The Application of Error-Sensitive Testing
Strategies to Debugging

Lori A. Clarke
Debra J. Richardson

COINS Technical Report 82-36
October 1982

Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

This research was funded in part by the National
Foundation under grant NSFMCS 81-04202.

Science

Abstract

Error-sensitive test data selection strategies assist
in the selection of test data that focus on the detection of
particular types of errors. Traditionally, these strategies
have Dbeen rather ad hoc. Recently formal testing methods
have been developed which more rigorously apply the ideas
underlying error-sensitive test data selection to the
functional representation of a program provided by symbolic
evaluation. This paper describes two such error-sensitive
test data selection strategies, computation testing and
domain testing. An approach for assisting in the debugging
process, based on information about errors detected through
the use of these strategies, is discussed.

Introduction

Program errors can be considered from two perspectives
-- cause and effect. The goal of program testing is to
detect errors by discovering their effects, while the goal
of debugging is to search for the associated cause. 1In the
last decade, there has been considerable work on tools and
techniques to support the testing process. We are exploring
ways in which the results of testing research can be used to
assist in the debugging process.

Recently error-sensitive test data selection strategies
have been developed, that attempt to assure the detection of
certain classes of errors or provide quantifiable error
bounds. This paper describes two of the more promising of
these strategies, computation testing and domain testing,
and proposes a comprehensive and rigorous set of guidelines
for applying them. These strategies are based upon the
functional representation of a program provided by symbolic
evaluation. By selecting test data that focus on specific
types of errors, these strategies may also be useful in
revealing the cause of detected errors, thus assisting in
the debugging process as well. This paper outlines ways in
which symbolic evaluation and these test data selection
strategies can be used as debugging aids.

The next section of this paper provides a brief
overview of symbolic evaluation and an example is presented
to demonstrate the technique. The third section describes
the two test data selection strategies and, using the
results from the symbolic evaluation process, applies each
strategy to the example. The final section discusses how
these strategies might be applied to the debugging process
and outlines directions of future research.

Symbolic Evaluation

Symbolic evaluation provides a functional
representation of the paths in a program or module. To
crcecate this representation, symbolic evaluation assigns
symbolic names for the input values and evaluates a path by
interpreting the statements on the path in terms of these
symbolic names. During symbolic evaluation, the values of
all variables are maintained as algebraic expressions in
terms of the symbolic names. Similarly, the branch
predicates for the conditional statements on a path are
represented by constraints in terms of the symbolic names.
After symbolically evaluating a path, its functional
representation consists of the path computation, which is a
vector of algebraic expressions for the output values
(including the values returned by parameters) and the path
domain, which is defined by the conjunction of the path's
branch predicate constraints. For path P the path
computation and path domain are denoted by C[P;] and DI[Pyl,
respectively.

Using symbolic evaluation, the path computation and
path domain can be developed incrementally by interpreting
each statement on a path. After symbolically evaluating a
sequence of statements on a path, the symbolic
representation of the path to that point can be shown. This
representation consists of the current symbolic
representation for each variable and the conjunction of the
branch predicate constraints that have been created so far.
This conjunction of constraints is called the path condition
and is used to determine the feasibility of the path being
examined. If, at any point during the symbolic evaluation,
it can be determined that the path condition is infeasible
-- that is, there are no data for which the sequence of
statements could be executed -- then symbolic evaluation of
that path can be terminated. Nonexecutable paths are a
common phenomena in programs (especially unstructured
programs) . of course, no method can determine the
feasibility of any arbitrary path condition [DAVIT73]. When
path feasibility or infeasibility can not be determined,
symbolic evaluation can still continue, but the selection of
test data must be manually decided.

The procedure TRIANGLE, shown in Figure 1, is used to
illustrate symbolic evaluation. Note that the left hand
side of the listing is annotated with node numbers so that
statements or parts of statements can easily be referenced.
A path description is the ordered list of nodes encountered
on the path.

Symbolic interpretation of the statements on a path P
provides a symbolic representation of the path computatiog
and path domain. The path computation C[PJ] consists of the
symbolic representation of the output values. The symbolic
representation of the path domain D[P;] is provided by the
path condition. Note that only %he input values that
satisfy the path condition could cause execution of the
path. Figure 2 shows the symbolic representations of the
path domains and path computations resulting from symbolic
evaluation of all paths in TRIANGLE.

