CONSTRAINED SCENARIO GENERATION
SYSTEM DOCUMENTATION:
USER'S MANUAL AND PROGRAMMER'S GUIDE

Rajendra S. Wal}

COINS Technical Report 83-02
July, 1982

Department of Computer and Information Seience
University of Massachusetts, Amherst
Amherst, Massachusetts 01003

Research supported by National Science Foundation Grant IST-8017343.

CSG Programmer's Guide

Introduction . « « « « « &
Accessing the System . .
System Outline

Entry Points
Block Diagram
Generating a Scenario .
Example Call History . .
Displaying a Scenario .
Example Call History . .
Function Detail
The Scenario Generation Su

® L] ®
W N -

. L d . . - . L] L . L]

o

o o o (D o ® o o o o o o o

y

e ® e ® o & & ® o o s o

Generate-scenario . .
Build-scenario
Build-constraints . .
Situation-analysis
Describe-enemy-position
Describe-friendly-position
Enemy-behavioral-tactics .
Tactical-analysis
Instantiate-scenario
The CEG Interface Subsystem .
Bind-experience-base~to-examp
Choose-concept-space .
Set-up-search . . .
Ceg-search
Ceg-exec~front . . .
Enemy-position-judge
Compare-position .
Goal=-judge
The Graphiecs Subsystem
Display-scenario . .
Scenario-synopsis .
The Data Base
The Frames . .
Adding To The Data Base .
Getting The System To Recognize Y
Experience« .

e« & o o o o & % o s e o
« o o o o

~OVVISE WD =
s o o ¢ o [N e ¢ & o o ¢ o o & »

. .

. L]
[] L]
N =

e o
- . - L L] -

e

.

.
-—

~NooONUTEWN =

» © e o o o o ¢ o o |4t e o o o o o o o o o (De v o o s o o o o o

L] L]
N =

[
.
.
.
.
.
.
.
[
.
[
L]
.
[
.
.
.
.
.
.
L]
.
.
.
.
.
.
.
[
.
.
3
.
3
.
ou

n

o]

.
-—

r

n

Using The CSG System On Your Domain . . .

Bugs, Errors And Problems . . . « s
The System Didn't Find My New Experlence
Trying To Debug On The GMR-27. . . .
Warning: Making Changes To The Database.
Compiled Constrained Scenario Generation

aAONONON OV = S WW WL LWL LWIW WW W WW WLW WW WW WW WM DN NN N = -
EWN=2OO N MV =_LSCWWWNDNNNNPOPDNOMDNOION s R ca a0 0= 0WWWWNN =20 =0

o . e o o * o * o o e e o o = .
. ® o o o e o e o e o

— —
COoOWVWOWOOEEN-I~NTOO\UI Sw WWwiwny =

e o o o ® e 8 e e o
. « o o o e s o o o o o o * o o o . o o o o e e o o o e * o

¢ X e e o ¢ & 4 e+ e ® e & o 6 e ° . 8® 8 8 e & s+ ° o & o & e+ O o & o o e o
e © @ & o & e O s & o & e 6 2 o

1]
CNe o ¢ o o N e X o o

Special Slot Forms For Model Experlence

— b
— —

1

CSG Programmer's Guide Page 2

1.0 Introduction
This document is the maintenance manual for the Conflict
Simulation Gaming Constrained Scenario Generation System (CSGCSG or
CS8G). It is intended for the Systems Programmer familiar with
Conflict Simulation Games, the Constrained Scenario Generation
paradigm and who is an expert LISP user. It covers numerous system
details intended to allow one to maintain the CSG system as well as
interface to a new domain.
Additional references:
CSG User's Manual
CSG LISP Code Listing
C3G Cross Reference Listing
FMS User's Manual
CEG User's Manual
CEG Programmer's Guide
CLISP Manual
Introduction to Conflict Simulation Games

VAX Command Language Manual

1.1 Accessing the System

The system lives in the directory usersil:[cegrw.thesis.projectl]
(all files referenced in this document will be assumed to be in this
directory unless otherwise specified) in the files: exec, sSscenario,
scensubs, interface, graphics, slots, and data.

There are procedure files available to aid accessing the system:

o usersl:[cegrwlproc csg - run the compiled version of the
system.

o usersl:[cegrwlproc esgsup - run the compiled version and
invoke the supervisor.

O csgsys - loads the system level files but not the parts of
the CEG system needed to actually run CSG.

0 cegesg - loads everything needed to run the system.

CSG Programmer's Guide Page 3

o csgsup - loads everything and invokes the CSG supervisor
(normal user entry point).

0 route - prints all functions (but not the data and s;ot
files) to the line printer. This is best run as a submit job
to the quick batch queue as it takes a long time to do.

o routed - prints all functions, slots and data to the 1line
printer. This should be done as a submit job to the quick
batch queue to run late at night because not only does it
take a long time to do, but the listing takes a long time to
print out.

The documentation for the system is in usersi:[cegrw.document].

2.0 System Outline

Once you have loaded the system you can use it as is to maintain
the data base (building new frames, modifying old ones, etc), generate
scenarios, or display scenarios. You can also, of course, modify the
functions that make up the system.

2.1 Entry Points

If you are going to run the system you can do so through the
following entry points:

0 supervisor - invokes the user supervisor (see CSG User's
Manual) from which all system functions can be executed.

0 copy-symbol, create-symbol, delete-symbol, modify-symbol,
route-symbol, and show-symbol will all work on the frames of
the system as in the FMS and CSG User's manuals.

0o display-symbol - invokes the graphics package to display
items on the GMR-27 (the Grinnell).

o generate-scenario - invokes the scenario generation mechanism
on the supplied goal and situation. Monitors CEG search.

From the supervisor one can access the other entry points merely by
entering the first word of the name (e. g. copy for copy-symbol).

2.2 Block Diagram

This section outlines the workings of the display-symbol routine
when displaying a scenario and the generate-scenario routine.

