entire snapshot of system state at any step of
the computation. It is the job of the debugger (usually a person
directing the error search) to determine what units are relevant
to some problem, examine the wunits in whatever fashion is
available, and then fit the results of these examinations into a
model of how ﬁhe computation works. Two elements essential to
the successful completion of the debugging task are evident here:
the ability to monitor, in some meaningful way, the relevant
system activity so as to understand why system behavior differs

from the debugger's model, and the ability to perform experiments

based (implicitly or explicitly) on the information gathered.
Through the interaction of these two elements a debugger attempts
to gain an understanding of the causes of an error or at least to

note where the implementation and the expected behavior differ.



In attempting to attain this wunderstanding (which 1is the
difficult part of debugging) a debugger usually abstracts parts
of the program's activity to match parts of the debugger's model
of how the system is supposed to function. Through experiments
that perturb parts of the system in a controlled fashion, the
debugger 1s attempting to verify that the implementation, the
abstractions and the model fit together in a meaningful way.
Traditional debugging tools support only a unit-at-a-time,
state-based methodology and hence cannot provide the higher-level
viewpoint necessary for making a meaningful comparison between
actual system activity and a conceptual model of expected system
behavior. Such a higher-level view is especially valuable for

dealing with the complexity inherent in a distributed system.

In this paper we consider the Behavioral Abstraction (BA)
approach to high-level debugging of distributed systems. We
discuss behavioral abstraction and the Event Definition Language
that aids this approach as a debugging tool in section 2.
Section 3 addresses one of the fundamental issues arising in
actually providing debugging aid through the BA approach, that of
recognizing the occurrence of abstracted behaviors. We conclude
the paper with an assessment of our present status and

outstanding problems.



2.0 Behavioral Abstraction And The Event Definition Language

Behavioral Abstraction [Bate82] provides a foundation for a

different way to view a system -- in terms of its activity rather
than its state. The basis for behavioral abstraction is viewing
a system's activity, or Dbehavior, as a stream of event
occurrences. By expressing higher level events in terms of this
event stream a debugger is able to create abstractions of this

detailed and possibly voluminous event stream.

Abstraction in programming languages is well recognized as a
method of highlighting similarities and relations among
collections of objects with the effect that more powerful and
understandable structures result. Behavioral abstraction has a
similar effect. Basic system activity is represented by a set of

primitive events that describe fundamental and significant system

behaviors (e.g., process creation, page fault, message
transmission or reception). Using the primitive events as a
starting point, designated sequences of system activities can
then be wused to represent higher level abstractions of system
behavior. This process can be continued by using previous

abstractions in creating new abstractions.

The wuse of behavioral abstraction for debugging is
fundamentally different from other debugging techniques. A
debugging monitor based on behavioral abstraction will allow a
user to describe models of system behavior in terms of system
activities and will then compare these abstractions with the

actual behavior of the system. The choice of primitive events



determines the 1lowest level of system activity that it is
possible to observe and may also suggest a particular viewpoint
on the system. Behavioral abstraction, however, permits the
debugger to define alternative, higher-level viewpoints on the
system and then to observe the system's behavior from those

alternative perspectives.

In our approach to distributed system debugging, two

techniques, filtering and clustering, are used to give a debugger

the ability to define abstractions over the event stream as an
aid in attaining an understanding of the system's behavior.
Clustering coalesces a designated sequence of events into a
single higher-level event and provides the principal abstraction
mechanism of our approach. Such higher-level events can then be
considered as part of the event stream and can be used as
constituents in still higher-level clustering operations,
Filtering the event stream has the effect of removing selected
event instances from consideration as constituents of
higher-level events. This aids the debugger in focusing on those
events that are relevant to a particular viewpoint on system
activity. Filtering and clustering greatly increase a debugger's
ability to project a model onto a system's activity. This
contrasts sharply with traditional methods in which the user must
first determine which among a (generally 1large) set of state
variables are relevant to the pertinent system model, then
observe their behavior, and subsequently attempt to integrate
these observations into abstractions of system activity suitable

for comparison to the assumed system model.