Unlike the TRIANGLE example, most programs contain
loops. A symbolic representation of all executable paths
through such a program is usually unreasonable since there
may be a large, or even infinite, number of executable
paths. One approach to this problem is to replace each loop
‘with a closed form expression that captures the effect of
that loop [CHEA79,CLAR81]. Using this technique, a path may
‘then represent a class of paths that differ only by their
number of 1loop iterations. While this 1is a powerful
technique, it is not always successful. Other methods that
guide in the selection of a subset of paths such as data
flow testing (LASKT79,NATF81,RAPP81], mutation analysis
[DEMI7T9], and blindness testing [ZEIL81] are currently being
explored but are not discussed further here. In the next
section, it is assumed that a reasonably powerful method of
path selection is being applied and the test data selection
strategies are thus described for a selected set of paths.

- 0

(VIRV}

- \O o3 o F—

19
20
21

22

£

procedure TRIANGLE(A, B, C: in natural;
CLASS: out 1nteger AREA: out real) is
CSQRD: 1nteger;

ASQRD, BSQRD,
S: real-
begin

if (A < B) or (B < C) then

-- illega
CLASS :=

AREA := 0.

else == A >=
-- legal

1l input
-‘];

0;

B >=C
input

if (A /= B) and (B /= C) then
-- triangle is scalene

ASQRD
BSQRD
CSQRD

t= A¥p;
:= B¥*B;
iz C¥C;

if (ASQRD = BSQRD + CSQRD) then
-=- right triangle

CLA

SS := 3;

AREA := ¥ ¢/ 2.0;
else == ASQRD /= BSQRD + CSQRD
-- not right triangle
= (A+B+C)/ 2.0;
A := sqgrt(S*(S-A)*(S-B) *(S-C));
if (ASQRD < BSQRD + CSQRD) then
-- acute triangle

S :
ARE

CLASS := 4;

else -- ASQRD > BSQRD + CSQRD
-- obtuse triangle

end
endif;
elsif (A

CLASS := 5;
if;
= B) and (B =

C) then

-=- equilateral triangle

CLASS
AREA

HE I

i= A*A*sqrt(3 0)/4.0;

else == (A /= B) or (B /= C)
-- isosceles triangle

CLASS
if (A

= 25
= B) then

AREA := C * sqrt(4¥*A¥B-C*C) / 4.0;

else =

-B=C

AREA := A ¥ sqri(u¥*p¥*c.p¥*p) / 4.0;

endif;
endif;
endif;

end TRIANGLE;

Figure 1.

Procedure TRIANGLE

s,1,4, 16 19,20,22,f
]: (a - b > 0) and (b - c= 0)
: CLASS = 2
! AREA = a * sqrt(y4.0¥%b¥*¥*c - a¥*¥#2) / 4.0

Po; s,1,4, 16 19,20,21,f
DfF,3: (a- b=0) and (b - c > 0)

clP51: CLASS =2
2l: CLADS = 2w sqrt(4.0%a¥b - c*¥2) / 4.0

Pa. s,1,4, 16 17,18,f
2[23] (a-bs= 0) and (b - ¢ = 0)
CLA ss 1
31 CLAES. a**2*sqrt(3 0)/4.0

Dﬁé s,1,4,5,6,7,8, 11(12 , 13,15, g
: (a AN 0) and (b - ¢ >0 nd
4 (a*¥*2 - b¥¥2 - c**Z > 0)
ClPyJ: CLASS = 5
AREA = sqrt((-ak#y 4 2¥ak#2¥pk*2 .
DMk RCRRD - DREY 4
2¥pRHDMoR¥ED _ c¥¥Y) / 16.0)

P?: s,1,4,5,6,7,8,11,12,13,14,f
DEPg]l: (a - b > 0) and (b - c > 0) and
(a%¥#2 - D*¥2 - c##2 < 0)
ClPg]: CLASS = 5
AREA = sqrt((-a*¥*y 4 2¥ak¥2#pk¥o .

