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ABSTRACT

An analysis of semantic query optimization for a subelass of
relational query language called SJP expressions is presented.
By incorporating the probablistic model and the concept of
constraint strength into semantic query processing we can use the
semantic rules in the knowledge data base to provide the most
efficient access paths to the relations in the query. The problem
of eliminating the join operations in SJP expressions is
discussed. A possible implementation of semantic query

optimization is given.



1. INTRODUCTION

Since the introduction of the relational data model [Codd70]
there has been considerable research in the area of relational
query optimization. This is largely due to the pragmatic
importance of the subject. A relational database management
system ([Codd82), [Kim79]) shields the users from knowledge of
the physical organization used to represent the database, and
provides them with a query language that is far removed from the
primitive access operations employed to 1locate and retrieve the
desired data. Consequently, the users formulate their retrieval
requests without any concern for implementation details and
delegate the responsibility for efficient implementation of their
requests to the relational database management system (DBMS). The
query optimization research 1is concerned with techniques to

fulfill this responsibility.

Much of the research in query optimization has focused on a
class of relational queries known as SJP expressions. This class
is composed of queries expressed with the relational operators:
select, Jjoin, and project. Although SJP expressions cannot
express all retrieval requests against a relational data base,
they occur often enough both by themselves and as subqueries to

justify their place in our optimization efforts.



Given an SJP expression the optimization problem is to
determine an execution plan specifying both the order and the
implementation method for the relational operators in the
expression, which, it is estimated, will perform most
efficiently. The efficiency measure is generally taken to be the
number of page transfers between primary and secondary memory
which reflects the dominating influence of secondary storage

access in qguery evaluation.

In general, an exhaustive examination of possible execution
plans for an arbitrary SJP expression is highly impractical. A
reasonable solution to this problem is to employ heuristics to
reduce the search space, (e.g., by constraining the order of
operations) so that a detailed evaluation of alternative
execution plans becomes more practical. In one such approach,
the query expression is subjected to a series of algebraic
transformations in order to produce what is considered to be the
optimal reformulation of the query in view of certain heuristics
([Hall176],[Smith75]). In another approach, the query expression
is heuristically decomposed into its simpler constituent
subexpressions for which an exhaustive examination of possible

execution plans is then undertaken ([Selinger79]), [Wong 761]).

The conventional query optimization suffers from an inherent
limitation. The efficient implementation of a query is
predicated, to a large extent, on how well the favorable access

paths to the underlying database are matched to the requirements



of the query. For example, in order to select tuples in a
relation based on the value of one of their attributes, a
complete scan of the relation would be unavoidable if the
selection attribute happens to be one for which no favorable

access paths (such as an index) have been implemented.

The semantic query optimization, as proposed in ([H;mmer80],
[King81]), seeks to overcome part of this 1limitation. The
principal idea is that specific knowledge about the real-world
application which the database pertains to model, can be used to
paraphrase a given query in semantically equivalent yet
syntactially different forms that are unobtainable by mere
algebraic transformations. The hope is that by introducing
alternative statements of the orginal query, efficient
implementations may be discovered which would not have been

considered by conventional query optimization alone,

The knowledge base upon which semantic query optimization
relies is available in the form of the integrity constraints
that are part of the definition of a relational database. The
key issue in semantic query optimization 1is first to identify
possible semantic transformations for the query, and second to
choose among them those that merit detailed implementation
consideration by a conventional query optimizer. The difficulty
lies with the fact that the real value of a transformation cannot
be fully ascertained without costing the resulting evaluation

programs. To resolve this dilemma, we propose to control the



search in the space of semantically equivalent queries by a
simple heuristic. Our heuristic is to accomodate by means of
semantic transformantion, if possible, the most efficient access
path to each relation specified in the original query. The result
of our semantic query optimization technique is thus a single

query that is passed on to a conventional query optimizer.

The remainder of this paper is organized as follows. In
Section 2 we present our assumptions regarding the class of
queries considered, the underlying storage structure for the
database and the cost model employed. Section 3 deals with
semantic query equivalence and the different types of semantic
transformations. In Section U we discuss the selection of
target attributes for semantic query optimization. Section 5
presents the concept of constraint strength as the means to
control the search in the space of semantically equivalent
queries. Section 6 compares and contrasts our technique with
related work in semantic query optimization. We conclude in

Section 7 with a summary.