CSG Programmer's Guide Page 4

2.3 Generating a Scenario

If the generate command or the generate-scenario function is
given the following processing is performed:

1. The scenario generation routine is entered [(build-scenario
task situation name)l].

2. A set of problems which will be used to interrogate the data
base through CEG is created [(build-constraints goal
situation)] by analysis of the goal and situation
[(situation-analysis goal situation)], [(tactical-analysis
behavior fr-str en-str)]), [(enemy-behavioral-tactics en-str
fr-str)].

3. Each problem is presented to the CEG system which searches
the data base for similar experiences [(ceg-search cl-name)]
and the results are collected.

4, Each remembered experience is modified to fit the current

goal/situation exactly [(instantiate-scenario scen fc-list
task situation ¥fr-str ¥*en-str)l].

2.3.1 Example Call History

The following is a partial call history of an invocation of
(generate-scenario).

I. build-scenario
A. build-constraints
i, situation-analysis
ii. enemy-behavioral-tactics

iii. tactical-analysis

B. bind-experience-base-to-example
C. choose-concept-space
D. set-up-search
E. ceg-search
i. ceg-exec-front

a. enemy-position-judge

CSG Programmer's Guide Page 5

(i) compare=-position
(a) comp-pos-en
(b) comp-pos-fr

(e) test-strength

b. goal-judge

(i) goal=-shape

(ii) goal-force

F. instantiate-scenario

2.3.2 Displaying a Scenario

When

Assuming the user is at the Grinnell, the system will perform the
following:

1.

2,

3.
4.

Break up the scenario object into its component parts (goal,
situation, segment list, failure list and problem 1list).

Run the scenario synopsis routine [(scenario-synopsis
s=list)].

Put the mapsheet in the background planes [(draw-map $$map)].

Enter the scenario display command loop.

told to display a segment the system will:

1.

2.

Display information about the segment 1in the wupper left
corner of the overlay planes [(display-status seg)l].

Calculate the screen coordinates of the force and goal
locations as well as the front unit direction vectors.

Display the course of action ply by ply [(display-coa set)]
asking the wuser to hit the enter key on the cursor control
box after each ply is displayed [(draw-coa wcoa frpos enpos
goal frfr enfr gfr frstr enstr)].

CSG Programmer's Guide Page 6

u.

Display the moves and combats described in the course of
action [(draw-move fn pts)], [(draw-combat frcen encen)l,
[(draw-combat-result dscr frcen encen frfr enfr frstr enstr
frinv eninv)].

Keep track of the position and status of the units and goals
involved.

2.3.3 Example Call History

The following is a partial call history of an invocation of
(display-symbol) on a scenario.

I.

II.

display-scenario
A. scenario-synopsis
B. draw-map
C. display-segment
i display-status
ii display-coa
a. display-status
b. draw-goal
¢. draw-force
d. draw-coa
(i) draw-move
(ii) move-result
(iii) draw-force

(iv) draw-combat

(v) draw-combat-result

(vi) combat-result

grflush

CSG Programmer's Guide Page 7

3.0 Function Detail

This section discusses the major 1level functions of each
subsystem (Scenario Generation, CEG Interface, and Graphics) in
detail: what the functions and variables are, what the major data
structures look like, what the system is supposed to be doing and why,
and hints on changing and debugging.

3.1 The Scenario Generation Subsystem

This subsystem consists of the functions generate-scenario,
build-scenario, build-constraints, situation-analysis,
enemy-behavioral-tactics, tactical-analysis, and instantiate-scenario.

3.1.1 Generate-scenario

This routine is the entry point to the scenario generation
subsystem. It gets the name the scenario is to have, the goal to be
examined and the situation in which it is to be examined. It calls
build-scenario and inserts the built scenario in the symbol table and
the data file if so desired. The only data structures involved are
the frames that make up the goal and the situation (lisp arrays). The
scenario name is bound to the list of the goal, the situation, the
list of instantiated experiences, the list of constraints of problems
that were not resolved, and the constraints of problems that were
resolved; thus what is saved in the data file is the makeset of the
unroll of the cddr of the value of the name (skipping the goal and
situation, which should already be saved).

3.1.2 Build-scenario_

This routine controls the top level scenario generation
processing. This consists of first building the constraints by
analysing the goal and situation. A series of problems is created
which will then be presented to the data base through the CEG systemn.
Theoretically, solving these problems is sufficient to recover the
complete range of the future posibilities. Whether solution to all of
these problems is necessary to cover the future is not known.

When all the problems have been tried, the experiences that were
recovered, and the problems they are examples of solutions for, are
given to the instantiate-scenario routine. The scenario name is then
bound to the list of the goal, the situation, the list of experiences,
the list of unsolved problems and the list of solved problems.

The only domain specific section of this routine is at the
beginning of the repeat search through the problems, when the list of
constraints 1is divided into the those that are simple binary
contraints, a la a relational data base query (e. g. tactic:

CSG Programmer's Guide Page 8

frontal-attack), and those that will require the full CEG judgement
mechanisms (the goal and positional analysis constraints).

The list of problems returned by the constraint generation
routine (build-constraints) is in the form of a list of names, each
bound to a list of constraint names.

3.1.3 Build-constraints

This routine builds a list of problem names each bound to a list
of constraint names. Each constraint is an expression that details a
value to be matched to a similar value of an experience 1in the data
base. The constraints are the semantic description of the forces
involved in the situation, the goal expression to be achieved (from
the specifies slot of the goal frame), the enemy behavior mode, the
enemy tactic given that behavior, the random effects mode and the
friendly tactiec.

The semantic description of the involved forces is generated by
the situation-analysis routine. It returns two 1lists of force
descriptors, one for the friendly and one for the enemy forces. Each
descriptor is a triple: {type name strength>, where type is the
semantic tag, name is the name of the unit/group, and strength is the
current strength of the unit/group.

