An Algorithm for a Simple Image
Convolution on the Titanic Content
Addressable Parallel Array Processor

Charles Weems

COINS Technical Report 83-07
June 1982

Computer and Information Science Department
University of Massachusetts
Amherst, Massachusetts 01003

This research was funded by the U.S. Army Research Office
Grant DAAG 29-72~-G-0046 and by the Defense Advanced Research
Projects Agency Contract N00014-82-K-0464.



An Algorithm for a Simple Image Convolution on
the Titanic Content Addressable Parallel Array Processor

Charles Weems

June 1982

Abstract

An algorithm 1is presented for the Titanic Content
addressable Parallel Array Processor [1] which will cause it
to perform a simple image convolution very quickly. It 1is

further shown that this algorithm can be generalized to
perform more complex convolutions with only a moderate

reduction in speed.

Background

Our previous work on Conway's Game of Life implemented
on a CAM [2] demonstrated that such a device could be
effectively used to speed up algorithms which dealt with
rectangular grids of cells and small neighborhoods about
each of those cells. Because Conway's Game of Life actually
involves performing a very simple image convolution, it was
soon realized that the technique developed for Life could be
applied to more general convolutions. This method was
further refined with the Titanic design -- a content

addressable parallel array processor.



Basic Technique

One simple form of convolution involves each cell on a
rectangular grid examining its immediate neighborhood and
then updating its own contents based upon some function of
that neighborhood. The update must, of course, be performed
after all cells have finished examining their neighborhoods.
On a parallel array processor this examination can be
performed simultaneously by all of the cells on the grid, as
can the wupdate operation. Thus the algorithm for the
convolution can be described as the actions of a single cell
with the wunderstanding that each action is performed
simultaneously by all of the cells.

There are two different ways of approaching the problem
of examining the neighborhood. The one that first comes to
mind is that each <cell "looks" at each cell in its
neighborhood, gathering what information it needs to perform
an update. In practice this involves moving data from each
cell in the neighborhood into the "central" cell where some
function is then applied to it and the result stored for the
update phase of the convolution. The problem with this is
that the data must often pass through other cells before it
reaches the central cell, For example, when the
neighborhood is 7x7 cells, data from the outer ring of cells
must pass through at least two other cells before reaching
the center cell. Because movement of data takes time, this
"passing through" is rather inefficient. The solution is to
have the data stored in the intermediate cells on its way to

the center, thus taking advantage of the fact that those



cells will also need to know the values in order to compute
the function of their neighborhoods. Although this will
work, the algorithm becomes rather messy since we must rnow
consider the actions of several cells at once and how these
relate to each other. It also becomes a complex problem to
determine an optimal set of data collection paths as the
neighborhood's diameter varies.

It turns out that the other approach to examining the
neighborhood greatly simplifies these problems. This
approach takes the opposite view of the collection process.
Instead of each cell collecting all of the data from its
neighborhood, each cell distributes its own data to every
cell in the neighborhood. Because every other cell is also
doing this, the end result is that the central cell (and
hence all cells) gets the data it needs from all of the
cells in the neighborhood. The problem of establishing an
optimal distribution path is trivial for a square array of
odd diameter: It is simply a rectangular spiral out from
the center cell. For even diameter square neighborhoods the
problem is only slightly more difficult because the center
cell 1is actually half of a cell width off center in two
diections. 1In this case it 1is simply required that the
appropriate choice of initial direction and of clockwise or
counter clockwise spiral be made to select the optimal path.
The only other point that requires mentioning is that,
because this 1is a distribution process rather than a
collection process, the funtion mask for the convolution

must be mirrored across the central cell. For example, when



the cell's value is being stored in its north neighbor, the
function applied to that value 1is the south neighbor
function. The reason for this can be seen when it is
realized that the central cell 1is actually the south
neighbor of the <c¢ell to its north. The mirroring of the
convolution function mask 1is actually quite easy to
accomplish: we simply step through the mask in exactly the
opposite direction that the distribution path takes.

Let's look at an example: A simple convolution for
smoothing isolated cells of noise out of an image. We will
use a 3x3 convolution mask in which the cell accumulates the
sum of its neighbor's values, weighted inversely with
distance away from the center. The sum will then be

normalized. Define the mask to be an array Mi j:

M =
J 0 1 2
i)
i
0 | 1 2 1
!
i
11 2 4 2
]
]
2 | 1 2 1
|
[

Where M1 1 is the central cell. Then the following
’
algorithm will perform the convolution (north is up, west is

to the left, etc.):

(1]

t= 1
Jj =1
= value *M, .
move value north J
i = i+
sum := sum + value * M. .
move value east 1J

J = Jj#+1



sum := sum + value * M

move value south 1J
i = i-1
sum := sum + value ¥ Mi'
move value south J
i = i-1
sum := sum + value ¥ Mi’
move value west J
J s+ j-1
sum := sum + value ¥ Mi'
move value west J
J = -1
sum := sum - value ¥ M. .
move value north 1J
i = i+1

sum := sum + value * M, .
value := sum * normali%ﬂng factor

It should be noted that the time required to perform a
convolution wusing the parallel processor is independent of
the size of the image and only dependent upon the area of
the convolution mask. Since the Titanic does cell level
arithmetic bit-serially, the size of the data values also

affects the speed of the algorithm.