2. BASIC CONCEPTS

2.1. SJP Expressions.

The class of SJP expressions consists of queries expressed
with the relational operators select, join and project. These

operators are defined as follows.

1. SELECT. Let R be a relation on a set of attributes X.
Let A be an attribute in X and ¢ a value from the domain
of A. Let B and C be attributes in X which are compatible
(i.e., have the same data type). Then, r.A theta ¢ and
r.B theta r.C, where theta is an arithmetic comparison
operator and the tuple variable r ranges over relation R,
are referred to as selection conditions on R, A selection
predicate, F, on R 1is a propositional calculus formula
consisting of selection conditions connected by the
logical operators & (AND), V (OR) and ~(NOT). The
function of the select operator is to obtain tuples in a

relation that satisfy a selection predicate. Thus

RIFl] = {r | R(r) & F(r) 1}

2. JOIN. The theta join of R and S on A of R and B of S
permits two relations to be joined into a single relation
whose attributes are the union of the attributes of the

two relations and whose tuples are those in the Cartesian



product of R and S such that the A component of R is in

relation theta with the B component of S. Thus

R[A theta BlS = { r"s | R(r) & S(s) & r.A theta s.B }
where r”s denotes the tuple t resulting from the

concatenation of the tuple r of R with the tuple 3 of S.

3. PROJECT. Let R be a relation on a set of attributes X.
Let Y be a subset of X. The projection of R onto Y is the
relation obtained by discarding all the attribute values
in tuples of R that do not belong to Y and eliminating

duplicates that may result. Thus

R(Y] = { r[Y] | R(r) }

where r[Y] denotes a tuple consisting of only the values

for the attributes specified by Y.

We note in passing that a relational query language based on
select, join and project operators is incomplete (in the sense
of [Codd72]), since SJP expressions cannot express the set
operations of union and difference which are required to form a

complete set of relational operators.



The general form of an SJP query is given by the relational

calculus expression

{ vl...um |} E(ut,..um) }

where E(ul...um)=( R1(r1) & ... & Rk(rk) )

&ul = ri1.Aj1 &...& um = rim.Ajm & E'
which states that ri is a tuple in the data base relation Ri;
that u = <ul, ..., um>, a tuple in the result relation, is
composed of m components of the ri's; and that the ri's satisfy
the predicate E'. E' is a prositional calculus formula consisting
of selection predicates and/or join predicates connected by the

logical operator AND ( & ).

2.2. Storage Organization for Relations,

We assume a record based implementation for relations with
indices, binary 1links and the clustering property for a single
relation as the only physical structuring mechanisms
[Astrahan76]. It is assumed that the relations in the database
are mapped into separate files whose record formats correspond
to the attributes of the relations. We assume that each tuple has
associated with it a unique tuple identifier (TID) which serves

as its address.



A TID consists of two components, a page number and a slot
number., The slot number refers to a pointer array that is
maintained in the page header and which contains the starting
byte position for every record stored in that page. As such, the
TID provides a level of indirection that makes it possible to

move records within a page.

A key is one or more attributes whose values identify sets
of individual records in a file. When the corresponding sets are
singleton sets the key is called a primary key; otherwise it is
said to be a secondary key. We assume that the records in a file
may be stored with no ordering ﬂnon—keyed organization) or
clustered according to their values for a key (keyed
organizapion). In the non-keyed organization a new tuple is
inserted in the first available place in the file. In the keyed
organization a new tuple must be inserted in its correct
position (as determined by its key value) in the file, In either

case deletion of tuples is handled by marking them as deleted.

To insert a tuple in a file organized in key value order the
correct position is determined by consulting the clustering index
for the file and the record is placed there. If the appropriate
page is full, the solution is to 1llocate a new page, 1link the
full one to it, place half the records from the full page on the
new one, and link the new page to the successor of the old one,

The new tuple can then be inserted in its correct position.