The goal constraint is taken directly from the goal frame.

The enemy behavior and enemy tactic constraints are generated by
the routine enemy-behavioral-tactics, which analyses the situation and
decides what the possible enemy behavior modes are and what tactics
the enemycould use in this situation.

The random effects mode constraint is one of {helpful, neutral or
detrimentall.

The friendly tactic constraint comes from the tactical-analysis
routine. This routine generates all possible ways of achieving the
goal given the forces available and the enemy forces in opposition.

The list of problems then consists of the situation analysis and
goal constraints, which are the =same for each problem, and all

combinations of enemy behaviors and tactics, random effect modes and
friendly tactics.

This routine is domain independent as long as you can fit your
constraints into the above categories (in which case you may need new
versions of the situation-analysis, enemy-behavioral-tactiecs, and
tactical-analysis routines), otherwise you would have to create your
own.

CSG Programmer's Guide Page 9

3.1.4 Situation-analysis

This routine builds the list of the lists of enemy and friendly
force descriptors. This is done by calculating where on the map each
force and goal is, and then checking what positional relationship
there is among them. The enemy forces are analyzed by
describe-enemy-position and the friendly forces by
describe-friendly-position.

3.1.4.1 Describe-enemy-position - For each enemy force there are four
possible descriptor types: on, between, near or outside. This
routine tests an enemy force by first checking if it is on any of the
locations of the goals to be achieved. If one of the goals is to
destroy this enemy force then obviously it is on a goal location. The
descriptor is then on or the 1list (on n) if there is more than one
goal and the force is on goal n.

If the force is not on a goal, then it is tested to see if it is
between a friendly force and a goal, where between is defined to mean
Wwithin a circle drawn through the goal and friendly force with an
origin at the midpoint between the goal and the friendly force. If
so, then the descriptor type between is returned or the list (between

n fn) if there is more than one goal (gn) or friendly force (fn)
involved.

The next test is to see if the enemy force is within 7 hexes of a
goal. If so, then the descriptor type is near or the list (near gl if
there is more than one goal and the force is near goal n.

If the force fails all of the above tests then it is described as
outside.

3.1.4,2 Describe-friendly-position - For each friendly force there
are four possible descriptor types: on, next, near or outside. This
routine first checks to see if the unit is on a goal location. If the
force is to be protected then it 1is obviously on a goal. The
descriptor type is then on or the list (on n) if there is more than
one goal and the force is on goal n.

If the force is not on a goal, then it is tested to see if it is
adjacent to an enemy force, since by the rules such a force is
commited to immediate combat. If so, the descriptor type is next or
the 1ist (next en) if there is more than one enemy force and the
friendly force is next to enemy force en.

The next test is to see if the friendly force is within 7 hexes
of a goal. If so, the descriptor type is near or the list (near n) if
there is more than one goal and the friendly force is nearest goal n.

CSG Programmer's Guide Page 10

Finally, if the friendly force is not on, next or near it is
automatically classified as outside.

3.1.5 Enemy-behavioral-tactics

This routine examines each possible enemy behavior mode and
within each «calls the routine tactical-analysis to generate the
possible tactics the enemy could perform given the forces involved.

It returns a list of the enemy behavior/enemy tactic constraint
pairs.

3.1.6 Tactical-analysis

This routine takes a behavior mode a list of friendly forces and
a list of enemy forces (who is enemy and who is friendly is left to
the calling routine) and returns a list of all possible tactics that
the friendly forces could perform.

If the behavior mode is aggressive then the possible tactics are
determined by the number of friendly and enemy forces involved. If
there are no enemy forces, then the only tactic is column-advance. If
there are no friendly forces then the only tactic is sit. Otherwise,
the tactic frontal-attack must be considered. If there is more than
one friendly force, then encirclement is also considered. Finally, if
there is more than one enemy force involved the tactic flank-attack is
considered.

If the behavior mode is passive then the possible tactics are
also determined by the number of friendly and enemy forces involved.
If there are no enemy forces, then again the tactic column-advance is
the only one suggested. If there are no friendly forces then sit is
the only tactic. Otherwise, the tactic fluid-defense 1is suggested.

Finally if there 1is more than one friendly force the tactic
line-defense is also suggested.

3.1.7 Instantiate-scenario

This routine calls recursively instant-scen and inst-scen which
do the following work to modify remembered experiences to fit the
current situation exactly (instantiation).

A copy of the experience to be instantiated is made. In the
copy, the values of the slots tactic, random-effects, enemy-tactic and
enemy-bahavior are replaced with the values specified by the
constraint. The reason there may be a difference is if the experience
is a model experience in which case it may have more than one value
for the given slot.

CSG Programmer's Guide Page 11

The value in the name slot is replaced with the name of the
remembered experience. The friendly and enemy strength slots are
replaced with the descriptor 1lists from situation-analysis. The
friendly and enemy names are replaced with those from the situation
frame as are the friendly and enemy location slots.

The goal slot is replaced with the value from the specifics slot
of the goal frame, and the destination slot with the goal-locations of
the goal expression.

Finally, the coa (course of action) slot in the remembered
experience 1is examined. If the first element of the value is prog
then the coa slot in the copy is set to the =eval of the remembered
experience coa. Otherwise, it is left as it was remembered.

3.2 The CEG Interface Subsystem

This subsystem consists of the functions
bind-experience-base-to-example, choose-concept-space, set-up-search,
ceg-search, ceg-exec-front, enemy-position-judge, compare-position,
comp-pos-en, comp-pos-fr, test-strength, goal-judge, goal-shape and
goal-force. It also uses the Constrained Example Generation system
stored in usersi:[ceg.newsys] (documented elsewhere).

