-a

iy

TESS: AN EFFECTIVE TEXT STORAGE AND
SEARCH SYSTEM

W. Bruce Croft
Computer and Information Science Department
University of Massachusetts
Amherst, MA 01003

COINS Tech Report 83-06

This research was supported in part by a Digital Equipment
Corporation External Research Grant.

TESS: An Effective Text Storage and Search System

W. Bruce Croft
Computer and Information Science Department
University of Massachusetts
Amherst, MA. 01003

Abstract

A crucial feature of any office system is the method of
filing and retrieving documents that contain text. Current
systems either use very simple techniques that are not effective
in locating relevant information, or place a heavy burden on the
user in the query formulation process. Techniques based on
probabilistic models of word occurrences in text can provide very
effective retrieval compared to conventional techniques, as well
as a high degree of flexibility in the style of interaction
between the system and the user. 1In this paper, the statistical
techniques are summarized and a text storage and search system
(TESS), implemented using these techniques, is described.
Methods for dealing with problems arising from this approach,
such as updating the word lists and intersecting these 1lists to
produce a ranked list of retrieved documents, are presented. The
TESS implementation shows that techniques developed for
bibliographic systems can be implemented efficiently in the
office environment and that, by careful design of the user
interface, the facilities available in this system can be made
accessible to a wide variety of office workers.

Categories and Subject Descriptors: H.4.1 [Information Systems
Applications]: Office Automation; H.3.1 [Information Storage
and Retrievall: Content Analysis and Indexing; H.3.3
[Information Storage and Retrievall: Information Search and
retrieval

General Terms:
Additional keywords and phrases: text storage, document

retrieval, probabilistic models

This research was supported in part by a Digital Equipment
Corporation External Research Grant.

Introduction

Office information systems provide people in an office
environment with tools to help them carry out tasks such as
document production, filing, communication and decision-making,
Two important criteria that can be used to judge the design of
the tools are ease of use and effectiveness. A tool that has
powerful functionality but an interface too complex for an
average office worker will not be used. It is also essential
that a tool should carry out the task it supports with equal or
greater effectiveness than the previous methods used.

One of the most important tools in the office system is that
used for text document filing and retrieval, Much of the
information handled in the office will be in the form of text,
Documents such as memos, letters, reports and messages are very
common and individual people, as well as organizations, will
create large collections of these documents and will need to
search them. Most managers will certainly have files containing
hundreds or thousands of documents and collections such as a
department's memos may be even bigger. In order to find
information in these large collections of documents, the office
system must provide a means of efficiently searching the
documents on the basis of their textual content, as well as
specific attributes such as author and date, An example of a
query based solely on specific document attributes would be "Find
memos written by Joe Smith in January". This should be compared
to a more general type of query based on the textual content,

such as "Find memos dealing with the sale of widgets to Bill

3

Clarkson", In order to answer the latter query effectively by
locating the relevant documents, the system will require a more
sophisticated retrieval strategy than that used for specific
attributes,

The main approaches that have been used in the design of
document filing and retrieval systems are the "electronic filing
cabinet" and Boolean queries with free text. The electronic file
cabinet approach (for example, as used in the Xerox Star [18])
gives the user an electronic analog of the manual system of file
cabinets, drawers and folders with attached 1labels, The
advantage of this approach 1lies in its familiarity; it is
assumed that office workers will be immediately comfortable with
it since the concepts involved are exactly the same as the
current manual systems. However, because this approach so
closely resembles manual systems, it has the same ma jor
disadvantage of having no effective way of searching documents by
content, except by sequential scan. This is not important for
very small sets of documents but when the number of documents
filed is too large for the user to remember the contents of each
document, or when a person is searching files other than their
own (for example, departmental files), a method of efficiently
searching by content is essential.

The other filing and retrieval approach (for example,
Tsichritzis and Christodoulakis [23]) allows the user to retrieve
documents by specifying character strings connected by Boolean
operators. An example of this type of query would be "widgets
AND Clarkson". Documents are then retrieved if they contain this

combination of strings. This method can be effective, but only

4

if precisely the right strings and Boolean operators are
specified. Documents are either retrieved or not retrieved and
the lack of a "near miss"™ facility leads to very inflexible
retrieval. The main problem, however, is the user interface. An
extremely heavy burden is placed on the user during the query
formulation process, in choosing both strings and Boolean
operators. Experience with bibliographic systems wusing exactly
this approach [1] has shown that users tend either to formulate
very simple queries and iterate until a set of documents small
enough to be scanned manually is found or to delegate the search
to a trained intermediary. Neither of these methods of searching
is appropriate for an office environment.