An index provides content addressability by maintaining a
mapping from the values of the indexed key to the addresses of
the records with those values, Conceptually, an index may be
viewed as a binary relation consisting of pairs whose first
component is a value for the key and whose second component is
the address of a record with that value. We assume that an index
is stored in a file by itself and that it is implemented by a
balanced hierarchic structure in the style of B-trees [BayerT72].
The 1leaf pages contain records whose first component is a key
value and whose second component is a variable length 1list of
TIDs of those tuples with that key value. The nonleaf index pages
contain records consisting of the address of a lower level page
and the highest key value on it. The index records in each page
are kept sorted on the value for the key. The TID list stored in
each index record at the leaves is sorted on the first component
of each TID (i.e., the page number in the file in which the tuple
resides)., We assume that the leaf pages of an index are threaded
together so0 that it is possible to obtain pointers to all tuples
in the relation in the index key value order without referencing

7/
upper level pages of the index.

It is important to recognize that when an index key consists
of, say, two attributes, the index also serves to provide

content addressability for the attribute which is the major sort

field of the index file.
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To retrieve tuples based on their content one or more
indices may be maintained for a relation. An index i3 called a
clustering index if the relation for which the index is defined
is organized according to the index key values. Clearly, only one
index for a relation may have the clustering property. We assume
that all indices for a relation are updated when tuples are

deleted, inserted, or modified.

An index allows the selection of related records of the same
type. But instances of two record types may also be related by
virtue of possessing the same value for a matching attribute.
Such an association between records can be provided via links. A
1-to-n link relates each parent record, i.e., records of a first
type, to the set of children records, i.e., records of a second
type, that share the primary key value of the parent record for
the matching attribute. Conceptually, a 1-to-n link may be viewed
as a binary relation consisting of pairs whose first component is
the address of a parent record and whose second component is the
address of a related child record. We assume that binary links
between relations are implemented by storing in each parent

record the list of TIDs for its related children records.

2.3. Cost Model of the Storage Structure,



- 11 =

The optimization technique to be described is based on the
inclusion of the most efficient access path to each relation
specified in the query. In order to select amongst the
alternatives we will use the following cost equations. The
access cost is measured in terms of page transfers and we assume

the availability of the following parameters:

PR = the number of pages in the file that holds the
tuples of relation R

NR = the number of tuples of relation R

P'I = the number of leaf pages in the index on the
attribute I

N'I = the number of distinct values in the index on the
attribute I

hl = height of the index file on attribute I

In addition to the above parameters, we assume the
availability of information on the number of distinct values
appearing in each column of a relation along with the smallest
and largest of these values. In the absence of semantic
information to the contrary, we assume uniform distribution of
values in each column and statistical independence between values

in different columns,
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The cost equations for the various access operations are

given below.

.

File Scan. The cost to obtain all tuples in a relation by

sequentially accessing each page in the file is PR,

Index Access. The cost to obtain pointers to all tuples in a
relation satisfying the selection condition C(r.A) by accessing

the index on A is

COST= hA + fA * P'A

where fA is the selectivity of the condition; that is, the ratio
of the number of distinect values satisfying the selection

condition to the number of distinct values for attribute A.

Clustered Record Access. The cos3t, exclusive of index access
cost, to obtain m records sharing the same key value for a

file organized in key value order is approximately

COST = PR * (m / NR )

Non-clustered Record Access., The cost to obtain m records

uniformly distributed across the pages of a file is [Yao77]

PR *( 1 - ( ( NR -NR/PR,m)/(NR,m) ) )
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where (n,m)denotes the number of ways to select m objects out of

n objects.

Record Access Through Links. Given a 1-to-n 1link from
relation R to relation S on the attributes A of R and B of S, the
cost to access the related tuples of S for a selected subset of
tuples in R can be computed as follows. Let E(NR) be the expected
number of tuples of R that satisfy the selection condition on R.
Let N'B be the number of distinct values of the join attribute B
of S. For every tuple in R, the expected number of matching
tuples in S is given by NS/N'B. The expected number of pages of
S that must be accessed to retrieve these matching tuples can be
derived from the clustered and non-clustered record access
formulas given above. So the retrieval cost is E(NR) * ( PS /
N'B) if S is clustered on B, Otherwise we use E(NR) * ( NS / N'B)

to approximate the number of page transfers.