2.1 The Event Definition Language (EDL)

The Event Definition Language [Bate82)] was created to aid a user

in describing event-based abstractions. Clustering is

accomplished in EDL by using event expressions to indicate a set

of events and the sequencing relations among these events that
Wwill constitute a higher 1level event. Two kinds of event
filtering are provided by EDL. A coarse filtering 1is
accomplished by the clustering event expression since only event
types +that are considered relevant to the abstraction are
mentioned in the expression. A finer filtering can be specified
based on the attributes of the events that are the constituents
of a higher-level event. This 1is accomplished in EDL by
specifying relations among these attributes in a series of
constraining clauses, expressed in terms of relational and
arithmetic operators and various named attributes of the
constituent events mentioned in the event expression. To allow
for flexible wuse of this type of filtering, EDL definitions may
also designate the set of attributes to be associated with the
event being defined, specifying how values are to be bound to

these attributes when an instance of the defined event occurs.

3.0 The Recognition Problem

A significant problem in constructing a debugging system using an
event based behavioral abstraction viewpoint 1lies with the
ability to detect the occurrence of behaviors that match the
abstractions. The EDL provides a means for defining system
abstractions in terms of events and event attributes. Given the

5



abstraction capabilities expressible in the EDL and the goals of
the BA based debugger, recognition of event strings that satisfy
the abstractions proves to be more than a simple string match of

the system event stream against a supplied string.

3.1 Desired Capabilities Of The Recognizer

Demands on the capabilities of the recognizer stem from two
sources, the needs of the recognition algorithm and the needs of
other components of the debugging tools using the recognizer.
The 1latter are considered to be mainly requests for recognition
of abstracted events and questions concerning the status of such
requests. Fulfillment of inquires are easily derivable from
structures involved in recognizer implementation and are not

considered terribly difficult to deal with.

Any recognition algorithm to be considered has only a few
seemingly simple tasks to perform for each request for an event
recognition. One of these is the ability to ignore ‘'noise' in
the event stream. The event stream will contain events that are
possibly needed as constituents of abstractions as well as events
that have no bearing on the problems at hand. Additionally, the
event stream will most likely be present with ‘'other' message
traffic that 1is not considered event-type material and also

constitutes noise.

A more directly obvious capability needed by the recognizer
is that of extracting from the event stream a string of events

that matches an event expression representing an abstraction.



The events that will match a particular abstraction are not
required to be contiguous in the stream. Other events, possibly
relevant to other abstractions, possibly not needed at all are
present -- this is the previously mentioned event-type noise.
The recognizer must also be capable of 'looking' for a number of
abstractions simultaneously. Related to both of these is the
possiblity that as the stream (minus non-event type noise)
enters, many sets of events that begin but do not complete an
event expression can be created. A decision must be made how to
handle these sets and what their presence means. They can all be
retained or all but a 'most likely' set can be retained leaving
open the possiblity of missing an important occurrence. Further,
as a set of events enters that permits an event expression to
complete, this ending may be compatible with many of the prefixes
which are currently being considered. Some of these
considerations are aided by the filtering capability of the

recognizer.

Filtering based on the attributes of events is a principal
aid to abstraction of behavior that must be supported by the
recognizer. This filtering is expressed in the ‘'cond' clause
expressions of an event definition. This filtering can eliminate
many events in the stream from consideration as instances to be
used in satisfaction of the event expression. Some constraining
clauses will be simple and result in an immediate determination
of an event's worthiness for inclusion, but other expressions
will complicate evaluation by being dependent on events that have

not arrived yet or allow many events to be considered for the



same place in an event expression.

