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1.6 introduction

Neural models, and indeed models in any domain, can differ widely in
terms of the intentions with which they are constructed and the levels of
empirical support on which they depend. A neural model might be based on
detailed observations of a particular experimental preparation, or it may be
less directly related to anatomical and physiological data, relying instead on
behavioral parallels. As neural models become farther removed from anatomy
and physiology and closer to "adaptive networks" or "self-organizing systems"
of quasi-neural elements, they become less interesting to the neuroscientist,
and the term "neural model" becomes more misleading. With this decreasing
relevance to neuroscience, however, one might hope for increasing relevance to
psychology and perhaps to artificial intelligence., Yet many such models have
not been influential among psychologists despite the rich history in
psychology of purely descriptive behavioral models, and they have not been
influential amonyg artificial intelligence researchers despite the fact that
these researchers have explicitly excluded concern with neural mechanisms.
One reason for this may be the fact that many abstract neural models neither
make significant contact with behavioral data nor suggest algorithms that
would be wuseful to the artificial intelligence researcher for solving
nontrivial problems,

In this article, we present an overview of a research program that is
intended explicitly to be a study of "adaptive networks" of quasi-neural
elements. However, we have tried to maintain careful and signiticant contact
with behavioral data from animal learning studies, with descriptive behavioral
models in that field, and with problem-solving wmethods of artificial
intelligence, Although the mechanisns we discuss can be given neural

interpretations, we feel that it is premature to propose an extensive and
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detailed neural model to bridge the gap between anatomical and physiological
data and the behavioral level in which we are interested. We have instead
concentrated on behavioral models which exhibit aspects of animal behavior
that we consider to be adaptively significant, and on the relationship between
these aspects of behavior and the computational requirements for solving
nontrivial problems. We are considerinyg problems that animals are capable of
solving routinely, whose solutions provide obvious adaptive advantages, and
which are genuinely difficult to solve irrespective of the methods used.

Our approach is to consider the general problem of control. Arbib (1972)
emphasizes that ",...the animal perceives its environment to the extent that it

is prepared to interact with that environment in some reasonably structured

fashion." This stress on what Arbib calls "action oriented perception" implies
that modeling approaches are misleading insofar as they consider just sensory
processing (e.g., pattern recognition), while neglecting highly structured
action generation processes and the closed-loop interaction, mediated by the
organism's environment, between action and sensory patterns. From an
engineering point of view, we can say that animals are engaged in the problem
of controlling their environments in a closed-locp fashion to achieve certain
goals. Consequently, our strategy has been to consider entire control systems
facing control problems posed by envirommental interaction, and we have paid
as much attention to the environments and the resulting control problems as we
have to the controlling mechanisms themselves.

In additien to our emphasis on complete control problems, we have found
it wuseful to endow each network component with relatively sophisticated
computational power. Each primitive component of a network in our approach is
best characterized as a complete, although simple, "reinforcement learning

control system" (Mendel and McLaren, 1970) that acquires knowledge about
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feedback pathways in which it 1is embedded and uses this knowledge to seek
preferred inputs. In providing each component with such capabilities, we have
been guided by the proposal of A. H. Klopf (1972, 1979, 1982) that progress in
understanding natural intelligence, and progress in artificial intelligence,
might be furthered by a study of goal-seeking systems composed of goal-seeking
components. Instead of viewing any form of goal-seeking behavior as an
emergent property of a system consisting of non-goal-seeking components, Klopf
suggests that sophisticated goal-directed behavior arises from interacting
components that are self-interested and exercise strategies for furthering
these self-interests. Goal-directed behavior is pushed down the structural
hierarchy to basic levels, and higher forms of goal-directed behavior are scen
as resulting from the competitive and cooperative interaction of
self-interested components, Tne neural interpretation of this hypothesis is
that neurons are similarly sophisticated goal-seeking control systems. In the
course of our discussion, we point out similarities between our adaptive
elements and goal-seeking strategies known to exist in single-celled organisms
such as bacteria, We think that the continued study of the numerous
comnonalities between bacterial chemotaxis, and other simple forms of adaptive
behavior in single cells, and the signaling systems of neurons (Koshland,
1979) is a most promising avenue for assessing the hypothesis that neurons are
goal-seeking control systems, However, although we present our learning
algorithms in terms of neuronlike elements, we are not prepared to argue that
all of the capabilities of these elements need necessarily reside at the level
of single cells.

This article is divided into three major parts. In the first part, we
discuss a neuronlike adaptive element that is capable of reproducing some of

the details of animal behavior in classical conditioning experiments, We
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emphasize aspects of classical conditioning that are difficult to achieve by
neural models proposed in the past and which seem to have obvious adaptive
significance; in particular, we emphasize temporal phenomena involving
prediction and expectation, This adaptive element resulted from our attempts
to incorporate the sensitivity to temporal succession that seems necessary for
goal-seeking control: If actions are to De selected according to their
consequences, then temporal factors are important Dbecause an action's
consequences unfold over time. This adaptive element is not, however , capable
of closed-loop control and is not a goal-seeking system in the appropriate
sense. In the second part of this article, another type of adaptive element
is discussed which is 4 goal-seeking learning control system closely related
to instrumental, rather than to classical, conditioning. We discuss
associative networks composed of these elements, how their capabilities differ
from associative memories studied in the past, and why these differences are
important from a problem-solving perspective. We illustrate the learning
capabilities of these networks in several spatial learning tasks. Finally, in
the third section, we discuss how the open-loop classical conditioning element
and the closed-loop goal-seeking element can interact to provide an approach
to a fundamental problem of adaptive system theory known as the "assignhment of
credit problem": If reward is achieved after a complex series of actions, to
which component actions should the credit be assigned (or the blame in the

case of penalty)?