QU R RQEND _ DEFY
2#pR¥Q¥H¥D _ c¥¥Y) / 16.0)

P?: si1iu'5’6!7)8’9'10!f
DIPgl: (a - b > 0) and (b - ¢ > 0) and
: (a%¥%2 — p**¥2 - c*¥2 = 0)
CIPgl: CLASS =3
. AREA = b ¥ ¢/ 2.0

Py s,1,2,3,f
D P,]' ((a = b<0)or (b-c<O0))
ClPyl: CLASS = -1

AREA = 0.0

Figure 2. Paths of TRIANGLE

Test Data Selection Strategies

A test data selection strategy should provide guidance
in the selection of test data for a program. Ideally,
executing the program on the selected data reveals errors in
the program or provides confidence in the program's
correctness. As noted, program testing detects an error by
discovering the effect of that error. It is possible,
however, that an error on an executed path may not produce
erroneous results for some selected test case; this is
referred to as coincidental correctness. For example,
suppose that a computation z=a*2 is incorrect and should be
z=a¥¥2; if no test data other than az0 or a=2 are selected,
the error will not be detected. Although this appears to be
a contrived example, coincidental correctness is a very real
phenomenon. Test data selection strategies must address
this problem.

. The testing literature has classified errors into two
types according to their effect on the path domains and path
computations. If an incorrect path computation exists, a
computation error is said to have occured. Such an error
may be caused by an inappropriate or missing assignment
statement that affects the function computed by the path.
If a path domain is incorrect, a domain error is said to
have occured, Domain errors can be further divided into
path selection errors and missing path errors. A ath
selection error occurs when a program incorrectly determines
the conditions under which a path is executed. This may be
due to an incorrect conditional statement or an incorrect
assignment statement that affects a conditional statement.
A wmissing path error occurs when a special case requires a
unique sequence of actions, but the program does not contain
a corresponding path. This type of error is caused by
missing conditional statements.

Error-sensitive test data selection strategies assist
in the selection of test data that focus on the detéction of
particular types of errors. Moreover, such strategies
minimize the acceptance of coincidentally correct results by
astutely selecting test data aimed at exposing, not masking,
errors. Error-sensitive test data selection has
traditionally been rather ad hoc. Howden's functional
testing [HOWD80], Myer's error guessing [MYERT79], and
Weyuker's error-based testing [WEYU81] are intuitive
guidelines for selecting test data likely to expose commonly
occuring errors. Each approach is based on an examination
of the statements in a program or inspection of an informal
description of the intent of the program. More rigorous
application of the ideas wunderlying error-sensitive test
data selection, which analyze the representations of the
path domains and path computations provided by symbolic
evaluations, have been developed. Computation testing
strategies analyze the path computations and select test
data aimed at revealing computation errors. Domain testing
strategies concentrate on the detection of domain errors by
analyzing the path domains and selecting test data near the

boundaries of those domains.

Computation Testing

Computation testing strategies focus on the detection
of computation errors. Test data for which the path is
sensitive to computation errors are selected by analyzing
the symbolic representation of the path computation. In
general, a path computation may contain arithmetic
manipulations or data manipulations, which are inherently
sensitive to different classes of computation errors.

Path computations containing predominately arithmetic
manipulations are sensitive to errors relating to the use of
numeric values and operators in arithmetic expressions. The
following 1list provides guidelines for selecting test data
for such computations, along with the class of computation
errors the data is geared toward detecting:

1) all symbolic names in C[P;] take on distinct numeric
values (erroneous reference to an input value);

2) each symbolic name corresponding to a multiplier, a

divisor, and an exponent in C[P ;] takes on

a) the values zero, one, and ‘negative one (erroneous
processing of special input values),

b) nonextremal positive and negative values (erroneous
processing of typical values),

¢) extremal* positive and negative values (erroneous
processing of atypical values or occurrence of
overflow or underflow);

3) each term in C[P,] takes on '

a) the only zero® value (a term masking an error in
another term),

b) the only non-zero value (enables independent
evaluation of errors in a term),

¢c) nonextremal positive and negative values (erroneous
processing of typical values), .

d) extremal positive and negative values (erroneous
processing of atypical values or occurrence of
overflow or underflow);

4) each repetition count in a closed form expression in

CLP ;] takes on

a) %he value zero (erroneous processing of loop fall
through) ,

b) the value one (erroneous processing of single 1loop
iteration),

c¢) a nonextremal positive value (erroneous processing of
typical loop traversal),

d) an extremal positive value (erroneous processing of

atypical loop traversal);

¥Q value of large magnitude often serves the purpose of an
extremal value for unbounded values.