3.SEMANTIC QUERY EQUIVALENCE

As we noted in the introduction, a relational database is
not merely an arbitrary collection of relations, Rather, it is a
collection of relations constrained by rules that apply in the
real world application it pertains to model. By the same token, a
relational query is not an arbitrary statement in a relational
calculus, Rather, it 1is a statement aspecifying a meaningful
subset of the relationships in the user's view. In this section

we explore the ramifications of real world constraints on a
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relational database and their exploitation in query optimization.

Since a database is meant to represent some particular
application in the real world, it is only natural to expect that
at any quiescent point the database state correspond to a
legitimate and plausible state in the modeled application, What
constitutes a legitimate and plausible state in the real world
is, of course, 3specific to the application and must be
specifiable in wunambiguous and consistent terms. It is the
function of the semantic integrity subsystem [Hammer75] of a
relational database management system to provide the means for

the specification and maintenance of such real world constraints.

For our purposes, we shall only be interested in semantic
integrity constraints that govern quiescent database states and
shall ignore those that deal with state transitions. Furthermore
we shall limit ourselves to constraints which can be expressed as
first order formulae in which each tuple variable is universally

quantified over a database relation.

Semantic constraints of the first kind, called domain rules,

place a restriction on the domain of an attribute., They are of

the form

(allrinR) ( r.A theta r.B ) or

(allr inR) ( r.A theta a )
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where A and B are attributes of relation R in the database, a is
a constant value from the domain of A, and theta is a comparison
operator. The domain rule expresses the constraint that the value
for attribute A in every tuple of R must be in relation theta

with the value for attribute B (or, with constant value a).

Semantic constraints of the second kind, called dependency
rules, are implications involving attributes of the same

relation. The general form of dependency rules is

(all r in R)( C1(r.A1) & C2(r.A2) &...& Cn(r.An)-=>C(r.B) )

where C{(r.B) is a condition on attribute B and Ci(r.Ai) (i = 1,
...y N) are conditions on attributes Ai. (The Ai's and B are
attributes of relation R.) The dependency rule expresses the
constraint that the righthand side condition, C(r.B), will be
implied when all the lefthand side conditions, Ci(r.Ai), are
satisfied. Conversely, if the righthand side condition, C(r.B),

does not hold, then at least one of the conjuncts must be false,

For convenience, dependency rules of the form

(all r in R)( C(r.A)—>C(r.B) )

shall be referred to as simple dependency rules, Simple

dependency rules, of course, have the same interpretation as the

general dependency rules, Specifically, the 1lefthand side
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condition C(r.A) does not hold when the righthand side condition

C(r.B) is not satisfiable.

Semantic constraints of the third kind, called production

rules, are of the form

(all r in R)(all s in S)(c(r.A1) &...& C(r.An) & r.C theta s.D

& C(s.B1) &...& C(s.Bm) -=> C(s8.B))

where A1, ..., An are attributes of R, B1, ..., Bm and B are
attributes of S; and r.C theta s.D stands for a join condition
between R and S, Production rules serve to express

inter-relational constraints in a relational database.

These three kinds of semantic constraints provide a rich
mechanism for capturing much of the real world constraints that
must be addressed in data modeling. Their enforcement by the
database management system ensures that at any quiescent point
the database is a snapshot of the modeled application and that
each and every one of the defined constraints does in fact hold.
Consequently, it must also be true that given a consistent
database state, a query, and any defined semantic constraint, the
results of the original query and the query modified by the
conjunction of the semantic constraint to its predicate would be
identical, It 1is therefore possible to employ the existing

semantic constraints on a relational database to transform a



- 17 -

given query into a semantically equivalent (i.e., the result of
the modified query being identical to that of the original), yet

syntactically different query.

An important application for semantic transformation is to
determine whether or not a given query is satisfiable., If C(r.A)
is a condition on the attribute A of some relation R, the set of
elements in the domain of A such that C(r.A) is true will be

referred to as the solution range of the condition,

Definition, Let C(r.A) and C'(r,A) be conditions on attribute A.
Let S and S' be solution ranges of C(r.A) and C'(r.a),
respectively. If S does not intersect S', then we say that the

two conditions are contradictory. Otherwise the two conditions

are said to be compatible. If S' is a subset of S, we say that

C(r.A) 1is satisfied with respect to C'(r.A)( or C'(r.A) implies

C(r.A) ), i.e., C(r.A) holds whenever C'(r.A) holds.