2.0 Analogs of Classical Conditioning
Many adaptive network theories are based on neuronlike adaptive elements
that can behave as single unit analogs of animal classical conditioning (e.g.,

elements incorporating Hebb's, 1949, postulate). However, there are many
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features of animal behavior 1in classical conditioning experiments that are
generally not preserved by adaptive element analogs. While one may validly
question the rationale for investigating networks of elements that are exact
analogs of overt animal associative learning behavior (since surely some
properties of this behavior must be due to the effects of higher levels of
organization), it seems reasonable to include those characteristics that are
most salient in terms of adaptive significance, that are problematic to
achieve as emergent properties of organizations of simpler components, and
that offer advantages from a problem-solving point of view. Here we describe
an adaptive element analog of classical conditioning that preserves features
of the anticipatory nature of classical conditioning and is in agreement with
data regarding the effects of stimulus context in classical conditioning. We
show that these stimulus context effects can be interpreted as the capability
to "orthogonalize" input vectors. The element 1is a temporally refined
extension of the Rescorla-Wagner model of classical conditioning (Rescorla and
Wagner, 1972) and was presented by Sutton and Barto (1981a) and further
discussed by Barto and Sutton (1981c).

In a simple classical conditioning experiment, the subject is repeatedly
presented with a neutral conditioned stimulus (CS), that is, a stimulus that
does not cause responses other than orienting responses, followed after an
interval of time (the interstimulus interval, or ISI) by arn unconditioned
stimulus (UCS), which reflexively causes an unconditioned response (UCR).
After a number of such pairings of the CS and the UCS-UCR, the CS comes to
elicit a response of its own, the conditioned response (CR), which closely
resembles the UCR or some part of it. For example, a dog is repeatedly
presented with first the sound of a bell (the CS) and then food (the UCS),

which causes the dog to salivate (the UCR). Eventually, just the sound of the
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bell causes salivation (the CR). Tnis description leaves much unsaid, as we
shall see, but will suffice as we describe an adaptive element analog.

Fig. 1 shows an adaptive element with an input pathway for the UCS and
one for each stimulus capable of being associated with the UCS. These latter
stimuli are (potential) conditioned stimuli, and we denote them by CSi. 1< i
£ n, Let xo(t) denote the activity of the UCS pathway at time t, and let
xi(t) denote the activity of pathway csi. 1 i< n, at time t. The element's
output is assumed to contribute to both the UCR and the CR. For our present
purposes, we assume that these activity levels at any time are positive real
numbers, The associative strength of each CS at time t with respect to the
UCS is denoted by wcsi(t). 1 i< n, and represents the efficacy, or weight,
of the corresponding input pathway. The weight of the UCS pathway is fixed at
some constant value which we denote by A. Let s(t) denote the weighted sum of
all the inputs at time t, that is,

n
s(t) = Axo(t) + iElvcsi(t) xi(t). (1)
For our present purposes, it does not matter exactly how the element output is
computed, and for simplicity, we assume that at time t it is just s(t).

Several other variables are required in order to define the adaptive
element. For each stimulus signal X, 1 < i< n, werequire a separate
stimulus trace which we denote by Yi. By this we mean that activity of
variable xi is reflected in later activity of variable Y;. This 1is
accomplished by letting Ei(t) be a weighted average of the values of Xy for
some period of time preceding t. Similarly, we require a trace of éhe sun s.
Let ;kt) denote a weighted average of the values of s over some interval

preceding t. In the computer simulations described below, we generated these

traces using the first-order linear difference equations
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Figure 1. An adaptive element analog of classical conditioning, (Reprinted
from Barto and Sutton, 1981c).
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Ii(z‘;) = @ Ii(t) + (1= a) x ()

s(tel) Bs(t) + (1 - B8) s(t)

where oo and B are constants such that 0 < ¢, B8 < 1. This process produces
exponentially decaying traces with time constants depending ~n the parameters
o and B (Fig. 2).

In terns of the two variables s and s, and the variables xi. Y; and
v for each pathway 1 < 1< n, the adaptive element successively generates

CS.
valzes of the associative strengths, or weights, as follows: for each i, 1 X
isn,
Vcsi(b+1) = VCSi(t) + ¢ [s(t) = s(t)] X . (v) (2)
where ¢ is a positive constant determining the rate of learning.

The process specified by Egs. 1 and 2 can be described as follows:
Activity on any input pathway i possibly causes an immediate change in the
element output s (we have assumed, again for simplicity, that there 1is no
delay through the element) and also causes that pathway to be "tagged" by the
stimulus trace;i as being “eligible" for wodification for a certain period of
time (the duration of the trace) after the activity on pathway i ceases. A
weight is modified only of it is eligible and the current value of s differs
from the value of the trace s of s. The simplest case, and the one used in
our simulations, results from letting s(t) = s(t-1) so that s(t) - S(t) = s(t)
- s(t-1), which is a discrete form of the rate of change of s.

The notion that one set of conditions makes pathway efficacies "eligible"
for modification, but that actual modifications occur due to other conditions
during periods of eligibility is a major feature of Kiopf's (1972, 1982)

theory of neural adaptation. This notion itself is not uncomnon aaoNg

theorists, but the idea of two separate variables, one for signaling the
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occurrence of events and another for retaining knowledge of these occurrences
so that events can be associated with later events, has not been deeply
explored. In many neural theories, for example, neural discharyges signal the
occurrence of stimulus events and also bridge the temporal gap required for
conditioning by "reverberating" in some manner. Since it seems advantageous
for an organism to be able to perceive events as occurring as closely as
possible to their actual times of occurrence, and particularly as early as
possible, additional mechanisms must be postulated to distinguish neural
activity that 1is signaling the occurrence of an event from reverberatory
neural activity that is storing reflections of past events. In a two variable
system (e.g., Xy and ;i) these two functions are cleanly separated. Although
reverberatory activity is probably important at many levels in the central
nervous system, one need not assume that reverberation 1is the primary
mechanism at all levels for spanning the time between the sequential events on
which 1learning depends. We now examine several aspects of our adaptive
element's behavior with respect to classical conditioning data and suggest how
these aspects of behavior are important from the perspective of problem

solving,

2.1 Anticipatory Nature of Classical Conditioning

The interval between CS onset and CR onset is called the Cik latency. For
a particular response there is a positive minimus CR latency due to various
,types of intrinsic delays (e.g., TO-80 msec. for rabbit nictitating membrane
response), If the ISI in a conditioning experiment is shorter than the
minimum CR latency, then the CR necessarily begins after UCS onset. More
usually, however, the ISI is longer than the minimum CR latency, and the CR

begins before the UCS onset (although the CR latency tends to change during
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conditioning procedures [see, for example, Kimmell, 1965}). Being a response
to the predictive CS, the CR anticipates the UCS and the UCR (Gorme zano, 1972;
Mackintosh, 1974).