Finally, it is desired that the recognition algorithm itself
be capable of being distributed in a distributed system or at
least that the algorithm not frustrate attempts to distribute the
debugging task around the system. The motivation for
investigation of ©behavioral abstraction based debugging has
resulted from recognizing the potential advantages of writing
programs distributed across a distributed computing system
[Ens178, Less81]. It 1is envisioned that the debugging tools
developed for this type of work can also use these advantages to
perform their functions. Further, other properties of
distributed systems may make it necessary to distribute the

debugging tools in the system.

3.2 Some Aspects Of Any Recognition Algorithm

The design of a recognizer that is to use EDL definitions as a
guide to the recognition of abstractions is first of all
dependent on the view of the set of strings defined by an EDL
definition. One view is obvious -- a definition simply specifies
a set of strings composed from event names. An alternative and
more powerful view is that any high-level event can be examined
in terms of 1its constituent events and their sequencing
operations. These constituents can be spoken of in a similar
fashion and will resemble a tree structure with events and
operators filling in as nodes with only primitive events found at
the ends of the branches. Using this view as a guideline, our
interpretation of the expansion of a high-level event to its

8



primitives defines a set of disjoint tree structures rooted at
the constituents of the high-level event string. The
constituents of these may then be similarly expanded. Note that
this only gives a strucural view of a definition, it remains for
instantiated events to be bound to the event nodes and
application of the event operators to determine an instantiation
of a higher-level event. In addition to reconciling these
alternative views of an event, the recognition problem attempts
to define an algorithm that blends well with the desired

capabilities of the debugging tools using the recognizer.

The following sections will introduce various aspects of the
recognition problem that influence the design of a recognition
algorithm. The manner in which an algorithm addresses these
aspects will determine how well the goals of the recognizer and

debugging tools are met.

3.2.1 Time

Many high level system events consist of an ordered sequence of
more primitive events. A violation of the proper ordering of
these events is most likely to be regarded as an error source.
Sequencing 1is easily expressed in EDL using the event catenation
operator between two events in an event expression. The most
intuitive method of determinining if a sequence of events has
occurred in the proper order is to examine their time of
occurrence. This method may not always be valid in a distributed
environment as individual processors will define different clocks
[Lamp781]. While there are algorithms for synchronizing and

9



determining skew between clocks, their usage may not always be
feasible. The main point still remains, can time be discussed in
a reliable manner as might be required for synchronization or

dependency problems.

3.2.2 Level Of Visible Event

The occurrence of a high-level event will have an event
instantiation and its attributes bound to each primitive at the
branch ends. The higher level events that they define will be
instantiated as attributes are defined and alternates are

resolved.

The concern of the level of visible event aspect is whether
or not it is possible for the recognizer to 'see' and/or use high
level events in recognition. Higher 1level events that are
recognized and instantiated 1locally (where the recognition
algorithm resides) can be considered part of the stream and are
an aid to abstraction. It might be possible that the recognizer
is unable to use high-level events that have been inserted into
the stream. This situation could arise primarily from the desire
to control 'sharing' of constituent events among distinct parts
of the expanded event definition. Difficulties related to seeing
high-level events occur when the recognizer is distributed and
the desire to send high-level events to cooperating recognizers
occurs. The reasons to want to send high-level events around are
varied: it is an abstraction mechanism that is supported by the
EDL and is considered quite useful; network constraints such as
node topology or security issues may require transmission of only

10



high-level events; or it may be important to reduce the amount
of event traffic and exchanging high-level events would
accomplish this. If high-level events can be passed around, a
consideration that is contrary to some of these reasons but
consistent with other aspects of the recognition problem is
whether the structure that has been instantiated for the
high-level event is available to be examined. Again, sharing of
event instantiations is the reason for the possible need to cart

the instantiated structure around with each instantiated event.

3.2.3 Level Of Recognition

Level of recognition is concerned with what level of events of
the tree structure defined by an event definition is used to
match the event stream. One question here is whether or not only
primitive events are to be used in the recognition of a higher
level event. The load sharing and abstraction abilities possible
in a distributed system might be impacted if only primitives were
to be used. Operation of the recognizer itself would become more
complicated. Since any higher-level event can have 1its
definition expanded to the primitives at its 1leaves, a simple
experssion at the top level could become quite complicated by the
time it has been expressed in terms of its primitives. On the
positive side, sharing of events among various instantiations is

less of a problem.