A sufficient condition for a query to be unsatisfiable is
that a conjunct of the selection predicate associated with some
relation specified in the query is unsatisfiable. This suggests

the following lemma,

Lemma 1. A query is wunsatisfiable if one of the following

conditions hold:
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1. All the selection conditions in a conjunct of the
selection predicate associated with a relation specified
in the query are contradictory to the relevant domain

rules in the database.

2. All the antecedent conditions in some dependency rule in
the database are satisfied with respect to the relevant
conjuncts in the query while its consequent condition

is contradictory to some conjunct in the query.

3. All the antecedent conditions and the join conditions in

some production rule in the database are satisfied with

respect to the relevant conjuncts in the query while its

consequent. condition is contradictory to some

conjunct in the query.

Example. Suppose we have the semantic rule:

(all x in EMP)( x,.Salary < 20000 --> x.Job = "programmer")

Then the following query would be unsatisfiable:

{x.Name{ EMP(x) & x.Job="secretary" & x.Salary<20000}
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Semantic transformations can also be used to add implied
conditions to, or eliminate redundant conditions from, the

predicate of a given query.

Lemma 2. Suppose r is a dependency or a production rule such that
all the antecedant conjuncts in r are satisfied with some
conjuncts in the predicate E of query @ (in the case of r being
a production rule, the join conditions must also appear in E).

Let C(r.B) be the consequent condition of r. Then,

1. E is equivalent to E & C(r,B)

2. E is equivalent to E', where E is of the form E' &

c'(r.B) and C(r.B) is implied by C'(r.B)

Lemma 2 can be extended to the case when r is a simple
dependency rule and the consequent condition C(r.B) is
contradictory to some conjunct in the predicate E. In that case,

E is equivalent to

E & "C(r.A)

where C(r.A) is the antecedant condition of the rule. Note that
bound rules of the form ( all r in R) ( r.A < r,B ) can be used

to generate the following dependency rules:

(allr inR) r.A>= k =—=>r.,B>= k)

(allrinR)(r.A> k-=>r.B> k)
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( allr inR)( r.B<= k —=> r.A <=z k)

(allr inR)(r.B< k-->r.A< k)

where k is a special character which would match any constant in
the query. If the lefthand side condition matches some conjunct
(say, r.A > a ) in the query, the consequent condition r.B > a
could be generated, The same thing applies to the bound rule (
all r in R )( r.A theta r.B ) when theta is <=, =, >, >=., Thus
lemma 2 can also be applied to the case of these bound rules. In
the following discussion, we will not mention the point of wusing

bound rules to generate equivalent queries,

Lemma 3. Suppose we have a simple dependency rule of the form:

(all r in R)(C'(r.A1) -=>C'(r.B))

Let the conjunctive normal form of the selection predicate F on

relation R be:

( C(r.a1) v C(r,p2) V,,.V C(r.B)) &...& ( ... )

If C'(r.A1) is implied by C(r.A1) and C(r.B) is implied by

C'(r.B), then F is equivalent to

( C(r.Az) v e o0 V C(r.B) ) & LI & ( LN ] )
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E}amgle. Suppose we have the semantic rule:

(all x in EMP) (x.Salary < 20000 --> x,Job ="programmer")

then the following two queries are equivalent:

{x.Name | EMP(x) & (x.Salary<10000 V x.Job="programmer" V
x.Job="gecretary") }

{x.Name]EMP(x) & (x.Job = "programmer" V x.Job="secretary")}

Production rules can also be used to remove conditions from,
or introduce conditions to, the predicate of a given query.
However, some equi-join production rules, as the next lemma
suggests [Dadashzadeh82], can also serve to eliminate joins,
Lemma 4. Let R(A,B,C) and S(D,E,F) be two relations, If

(all r in R) (all s in S) ( r.A=a & r,C=3.D —> 3.E=ze )
is a semantic constraint for the database, then

( ( (R[A=allC=D](s[E=e]) ) )[B]

and

(R[A=a])[B]}

are equivalent under the condition that the semantic constraint,
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R[C] subset of S[D], is enforced.