This anticipatory aspect of the CR is a erucial factor in the adaptive
significance of the behavior elicited in classical conditioning experiments,
Putting on the hat of a designer of an intelligent problem solver, it would
Seem desirable to have a mechanism that is able to extract predictive
regularities in its input so as to make a representation of a predicted event
occur at the earliest time at which that event can be predicted with
reasonable certainty. A prediction that is available only at the same time
as, or later than, the event predicted is no more useful in guiding behavior
than no prediction at all; and, assuming a competitive environment, the
earlier the prediction is available, the better. Horeover, internal
predictive representations might act as predictive cues for other internal
events, creating the possibility for effectively "compressing" the time scale
in a manner similar to what would happen if we were to tape record something
at one tape speed ("real-time") and play it back at a higher speed (" faster
than real-time"). The utility of predictive methods is well established in
engineering applications (e.g., Box and Jenkins, 1976), and the adaptive
advantage to an organism possessing these capabilities is clear.

The fact that anticipatory CRs are possible at all is problematic for
many neural theories. For example, many mathematical interpretations of the
Hebbian postulate require simul taneous pairing of the UCS and (¢S signals at
the adaptive element, thus implying an optimal ISI of zero., Since the
dependency of conditioning on the ISI is generally recognized, delays in the
CS pathway are often suggested to bring the behavior closer to animal data

(e.g., Burke, 1966: Uttley, 1979). Such delays can be used to reproduce the
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experimental observation that the CS onset must precede the UCS onset in order
for conditioning to occur, but they do not by themselves explain the
experimental observation that the CR onset generally also occurs before the
UCS onset. Such delays necessarily delay CR onset at least until the time of
UCS onset, thereby preventing the CR latency from ever being shorter than the
ISI required for conditioning. Reverberatory trace mechanisms in the CR
pathway are more satisfactory, but they do not allow for precise temporal
localization of the CS.

Let us examine the behavior of the adaptive element defined above for a
special case of classical conditioning in which the €S and the UCS are
rectangular pulses, the CS associative strength is initially zero, and the
trace s takes the form s(t) = s(t-1). Fig. 3a shows the adaptive element
analog of this situation, and Figs. 3b,c show the signal time courses we now
deseribe. On the first trial, the occurrence of the CS causes an increase in
the eligibility ¥ of the CS pathway that persists for some time after CS
offset, When the UCS occurs, it causes a positive change in s at its onset
and an equal but negative change at its offset. Since eligibility x is
greater at the time of UCS onset than at the time of UCS offset, %S is
caused to have a net increase: It increases at UCS onset and decreases by a
lesser amount at UCS offset (Fig. 3b),

On the second trial, VCS is no longer zero so that CS occurrence causes
changes in s in addition to those caused by UCS occurrence (Fig. 3¢). The
increase in s at CS onset has no effect on Vbs Since eligibility is zero (we
:are assuming that the intertrial interval is long enough to let eligibility
decay to zero between trials)., The decrease in s at CS offset, however,

occurs during high eligibility and therefore causes a decrease in VC The

g
UCS causes an increase in VCS a3 on the first trial, but the net result of
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both the CS and the UCS is 1less of an increase than on trial one. With
additional trials, VCS increases until the positive effect of the UCS 1is
counterbalanced by the negative effect of the CS offset. The process
therefore stabilizes in the sense that eventually VCS will experience no net
change per trial (although it will in general continue to change during these
trials). Stability is achieved through negative feedback due to increases in
VCS causing increased decreases in VCS at CS offset. Fig. 4, trials 0-10,
shows a typical acquisition curve plotting the associative strength after each
trial [ footnote].

Fig. 3c shows that the value of s shows a response to the CS and the UCS.
The later response is assumed to contribute to the UCR whereas the earlier one
is assumed to contribute to the CR., Thus, che CR component anticipates the
UCS onset and the UCR onset, Here, the CR latency is zero since we have
assumed that there is no delay in the input/output response of the element,
but the ISI must be positive for conditioning to occur. The basis for this
anticipatory behavior is clearly the prolonged eligibility trace. If an event
regularly precedes another event by an amount of time spannable by this
trace's duration, then the association between these events can be "recorded",
in a sense, Dby the adaptive element and "played back" at a much faster time
scale,

The adaétive element is also capable of doinyg something more subtle than
this. Since activity on any input pathway with nonzero weight causes changes

in s, this activity can cause changes in the weights of other pathways. Thus,

a previously conditioned CS can act as a UCS for a secon& CS. This also can

This acquisition curve 1is strictly negatively accelerated whereas experimental
acquisition curves generally have an initial period of positive acceleration,
Extensions of models similar to our adaptive element have been proposed to
remedy this (Frey and Sears, 1978).
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occecur in a Hebbian element analog of classical conditioning, but when coupled
to the anticipatory capabilities of our element, some novel consequences
appear. Fig. 5 shows a simulated experimental arrangement in which each trial
consists of a temporal sequence of four CSs (i.e., a serial compound CS)
followed by a UCS., Only the CS that occurs immediately before the UCS (i.e.,
CSl) initiates an eligibility trace that reaches far enough into the future to
permit conditioning to occur, At first, then, only the associative strength
of CSl increases. As an association from CS, is forming, however,

1

CS1 occurrence causes changes in s and thereby acts as a UCS for the preceding

2 2

the acquisition curves of this higher-order conditioning process. During this

CS, that is, for C€S,. In turn, CS, acts as a UCS for CS3, ete. Fig. 5 shows

process, the CR onset moves back in time from the time of CS1 onset to the
earlier time of €S, onset. Kehoe et al. (1979) observed a strong effect of
this nature for rabbit nictitating membrane response (see also Gormezano and
Kehoe, to appear). Chaining of associations in this manner (by a single
element) permits conditioning to occur for ISIs much longer than those which
can be spanned by a single eligibility trace, provided there are regularly
oceurring intervening events. Under such conditions, the anticipatory CR will
tend to begin at the earliest time at which the UCS can be predicted with
reasonable certainty irrespective of the eligibility trace duration. We

discuss the significance of this capability from a problem-solving perspective

in more detail in Section 4,0.