The previous discussion shows that current filing systems do
not combine the essential features of an office system tool,
namely, a friendly user interface, effective performance and
efficiency. = In this paper, we shall describe the implementation
of a text storage and search system (TESS) that does combine
these features. TESS is easy to use, efficient and allows
flexible and effective retrieval of documents by content.
Queries can be specified in natural language or by indicating
example documents. Other facilities, such as document
classification and user profiles can also be provided. Documents
filed through TESS can be considered to be in a single sequential
file, although this can be combined with an electronic file
cabinet to provide conventional "folder" retrieval.

TESS uses text indexing and retrieval techniques based on
statistical models of word occurrences in text [14,17]. These

techniques have been tested extensively in systems designed for

5

scientific literature [5,9,21,22]. Preliminary experiments using
these techniques in the office environment ([4) have indicated
that retrieval is very effective. The purpose of the TESS
implementation was not to experiment with new techniques, but to
investigate how the best of the current techniques can be
implemented efficiently and adapted to an office environment. An
important part of this adaptation was to design an interface that
would present the facilities provided by the statistical
techniques in a clear and concise manner. By giving the users a
good understanding of the system, they will be able to achieve
the best possible results when searching for relevant documents.
The next section reviews the recent developments in
statistical techniques for text retrieval. The reasons for
choosing some of these techniques for implementation in TESS are
discussed. The advantages of the statistical techniques will be
mentioned and algorithms to implement the techniques efficiently
in the office environment are suggested. Section 3 contains a
description of the TESS system. Section 3.1 outlines the
facilities provided in TESS and how they are integrated into an
office system, The user interface is described in section 3.2.
This is a central part of the design of the system and the
menu-based interface is presented in some detail. Efficiency
issues such as the number of files used, the storage requirements

and the time requirements are discussed in section 3.3.

2. Review of statistical techniques for indexing and retrieval

The two main processes in the statistical approach to text

6

filing and retrieval are indexing and retrieval. Indexing is the

process of representing the content of the documents, Many
different indexing strategies have been used in experimental
systems (21], but the results indicate that the simplest are the
most effective. A typical indexing strategy would be to
normalize the document text by removing punctuation, special
characters and common words (called stopwords), reduce words to
common stems using a stemming algorithm, look up stems in a3
dictionary to find the corresponding stem numbers and count stem
occurrences in the text (Figure 1). A possible final step
consists of removing stems which occurred only once in the text
in order to reduce the size of the representatives for long
documents, It has been shown that this thresholding step will
not significantly degrade performance but it can lead to
considerable storage savings {4,211, 1In the current version of
TESS, thresholding is carried out when a document contains more
than 50 unique stems.

The document representative produced consists of a set of
stem numbers (also called index terms) together with their
frequencies of occurrence. A further refinement is to include
thesaurus information (i.e. synonyms) in the dictionary lookup.
It is possible to generate a thesaurus using statistical
information [16], but it will be less effective than a thesaurus
constructed manually. Other modifications to the simple indexing
process which attempt to capture more of the syntactic and
semantic structure of the text, such as using phrases instead of
single words, have not proven to be consistently effective and

have been left out of TESS to improve efficiency,

7
It should be mentioned here that queries expressed in

natural language are indexed in the same way. Queries and
documents, therefore, produce the same type of representation and
this implies that documents can be used as queries, This

facility will be described in section 3.2.

Document header ——--> Normalization —--> Stemming -—--> 1
and text H Algorithm
Stopword
list
1 -=> Lookup stem —--> Count stem —--> Document identifier,
numbers occurrences list of stem numbers
i with frequency counts
Stem
dictionary

Figure 1. The indexing process.

Each of the steps involved in the indexing process described
above is efficient. For example, the stemming algorithm used in
TESS is simple and does not rely on a large dictionary of word
endings [11]. The algorithm does produce a small percentage of
errors but in a system based on statistics this is not crucial.
The stopword dictionary consists of a small number (less than
300) of words like "the" and wfor" which can be searched very
quickly. Statistical indexing also has the advantage of being
entirely data-driven. That is, the stems in the dictionary and

their patterns of usage depend entirely on the text in the

documents presented to the system. As previously mentioned,
external information in the form of a thesaurus can also be used
effectively,

The text that is indexed will in general be the entire text
of the document, Some documents, however, will be too long to
process the full text. Experiments have shown that abstracts, if
available, are satisfactory for indexing [16]. Long business
documents, which do not typically have abstracts, will have to be
treated in another way (see section 3.2).