3.2.1 Bind-experience-base~to-example

The normal form of the experiences is as a simple array. The
Constrained Example Generation system, however, expects the examples
in the database it is searching to be arrays with one of the slots
being the value of the example. This array of an array is too much to
carry around and store all the time, so we defer actually building the
example database that CEG will use until as actual generation is in
progress, and then, only bind those experiences that have been chosen
by choose concept space (See).

Choose-concept-space returns the list of potentially applicable
experiences. Bind-experience-base-to-example takes each member of
this list and creates a dummy shell array that looks 1like the array
expected by CEG as an example - the slots have the correct values. It
binds each of those arrays to an atom that is the name of the
experience with "x:" concatenated on the front.

3.2.2 Choose-concept-space

There are currently 6 constraints used to select experiences from
the database. Two of these, goal and enemy-position, are sent to CEG
which does a complete analysis and judgement. The other four, tactic,
enemy~behavior, enemy-tactic and random-effects are not semantic and
are used as simple atomic labels, e. g. tactic = frontal-attack, or

CSG Programmer's Guide Page 12

random-effects = detrimental.

Thus a structure has been created that facilitates the relational
database nature of these constraints,. (The structure was created
using create-concept-space, which takes a list of experience names and
adds them and their attributes to the current structure.) The function
choose-concept-space takes a list of attribute-name/value pairs and
uses them to select the list of potentially applicable experiences.

The structure $$concept-space is an attribute list of attribute
lists of ordered sets. The top level attribute list is the list of
constraints (random-effects, tactic, ete), each with a value that is
in turn an attribute list of the possible values that that constraint
can have (e. g., for random-effects, helpful, neutral and
detrimental). Finally, for the value of each of the names of these
low level attributes we have the ordered set of the names of all the
experiences that have that value of that constraint (e. g. the list of
all experiences that show random-effects = detrimental).

The routine choose-concept-space +then selects each correct
attriubte value experience 1list as specified by its given list of
pairs and does an ordered set intersection on them to get the list of
experiences that have all the specificed values of the constraints. A
working version of $$example-list (the 1list used by CEG to see which
example should be examined next) is then created.

This pre-CEG selection process speeds up the normal CEG search
immesurably.

3.2.3 Set-up-search

This routine merely sets two of the Constrained Example
Generation System policy values, the ground level policy and the
modification threshold. Two parameters are passed to it, the policy
and the threshold to set. Normally, the policy 1is a single
epistemelogical type: su, ref, or model, as defined by CEG.

3.2.4 Ceg-search

This routine calls the constrained example generation repeatedly
until all possible relevant experiences have been retrieved. It does

this by manipulation of the constrained example generation policy
parameters.

CSG Programmer's Guide Page 13

3.2.5 Ceg-exec~-front

This routine, part of the constrained example generation system
itself, is the entry point through which the constrained scenario
generation system calls constrained example generation.

3.2.6 Enemy-position-judge

This routine is called by the constrained example generation
system to determine if a potential experience is relevant. It calls
compare-position which does the actual comparison of force
descriptors.

3.2.6.1 Compare-position -

This routine does first a simple count to see if the current
situation and the retrieved -experience have the same number of
involved forces. It then in turn calls comp-pos-en and comp-pos~fr
which do the semantic comparisons.

3.2.7 Goal-judge

This routine does the comparison between +the problem goal
statement and the experience problem statement. It calls goal-shape,
which tests the AND/OR keyword structure of the two goal statements,
and goal-force, which tests the forces involved to see which forces
have been assigned to the same task.

3.3 The Graphics Subsystem

The main routines of the Graphics subsystem are display-scenario,
scenario-synopsis, display-segment, display-coa and draw=-coa.

3.3.1 Display-scenario

This is the top level entry point to the graphical display of the

assembled scenario set. It checks to see if the GMR-27 is allocated
and displays the game board if not already present.

CSG Programmer's Guide Page 14
3.3.2 Scenario-synopsis

This routine shows the user at the terminal the ways in which the
scenario segments can be organized.

4,0 The Data Base

The data base is in two files: 'slots' and ‘'data’. 'Slots!
consists of all the indicies, etc needed by the array access functions
(from record-schema). 'Data' 1is the actual knowledge base. It

contains all the goals, situations, groups and units that have been
defined, all the experiences that have been "remembered", and all the
scenarios that have been generated. These items should only be
changed thru the routines in the file 'exec'.

4,1 The Frames

The reader is refered to the Conflict Simulation Game Constrained
Scenario Generation System User's Manual for a discussion of the
frames, their slots and values.

4,2 Adding To The Data Base

If you are adding anything but experiences, there is nothing
special you have to do. If you are adding experiences, however, there
is other information that must be provided to the system, and there
are other options open to the slot values.

4,2.1 Getting The System To Recognize Your New Experience

Experiences are accessed by first checking the $$concept-space
attribute list (see above). Thus only the experiences which have been
entered on the $$concept-space list will be recognized.

Once you have built some new frames, make a list of their names
and supply it as an argument to create-concept-space. You must then
replace the value of $$concept-space in 'data’.

4,2.2 Special Slot Forms For Model Experiences.

The following forms can be used as the slot values of model
experiences so that a single experience can serve many constraints.
In each case crete-concept-space will note the experience under all
the possibilities, and the judge routines will check all variations.

CSG Programmer's Guide Page 15

Tactiec: a list of tactics this experience covers. E. g+,
'*(frontal-attack encirclement).

Random-effects: a list of the random effects this experience
covers.

Friendly-strengths: a list of the choices of force
descriptor 1lists that are deemed similar enough to be
descrlbed in this one experience, headed by the atom ‘or'.

g., '(or(((near 2)(force 1) 11)((near 1)(force 2)11))
(((near 2)(force 1)11)(outside(force 2)11))). The position
judge will try to match the situation to each choice of
descriptor set.

Enemy-strengths: similar to friendly-strengths.
Enemy-behavior: a list of depicted behaviors.
Enemy-tactic: a list of depicted tactics.