2.2 Stimulus Context Effects and Orthogonalization
In classical conditioning experiments the associative strength of the
stimuli that act as context for a CS on a trial can nullify or even reverse

the effect of the occurrence of the UCS on that trial. In this section, we
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discuss two examples of stimulus context effects, known as blocking and
conditioned inhibition, and show how the adaptive element described above 1is
able to produce these effects. We then explain this by relating our element
to the Rescorla-Wagner model of classical conditioning and discuss the
significance of this behavior from a problem-solving point of view. In
particular, we observe that the stimulus context effects that animals exhibit
can be interpreted as the result of a process that “orthogonalizes" stimulus
vectors, a process of considerable practical importance.

A typical blocking experiment consists of two parts. In part I, one

stimulus, CS is paired with the UCS at an appropriate ISI until the

1!
associative strength between CS1 and the UCS reaches its asymptotic value. In
part 1II, CSl continues to be paired with the UCS, but another stimulus, CSZ'

co-occurs with CSl. Although CS2 is appropriately paired with the UCS in part
II, it conditions very poorly, if at all, compared to a control group lacking
prior part I conditioning to CS1 (see, for example, Hilgard and Bower, 1975) .
The results of a simulation of blocking using our adaptive element are
illustrated in trials 0-20 of Fig. y, For the first 10 trials, CSl was
presented alone and followed by the UCS, and for trials 11-20, CS2 Wwas
presented identically paired with CSl, and both were followed by the UCS.
During trials 11-20 changes in VCS2 were blocked since s did not change while
the CS pathway was eligible.

Conditioned inhibition is another stimulus context effect involving at
least two CSs, denoted CS+ and CS-. Suppose the occurrence cf CS+ alone is
always followed by the UCS, but the co-occu-rence of CS+ and CS- 1is never
followed by the ucs. For this paradigm, the associative strength
v g+ increases so that CS+ produces a CR, but VCS' becomes negative so that a

C

CR does not follow the co-occurrence of CS+ and CS-; CS- becones a
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conditioned inhibitor of the CR. Fig. 6 shows the results of a simulation of
this procedure using our adaptive element.

Perhaps the best way to explain how our adaptive element produces these
effects is to relate it to the Rescorla-Wagner model which was devised to
describe these effects in animal behavior (Rescorla and Wagner, 1972). The
Rescoria-wagner model is based on the view that learning occurs cnly when
expectations are violated. According to this view, for example, blocking
occurs since part I training creates an expectation of the UCS that is not
disrupted in part II. When the activity trace § in Eq. 2 is interpreted as
providing the expected value of the actual activity s, then Eq. 2 resembles
the Rescorla-Wagner model since it implies that eligible pathways are modified
whenever the actual value of s differs from the expected value s. The term s
- 5 is a measure of how strongly the current activity confirms or contradicts
the p;eviously formed expectation, Sutton and Barto (1981a) discuss the
Rescorla-Wagner model and these correspondences in detail. Anticipatory
aspects of classical conditioning and ISI dependency are not addressed by the
Rescorla-Wagner model since, unlike our element, it is a trial-level model
that does not distinguish between different times within each trial,

It is a striking fact that the Rescorla-Wagner model, which was
formulated to compactly describe a wide variety of effects observed in in
animal learning experiments, is identical to an algorithm for iteratively
computing the inverse of a linear transformation, a process having many
practical problem-solving applications. This algorithm has a long history in
mathematics and appeared in the form of an adaptive element due to Widrow and
Hoff (1960) which they called an "adaline" (for adaptive linear). Closely
related adaptive elements are those used in- Rosenblatt's “perceptron" (1962)

and Uttley's "informon" (1979). Consider a set X

%, 1 < a< kI of
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a
Xl,
83

{z, 1 € o £ ki where each za is the adaline response desired for stimulus

stimulus patterns Xa = ( ceos x:) and an associated set of real numbers Z =

pattern x“. The weights of an adaline change as follows: for 1 £i<n,
n
w.ltel) = w (L) + c[2(t) - ¢ w (t) x (t)] x (t)
i i ; J J i
j=1
where 2(t) e Z is the reference or "teacher" signal that provides the desired
response to input pattern X(t) = (xi(t). cees xn(t)) € X, and ¢ is a positive
constant., If the set X of input vectors is 1linearly independent and an
adaline is trained by presenting the adaline with sufficient repetitions of

the pairs (fu.za), 1 < a £ k, it will eventually respond with 2%

when
presented with Xa alone, 1 < o < k. In other words, it will form a weight

vector W*x = (w*, ..., wx’]*) such that
h 8

[wg,..., wg] Xq =z

for 1 < a X k.

Widrow and Hoff (1960) proposed associative memory networks similar to
those discussed by Anderson and Kohonen in this volume but consisting of
adalines (although Widrow's work considerably predated this use of the ternm
associative memory), Amari (1977a, 1977b) and Kohonen and Oja (1976) discuss
similar networks. An associative memory network consisting of adalines does
not require orthogonal input, or "key", vectors in order to obtain per fect
recall performance. Amari (1977a, 1977b) «calls this "orthogonal learning"
since non-orthogonal patterns are "orthogonalized" by the network. Moreover,
if the set X is not eveéen linearly independent, the system will form weights so
as to minimize the mean square error, The process is, in fact, an algorithm

for computing a linear regression or, more technically, for finding the



PAGE 16

Moore-~Penrose pseudoinverse of a linear transformation, Duda and Hart (1973)
provide a good overview of this general theory in the context of pattern
classification.

Both the stimulus context effects of blocking and conditioned inhibition
can be seen as instances of "orthogonalization". For a form of blocking, one
has the stimulus vector xl = (1, 0) represeating the occurrence of CS1 alone
and the vector x2 = (1, 1) representing the co-occurrence of CSl and CSz.
These are clearly linearly independent but not orthogonal. The responses
desired are zl = z2 = A (since the UCS, and hence the UCR, occurs on both
CS1 alone and Csl+CS trials). An adaline will form the weight vector W% =

2
(A, 0) giving

[», O] 1 = [A, 0] 1

it
P

0 1

Equivalently, the process solves the matrix equation

[wy, w,] 1 1 =[x, A]

0 1

for LA and W, by effectively finding the inverse of the 2x2 matrix whose
colunns are the stimulus patterns xl and XZ. Blocking appears since wo turns
out to be zero,