Convolution on Titanic

The following algorithm gives the list of instructions
required to make Titanic perform the convolution given in
the above example. In this case we have taken advantage of
special characteristics in the mask values to help direct
the shift and add process of the required multiply
operations. The algorithm is written for 8 bit data values
and runs in an estimated time of 98 microseconds.

(¥ Initialize ¥*)

A := 1!
Empty_Edges

(* Send to North *)



Z := 0
For Bit := 2 to 9 do
X := M(Bit)
Shift_X North
M(Bit+10) := X
Y := M(Bit -1)
Y := X+Y
M(Bit - 1) := Y
End For
X := 0
For Bit := 9 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) := Y
End For

(* Send to Northwest %)

Z := 0

For Bit := 12 to 19 do
X := M(Bit)
Shift_X_West
M(Bit) =
Y := M(Bit - 12)
Y := X+Y

M(Bit - 12) := Y
End For
X :=0
For Bit := 8 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) := Y
End For

(* Send to West #)

Z :=
For Bit := 12 to 19 do
X := M(Bit)
Shift_X_ South
M(Bit) %= X
Y := M(Bit - 11)
Y := X+Y
M(Bit - 11) := Y
End For
X := 0
For Bit := 9 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) := Y
End For

(* Send to Southwest ¥)

Z := 0



For Bit := 12 to 19 do
X := M(Bit)
Shift_X South
M(Bit) ==
Y := M(Bit - 12)
Y := X+Y
M(Bit - 12) := Y
End For
X := 0
For Bit := 8 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) :=
End For

(¥ Send to South ¥)

Z :=0
For Bit := 12 to 19 do
X := M(Bit)
Shift X East
M(Bit) == X
Y := M(Bit - 11)
Y := X+Y
M(Bit - 11) := Y
End For

X :=0

For Bit := 9 to 11 do
Y := M(Bit)
Y := X+
M(Bit) := Y

End For

(* Send to Southeast *)

Z :=
For Bit := 12 to 19 do
X := M(Bit)
Shift X East
M(Bit) =
Y := M(Bit - 12)
Y := X+Y
M(Bit - 12) := Y
End For

X :=0

For Bit := 8 to 11 do
Y := M(Bit)
Y := X+Y¥
M(Bit) := Y

End For

(* Send to East %)

Z :=0
For Bit := 12 to 19 do



X := M(Bit)
Shift_X_North
M(Bit) =
Y := M(Bit - 11)
Y := X+Y
M(Bit - 11) := Y
End For
X :=0
For Bit := 9 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) := Y
End For

(* Send to Northeast #*

Z := 0
For Bit := 12 to 19 do
X := M(Bit)
Shift X North
M(Bit) == X
Y := M(Bit - 12)
Y := X+Y
M(Bit - 12) := Y
End For
X := 0
For Bit := 8 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) := Y
End For

(* Scale Result ¥)

For Bit := 2 to 11 do
X := M(Bit)
M(Bit - 2) := X

980 CAM Operations
98 uS per Convolution

340 Conv / Frame Time
10204 Conv / Sec

)

Convolutions with more general and/or larger masks will take

longer.

A very rough worst

required for such convolutions

case

can

be

estimate

obtained

of the time

from

the



formula:
T = P(.8N+.2M+.1) + .3M(N2P+N+1)
where T = time in microseconds
N = number of bits in a pixel
M = number of bits in a mask value
P = number of pixels in the mask area

This is a worst case time which assumes that all of the bits
in all of the mask values are ones (since this gives the
slowest multiply speed). Under normal circumstances, T will
be about half of the value obtained from the formula. This
also assumes a totally general square mask where the values
can change. If constants are to be wused for the mask
values, a significant speed increase can be obtained by
optimizing the multiples for those values. Thus, for
example, a convolution on 16 bit values with 8 bit mask
values could be applied over at most a 7x7 mask in one video
frame time with a worst case situation. For normal
situations, it should be possible to convolve a 10x1l0 area.
Given constant mask values, and depending upon the amount of
optimization possible, even a 25x25 mask could be done in
one video frame time.

As a final note, this method 1is not restricted to
square masks and in fact should be readily generalizeable to
any mask shape. All that 1is required for this 1is an
algorithm for efficiently shifting the center cell's value
so that it covers the mask area. Thus it should be possible
to easily adapt it to such mask shapes as annuli and

disjoint areas.



10

Conclusion

A method has been shown which can be wused to program
the Titanic content addressable parallel array processor to
perform image convolutions simply and efficiently. Such a
program, for a simple convolution, was shown which operates
in ninety-eight microseconds. The time of the algorithm 1is
independent of the size of the image and depends only upon
the size of the mask and, for bit serial processing, upon
the number of bits in the pixel and mask values. A formula
was given for a worst case time estimate and a factor for
estimating normal case time from this was discussed. It was
also noted that the method could be applied to masks of

other than square shapes.

References

1. C. Weems, S. Levitan, and C. Foster, "Titanic: A
VLSI-Based Content Addressable Parallel Array Processor,
Proceedings of IEEE International Conference on Circuits
and Computers, September 1982, pp.236-239.

2. C. Weems, "Life is a CAM-Array 0l1d Chum", unpublished
paper, January 1980.