Coa: a prog expression that returns a normal course of
action 1list. If you execute the function bind-locals-
~in-model-expansion it will assign to the atoms tac, etac,
ebeh and rand the index of the tactic, enemy-tactic,
enemy-bahavior and random-effect that this instantiation is
to demonstrate from the list of that particular slot. E. g.,
if you had the 1list '(helpful neutral) in the slot
random-effects, and this expansion was for the random-effect
neutral then bind-locals-in-model-expansion would assign 2 to
rand.

5.0 Using The CSG System On Your Domain

When you use the Constrained Scenario Generation System on your
domain you will need to supply the following system replacement
routines in addition to those to handle your routine otherwise (such
as Constrained Example Generation judgement routines, display
routines, ete): build-constraints, build-scenario (only the selection
of which constraints are relational and which require judgement),
create-concept-space, display-scenario, display-segment, inst-scen,
and the data items $$data-file and $$slot-file.

You should examine the files 'errand' and 'errdata' which are an

example of wusing the Constrained Scenario Generation System for a
different domain.

You'll probably use copy-symbol to build your database. In
addition, there are some undocumented database build help functions in
the file 'temp' such as gen-names and gx.

CSG Programmer's Guide Page 16

6.0 Bugs, Errors And Problems

This section is an wunordered collection of caveats, hints,
kludges, etc the should be known by the system manager.

6.1 The System Didn't Find My New Experience

Did you re-run create-concept-space and replace $$concept-space?
Did you save the experience? Check the list of solved problems (the
fifth item in the list assigned to the scenario name) and the list of
unsolved problems (the fourth item). These names are bound to the
constraints the system was trying to find. Look at the slot values
for the constraints in your experience. There is probably a
discrepancy somewhere.

6.2 Trying To Debug On The GMR-27.

Often you won't get exclusive use of the Grinnell when you're
trying to debug a new experience, tactic set, course of action, etc.
There is a special switch called $force-draw, which if set to 't' will
always redraw the map when display-scenario is entered. Be sure and
make sure no one else has something important on the screen before you
write to it.

If you don't need the Grinnell, enter the supervisor and say
you're not at the Grinnell. This will set $force-nodraw to 't' and
redefine gr_crsr_wt to beep the terminal instead of waiting for a
cursor press.

6.3 Warning: Making Changes To The Database.

Beware when making changes to the database to enter (del) and
purge/keep2 files (in particular 'data') otherwise you'll break your
disk quota. It only takes 5 updates or changes of database frames to
blow things up.

6.4 Compiled Constrained Scenario Generation System

The Constrained Scenario Generation System is compiled on top of
the Constrained Example Generation system, so any change in
Constrained Example Generation means The Constrained Scenario
Generation System will also have to be recompiled. If you don't know
how to do recompiles, look at the csgcomp.* and c¢sglink.* files for
hints on how to do compiles.

Accessing the system

Bind-experience-base-to-example
Build-constraints . . . « . &
BUild-ScenariO * » .

Ceg interface subsystem
Ceg-exec-front

Ceg-search
Cegesg &+ ¢ v+ ¢« &
Choose~-concept-space
Comp-pos-en
Comp-pos-fr
Compare-position . .
Copy-symbol
Create-concept-space
Create-symbol . . .
Csgsup + « + « « + .
CSESYS + o o« o o o

Delete-symbol
Describe-enemy-position .
Describe-friendly-position
Display-scenario
Display-symbol . . .

Displaying a scenario
Displaying a segment .
Documentation

e o L I 3
* o » e a e e o
e o * o ¢ o o o

Enemy-behavioral-tactics
Enemy-position-judge

Generate-scenario . .
Generating a scenario
Goal-force
Goal-judge
Goal-shape

. . L] . -

.

Instantiate-scenairo

MOdifY-SYﬂlbOl) .

Route L] . 7- .
Route-SymbOI
ROUted [.

Scenario generation subsystem
Scenario-synopsis
Set-up-searech
Show=symbol « « . .

LI} * » * o * o

INDEX

12, 14

WUTJTW =0 OWw N w

-
wo

P e T — ¥V
w ww -
-3

-
o

W ey Www w
N =

Page Index-1

Page Index-2

Situation-analysis « « + ¢ ¢ ¢ o &
Supel"ViSOY‘ o o L] . . o e .

w1\

Tactical-analysis . + « « o « « « 10

Usersi:[cegrwlproc « « « « + + « + 2

Page 1

C3G User's Manual

NN NN DN ==
-

e o ® o @ e * o
® & © » 6 o * s s

. ¢« & s & o & o
® o & o e o o @+ o+ @
® @ & o & ¢ * o o o

(o]
® o @ e & o o o °
19
* o 5 (0 ¢ ¢ ©* o » .
o
s o o Q —) . .
O >yl O g
. N L WO ot .
e TP ©
O L E VP E o
2 0 EAQ oA E
Ct 3 Q3T .
OW SNV PN
D > e SO0 2]
PNLPTOCNO OO
O VPO CEQ n O
STHASUEQ OGS
T3 OE O €Emo
OrHN S EO QO ® =
S 32 o O Es OO
PPLDODO @ [B &
coco S g o
L N B o) fzy Qs
-—

L]
COO~NNO—OO

T A NN NS TN

CSG User's Manual

1.0 Introduction

This is the User's Manual for the Conflict Simulation
Gaming Constrained Scenario Generation (CSGCSG or CSG)
System. It is intended for the user familiar with Conflict
Simulation Games, LISP, the Constrained Scenario Generation
mechanism, and the Constrained Example Generation paradigm
[RISS82]. It is not intended as a Maintenance Manual.

Additional References:

o Frame Management System (FMS) Manual,

o CSG Programmer's Guide,

o Introduction to Conflict Simulation Gaming,
o CLISP Manual,

o VAX Command Language Manual.