For conditioned inhibition, one has the vectors Xl = (1, 0) for CS+
occurrence and x2 = (1, 1) for the co-occurrence of CS+ and CS-~. These are
the same linearly independent but non-orthogonal vectors that represent the
blocking experiment. The desired responses are zl = A and 22 = 0 since the’
UCS is absent for CS-. An adaline will produce the weight vector W¥= (A,

- )) showing that CS+ eventually excites the element and CS- eventually
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inhibits it. Again, the process solves a matrix equation,

These stimulus context effects, and others that we have not discussed,
provide evidence that animals "orthogonalize" their stimulus patterns during
classical conditioning experiments. We think the independent discovery of
this orthogonalization algorithm, in one case to describe animal behavior and
in the other case to provide solutions to practical problems, is a remarkable
instance of how purely theoretical problem-solving considerations can
illuninate the adaptive significance of animal behavior. The adaptive element
defined by Eqs. 1 and 2 orthogonalizes input patterns by virtue of its
Similarity to an adaline (and hence to the Rescorla-Wagner model) while also
preserving socme of the anticipatory aspects of classical conditioning. We
have not yet thoroughly explored how these two aspects of our element's
behavior interact, but an example of this interaction is provided by the
results shown in Fig. 4, trials 21-35. Here blocking is reversed since
C82 begins earlier than a previously conditioned CSl, suggesting that stimulus
context effects occwr insofar as they are consistent with the tendency to
extract the earliest predictors of the UCS. We know of no attempts to perform
this experiment on an animal preparation,

We have also not yet thoroughly explored the possibilities suggested by
the use of our classical conditioning element in the associative memory
paradigm discussed by Anderson and Kohonen in this volume. in one study,
however, we used these elements to form a predictive associative memory that
was used as an internal wmodel to evaluate proposed, but not overtly executed,
actions (Sutton and Barto, 1981b; see Fig. 7). We illustrated how this
configuration was able to account for some of the difficult fcatures of an
experiment demonstrating "latent learning" in animals. We now focus on

another type of adaptive element that was used in the M"action selector"



ENVIRONMENT €

ENVIRONWHENTAL
INPUT

~~

TRRINING INPUT

PREDICTIVE keY
ASSOCIATIVE

MENORY :mpur<}r'

RECALL

N

ACTION

PREDICTIAN OF
ENVIRONHENTAL
INRPUT

" prEpICTION!
OF RENARI

ACTION
SELECTOR

Figure 7. The use of a predictive associative memory as an internal amodel

enabling proposed actions to be evaluated before they are executed,
(Reprinted from Sutton and Barto, 1981b).
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component show: in Fig. T.

3.0 Goal-seeking Adaptive Elements

The adaptive element described in Section 2.0 operates in a completely
open-loop mode: Its operation does not depend in any way on its being able to
influence its input signals, as is appropriate since the classical
conditioning paradigm was designed to prevent response contingencies (although
in practice it may be impossible to remove all such contingencies),
Instrunental (cued operant) conditicning, on the other hand, is learning that
occurs in experimental paradigms that do involve response contingencies:
Reinforcement may be given or withheld depending on the animal's response. If
a system can exert such control over its input, it is possible to speak of
goal-seeking behavior in which, for example, the system acts so as to obtain
apetitive stimuli and avoid aversive stimuli. Despite common belief to the
contrary, nontrivial forms of response-contingent learning have received very
little attention from adaptive network theorists [footnote],. Recognizing
this, Klopf (1972, 1982) proposed that neurons may operate as analogs of
instrumental conditioning rather than classical conditioning and suggested how
this may be accomplished. What follows is a discussion of some of our studies
of networks of such goal-seeking components,

The psychological literature on instrumental conditioning and on the
relationship between instrumental and classical conditioning is extremely

complex. Rather than attempting to carefully integrate our studies of

This may seem a surprising comment, and an adequate defense of it is beyond
the scope of the present paper. Although the "error-correction" methods
employed by the adaline or perceptron, for example, are often considered to be
analogous to "trial-and-error" learning, they are not. These methods search
in the space of weight vectors but not in the space of possible actions, In
Barto and Sutton (1981a) we discuss this in more detail.
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closed-loop learning rules with this literature, as we attempted to do for the
open-loop case of classical conditioning, we have instead concentrated upon
the problem-solving potential of such rules. Here we describe some simulation
experiments intended to illustrate these capabilities in a wvivid and
intuitively satisfying manner. This adaptive element was presented by Barto,
Sutton, and Brouwer (1981) and the experiments to be described were presented
by Barto and Sutton (1981a).

This adaptive element has n input pathways xi. 1<ifn, a specialized

"payoff" pathway =z, and an output pathway y. We let xi(t). 1<ig<n, 2(t),
and y(t) respectively denote the activity on these pathways at time tU. As
usual, a variable weight with value wi(t) at time t is associated with each

pathway x;, 1 £ 1 < n. Let

s(t) = I wy(t) xy(®)
i=1

The output of the element at time t is

1 if s (t) + NOISE(t) > O

y(t) =
0 else (3)

where NOISE(t) is a normally distributed random variable with mean zero. The

weights change according to the following equation:

wi(t) = wi(t-l) + ¢ [z(t)-z(t-1)] y(t-1) xi(b-1) (4)

for 1 £i<n, where ¢ is a positive constant determining the rate of
learning.
This adaptive element searches for the action that will lead to the

largest payoff obtainable in the situations signaled by its stimulus patterns.
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Suppose the payoff provided to the element at time t is a function of the
element's action at time t-1 and the stimulus pattern X(t-1) = (xl(t—l). oo
xn(t-l)) present at time t-1; that is z(t) = f(y(t-1), X(t-1)). The element
is to learn to perform the action y(t-1) in response to the pattern X(t-1)
that maximizes'z(t). The element searches for this action by trying its
various responses to each pattern and settling on the one that turns out to be
best. The element need never be directly instructed as to which response 1is
best for each pattern, If the consequences of an action are not returned to
the element in one time step as we have assumed here, it 1is appropriate to
replace the terms z(t-1), y(t-1), and xi(t-1) in Eq. 4 with prolonged traces
of these signals such as those used in the classical conditioning element
described in Section 2.0.