The basis of the retrieval algorithms in TESS is to
estimate, for a given query, the probability of relevance for
each document. The documents can then be presented to the user
as a ranked list (in decreasing order of probability of
relevance) which can be cut off at any point. The estimation of
the probability of relevance uses a Bayesian classification model
(14,15). That is, each query is treated as if it divides the
collection of documents into a set of relevant documents and a
set of nonrelevant documents. The probability of each document
belonging to the relevant class is then estimated. If we assume
that the documents contain binary index terms (frequency weights
of 0 or 1), a document can be represented as a vector X where X =
(xl,xz,...xv) and Xy = Oor 1. If the terms are also assumed to
be independent of each other, the simple independence model [14]
(described in more detail in Appendix A) specifies that documents
should be ranked by the function g(X):

] (1—qi)

g(X) = I log —~—meee—x X, (1)
(1-pi)qi

where Pj is the probability that term i is in
a relevant document,

Qi is the probability that term i is in
a non relevant document, and

the summation is over all terms (in practice
this is usually restricted to terms in the query)

The value of Q4 is estimated using term frequencies over the
whole collection of documents, but initially the only information
about the set of relevant documents is contained in the query,
If it is assumed that Pj is a constant for all terms in the query
[2] and that Qj can be estimated by the proportion of documents
in the collection that contain term i, the function used to do
the initial ranking of documents reduces to (approximately)
N--ni

g(X) = I log ———-= x. (2)
i
1

where ny is the number of times term i is used in the
collection of documents, and

N is the number of documents in the collection

This means that a score is calculated for each document which is
the sum of the weights (log (N‘“i)/“i) for each term that matches
a query term. The weight is known as the inverse document
frequency weight and it implies that low frequency terms are more
important for retrieval., Numerous experiments have established
the effectiveness of this weight [5,9,22]1. In order to scale up
the results, the inverse document frequency weight is often
calculated as log(max{ni}/ni), where max{ni} gives the largest

value of ;.

10

There are two important modifications to this basic model.
The first 1is that the frequencies of terms within documents can
be incorporated into the ranking function to give more effective
performance [3]. The term weight becomes

(wij/max{wlj.wzj..wvj})log(max{ni}/ni),

where wij is the frequency of term i in document j. Whereas the
second part of this weight is constant for all documents, the
) is different for each document. This 1is the

]

strategy currently used in the TESS system. The second

first part (wi

modification is based on models which do not assume independence
between terms ([10,13]. Although independence is an unrealistic
assumption (many words are strongly related) and much theoretical
work has been done on term dependence models, experimental
results indicate that they do not give consistent performance
benefits. For example, Harper's experiments {9] indicate that
apart from providing a heuristic means of finding terms related
to query terms, the effectiveness of the dependence model was
essentially the same as the simple independence model. This
seems to be due to problems with estimating large numbers of
parameters. For this reason, the dependence model is not used in

TESS.

An important part of the statistical approach is relevance
feedback [9,16]. When the user scans a subset of the initial
ranked list of documents (for example, the top ten), information
can be recorded on the relevance or non-relevance of the
documents seen, The system can then use these relevance

Judgements to form a more accurate picture of the relevant set

11

and thereby retrieve more documeﬁts. The technique used in TESS
for relevance feedback is to re-estimate the P; values in
equation (1) by using term frequencies within the set of
identified relevant document s, That is, P4 is estimated
(approximately) by ry/R, where ry 1is the number of relevant
documents that contain term i and R is the number of relevant
documents. The original query is also ‘"expanded" by including
new terms from the relevant documents. Since there can be many
possible terms for this expansion, the best way of deciding which
ones to include is to display the terms most likely to be useful
(a metric for this is described by Porter (12]) and let the user
select them. These new terms are included in the summation in
equation (1). Relevance feedback can sometimes be crucial to the
performance of the system because the user's first query is often
very imprecise, However, in a recent experiment involving a
small set of business documents and queries (4], relevance
feedback was not required since the desired documents were found
near. the top of the initial ranking in every case. This led to
relevance feedback being available at the user's option in TESS
rather than it being a mandatory part of the search, The

statistical retrieval process is summarized in Figure 2.

12

Query —-—> Indexing --—> Ranking —--—> List of ranked —> 1

text routines function (2) documents
t

Stem dictionary Inverted lists:
Stopwords Term
Author
Date

1 -==> Ranking function (1) —--> New list of ranked
i documents
User relevance
judgements,
Extra query terms

Figure 2. The retrieval process,

The final technique that is important for the TESS system is
document clustering or classification [14,17]. In bibliographic
systems, document clustering produces groups of similar documents
which are used as part of a file organization and for a search
strategy. In an office system, the main application for this
technique will be the classification of documents into predefined
categories, This facility will be used to classify incoming mail
messages or to set up user profiles for an information
distribution service. The classification problem consists of
defining a set of cluster representatives and deciding, for each
incoming document, which is the closest matching cluster. For
the mail application, an overlapping set of clusters in which
documents can belong to more than one cluster is appropriate,
Experiments are currently being carried out to determine the best

classification method for mail.