2.0 Getting Started

To run the system thru the top level supervisor enter
the VAX command:
$ €usersi:[cegrwlproc csg
And then when you get the CSG: prompt type
(supervisor)
This will run the system and use the default experience data
base of usersl:[cegrw.thesis.projectldata that contains the
experiences to handle the problems 1listed in section 5.0
Data Base Summary, below.

3.0 The Supervisor

Through the CSG Supervisor you can create, copy,
modify, delete, display, show and route symbols. The
"symbols"™ are the names of defined frames: goals,
situations, units, groups, tasks, and experiences.

Additionally you can load data files and generate and

display scenarios. You can enter the command "stop" to exit
the supervisor and remain in LISP, or "exit" ¢to return to
the VAX EXEC. You can also clear the Grinnell overlay.

The supervisor begins by first asking if you at "at the
Grinnell™, since most of the power of the system is in its
ability to display information. If you are, then the map
will be displayed. This should aid in the creation,
modification and examination of various objects. If you are

Page 2

C3G User's Manual

not at the Grinnell, you can still run the system, but
nothing will be done on the screen, and various Grinnell
routines are rebound to avoid complications.

The rest of the processing consists of the supervisor
repeatedly asking you to enter a keyword. The system then
processes that keyword plus any additional information
needed. Most of these keywords perform calls to the
appropriate FMS routine. The major exception is the keyword
"generate", which will generate a scenario from a goal and
situation. It is discussed in more detail below. All the
commands and their meanings are discussed in section 3.2
Command Summary.

3.1 Generating A Scenario.

To generate a scenario enter generate in response to
the keyword prompt. You will then be asked for the name you
wish this scenario to have, the name of the goal frame this
scenario 1is to pursue, and the name of the situation frame
in which the examination is to take place. The goal and
situation must either be already defined in the data file,
or you must create them before you enter the generate
command.

You can use the commands show and route to examine the
frames that are already present in the data base, and copy,
create or modify to make new frames. The meaning of the
various slots in the frames 1is discussed in section 4.0
Frame Descriptions, below.

The system will then search the experience base for
applicable memories, modify them ¢to fit the current
situation, and collect them into a scenairo. During this
process the progress of the search being conducted by the
manipulation of the CEG (Constrained Example Generation)
system. This will be a series of ground level probes (the
phrase "GROUND LEVEL SEARCH"™ will be displayed at the
terminal) followed by either the original, premodification
remembered experience or an explanation of what the search
failed to find. If a memory was recovered, the data base is

repeatedly probed to see if more information is available,
until there is no more.

If a memory of the desired form is not in the data
base, the generation continues with a probe for the next
type of desired memory and so on.

After all the probes are completed the user is asked if
the generated scenario should be saved on disk. This is a
very time consuming process (10 - 20 minutes depending on
the size of the scenario) and should be done when there is
plenty of time available. Even if the scenario 1is not

Page 3

CSG User's Manual

saved, it can still be displayed on the Grinnell. Once the
scenario is built you can use the display command to see the
result on the Grinnell.

When you enter display to see the scenario you will
first enter the scenario synopsis routine. This routine
Will categorize the relevant experiences recovered from the
data base by tactic. It will then asks for a category to
further subdivide the experiences. This can be any of the
keywords {enemy-behavior, enemy-tactic, random-effects or
tactic} or the meta-keywords {reset or stop}. When you
enter one of the normal classification keywords you will be
shown how the experiences are distributed over that category
within the previous categories. Entering the keyword
'reset' will move back to the top level of classification
and ask for a new top level category. The keyword 'stop'
Wwill leave the synopsis routine and enter the actual display
routine.

The display routine also has a command/keyword 1loop.
The commands and their meanings are:

Command Meaning

np next projection within segment

PP previous projection within segment

ns first projection of next segment (first
command to enter)

ps first projection of previous segment
fscan search forward for first segment of

context with
specified attribute and value

rscan search backwards for first segment of

context
with specified attribute and value

list list of commands
help list of commands and meanings
stop end display

The commands nc, pc, ns, ps, fscan, and rscan all select a
segment to be displayed. The particulars of this segment
(the name of the experience remembered, the goal of this
segment, the tactic exemplified, the enemy behavior, the
enemy tactic and the class of random effects considered) are
printed at the terminal. The user is then asked whether or
not the segment should actually be displayed {y or n}.

Page 4

CSG User's Manual

If 'y' is entered then the segment is displayed, ply by
ply with the user asked to press the enter key on the cursor
control box at the end of each ply (the terminal will beep).
At the end of each player turn if the home key followed by
the enter key 1is pressed the segment display will be
aborted.

If 'n' is entered the keyword/command 1loop described
above is reentered.

3.2 Command Summary

The following is a 1list of the commands available
through the supervisor, the additional parameters they will
ask for, and what they will do.

3.2.1 Command Detail

Clear - Clears the Grinnell overlay planes. Used
between uses of the display command to allow clean
viewing of items.

No Additional Parameters.

Copy - Makes a copy of an existing frame and allows
modification of the slots of the new version. See
the FMS manual for complete details of how frame
modification works.

Additional Parameters:

The type of frame being copied (e. g. goal,
situation).

The name of the new frame.
The name of the old frame being copied.

Any modifications to the new frame.

Create - Makes a new frame. See the FMS manual for
complete documentation of creation of frames.
Additional Parameters:

The type of frame to create.

Page 5

CSG User's Manual Page 6

The name you wish this frame to have.

The values of the slots of the frame.

Delete - Removes a frame definition.
Edditional Parameters:

The type of frame to be deleted.

The name of the frame to be deleted.

Display - Show the symbol on the Grinnell, if
posiBI . Some items can not be shown graphically
(e. g. model experiences). Display is different
from show or route in that rather than just showing
the slots and values, the meaning of the item in
terms of the map display is shown. E. g.,
displaying a situation will actually draw on the
screen the units on each side in their specified
locations.

Additional Parameters:

The type of frame whose information 1is to Dbe
displayed.