5) CI[P;] takes on

a) %he value zero (erroneous production of special output
values),

b) nonextremal positive and negative values (erroneous
production of typical output values),

c) extremal positive and negative values (erroneous
production of atypical output values or occurrence of
overflow or underflow).

Figure 3 shows the test data selected for path P1 of
TRIANGLE using these computation testing guidelines. Notice
first that for +the test datum (3,2,2) coincidental
correctness occurs. The comprehensive set of guidelines
ensures that test data are also selected for which the
computation error is revealed; the path computation should
be CLASS=2 and AREA=a¥sqrt(4.0¥%¥b¥*c-a*¥2)/4,0. In addition,
a missing path error 1is detected with the test datum
(2,1,1). The procedure fails to check whether the input
values satisfy the triangle inequality (a<b+ec); 1if not,
they do not represent the sides of a triangle and the path
computation should be CLASS=0 and AREA=0.0.

Path computations containing data manipulation
typically maintain compound data structures and as a result
are sensitive to errors that involve data movement
operations rather than arithmetic operations. The following
list provides guidelines for selecting test data for such
computations, along with the class of computation errors the
data is geared toward detecting:

1) all component selectors in C[P;] take on
a) distinct values (erronedus interaction between
different components),
b) identical values (erroneous duplicate use of a
component) ;

2) cach component selector in C[P 3] takes on
a) a nonextremal value (erroneous processing of
components in the midst of the structure),
b) an extremal value (erroneous processing of components
on the edge of the structure);

3) all components of a compound structure referenced 1in
C[P] take on
3lst1nct values (erroneous compound selector),
b) identical values (erroneous processing of duplicate

values);
4) the size of a compound structure referenced in C[PJ]
takes on
a) nonextremal values (erroneous processing of typical
structures)

a) extremal values (erroneous processing of atypical
structures or insufficient storage);

Actual Output

Criteria Test Data Expected Output

Satisfied (a,b,e) ~ (class,area) (class,area)

Computation Testing:

1,2b,5b,3¢ (3,2,2) (2,1.98) (2,1.98)

2a,5a (2,1,1) (2,0.0) (0,0.0)

2b,3d,5¢c (17,9,9) (2,167305.38) (2,25, 14)

2c (100,99,99) overflow (2,4272.29)

3d,5¢c (11,10,10) overflow (2,41.76)

Domain Testing:

on (b-c=0) (2,1,1) (2,0.0) (0,0.0)

off (b-c=0) (1,1,2) (-1,0.0) (-1,0.0)

off (b-c=0) (2,2,1) (2,0.97) (2,0.97)

on (b=-c=0) (100,1,1) overflow (0,0.0)

off (b=-c=0) (100,1,2) (-1,0.0) (-1,0.0)

off (b-c=0) (100,2,1) overflow (0,0.0)

on (b-c=0) (100,99,99) overflow (2,4272.29)

off (b-c=0) (99,99,100) (-1,0.0) (-1,0.0)

off (b-c=0) (100,100,99) (2,4301.02) (2,4301.02)
Figure 3. Test data for TRIANGLE

5) a compound structure referenced in C[P] takes on
a) an empty value (erroneous initializgtion or processing
of underflow) .

b) a full value (erroneous processing of overflow)

These guidelines are not applicable to the path computations
in TRIANGLE, since they do not contain data manipulations.

A path computation may contain both arithmetic and data
manipulations, in which case all applicable guidelines
should be considered. It is important to note that the
guidelines may not all be satisfiable due to the condition
defining D[P] or the representation of C[P;]. 1In selecting
test data 1or path P, of TRIANGLE, for example, several
guidelines could not be satisfied due to the constraints
that a, b, and ¢ be positive and that b=c. These
computation testing guidelines subsume those proposed by
Howden [HOWD80] for special values testing and extremal
output values testing, as well as the error-sensitive test
case analysis proposed by Foster [FOST80].