13

The retrieval strategies described here are implemented
using an inverted file of documents and terms. This consists of
a list, for each term, of the documents described by that term.
It has been pointed out ([23] that inverted lists 1lead to
considerable overheads when updating the system to include new
documents and when merging the lists to calculate scores for the
documents. In an office system, the updating of the lists can be
done as a background process with little inconvenience to the
user, However, merging of the 1lists to calculate scores can
affect the system performance significantly by increasing the
requnse time to queries. For this reason, algorithms have been
developed to speed up the calculation of the document scores
[7.20]. -These algorithms make use of the fact that only the top
10 or 20 of the initial ranked list of documents are required,
rather than the entire list. They also make use of the usage
characteristics of the terms in the query. For example, one
method of calculating document scores is to process each term
list in "order of increasing length (frequency of use of the
term). The score for each document in a list is calculated and
this is compared to and if necessary, included in the current top
10 (or 20) scores. Before processing another list, a maximum
possible score for any document not seen can be calculated. If
this score is less than the lowest of the top 10 seen so far, no
more processing is necessary. This algorithm 1leads to
significant speed increases (see section 3) since long term lists
are almost never used in calculating the scores. It does require
a serial file of the document representations but in section 3.3

we will see that this has other uses,

14
3. The TESS system

3.1 Functionality

TESS has been designed as a tool to be integrated into an
office information system. That is, its functionality is closely
linked to other tools such as editors, electronic mail systems
and spelling checkers. The main example of this integration is
that TESS 1is designed to be used in conjunction with an
electronic file cabinet containing drawers and folders. This
gives every user the option of setting up their personal files in
the wusual fashion. What TESS provides is a means of searching
that is independent of any particular folder/drawer arrangement.
As a result, large personal files, archived documents, other
peoples' files and group files (such as departmental memos) can
all be made accessible (Figure 3). Without TESS, many of the
documents in the organization could be very difficult to retrieve
or, at the very least, difficult to share between people and
organizations. From the user's point of view, these document
retrieval facilities will require no more effort and, in many

cases, will be simpler to use than the current systems,

15

: g
i | Information | !
H ! Service i i
i { Departmental | ! File | H
} ! File ' { Cabinet H i
' ! Cabinet '] H i
H !
i H
: g
H] Personal ' i
H | File Cabinet B | :
' ! Personal i :
H { File Cabinet A} H
: TESS i
| FRAMEWORK |
]]
" 1

Figure 3. TESS and electronic file cabinets.

In order to concentrate on the user interface and
implementation issues, the first version of TESS was implemented
essentially as a standalone system. It is this version that
shall be described here. TESS is currently being integrated into
a commercially available office system.

The main functions provided by TESS are cataloging and
retrieval, Cataloging refers to the process of indexing a
document and storing its representative in the TESS indexes.
Because many candidate documents, such as mail messages, may not
be considered important by the user, cataloging is only done on
request in the current TESS system. In a future version, more
information about document types will be recorded which will
enable documents such as departmental memos to be automatically
catalogued. Many of the mail messages and memos in an office

system will be passed from one user to another. As in

16

conventional systems, in an office system incorporating TESS each
user will make the decision whether to discard the distributed
document or to save it using TESS.

Retrieval of documents can be done according to the text
content, the values of document header fields such as author, or
by a combination of the two. Content queries can be specified in
natural language, keywords or with sample documents. Relevance
feedback is available if the user is not satisfied with the
initial set of retrieved documents. These functions will be
discussed in more detail in the next section.

Other functions include the flagging of documents that are
to be archived or deleted, displaying the contents of the
catalog, and the modification of the dictionary used for
cataloging. The last facility, which is not currently
implemented, will enable the user to add new words, specify
synonyms or abbreviations for existing words and add new
stopwords,

An important function mentioned previously is the
classification of mail documents into user defined categories,
This facility will be essential to filter out important messages
from large volumes of electronic mail [6]. The user specifies
categories using a combination of header (e.g. author) and
content information. The content information can be specified
either by the user describing it in natural language or by
indicating sample documents that would belong to a category. For
example, to specify a category about the sale of widgets to
Clarkson, the user can simply point to a current memo on that

subject. Although the techniques for classification are

17
straightforward to implement, experiments are being done to

obtain quantitative measures of how effective they will be in
practice. Previous experiments with the c¢lassification of
documents into fixed categories (8] show that agreement with

manual classifications may be as high as 80%.

3.2 The user interface

TESS has a menu-driven interface., The style of interaction
is not crucial to the design of TESS, but menus were chosen for
two reasons; compatibility with the other tools in the
commercial office system being used and the lack of suitable
workstations to support multiple-window interfaces, Menus and
other interface design issues are discussed in Shneiderman [19],

but the following general points can be made

1. The menu choices should be unambiguous.

2. Help should be available at any point in the interaction.

3. Help should be specific to the current situation.

4, Error messages should be phrased to assist the user in

correcting the problem.