The name of the frame to display.

Exit - Leave LISP and return to VAX Executive
monitor.
No Additional Parameters.

Generate - Generate a scenario from a goal and a
situation.

Additional Parameters:
The name of the scenario to generate.

The goal whose completion to examine.

The situation in which to examine goal
completion.

Help - Gives brief help information.
No Additional Parameters.

CSG User's Manual Page 7

List - Prints list of commands.
No Additional Parameters.

Load - Load alternative data file. The default
data file specification is then set to this file
(for all later creates, copies, etec.).

Additional Parameters:

Full file name including disk and directory as
a string.

Modify - Modify frame by changing values in slots.
See FMS manual for full documentation on how to
modify frames.

Additional Parameters:

Type of frame to modify.

Name of frame to modify.

Route - Pretty print all frames of a given type (or
all frames if so indicated) to the line printer.
See the FMS manual for a complete discussion of
route.

Additional Parameters:

The type of frame to route.

Show - Print all names of given frame type, entire
symbol table, or pretty print a single frame to the

terminal. See FMS manual for a complete discussion
of show.

Additional Parameters:
The type of frame to show.

[{Optionall] The name of the frame to show.

4,0 Frame Descriptions

_ This section reviews the available conflict simlation
gaming domain frames, what their slots are, their default
and expected values.

CSG User's Manual

4.1

Frame Detail

experience - This frame is the memory in the data

base. Novice wusers should not try to manipulate
the experience frames in the primary data file
either by create, modify or delete. Additionally,
it is possible to get into trouble if you generate
a scenario, manipulate the data base, and then try
to build a new scenario. Manipulation of
experience frames should only be done by the System
Manager or a System Programmer building their own
data base.

name - a unique name for this frame. (Default:
current date and time)

type - epistemological class - su, ref, model,
ce. (Default: su)

tactic -~ the friendly tactic that this is and
example of. (Default: sit)

random-effects - which random effects (helpful,
neutral, detrimental) this is an example of.
(Default: neutral)

friendly-units - the number of friendly
units/groups involved in the remembered
experience. (Default: 1)

friendly-names - the names of the wunits/groups
involved. (Default: nil)

friendly-strengths - a list of the situation
analysis descriptors for each friendly force
involved. Form of descriptor: <type name
strength> where type is one of (on, near, next
or outside) as defined by the situation
analysis function; name 1is the name of the
unit/group frame being described; and strength
is the force strength of the wunit/group.
(Default: nil)

disposition - the tactical arrangement of the
friendly forces. (Default: col, for column)

location - the locations (hex numbers) of the
friendly forces. (Default: nil)

terrain - the type of terrain in which the
experience takes place. (Default: clear)

Page 8

CSG User's Manual Page 9

enemy-units - the number of enemy units/groups
involved. (Default: nil)

enemy-names - the names of the enemy unit/group
frames involved. (Default: nil)

enemy-strengths - a list of force descriptors
from the situation analysis for each enemy
force involved. Form: <type name strength>
where type 1is one of (on, between, near or
outside); name is the name of the wunit/group
frame; and strength 1is the strength of the
force. (Default: nil)

enemy-tactic - the tactic the enemy 1is using.
(Default: sit)

enemy-behavior - the mode of behavior the enemy
forces are assumed to be in. (Default:
neutral)

enemy-disposition - the tactical arrangement of
enemy forces. (Default: 1line)

enemy-location - the hex number locations of
the enemy forces. (Default: nil)

distance -~ the number of turns of unrestricted
movement it would take for the closest friendly
unit/group to reach one the goal 1locations.
(Default: nil)

destination - the hex number 1location of the
goals at the beginning of the course of action
in the experience. (Default: nil)

engagements - a list of pairs of force numbers
that engaged in combat during this experience.
E. g. if friendly force 1 fought enemy force 2
then the pair (1 2) would be in the list.
(Default: nil)

goal - the list of goal descriptors that were

to be achieved in this experience (similar to
the goal frame's specifics slot). (Default:
nil)

coa - the course of action of the remembered
experience as a list of ply descriptors. Each
Ply descriptor is a list of movement and combat
desgriptors depicting what happened. (Default:
sit

Example:

CSG User's Manual Page 10

experience frame: exp-el-front-goal:0026
name: " 6-JAN-198200:22:38.12"
type: su
tactic: frontal-attack
random-effects: helpful
friendly-units: 4
friendly-names: ((gregg davidson) (mcnair robertson))
friendly-strengths: ((next (gregg davidson) 7)
(next (mcnair robertson) 7))
disposition: 1line
location: ((n1909" n1909") ("1910n u1g10n))
terrain: (clear)
enemy-units: 1
enemy-names: ((union-8))
enemy-strengths: (((between 1 2) (union-8) 5))
enemy-tactic: frontal-attack
enemy-behavior: aggressive
enemy~-disposition: 1line
enemy-location: (("1809"))
distance: 1
destination: ("1508")
engagements: (((1 2) 1))
goal: (take ("1508") ((force 1) (force 2)))
coa: (((combat (1 2) 1 (enemy-retreat aac)))
((combat 1 1 (friendly-retreat aac)))
((move 1 (to (right-flank =1)))
(move 2 (to (left-flank =-1)))
(combat (1 2)
1

(enemy-eliminated aac)))

nil
((move 1 (to (on goal)))))

goal - This frame is used to describe goals to be
achieved.

name - a unique name for this frame. (Default:
current date and time)

type - the type of goal. One of three choices:
position, for territorial goals; unit, for
unit/group destruction/protection goals; and
mixed, for some combination. (Default:
position)

value - the numeric value of this goal.
(Default: 5)

time - how far in the future in number of turns
before this goal is to be achieved. (Default:
0

CSG

User's Manual

specifics - a list of goal descriptors (with
optional connectives) specifying what is to be
achieved. The format of each descriptor is
(connective <desc1> <desc2> ...) where the
connectives are either of (and or). Each desc
is <verb object indirect-object> where verb is
one of (take, hold, destroy, or protect);
object 1is either the location to be taken or
held, or the wunit/group to be destroyed or
protected; and indirect-object is the friendly
forces with which the goal is to be achieved.
This is the most important slot of this frame.
Examples:

(take "1703" gregg) - take possesion of hex
"1703" with unit gregsg.