The random component in the element's response (Eq. 3) 1is essential to
this process. Responses are made randomly but are biased in one direction or
the other by the sum s. Since s depends on the input patterns through the
weights, the weights determine how this probabilistic bias conditionally
depends on each input pattern. According to Eq. 4, if the element "fired" at
t-1 (i.e., y(t-=1) = 1) in the presence of nonzero input activity on pathway i
(i.e., xi(t-I) > 0), perhaps due to an excitatory effect of signal x; or
perhaps by chance, and this was followed by an increase in payoff (i.e.,
z(t)rz(t-1) > 0), then firing in the presence of signal X; is mude more likely
by incrementing weight Wi Similarly, the firing probability is decreased if
the payoff decreases. The noise in the response, then, is essuntial to the
learning process since it generates trials in the absence of any
pre—established influence from sensory input and continues to generate trials
as this influence is established. Conducting a search in this probabilistic

manner also permits the element to improve its performance (in terms of the
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amount of payoff received) even if the environment provides payoff in a
nondeterministic manner, a property whose importance will become more clear

when we consider a network of these elements.

3.1 Hill-climbing and Chemotaxis

The adaptive element just described implements an elaboration of a
goal-seeking strategy that occurs in certain simple organisms. Fraenkel and
Gunn (1961) discuss a number of methods used by animals for finding and
remaining near 1light or dark areas, warm or cool areas, or, in general, for
approaching attractants and avoiding repellents. One of the most primitive
mechanisms is a strategy that they called klino-kinesis, the most intensely
studied example of which occurs in the behavior of various types of bacteria

such as Escherichia coli , Salmonella typhimurium, or Bacillus subtilis. This

manifestation.-of klino-kinesis, known as bacterial chemotaxis, was discovered
in the 1880's and was recently reviewed by Koshland (1979). These bacteria
propel themselves along relatively straight paths by rotating (1) flagella,
With what at first appears to be a random frequency, they reverse flagellar
rotation which causes a momentary disorganization of the flagellar filaments.
This causes the bacterium to stop and tumble in place. As the disorganized
flagellum continues to rotate in the new direction, its (filaments twist
together again, causing the bacterium to move off in sone random new
direction. If the attractant 1is getting stronger, the probability of
reversing flagellar rotation decreases, thereby:increasing the probability
that the bacterium will continue to wmove in the same direction; whereas 1if
the attractant level drops, the prebability increases that the bacterium's
flagellun will reverse and cause the bacterium to gwim off in a randomly

chosen new direction, Runs in directions leading up the attractant gradient
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therefore tend to be longer than runs in directions leading down the gradient,
As a result of this strategy, bacteria are able to find and remain in the
vicinity of the peaks of attractant distributions. Selfridge (1978) points
out the pgeneral utility of this ©basic mechanism which he calls
"run-and-twiddle" —- if things are getting better, keep doing whatever you are
doing; if things are getting worse, do something (anything!) else. It is a
very effective strategy, particularly when gradient information is very noisy,

To see how the adaptive element defined by Eqs. 3 and 4 implements an
analog of this procedure, consider an element that receives only a single
input signal, say xo. in addition to the payoff, and assume that x_has a

0
constant value of 1, that is, xo(t) = 1 for all t. The weight w_ associated

0

with this signal changes according to Eq. 4, where the term xi(t—I) = 1 for
all t. The payoff level z(t) represents the level of attractant sensed by the
element at time t, Thus, if "firing" is followed by an increase in attractant
level, then firing is made more likely. Note that we can consider the single
constant input and its weight as a convenient means of specifying a variable
threshold (so that the constant input need not really be supplied from the
element's environment). If upper and lower bounds were imposed on the value
of L and if the learning constant c were large enough, then a single "move"
up or down the attractant gradient would respectively cause the element to
"continue doing what it was doing" or to "do something else" (with a high
probability) .,

Rather than directly simulating a spatial version of "running" and
"twiddling" using a single element, we simulated an “organism" whose
locomotion is controlled by four adaptive elements, each controlling movement

in one of the four cardinal directions; it moves north if element 1 fires,

south if element 2 fires, etc., 1In case two elements fire simul taneously, then
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an appropriat: compound move is made, e.g., northwest. A sort of "reciprocal
inhibition® is used to reduce the probability that the north and south or the
east and west elements fire together. We assume that each move is a fixed
distance and is completed in a single time step. Clearly, we were not
attempting to model in any detailed manner the motor control system of an
actual organism, and we have not optimized this hill-climbing strategy.
Fig. 8 shows the simulated organism's trail in an environment containing a
"tree" as the center of an attractant distribution that decreases linearly
with distance from the tree. The organism (shown as an asterisk) approaches

the tree and remains in its vicinity.

3.2 Associative Search

The simulated organism climbing the attractant distribution in Fig. 8 1is
not forming 1long-term memory traces. If we were to move it back to its
starting position, it would take just as long (on the average) to move toward
the tree; nothing was learned during the first excursion, This suggests that
the other input pathways to the elements controlling locomotion wmight provide
information that can be wused to guide the hill-climbing procedure and that
their weights might provide use ful long-term memory traces. The following
simulation experiments were designed to explore the coupling of associative
learning capabilities with chemotactic—-like behavior. To the spatial
environment described above, we added four "landmarks", each ol which emits a
distinctive "odor" that decays with distance from the landmark (Fig. 9a).
These odors are neutral in thé sense that they are not attractants or
repellents but can serve as cues as to location in space.

Fig. 9b shows the network of four adaptive elements that controls

movement in the manner described. These input pathways are labeled vertically



Figure 8. Chemotactic-like behavior of a network of goal-secking adaptive
elements, The "“organism"™, shown as an asterisk, started in the upper
right and generated the ¢trail sho:m as it climbed an attractant