5. Integration should be built in wherever possible. For example,
when the user needs to correct an entry or get further
information, the appropriate commands should be available

without having to interrupt the current task to activate

18

another tool.

6. Consistency is important. The same methods should be used
throughout for actions such as selecting items, going to

alternate menus or cancelling a command,

The main problem with menus is that they are often considered
irritating by experienced users and some type of bypass
mechanism, such as allowing direct typing of commands, is usually
provided,

The main TESS menu displays the functions described in the
previous section. The actions taken after this for the CATALOG

and RETRIEVE functions are outlined below.

CATALOG

If the user selects CATALOG, the series of menus that follow
allow the wuser to select the type of document (mail or other in
the current system) and specify the names of documents to be
cataloged. If mail documents are being cataloged, they are
selected from a display of the user's current mail file, The
specified document or documents are then indexed. If the
document is too long to index the full text (i.e. longer than
sSome prespecified length), the user is asked to enter either a
specification of part of the text that could serve as an
abstract, or a description of the document. The same technique
is used for documents with too few significant words and it will
also be wused in a later version to describe non-text documents
(such as pictures) or off-line documents. Words in the text

which are not found in the dictionary are displayed to the user

19

who is asked to correct any spelling errors, After this step, a
background process is initiated to update the inverted lists and
dictionaries. Figure 4 summarizes the sequence of system actions

taken for the CATALOG function.

Display list of
mail current mail, ask
—————e——a=> user to select ——————)
documents to be indexed

Get type
of document - Index —> 1
to be H document(s)
cataloged | Get file name H
! and title for '
-------- —> document. Check ——eaee—>
other to see if file
exists,
Document too long
or very short Ask user to input
> keywords or —D
! description of H
! document Display words
]
]

1

1

H not found in

1=> > dictionary. —> 2
Ask user to

correct spelling.

2 -—> Start background process
for updating.

Figure 4. The CATALOG function.

20

RETRIEVE
The retrieve function allows the user to specify queries in the

following ways;

1. Identify a specific document which is similar to the

documents decired.

2. Describe the contents of the desired document(s) using

natural language or a keyword list.

3. Specify the desired values of the author, date, or document

type.

4. Combine the latter two methods to further restrict the

documents retrieved.

After entering the query the user is asked to check the spelling
of any words not found in the dictionary and then has the option
of adding terms if this is necessary. A display of synonyms for
certain words to clarify or strengthen a query may be requested.
The user also specifies how many documents are to be displayed
and which categories of documents are to be searched. The
retrieved documents will be displayed in order of decreasing
relevance as determined by the function defined in equation (2).
In addition, a bar chart will be displayed indicating the
estimated relevance of the document to the query. The bar chart
is an extremely useful device for conveying to the user
information about the system's opinion of the retrieved

documents, For example, Figure 5 shows two displays seen by the

21

user after retrieval, The first display shows the bar chart
display for the five documents requested by the user with a
Separate window for the possible commands. The second display
gives the specifications of the documents retrieved. In this
example, it is very clear that the System regards the first two
documents as very strong candidates for being relevant to the
query and the others much less £0. Similarly, if no documents
had a high probability of relevance, this would be immediately
apparent and the wuser would not be as disappointed if the

documents did turn out to have very little to do with the query.

22

Doc id [HMIN <--—---2_C Document ScOre ---------= > Max]
1 V
W e
a /
5 //

Press any key when finished with current display fl

BN B EE—— e B AY - " B eh . Er e CE EE —. e e .. — . —® e - - —-————

1 Title: Widget sales
Authors: smith y
Date: 1983.01.20 Type: Mail Location: Cabinet

2 Title: Reply to request
Authors: jones
Date: 1983.01.15 Type: Mail Location: Cabinet

3 Title: sales figures
Authors: smith
Date: 1982.12.20 Type: Report Location: Cabinet

Scroll forward:B Scroll backward: Show document contents:
Show document scores: Flag relevant document: Print:
Show query: Help: Finished examining docs:

tab_key=>NEXT FIELD backspace=>PREVIOUS FIELD X=>SELECT ITEM
return_key=>ENTER SELECTION control 1=>HELP control u=>abort

S SR AN e e - e e GG n. . —n . - - - -, —-_. . —— - o

Figure 5. The display of retrieved documents.