Proof,

The first expression is equivalent to

( (R{C=D]S)[A=a&E=e] )[B]

Suppose T = (R[C=D])[A=a&E=e]. Then we have

{1 T(t) }
= {r®s | R(r) & S(s) &
r.A=aé&sE=zeé&r.C=3s.D}

T[Bl = { t[B] | T(t) }

{ r"s(B]l } R(r) & S(s)

&r.Aza&sE=zek& r.Q = 8.D }
From the semantic constraint, we have
(all r in R)(all s in S)( r.A = a & r.C=8,D —> s,E=e )
Therefore we can derive

TIB] = { r"s{B]l | R(r) & S(s)

&r.,A=-2aé&r,C=s8.D}

But the given condition that R[C] is a subset of S[D] tells us

that
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(all r in R)(some 3 in S)( 8.D = r.C )

So we have

TLB] { r"s[B] } R(r) & S(s)

&r.A=za&r.C=38.D}

{ r*s[B] ! R(r) & S(s8) & r.A =2a}

{ r[B} | R(r) & r.A = al}

Corollary. Let R and S be two relations and

(all r in R)(all 8 in S)( C(r.At1) & ... & C(r.An)

& r.C=s.D ==> C(8.B) )

be a semantic constraint in the database. Let F be a selection
predicate on R such that C(r.A1), ..., C(r.An) are implied by it.
Let F' be a selection condition on S such that it implies C(s.B).

Let Y be a subset of the attributes of R, Then

( (RIFILC=DI(S(F']) )(Y]
and

(RLF1)CY]

are equivalent under the condition that the semantic constraint,

R[C] subset of S{D], is enforced.
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We conclude this section by restating the fundamental

concept behind semantic transformation of a relational query.

Theorem. Let SC be the set of the semantic integrity constraints

defined for a relational database., Let Q be the query:

Q: { x1...xm | E(x1...xm) }

If E'(x1...xm) can be generated from E(x1...xm) wusing the
semantic integrity constraints in SC, then Q is semantically

equivalent to:

Q': { xt...xm | E'(x1...xm) }

i.e., the transformations specified in the above lemmas preserve

the correctness of the query.

4 ,TARGET ATTRIBUTES

We have shown that we can use the semantic rules in the
knowledge database to transform a given query into a
syntactically different, yet semantically equivalent query. We
certainly require that the 1latter could be as efficient as
possible., An obvious way to the solution is to generate the
whole set of semantically equivalent queries. Then we can use the
cost equations to estimate the number of page transfers needed to

execute the individual queries and choose among them the query
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which needs the 1least number of page transfers. This methed

suffers from obvious drawbacks.

Thus we have to exercise the control of the search space. A
necessary condition for deriving a new constraint on an attribute
A is that there must be a semantic rule in the knowledge database
relating to A (i.e., A appears in some semantic rule). If there
is a semantic rule relating to A in the knowledge database, we

say that A is semantically related.

Thus semantic query transformation is possible only when at
least one constraint of the query is on the semantically related
attribute, And we can derive new constraints which are on
semantically related attributes. Therefore we should first of
all choose from the semantically related attributes our target
attributes on which we are going to derive useful constraints. We
assume that the DBMS provides us with the information of whether
an attribute is semantically related and where the semantic rule
with the atttribute as its target is stored. We want to find the

semantically equivalent query which can be processed efficiently.

One way of achieving this is to make the selection operation
of the individual relation as efficient as possible. This can be

attainded in a number of ways.

1. The selection predicate F of relation R consists of a

number of conjuncts each one of whieh is, in turn,
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composed of disjuncts, If a conjunct is composed of those
disjuncts which are all defined on semantically related
attributes, we should try to remove as many disjuncts as
possible. In this case, all the attributes appear in the
conjunct are our target attributes. Our goal is to make
an index irresolvable conjunct index resolvable and
finally an index would possibly match the final conjunct.
This is a deterministic process and can be done through

the application of Lemma 3.