distribution whose peak is marked by the location of the "tree."
(Reprinted from Barto and Sutton, 1981a).
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Figure 9, a) A spatial enviromment in which the attracting "tree" is
surrounded by four other landmarks. The landmarks c¢ach possess a
distinctive "odor" which can be sensed at a distance but which is not an
attractant. Odor distributions decrease linearly from their associated
landmarks and become undetectable at a certain distance (indicated for
landmark 'W' by the surrounding circle). b) A network of goal-seekinyg
adaptive elements. The five input pathways are labeled vertically on the
left according to the landmarks to which they respond. The shaded input
pathway N indicates that the organism is near the north neutral landmark.
The four output pathways controlling actions are labeled lhorizontally at
the bottom according to the direction of movement they cause. The shaded
output elements indicate that a southeast movement is being made, The
associative matrix weights are displayed as circles centered on the
intersections of the horizontal input pathways and vertical output
pathways. Positive weights are shown as hollow circles, and negative
weights are shown as solid circles. (Reprinted from Barto and Sutton,
1981a).
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on the left according to the landmarks to which they respond. The location of
the organism, then, determines the input pattern in receives, The shaded
input pathway N in Fig. 9b indicates that the organism is near the north
neutral landmark. Given the presence of these other signals, there is no
longer a need for the constant input xo (although the system still works if it
is present),. The arrangement of 1nput and output pathways used in Fig. 9b
permits us to show the connection weights as circles centered on the
intersections of input pathways and the vertical output element "dendrites,"
We show positive weights as hollow circles and negative weights as solid
circles. The sizes of the circles indicate the relative magnitudes of the
corresponding weights. The uppermost "tree" input is the payoff pathway z
which has no associated weights. This network is an example of what we have
called an "associative search network" (Barto, Sutton, and Brouwer, 1981).
The matrix of weights forms an associative memory, but unlike those discussed
by others, it need not be directly told what associations to store, Instead,
it stores the successful results of the chemotactic-like search. With
sufficient experience, the system can learn to respond to the configuration of
signals at each place with the action that is optimal for that place.

Fig. 10 illustrates the performance of this system, 1In this case, noise
has been added to the attractant level in order ta make the hill-climbing task
more difficult. Fig. 10a shows the trail of an inexperienced organism that
starts near the northern neutral landmark. It eventually remains in the
vicinity of the tree. Fig. 10b shows the trail produced by replacing the
organism at its original starting point after it has undergone the experience
shown in Fig. 10a. It now proceeds directly to the tree, clearly benefiting
from its earlier experiences, Fig. 11a  shows the network after learning,

Nonzero weights have appeared so that, for example, proximity to the northern



Figure 10. Chemotactic-like behavior combined with associative learning.

a)
The trail of an inexperienced organism that starts ncar the northern
neutral landmark. Hill-climbing is difficult since noise has been added
to the attractant 1level, but the organism eventually remains in the
vicinity of the attractant peak. b) The trail produced by an experienced
organism, After the experience shown in a), the organism is placed in
its original starting position. It now proceeds directly to the tree,
clearly benefiting from its previous experience.
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Figure 11, Associative memory contents after learning. a) The network
showing the weighus. Nonzero weights have appeared so that, for example,
proximity to the northern landmark causes a high probability of moving
south since the "odor" of the northern landmark excites action 'S' and
inhibits action 'N'. b) A vector field representation of Lhe associative
memory's contents. Each vector shows the most likely direction that the
organism will move on its first step from any place, Note the

generalization to places it has never visited, (Reprinted from Barto and
Sutton, 1981a).
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landmark causes a high probability of movement south since the "odor" of the
northern landmark excites the element that causes movement south and inhibits
the one that causes movement north. Fig. 11b shows the results of learning as
a vector field in which each vector shows the average direction that the
organism will take on its first step from any place. The vector field is the
organism's ﬁap of its environment (it is never literally present in the
environment). Moreover, it should be clear that the organism would follow this
map even if the tree and its attractant distribution were to be removed (so
long as the neutral landmarks remained). Although the problem is simple
enough for this network to solve by forming a linear associative mapping, it
illustrates how adaptively significant behavior can be achieved naturally by
combining associative learning with chemotactic-like strategies. Fur ther
discussion of this example is provided in Barto and Sutton (1981a).

Although some accounts of learning in the cybernetic literature
essentially equate learning and hill-climbing, here we see an example of a
hill-climber that learns. Tnis is very important from a problem-solving
perspective, Search is an essential element of almost any problem-solving
task (see, for example, Minsky, 1963), but is is often essential to wminimize
explicit search in order to gain efficiency. The 1landmark-guided
hill-climbing example illustrates how the results of explicit scarches can be
transferred to an associative long-term store so that in future encounters
with similar (but not necessarily identical) situations the system need only
access the store in order to find out what to do, The associative search
network shows héw all of this can be accomplished without centralized control.
It is thus an improvement over a non-learning search method while also
offering an improvement over the usual storage methods for associative

memories since the optimal responses need not be known a priori by the
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environment, the system, or the system's designer. Future research will focus
on networks that combine associative learning with search strategies that are

more sophisticated than simple hill-climbing.

3.3 Neural Signaling and Bacterial Chemotaxis

Koshland (1979) suggests that study of the numerous commonalities between
bacterial chemotaxis, and other forms of adaptive behavior in single celled
organisms, and the signaling systems of neurons may provide insight into
neural mechanisms. Like bacteria, neurons possess receptors that detect
chemical signals from their environments. A bacterium's sensory processing
system produces signals that control 1its motor response by altering the
probability of flagellar reversal. Neurons similarly respond to chemically
mediated afferent signals and produce action potentials as "motor" responses,
Koshland (1979) hypothesizes that many features of bacterial chemotaxis can be
accounted for by a model in which random variations in the concentration of a
hypothetical tumble regulator substance X are modulated by changes in
attractant concentrations, Flagellar reversal occurs whenever the
concentration of X exceeds a threshold., Suppose X is formed at rate V_ and

¢

decomposed at rate V If an increase in the level of atiractant sensed

d*

causes a fast increase in Vf and a slower increase in V then the

d °
intracellular concentration of X will show a transient increase to any
sustained increase in attractant 1level, and a transient decrease to any
sustained decrease (Fig. 12), thus causing the appropriate hill-climbing
behavior. This is the sgme sort of "differentiation" accomplished by the term
s(t) - s(t) of the classical conditioning element (Eq. 2) and the term z(t) -

2{t-1) of the goal-seeking element (Eq. 4). More specifically, the value of

the term s(t) + NOISE(t) in Eq. 3 functionrally corresponds to the



Attractant level ——/ \

Vi

Formation ;rate .\V;
Decomposition rate Vg 2

/

<N
1
//
’/’
/

Figuwe 12, Hypothetical mechanism for detecting attractani gradient in
bacterial chemotaxis (from Koshland, 1979). The formation and
decomposition rates Vg and V4 of a hypothetical subsiance X are
influenced by the attractant level. Both V¢ and V; follow the attractant
level sensed, but V4 changes more slowly than Vg. This results in the
concentration of X responding to changes in attractant . evels. (after
Barto and Sutton, 1981c¢).
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concentration of the hypothetical substance X in Koshland's model. Mechanisms
similar to those suggested by Koshland for bacterial chemotaxis could precvide
a basis for neurons to exhibit related behavior.