S e P e E e R . e L m e LA rt et —r —- —- m-—-,. m. e, we m—_.m- an

e e e e R e e e Ce tt ce mE re e m. e . m- .. - —-———— -

23

The user can browse through the contents of the retrieved
documents and return to the displays mentioned above. While the
contents of a retrieved document are being scanned, words in the
text which have the same stems as those in the user's original
query are highlighted with reverse video. This gives the user
more information about why the document was retrieved and how the
stems are used., Obviously, if the document is exactly what was
required, this feature 1is not necessary but sometimes the
relationship between the document and the query is not
immediately clear. Another command allows the user to display
the original query in a separate window. Figure 6 shows examples
of the two displays used when scanning document contents.

Relevance feedback is initiated if the user indicates that
more relevant documents are required. After specifying the
relevant documents in the initial retrieved 1list, the wuser is
shown a list of possible words from the documents which could be
added to the query. These words are ranked in order of potential
usefulness as described in section 2. The user selects words
from this list and a new set of retrieved documents will be
displayed. Finally, if no relevant documents at all were found,
the user must reformulate the query. In the next version of
TESS, the system will provide help in this reformulation process
by supplying dictionary information such as term frequencies and
synonyms. The steps in the TESS RETRIEVE function are shown in

Figure 7.

Figure

1 Title:
Authors:

2 Title:

Seroll forward:

Show query:

-

S S R N S e e et e m e cmcm cc Gt de e me m s meme et e . .. o

Show document scores:
Help:

Widget sales
smith
Date: 1983.01.?0

Type:

Reply to request

Scroll backward:

Safeslof[ﬁngets]tolglarksoﬂl

R e e S e et e me —e et deme mr e A mcGe e m e e o ® ———— -

Mail

Flag relevant document:
Finished examining docs:

Location;: Cabinet

Authors: jones .

Date: 1983.01.15 Type: Mail Location: Cabinet
3 Title: sales figures

Authors: smith

Date: 1982.12.20 Type: Report Location: Cabinet

Show document contents: X
Print:

Enter number(s) of document(s) to be displayed

I have received your memo of the 16th about our talks
with Bob [Clarkson]. He covered a number of topics

including [widget sales) figures.

I think we need to get back to him on this, before the

25th which is the start of our Annual Gadget [Sale).
Do you want to see the query? (y,n) Y

Press any key when finished with the current displayfj

- - - - - - - - - - - - . - - - -

6. Browsing the contents of a retrieved document.

25

Ask user for Index query.
describe document author(s) Ask user to
— > date(s) ———~—> check -—>
H list of keywords spelling
H or deseription if necessary

User specifies
-t ype of query
-if archived docs --> 1
are to be searched
-number of docs
to be displayed

1

]
H Get file name Index

> for similar —-—---—> document --—>
specify similar document if required
document
no retrieved
documents
~m==——e-=> Reformulate query
[}
]
i User
i Display list browses
1 -> Search -> > of retrieved -> contents -> 2
documents with of docs
bar chart of
scores
Yes Display candidate terms
-=—===> for adding to query -=> 3
(]
!
Ask user
2 -> if more relevant
docs required
[}
]
H Choose documents
-=—=—> for printing if
No required
User specifies Relevance . Display new If user still
3 —==—> terms to add ---—> feedback -—> list Of —————)> not satisfied,
search retrieved reformulate
documents query

Figure 7. The RETRIEVE function,

26

The main feature of this interaction is that in most cases

it requires very 1little wuser effort. In more difficult cases
where the original query is not well specified, the system has
techniques available (e.g. relevance feedback) to assist the
user in finding the required documents., Systems based on Boolean
queries and free text have no such techniques and place the

burden on the user to reformulate the query.

3.3 Implementation issues

The current version of TESS is running under VMS on a VAX

11/750. An overall picture of the files used appears in Figure

8.
GLOBAL LOCAL
Word dictionary Local word dictionary
Stopwords Document information

Stem dictionary Document-stem file
Postings
Term index
Author index
Date index

Figure 8. TESS files,

The files are divided into two types. Global files are shared by
all users whereas there is a version of the local files for each

user catalog. The organization shown was designed to give

27

maximum flexiblity in the design of the interface rather than
minimum storage overhead, The subset of files that would be
absolutely necessary to carry out indexing and basic retrieval
would be the stopwords file (a list of words that can be removed
from the text, indexed by the full word), the stem dictionary
(records the stem number associated with each stem, indexed by
stem), the postings file (information on the frequency of use of
the index terms, indexed by term number) and the inverted 1lists
(term index, author index, date index). The use of these files
has been described in Figures 1 and 2 except for the postings
file which is used to calculate the term weights in the document
ranking function.

fhe indexes can represent a considerable storage overhead
compared to a sequential file of the document text. However, a
recent study with a sample of business text showed that the
average number of index terms in a document representative was
less than 25% of the number of words in the incoming text (4],
This meant that the average representative contained less than 50
index terms, This estimate assumes that most documents are
formal memos rather than typical electronic mail messages.
Because each index term is represented by a fixed length stem
number which could be held in two bytes, a user catalog of 2000
documents would require about 200KBytes for the inverted lists,
About 30-50KBytes more could be needed for the other files,
depending on the number of unique index ﬁerms identified. This
is for a minimal system. If we assume that a document of 200
words requires 1500 bytes of storage, then the sequential file of