When the path computations fall into specialized
categories, the general computation testing guidelines can
be tuned to guide in the selection of an even more
comprehensive set of test data. For example, if a path
computation involves trigonometric functions, then
guidelines dependent upon their properties should be
exploited. Polynomial functions are another category for
which the guidelines can be refined. Under certain
assumptions, it is possible to demonstrate the correctness
of a polynomial path computation by means of testing. This
is called polynomial testing and is based on algebraic
results, which are applicable only when an upper bound on
the algebraic complexity of the "correct" path computation
is known. If the path computation C[P;] should be a
univariate polynomial of maximal degree T-1, the selection
of T 1linearly independent test points is sufficient to
determine whether C[P;] is correct. If the path computaton
ClP;] should be a multivariate polynomial in K ipput values
of maximal degree T-1, C[PJJ must be tested for T llngar;y
indcpendent test points “in order to determine that it is
correct [HOWD78bl. The practicality of polynomial testing
is limited to polynomials in few variables and of low
degree, since the number of test points required to
determine correctness increases rapidly with the number of
variables and the degree. Probabilistic arguments haye.bgen
proposed for selecting fewer test points without sacrificing
much accuracy [DEMI78].

Domain Testing . .
Domain testing is based on the observation that p01n§s
satisfying boundary conditions are most sensitive to_doma}n
errors. A path selection error is manifested by a shift 1in
some section of a path domain boundary. A mis§ing path
error typically corresponds to a missing path domain algng
some section of the boundary of an existiqg path domain.
Missing path errors are particularly insidious, however,

since it 1is possible that only one point in a path domain
should be in the missing path domain. In this case the
error will not be detected unless that point happens to be
selected for testing. Missing path errors cannot be found
systematically unless a specification is employed by the
test data selection strategy, as is done by the partition
analysis method [RICH81].

The domain testing strategy [CLAR82 ,WHIT80] selects
test data on and near the boundaries of each path domain.
The boundary of a path domain is composed of borders with
adjacent path domains. For each closed border, the strategy
selects "on" test points, which lie on the border and thus
in the path domain being tested, and "off" test points,
which lie on the open side of the border and thus in an
adjacent path domain, In such a way, domain testing
attempts to detect border shifts, which occur when the
border being tested is incorrect -- that is, it differs from
the correct border. If the correct results are produced for
each of the on and off test points, the border must be
"close" to the correct border. An undetected border shift
can only occur if the on test points and the off test points
lie on opposite sides of the correct border. The
undetectable border shifts are kept "small" by choosing the
off test points as close to the border being tested as
possible. In fact, with the proper selection of on and off
test points, a quantified error bound measuring the set of
elements placed in the wrong domain by an undetected border
shift can be provided. Figure 4 illustrates a border shift,
where G is the border being tested, C is the correct border,
and the set of elements placed in the wrong domain is
shaded. This border shift 1is revealed by testing the on
points P and Q and the off points U and V, since the off
point V is in the wrong domain. For a path domain border
resulting from an inequality predicate in two-dimensions
(two input values), the selection of four test data points
(two on points and two off points) is most effective for
detecting border shifts. For an inequality border in higher
dimensions, 2%/ (where V is the number of vertices of the
border) test data points (V on points and V off points) must
be selected for best results. For an equality border, twice
as many off points, divided between the two sides of the
border, must be selected. A thorough description of the
domain testing strategy and its effectiveness is provided in
[CLAR82]. Figure 3 shows the test data selected for path P
to satisfy the domain testing strategy. The only close&
border of the path domain is (b-c=0), which has three
vert;ces. The figure indicates whether each datum is an
onpoint or an offpoint (above or below the equality border).
Ngtlge that several of the points selected reveal the
missing path error, which is also detected by computation
testing.

The basic domain testing strategy described is useful
for testing path domain borders that involve both
arithemetic manipulations and data manipulations in which

the values of component selectors are known. Complications

u P T Ay S A
o 3kl ,u S A
$OE ™~ a:{g ¢ ﬁ; Seleh
P At %w‘ ”"% ’*’ M«ax Q

Figure 4. Border Shift Detected by Domain Testing

- 11 -

in applying the strategy arise when the values of compongnt
selectors depend on input values. Due to the dependencies
among components of a compound structure and the component
selectors, it may not be possible to find good on and off
test points for a particular border. The intuitive concepts
underlying domain testing can be used as heuristics to test
the borders of a path domain. For instance, if a path
domain border references a component of a compound structure
with a selector of unknown value, it is important to test
values both inside and just outside the domain for both the
selector and the component. With the application of such
heuristics, however, a bound on the error cannot be
quantified.