It is an intriguing hypothesis that neurons implement goal-seeking
strategies related to those of single-celled organisms. Perhaps it will prove
useful to view neurons as swimming (in a metaphorical sense, of course) in an
enviromment of contingencies determined by the nervous system of which they
are a part and the organism and its environment to whose survival they
contribute, Important aspects of a neuron's behavior may involve its ability
to influence its own input when operating 1in its wusual environment, This
influence may extend through the environment external to the entire organism,
as well as through local internal feedback loops. In order to experimentally
investigate this hypothesis, single neurons would need to be studied in
closed-loop control situations in which their efferent activity could
influence, perhaps after considerable delay, their afferent activity according

to experimentally known and controllable transformations.

4.0 Assigmment of Credit

We have described two types of adaptive elements which share many basic
features but whose behaviors have a different character, one closely related
to classical conditioi ‘ng, and the other related to instrumental conditioning
and bacterial chemotaxis. We have argued that both types of behavior would
confer adaptive advantages to any organism possessing them, but we have not
suggested how these forms of behavior might be related. Here, we propose that
this relationship can be understood in terms of what has been called the
"assignment of credit problem." Suppose success 1is achieved by a complex

mechanism after operating over a considerable period of time (for example, a
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chess playing .rogram wins a game). To what particular decisions made by what
particular components should the success be attributed? And, if failure
results, what decisions deserve blame? The magnitude of this problem is most
forcefully appreciated by those actually attempting to construct systems
capable of learning to improve performance in complex tasks. This is closely
related to the problem known as the "mesa" or "plateau" problem (Minsky and
Selfridge, 1960; Minsky, 1963). The performance evaluation function
available to a learning system may consist of large 1level regions in which
hill-climbing degenerates to exhaustive search, Only a few of the situations
obtainable by the 1learning system and its environment are known to be
desirable, and these situations may occur rarely.

An approach to one aspect of this problem is illustrated by the network
of goal-seeking components described above. At each time step, each element
produces a component of a total output pattern, If a pattern produces an
increase in the performance evaluation (i.e.,, if the organism moves up the
attractant gradient), to what element or elements should success be
attributed? The network solves this problem by assigning credit to any
element that happened to fire, whether or not its firing was actually causal
in producing success, The probabilistic nature of the search procedure,
however, allows any misleading consequences of this strategy to be averaged
out with repeated trials (and we are reminded of the philosophical problem of
truly distinguishing causality from correlation). More technically, part of
each element's operation implements what is known as a stoci:astic learning
automaton optimization ;ethod (see, for example, Narendra and Thathachar,
1974) and is capable of improving its performance under Lhe uncertainty
produced by the unknown and random influences of the other elements on its own

payoff. 0f course, the larger the network, the more trials will be required
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in general for credit Lo be apportioned correctly. Thus, this method alone
will not suf..ce for large networks. Another part of the solution may be to
pernit interconnections to form between elements and to effectively assign
credit to 1linked assemblies of elements rather than to individual elements.
Our experiments with layered networks of goal-seeking elements suggest that
approach indeed works, but a complete discussion is beyond the scope of the
present article,

Another aspect of the assigmment of credit problem concerns temporal
factors. The utility of making a certain action may depend on the sequence of
actions of which it is a part, and an indication of improved performance may
rot occur until the entire sequence has been completed. The landnark learning
task presented above does not illustrate this problem since we assumed that an
action was always evaluated in a single time step. An approach to this
problem has been discussed by Minsky (1963) and has been used successfully in
Samuel's (1959) famous 1learning checkers playing program. The idea is to
interpret predictions of future reward as rewarding events themselves, In
other words, neutral stimulus events can themselves become reinforcing if they
regularly occur before events that are intrinsically reinforcing. This
phenomenon is observed in animal learning experiments in which neutral stimuli
can become “secondary reinforcers" if they predict "primary reinforcement "
This has two consequences, First, a prediction of eventual reward can
reinforce the actions that precede that prediction, thereby eliminating the
delay in obtaining useful evaluative feedback. Second, a prediction of reward
can provide reinforcement to the leaning process by which tihe predictions
themselves are formed, permitting the formation,via associative transfer, of
predictions of predictions, etc. This is, in fact, the mechanism employed by

the classical conditioning element described in Section 2.0. Its anticipatory
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behavior, coup.ed with its ability to produce higher-order conditioning, is
ideally suited for providing evaluative information to a goal-seeking system
that is more useful than information directly available from its environment.
This view parallels the CR-mediational theories of instrumental conditioning
proposed by animal learning theorists (Gormezano and Kehoe, to appear).
Moreover, the classical conditioning element turns out to implement an
algorithm remarkably similar to a part of the actual algorithm used by Samuel
in his checkers playing program. We are currently investigating systems that
combine both types of adaptive elements and that face control tasks
characterized by variably delayed reinforcement, and it may be possible to
devise a single relatively simple element that combines both types of

behavior,

5.0 Conclusion

In this article, we have described some of the results of a research
program intended to re—examine the potential for networks of neuronlike
adaptive elements to provide a computational substrate for solving nontrivial
problems, We have highlighted examples of how adaptively significant features
of animal behavior and pure problem solving considerations converge: The
anticipatory nature of classical conditioning and the necessity to construct
internal evaluation criteria to solve problems involving variably delayed
reinforcement; stimulus context effects of classical conditioning and the
utility of orthogonalizing stimulys patterns for associative storage;
bacterial chemotaxis and the necessity of search in problem solving. We have
described an adaptive element that preserves some of these features of
classical conditioning and an element that combines the goal-seeking nature of

chemotaxis with associative learning. Networks of the latter type of element
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conduct searc.es, sStore the results of these searches, and access these
results to aid future searches. They also eliminate the necessity for the
learning system's enviromment know the optimal associations. Further, this is
accomplished without centralized control, Our present research is directed
toward extending these capabilities in order to produce networks that are able
to solve problems that have proven resistant to standard problem-solving

methods.
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