2000 documents would require approximately 3MBytes. This means

28

that the overhead for the minimal system is about 8% of the
storage required for the document text. If the information about
the frequency of a term in a document is recorded, this would
make the overhead approximately 12%. The overhead for the
current TESS implementation is greater than this estimate for two
reasons; no effort has been made to compress the data and extra
files are used to enhance the user interface. The cost of this
storage overhead must be considered in terms of the benefits
gained by the statistical approach. In any office where filing
and retrieving documents is an important task, these benefits
will be significant.

In order to have the interface features mentioned in the
last section and to support relevance feedback, the following
files are required in addition to the local indexes. The global
word dictionary (a 1list of all words with synonyms, indexed by
full word) is used to check the spelling of words and to retrieve
the stem numbers for the words. This means that indexing
proceeds by first checking the stopword list and then searching
the word dictionary rather than stemming the word and using the
stem dictionary. This method is used for three reasons

(a) Spelling dictionaries are available in most office

systems (and therefore do not increase the overhead).

(b) Spelling errors could significantly degrade retrieval

performance [4].

(c) The word dictionary allows the user to see what
words reduce to the same stem. This is very useful
in relevance feedback or query reformulation.

The local word dictionary contains words which are not in the

29

global dictionary. These words are identified during the
indexing process and are placed in the local dictionary to save
on updating costs to the much larger global dictionary.

The document information file contains data such as the file
specification of the document (documents are referred to in the
indexes with a unique identifier), the document type and other
header information. The document-stem file contains a list, for
each document, of the index terms in the document representative,
This information is crucial to the relevance feedback process in
order to quickly access the terms in the identified relevant
documents., The storage overhead for this file is the same as
that for the term indexes,

The document scores are calculated using the algorithm
mentioned in section 2. A maximum of 20 of the top ranked
documents are found and the user specifies how many of these are
to be displayed. This algorithm can save a considerable amount
of computation. For example, in a series of experiments done
with different document collections [20], the number of document
scores calculated was reduced on average by 40%. in terms of
disk accesses, the document ranking algorithm will require
approximately one disk access for each query term used, This is
because the term-document inverted lists are quite short (less
than 20 documents per term) in a typical collection of office
documents, Since most initial queries will contain very few
index terms (typically 2-5), this means that retrieval is a very
fast operation. Using documents as the basis for queries
produces more index terms, but the ranking algorithm

significantly reduces the number of terms (and, therefore, the

30

number of disk accesses) required to calculate document scores,

The speed of the indexing process depends almost entirely on
the speed of the word dictionary lookup. The dictionary used in
TESS has 30,000 entries and is currently being re-implemented to
increase the speed of indexing. Spelling dictionaries available
with some office systems are capable of processing text as fast
as it can be scrolled on a typical terminal. The indexing
process should, therefore, be able to achieve this degree of

efficiency.
4. Conclusion

The TESS system demonstrates that it is possible to provide
a powerful text storage and retrieval tool for the office by
using techniques based on statistical models, These techniques
allow users to locate relevant information easily and
efficiently. They also provide the mechanisms for novel
facilities such as adapting to a user's requirements (relevance
feedback) and classifying incoming mail messages., The process of
specifying a query or filing a document is simpler in TESS than
in many current systems. The main cost associated with TESS is
the storage overhead for the word indexes, which is estimated to
be approximately 10-15% of the size of the sequential file of
documents, In any environment where the number of text &ocuments
kept on file is too large for a sequential search (which includes
most offices), this cost will be outweighed by the benefits

obtained by being able to locate important information.

31

APPENDIX A : THE INDEPENDENCE MODEL OF DOCUMENT RETRIEVAL

Each document is assumed to be described by a binary vector X =
(xl,xz...xv). where X; = 0Oor 1 indicates the absence or presence
of the ith index term. A decision rule can be formulated by
which any document can be assigned to either the relevant or
non-relevant set of documents for a particular query. The
obvious rule is to assign a document to the relevant set if the
probability of the document being relevant given the document
description is greater than the probability of the document being
non-relevant, that is if
P(Relevant{X) > P(Non-Relevant|X)
A more convenient form of the decision rule can be found by using
Bayes' theorem. This new rule, when expressed as a weighting
function is,
g(X) = log P(XiRelevant) - log P(X|Non-Relevant)

This means that instead of making a strict decision on the
relevance of a document, the documents are ranked by their g(.)
value such that the more highly ranked a document is, the more
likely it is to be relevant,

The probabilities P(Xi{Relevant) and P(XiNon-Relevant) are
difficult to calculate directly. However, they can be
approximated in a number of different ways. If the assumption is

made that the index terms occur independently in the relevant and

non-relevant documents then
P(X! Relevant) = P(xl:Relevant)P(xZ:Relevant)..P(xv:Relevant)
and similarly for P(XiNon-Relevant).