The domain testing strategy subsumes both the boundary
value testing and condition coverage guidelines proposed by
Myers [MYER79] as well as the extremal input values testing
proposed by Howden [HOWD80]. Domain testing is a relatively
new test data selection strategy for which much further
research is needed. The strategy has been well defined for
domains that are continuous, linear convex polyhedra. This
assumes that the input space is continous and that none of
the branch predicate constraints contain a disjunction and
all relational expressions are linear. Adequate
modifications have been proposed for both nonconvex and
discrete domains, although several problems remain to be
addressed [CLAR82,WHIT80]. As yet, however, the strategy
has only been sufficiently defined for 1linear borders.
Modifications have been proposed that require the selection
of on and off test points near each of the local minima and
maxima of a nonlinear border. Unfortunately, the practical
applicability of domain testing is limited to paths with
non-linear constraints of low degree.

Applying Testing Information to the Debugging Process

It is obvious that much of the information obtained 1in
the testing process would be valuable during debugging.
Eventual softwarc development environments should include
testing and debugging tools that work cooperatively. This
section explores how the information created by symbolic
evaluation, computation testing, and domain testing can be
applied to the debugging process. While some of the
applications are fairly straightforward, others are the
subject of current research.

The functional representation provided by symbolic
evaluation can quite naturally be used during debugging.
Symbolic testing [HOWD78al refers to the method of manually
examining the path computation and path condition to
ascertain the correctness of the path. It must Dbe noted
that for some paths the complexity of these expressions is
too great for this to be a reasonable exercise. On the
other hand, there are many programs for which symbolic
testing is effective [HOWD78al. 1In a similar way, symboliec
debugging can be defined as the process of manually

- 12 -

examining the path computation and path domain in order to
obtain information about the cause of a° known error,
regardless of whether that error was detected by symbolic
testing or another testing strategy.

It is anticipated that symbolic debugging will not be
as susceptible to programmer oversight as is symbolic
testing. The major weakness of symbolic testing is that
programmers often overlook the errors. For example, the
error in the algebraic expression for AREA on path P1 of
TRIANGLE could easily be overlooked. Once an error is known
to exist, however, the programmer knows which algebraic
expression is in error and can focus on that' expression.
The erroneous expression is then likely to provide clues to
the actual cause of the error.

Another benefit of symbolic evaluation is that it
provides information about the source of an error -- that
is, the actual erroneous statements. It is often the case
that programmers are not sure of the actual path that was
taken when erroneous results are discovered. Symbolic
evaluation provides a precise path description in the form
of a list of statements on the path, Thus after symbolic
debugging helps determine the cause of an error, the
statements on the path can be examined to determine the
actual source of that error.

To further focus on the possible source, symbolic
evaluation systems could be modified to provide more
explicit information concerning the statements that might
have caused the error. For each algebraic expression in the
path computation and constraint in the path condition, a
list of the statements on the path that had any effect on
that expression or constraint could be provided, rather than
merely the path description. We refer to this as the
expression's or constraint's definition 1list. When an
erroneous expression or constraint is detected, only
statements from the corresponding definition 1list need be
exumined, For the error in computing AREA on path P, inp
TRIANGLE, for example, only statement 22 would be on AR A's
definition list; thus, the programmer 1is immediately
dirccted to the source of the error. While definition lists
will often be 1longer than one entry, they will usually be
much shorter than the path description. Thus the number of
statements that must be considered when tracking down the
source of an error can be considerably reduced.

This proposed modification is relatively simple ¢to
implement. There are two techniques that could be used.
The first technique would create the definition lists while
a path 1is Dbeing interpreted. Using this technique, a
definition list is associated with every variable. When a
variable is assigned a value, the new definition list for
the variable is the union of the definition 1lists of all
variables referenced in the assignment statement plus the
current statement. The definition list for a constraint is
formed similarly. The second technique for deriving the
definition list employs data flow methods to determine all
the assignment statements that can affect a statement along

- 13 -

any path in a program, For a branch predicate or a
statement that produces an output value, the intersection of
the list of affecting statements with the statements in the
path description provides the corresponding constraint's or
expression's definition list. The advantage of this second
technique is that the data flow analysis can be done for all
statements very efficiently at compile time.