11



The EDL only allows a single level of event definition for a
given event. An event definition may not 1look beyond its:
constituents for attributes or to direct the event watching. The
recognizer 1is not constrained to only use a single level but it
may be the only desirable method given that the EDL user has no
control over instantiation of the wunderlying structure of an

event.

Given a fully expanded definition of a high-level event, an
alternate way to consider the event is to draw a digraph through
the derivation tree that represents all possible paths through
the various levels of constituents that could be a valid string.
This .is a powerful view of a high-level event and will work for

any mix of high and low level events as constituents.

3.2.4 Sharing Of Events

When a user specifies an event string as an abstraction the
intention 1is probably for 1its constituents to be independent
occurrences unless specified explicitly to the contrary. In the
expanded form of the definition, it is possible for the same

event class to be mentioned in many places.

The sharing aspect involves a decision on whether or not a
single instantiated event may be wused to satisfy two or more
mentions of the event in an expanded definition of a high-level
event. When sharing 1is allowed, the notion of disjoint event
occurrences becomes blurred. The key point to be made regarding

event sharing 1is that the set of strings of event occurrences

12



acceptable for an instantiation of an event will be different
depending on how sharing is treated. However, this difference is

only related to the level at which event strings are viewed.

3.2.5 Limits On Constraints And Event Operators

The constraining expressions defined in the ‘'cond' clause of an
event definition can be quite expressive and unrestricted in the
kinds of relations possible among' events. In the absence of
constraints, recognition becomes a pattern match of the event
expression against the event stream. These cond clause
expressions provide an important filtering capability that seeks
to narrow the focus of behavioral searches. Two basic kinds of
cond clause expression are possible. The first generally will
help to make the search space for a particular event class
smaller by allowing an 1immediate decision on whether an event
should or should not be considered as a constituent of some
high-level event. Included in these are expressions that only
involve equality (and inequality) between attributes' and simple
scalars. If an event possesses (or does not possess) a simple

quality it is a candidate for inclusion or exclusion.

Relations among attributes of different events will tend to
delay the inclusion decision and increase the number of events
and possible prefix strings that must be maintained while looking
for an event. Closely related to this is the question of which
set of events should be used to instantiate an instance of a

high-level event if there are multiple eligible sets.

13



One final part of the constraint aspect is whether or not
certain relations or attributes make sense at all. For example,
consider that time as an event attribute cannot be considered
reliable, then time and any relation defined in terms of time
cannot be discussed meaningfully as well as rendering the event
catenation operator somewhat less useful. Clearly, some
determination must be made on how much of the {event operator X
constraint expression space} 1is defined, meaningful or even

useful.

3.2.6 Real Timé/Space Problems

As for any algorithm that is to be useful, what aspects of the
recognition algorithm will cause problems for fhe amount of
memory it needs to run in and the amount of time it needs to
perform its task? A simple pattern matcher with no constraints
on attributes, that operates on a single 1level of recognition
with all events, both high and 1low level, being visible and
useful will not demand too much time or space. On the other
hand, unconstraining these aspects will possibly make the
recognizer big and slow. We expect the recognizer to run in
parallel with the system it is monitoring in order to observe
actual system behavior and to aid in any experimentation

capabilities provided.

14



3.3 A Recognizer Currently Being Considered

The type of recognition algorithm currently being used is based
on a single level of recognition. An event is recognized when a
string consisting of the events mentioned in its event
expression, subject to the ordering imposed by its operators, and
of course, meeting the filtering criteria imposed by its
constraining expressions, 1is noticed in the event stream. The
kinds of constraining expressions allowed are not restricted. It
is felt +that a certain amount of experience with different
recognition algorithms and recognitions will be necessary before
reasonable restrictions can be made on the use of constraining

expressions -- if restrictions are necessary at all.