Let py=P(x =1iRelevant) and q;=P(x,=1{ Non-Relevant)

32
where these are the probabilities that an index term occurs in
the relevant and non-relevant sets respectively. Then

Vv X 1-x

i
P(XiRelevant) = T p, (1-py)
i=1

i

A X 1-x
I

i i

P(Xi Non-Relevant) =
and

v p,(1-q,) v 1-p
g(X) = I x log N A 103_--3

The second term of this function will be constant for a given
query and will not affect the ranking of the documents. The
first term involves a summation over all the terms in the
document collection, but this is usually restricted to just the

query terms.

Acknowlqggpents

The author wishes to thank Sally Lasater and Tony Rogers for
their efforts in implementing TESS. Sally Lasater was also

involved in the design of the interface,

33

References

1. BARRACLOUGH, E.D. On-line searching in information retrieval,

Journal of Documentation 33, (1977), 220-238.

2. CROFT, W.B. AND HARPER, D.J. Using probabilistic models of
information retrieval without relevance information. Journal of

Documentation 35, (1979), 285-295.

3. CROFT, W.B. Document representation in probabilistic models

of information retrieval. Journal of the American Society for

Information Science 32, (1981), 451-457.

4. CROFT, W.B. Experiments with automatic text filing and

retrieval in the office environment. SIGIR Forum 16, (1982),

2"9 .

5. CROFT, W.B. Experiments with representation in a document

retrieval system Information Technology 2, (1983), 1-21.

6. DENNING, P.J. Electronic Junk. Communications of the ACM 25,

(1982), 163-165.

7. DOSZCOCS, T. AND RAPP, B.A. Searching Medline in English,

Proceedings of the Uu42nd ASIS Annual Meeting. White Plains,

Knowledge Industry Publications, (1979), 131-139.

34
8. GAUTAM KAR, B. AND WHITE, L.J. A distance measure for
automatic sequential document classification. Technical Report

CISRC-75-7, Ohio State University, 1975.

9. HARPER, D.J. AND VAN RIJSBERGEN, C.J. An evaluation of

feedback in document retrieval using co-occurrence data. Journal

of Documentation 34, (1978), 189-206.

10. LAM,K. AND YU, C.T. A clustered search algorithm

incorporating arbitrary term dependencies., ACM Transactions on

Database Systems 7, (1982), 500-508.

11. PORTER, M.F. An algorithm for suffix stripping. Program 14,

(1982), 130-137.

12. PORTER, M.F. Implementing a probabilistic information

retrieval system. Information Technology 1, (1982), 131-156.

13. VAN RIJSBERGEN, C.J. A theoretical basis for the use of
co-gccurrence data in information retrieval. Journal of

Documentation 33, (1977), 106-119.

14, VAN RIJSBERGEN, C.J. Information Retrieval. Second Edition,

Butterworths, London, 1979.

15. ROBERTSON, S.E. AND SPARCK JONES, K. Relevance weighting of

search terms. Journal of the American Society for Information

Science 27, (1976), 129-146.

35

16. SALTON, G. Automatic information organization and retrieval.

McGraw-Hill, New York, 1968.

17. SALTON, G. AND MeGILL, M.J. Introduction to Modern

Information Retrieval. McGraw-Hill, New York, 1982.

18. SEYBOLD, J. The Xerox Star: A professional workstation.

The Seybold Report on Word Processing U4/5 (1981), Seybold

Publications, Media, PA.

19. SHNEIDERMAN, B. Software Psycholo y. Winthrop Publishers,

Cambridge, Mass., 1980.

20. SMEATON, A.F. AND VAN RIJSBERGEN, C.J. The nearest

neighbour problem in information retrieval. Proceedings of the

4th International ACM SIGIR Conference, SIGIR Forum 16, (1981),

83-87.

21. SPARCK JONES, K. AND BATES, R.G. Research on automatic
indexing 1974-1976. British Library Research and Development

Report 5464, Computer Laboratory, University of Cambridge, 1977.

22. SPARCK JONES, K. Research on relevance weighting 1976-1979.
British Library Research and Development Report 5553, Computer

Laboratory, University of Cambridge, 1980.

36

23. TSICHRITZIS, D. AND CHRISTODOULAKIS, S. Message Files,

Proc. ACM SIGOA Conference on Office Information Systems,

Philadelphia, 1982.