We know of two debugging systems that have wused
symbolic evaluation techniques to help determine the cause
and find the source of program errors [BALZ69,FAIR75].
Neither of these systems provided the definition lists
discussed above but both provided information about a path,
At the time these systems were developed, they were too
expensive to be used extensively. With the reduced cost and
increased speed of hardware, such systems may now be more
practical, Moreover, for programs in which reliablility is
of wutmost importance, the overhead of sophisticated testing
strategies based on symbolic evaluation has already been
warranted. For such programs, it seems only reasonable to
employ the symbolic representations used for testing in the
debugging process as well.

In addition to symbolic evaluation, the testing
strategies also provide useful information to assist with
the debugging process. Each test case generated by the
computation testing or domain testing strategy could clearly
state its goal -- that 1is, the potential error it is
designed to uncover. If a test case results in erroneous
output, then the stated goal often provides clues as to the
actual cause of the error. For example, if input data is
selected so that a term in a computation is the only
non-zero term (criteria 3b in computation testing) and the
resulting computation is in error, then this term should be
examined carefully. Of course, this usually implies that
each statement on the definition 1list for the erroneous
algebraic expression be examined.

While including the test goal with each test case would
be Dbeneficial, care must be taken when evaluating this
information. Programmers must keep in mind that computation
and domain testing analyze the path computations and
domains, which when erroneous represent the effect of an
error and not necessarily its cause. Also, a test case may
have several goals and only one may be indicative of the
error., Several example situations that give an idea of some
of the problems are given below.

Test data that wuncovers a domain error does not
necessarily imply that a branch predicate is in error. The
constraint resulting from interpretation of the predicate
was erroneous for this test case, but the actual source of
the error could have been an assignment that affected this
interpretation. The definition 1list associated with the

erroneous constraint would, of course, be of value during
debugging.

- 14 -

] Just like domain errors can be caused by faulty
assignment statements, computation errors can be caused by
faulty branch predicates. For example, if a loop index is
off by one, the branch predicate for loop termination is
wrong. The effect of this erroneous predicate, however, may
bg an erroneous computation. There are several other
31tu§tlons in which computation errors are particularly
elusive. For example, a test case may produce an erroneous
computation, but examination of the algebraic expression
reveals that this computation is correct for most of the
associated path domain but not for this particular test
case. In testing terminology, this could be either type of
domain error, a path selection error or a missing path
error, For a path selection error one or more constraints
are in error, and the test point in question executed the
wrong path. For a missing path error, a special case was
completely forgotten by the programmer, and the testing
process was astute enough to select a test case for the
missing path.

The problems in applying testing information to
debugging that are discussed above are further complicated
when errors interact. More than one error may be present
and 1in some cases their interaction may complicate tracking
down the source of the errors. In fact, the domain testing
strategy is not guaranteed to work when the computations are
incorrect for the selected test cases, There is some recent
work on path selection that addresses the problems of
interacting errors [ZEIL81] that should also be considered
with regard to debugging.

In sum, it is clear that more work needs to be done to
develop debugging methods that employ information derived
during the testing process. This paper has focused on only
some testing techniques, namely symbolic evaluation,
computation testing, and domain testing; other testing
strategies should also be considered. Incorporating
information derived from pre-implementation descriptions,
such as designs or formal specifications, is currently being
investigated as an aid to testing [RICH81] and may also be
helpful for debugging. Moreover, several test path
selection strategies [ZEIL81,RAPP81,NTAF81,LASK79] may be
very valuable in assisting in locating the source of errors.
Thus, despite the problems noted above, there appears to be
considerable potential, without much additional overhead,
for incorporating testing information into the debugging
process.

- 15 -

[BALZ69]

(BOYET75]

(CHEAT9]

[CLAR781]

[CLAR81]

[CLAR82]

(DAVIT3]

[(DEMIT78]

[DEMIT79]

[FAIRT75]

[FOsST801]

References

R.M. Balzer, "EXDAMS -- Extendable Debugging and
Monitoring System," 1969 Spring Joint Computer
Conference, AFIPS Conference roceedings, 34, A
Press, Montvale, New Jersey, 576-580.