When a request for recognition of a high-level event is
made, the definition of +that event 1is 1located and then the
definitions for all of its high-level constituents are 1located.
Each of these high-level events also becomes a request for
recognition. This scheme of instantiating the entire structure
of a request provides a single level of recognition as well as
the necessary link to the primitive events supporting an event

instantiation.

Currently there are no controls placed over the individual
recognizers with the effect that there is a 'bag' of recognizers
that continue to recognize their high-level events and insert
them into the event stream indefinitly. This recognizer says
nothing about sharing of constituents since each recognizer

operates independently and each may use any event it sees and has

15



a need for. Using this kind of a recognition algorithm as a
base, a more powerful recognizer can be constructed by placing
controls on the collection of single level recognizers such that
they are only operating when there is a possiblity that the piece
each notices is needed. Sharing can more easily be controlled
and the amount of unproductive recognition work is lessened.
Using these algorithms, high-level events from many sources are
useable but the algorithm will also function where high-level
events external to a recognizer are not visible and primitives

must be used for all recognition.

For our current pass at recognition, the questions
concerning time are assumed to be resolvable. Each recognizer
contains an event history that may be reordered when events with
times between previously received events are received. Being
left open for the present is whether the history may be reordered
when other information 1is received. Other information would
include such things as more accurate time stamps for events or

certainty over possible errors in reported events.

4.0 The Future

To date we have defined the Event Definition Language, studied
its suitability for use in distributed debugging, and undertaken
a prototype implementation of a distributed debugging aid Dbased
on the behavioral abstraction approach and EDL. Our experience,
thusfar 1limited to manual application on small examples,
indicates that these methods should lead to extremely valuable
tools to assist with the debugging of distributed software

16



systems.

Our current work 1is directed toward improving both our
understanding of and our automated tools supporting distributed
debugging. The design of our prototype debugging system
supporting EDL and the behavioral abstraction approach is
completed, and many components of that system are already
working. This version of the system employs simple, crude
techniques for recognizing occurrences of EDL-defined events,
however, and we are investigating more powerful and more
efficient approaches to this important aspect of the debugging
tool. The prototype version also relies on a centralized
debugging system located in a single node of the distributed
system that 1is being debugged. We are currently studying
distributed organizations for +the debugging system. Other
enhancements to the debugging system, incorporating
knowledge-based AI techniques and functionally accurate,
cooperative distributed problem-solving methods, are also being
considered. Experimentation with the prototype and with its
successors should greatly expand our understanding of distributed

systems and how to debug them.

17



[Bate82]

[Ens178]

[Lamp78]

[Less80]

[Less81]

L4

References

Peter C. Bates and Jack C. Wileden, "EDL: A Basis For
Distributed System Debugging Tools," Proceedings of the

Fifteenth Hawaii 1International Conference on System
Sciences, (1982) pp.86-93.

Philip H. Enslow, "What is a 'Distributed’ Data
Processing System", IEEE Computer, Vol. 11, no. 1,
pp. 13-21, Jan. 1978

Leslie Lamport, "Time, Clocks and the Ordering of
Events in a Distributed System", Communications of the
ACM, Vol. 21, no. T, pp. 558-565, July 1978

V.R. Lesser, P. Bates, R. Brooks, D. Corkill,
LT Lefkowitz, R. Mukunda, J. Pavlin, S. Reed, and
J.C. Wileden, "A High Level Simulation Testbed for
Cooperative Distributed Problem Solving," Technical
Report TR-81-16, Department of Computer and Information
Sciences, University of Massachusetts, (1981).

Victor R. Lesser and Daniel D. Corkill, “Functionally
Accurate, Cooperative Distributed Systems,"™ IEEE
Transactions on Systems, Man and Cybernetics, Vol.

SMC-11, no. 1, pp. 81-96, Jan. 1981.

18