(and (take "1703" gregg)(destroy union-=5
(gregg forrest mcnair))) -~ take possesion
of hex "1703" with unit gregg and remove
the unit union-5 form the game.

Example:

goal frame: goal-t

name: "13-NOV-198115:18:21.88"

type: position

value: 5

time: 1

specifics: (take "2007" (conf-g1 conf-g2))

group/unit - This frame is used to describe forces

that can be involved in various problems.

name -~ the wunique name for this frame.
(Default: the current date and time)

units - the names of the units in this group
(from the names of the counters that would be
in a stack on the board). (Default: nil)

type - the type of units in the group.
(Default: inf, for infantry)

cur-loc - a list of the hex number locations of
each unit. (Default: nil)

Strengths - a list of the strengths of each of
the units. (Default: nil)

total-strength - the combined strength of all
the units in the group. (Default: 0)

Page 11

CSG User's Manual Page 12

Example:

group frame: conf-gl

name: "30-JAN-198214:29:39.21"
units: (gist wilson)

type: inf

affiliation: conf

cur-loc: ("2413" n2413n)
strengths: (5 5)
total-strength: 10

situation -~ This is the frame wused to describe
Situations in which goals will be achieved.

name - the unique name for this frame.
(Default: current date and time)

date - the game turn in which this situation
occurs., (Default: 1)

area-concerned - a semantic tag describing
where on the board this situation occurs. E.
g. Dyer's Bridge. (Default: nil)

friendly-units - a list of unit/group
descriptors one for each friendly unit/group
involved. This slot must be in the correct
format. Format of each descriptor: <{name
location strength> where name is the name of a
defined friendly wunit/group; 1location is the
current location (as a hex number or 1list of
hex numbers, one for each counter) of this
unit/group (this may supercede the entry in the
cur-loc slot of the unit/group frame); and
strength is the strength of this force. The
order of descriptors does not matter as the
system will rearrange the list to suit itself
as the need arises. (Default: the dummy help
list ((name1l locl strngth1) (name2 loc2
strngth2)) that is supposed to help you
remember the format.)

enemy-units - a list of unit/group descriptors
one for each enemy unit/group involved. This
slot must be in the correct format, which is
the same as that for friendly-units above.
(Default: the dummy help 1list ((namel 1loc1
strngth1)(name2 loc2 strngth2)).)

map - the map descriptor of the area involved.
Not used. (Default: nil)

CSG User's Manual Page 13

friendly-losses - a list of the friendly forces
that have been 1lost up to this point in the
game. Not used. (Default: nil)

enemy-losses - a list of the enemy forces that
have been 1lost up to this point in the game.
Not used. (Default: nil)

friendly-reinf - a list of descriptors similar
to the slot friendly-units above showing forces
that may be considered as reserves or
reinforcements. (Default: nil)

enemy-reinf - a list of descriptors similar to
the slot enemy-units above showing forces that
may be considered as enemy reserves or
reinforcements. (Default: nil)

semantic-desc - a semantic description of the
situation.

Example

situation frame: sit-2
name: "13-NOV-198115:13:56.26"
date: 1
area-concerned: ("2007" w2010%" "2011")
friendly-units: ((conf-g1 ("1911" "1911") 10)
(conf=-g2 (m2012m m2012") 9))
enemy-units: ((union-1 ("2009") 5) (union-2 (™1809") 5))
map: nil
friendly-losses: nil
enemy-losses: nil
friendly-reinf: nil
enemy-reinf: nil
semantic-desc: (("Enemy" "force" "defending" "trail" "juncture"

5.0 Data Base Summary

The data base consists of experiences that have been

designed to provide tactical advice on any of the following
problems:

o Acquisition of simple territorial goals with no
enemy opposition.

0 Acquisition of a territorial goal with one friendl

fggce against one defending enemy force with 3:
odds.

CSG User's Manual

o Acquisition of a territorial goal with one friendly
force against one defending enemy force with 2:1
odds.

0 Acquisition of a territorial goal with one friendly

force against one defending enemy force with 1:1
odds.

0 Acquisition of a territorial goal with two friendly

fgrces against one defending enemy force with 3:1
odds.

0 Acquisition of a territorial goal with two friendly
forces against one defending enemy force with 2:1
odds.

o Acquisition of a territorial goal with two friendly
fgrces against one defending enemy force with 1:1
odds.

o Acquisition of two territorial goals with two
friendly forces against two defending enemy forces
with 3:1 odds on each enemy force.

o Destruction of one enemy force with one friendly
force with 3:1 odds.

o Destruction of one enemy force with two friendly
forces with 3:1 odds.

o Destruction of two enemy forces with two friendly
forces with 3:1 odds against each enemy.

o Holding a section of road with a single friendly
unit against two enemy units who have 2:1 odds
while ¢trying to protect that wunit from being
destroyed.

o Holding a region of the map with two friendly units
against two enemy units with 3:1 odds against each
of the friendly units that are also to be
protected.

There are a number of stored goals, situations,
scenarios etec. in the data base. These can be seen with
the Show command. There are two canned defensive scenario
demonstrations: def-scen-1 and def-scen-2. There are also
three canned offensive scenario demonstrations: demo-1,
demo-2 and demo-3. These can all be displayed on the GMR-27
with the Display command.

Page 14

CSG User's Manual Page 15

6.0 References

[{RISS82] Rissland, E. L., "Constrained Example
Generation" COINS Technical Report, University of
Massachusetts, 1982.