R.S. Boyer, B. Elspas, and K.N. Levitt, "SELECT=-=-A
Formal System for Testing and Debugging Programs by
Symbolic Execution," Proceedings of the
International Conference on Reliable Software,

April 1975, 234-28%,

T.E. Cheatham, G.H. Holloway, and J.A. Townley,
"Symbolic Evaluation and the Analysis of Programs,"
IEEE Transactions on Software Engineering, SE-5,4,
July 1979, U02-077.

L.A. Clarke, "Automatic Test Data Selection
Techniques," Infotech State of the Art Report on
Software Testing, 2, September 1978, 43-64.

L.A. Clarke and D.J. Richardson, wSymbolic
Evaluation Methods - Implementations and
Applications," Computer Program Testing
North-Hollané Publishing Co., B.Chandrasekaran ané

S.Radicchi (eds.), 1981, 65-102.

L.A. Clarke, J. Hassell, and D.J. Richardson, "A
Close Look at Domain Testing," IEEE Transactions on
Software Engineering, SE-8, 4, July 1982, 380-390.

M. Davis, "Hilbert's Tenth Problem is Unsolvable,"

American Mathematics Monthly, 80, March 1973,

R.A. DeMillo and R.J. Lipton, "A Probablistic
Remark on Algebraic Program Testing," Information
Processing Letters, 7, June 1978.

R.A. DeMillo, F.G. Sayward, and R.J. Lipton,
"Program Mutation: A New Approach to Program

Testing," State of the Art Report on Program
Testing, 1979, Infotech International.

R.E: fairley, "An Experimental Program-Testing
Facility," 1EEE Transactions on Softlware
Engineering, SE-1,4 December 1975, 350,357.

K.A. Foster, "Error Sensitive Test Case Analysis
(ES?CA)," IEEE Transactions on Software
Engineering, SE-6, 3, May 1980, 258-264.

- 16 -

[HOWD75] W.E. Howden, "Methodology for the Generation of

Program Test Data," IEEE Transactions on Computer,
Cc-24,5, May 1975, 554—§§§

[HOWD78al W.E.Howden, "An Evaluation of the Effectiveness of

Symbo}ic Testing," Software: Practice and
Experience, 10, July-August 1978, 381-=-397.

[HOWD78b] W.E. Howden, "Algebraic Program Testing," ACTA
Informatica, 10, 1978.

[(HOWD80] W.E. Howden, "Functional Program Testing," IEEE
Transactions on Software Engineering, SE-6,2, March
1980, 162-169.

(HUANT5] J.C. Huang, "An Approach to Program Testing," ACM
Computing Surveys, 7,3, September 1975, 113- 128

[LASKT79] J.W. Laski, "A Hierarchical Approach to Program
Testing," Department of Systems Design, University
of Waterloo, Waterloo, Ontario, Canada, Technical
Report No.BSCFw130779.

{MYER79] G.J. Myers, The Art of Software Testing, John Wiley
& Sons, New York, New York, 1979.

[NTAF81] S.C. Ntafos, "On Testing With Required Elements,"
Proceedings of COMPSAC '81, November 1981, 132-139.

[RAPP81] S. Rapps and E.J. Weyuker, "Data Flow Analysis
Techniques for Test Data Selection," Computer
Science Department, New York University, New York,
New York, Technlcal Report No.023, December 1981.

(RICH81] D.J. Richardson and L.A. Clarke, “A Partition
Analysis Method to Increase Program Reliability,"
Fifth International (Conferene on Software

Engineering, March 1981, 244-253.

(WEYU81] E.J. Weyuker, "An Error-Based Testing Strategy,"
Computer Science Department, New York University,
New York, New York, Technical Report No .027,
January 1981.

(WHIT80) L.J. White and E.I. Cohen, "A Domain Strategy for
Computer Program Testlng," IEEE Transactions on
Software Engineering, SE-6, May 1980, 247-257.

(ZEIL81] S.J. Zeil and L.J. White, "Sufficient Test Sets for

Path Analysis Testing Strategies,” Proceedin%s of
the Fifth International Conference on oftware

Engineering, 1981, 184-191.

- 17 -