The aim of applying Lemma 2 to the selection predicate F
of relation R is to provide new access paths to relation
R, 1i.e., a new constraint C(r.B) can be ANDed with F only
when attribute B has an index on it and the access path
through the index of B is the most efficient one. Thus the
semantically related attribute B of R, which has index and
its constraint C(r.B) can be further restricted, are our

target attribute,

Suppose that we only have one target attribute, To
make the derivation of a new constraint on it possible,
either the selection condition of R.contains a conjunct on
a semantically related attribute different from the

target attribute or the selection condition of the join
partner S of R contains a conjunct on a semantically

related attribute.
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3. Links Dbetween relations are also worthy of consideration.
Let R be a relation constrained in the query Q and
relation S has a link to R. Suppose that S does not appear
in Q. If we could infer a constraint of S and the
constraint is defined on the path of easy access (e.g., a
clustered index). The introduction of the join operation,
under the above conditions, is conducive to the search
for the tuples in R. Thus all semantically related
attributes of S, which have indices on them, are our
target attributes when S does not appear in Q and has a

link to some relation R in Q.

If the query contains a join, then the DBMS will spend a
great deal of time on the join operation. The nested loop method
of computing the Jjoin operations is generally incorporated in

the DBMS. Consider the join operation

(R(F1)LC theta DI(S[F'])

By the nested loop method, for every tuple r of R satisfying the
constraint condition F, we open a scan on S to retrieve the
tuple s which satisfies the join condition and the constraint
condition F', Thus the new tuple r"s is formed. If we can infer a
new constraint F* on R from any constraint other than F (say
F'), then for every tuple r of R satisfying the constraint F and

F", instead of F alone, a new scan on S is opened. This should
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be a great saving of execution time.

As is analysed above, we would like to infer new constraints
on relation R (or S) if there is a join operation between R and
S. Obviously the new constraints on R should be derived from the
constraints in Q on relations other than R itself. The new
constraints derived from the constraints on R itself will not
reduce the number of tuples satisfying the conditions since the
data base 1is in a consistent state. Thus all semantically
relaﬁed attributes of R are our target attributes when some
selection conjuncts of S, the join operation partner of R, are

defined on semantically related attributes of S.

Last, the cost of doing the Jjoin operation is
certainly great. In many cases we obviously hope that we could,
if possible, reduce the number of join operations. Consider the

following example :

SUPPLIER(Sno,Sname,City)
PARTS(Pno,Pname,Size)

SUPPLY(Sno,Pno,Quantity)

If we have the following production rule :

(all x in PARTS)(all y in SUPPLY) (y.Quantity >2000 &

x.Pno = y.Pno -=> x.Pname = "A")
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When SUPPLY[Pno]l is a subset of PARTSI{Pnol, then obviously the
query "find those supplier's names who supply part A in quantity

greater than 2000":

{z.Sname{ PARTS(x) & SUPPLY(y) & SUPPLIER(z) & x.Pno = y.Pno

& y.Sno = z.Sno & x.Pname = "A" & y.Quantity>2000}

is equivalent to

{z.Sname | SUPPLY(y) & SUPPLIER(z) & y.Sno = z.Sno

& y.Quantity > 2000 }

Generally speaking, we first identify "dangling relations"
in the query, i.e., relations that has a single join operation
and none of its attributes is the output attribute of the query.
For each dangling relation S, check if the selection conjunct
C(s.Bi) of S on the relation appears as the consequence of some
equi-join production rule. If it appears in some equi-~-join
production rule, check if the conditions of the lemma are
satisfiable and eliminate the join operation if every selection
conjunct of relation S in the query can be derived from some

production rule in the knowledge data base.
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Some dependency rules can also be used to eliminate join

operations, Let us consider the following example:

S(Sno,Sname,Loc,Pno)

P(Pno,Size,Weight)

And we have the following two different semantic rules

(all s in S)( s.Loc = "A" --> s,Pno < 100 )

(all s in S)( s.Loc

WB" —=> 3s,Pno = 5 )

Now, what do they mean? The former tells us that the Pno
attribute of a tuple in S 1is 1less than 100 when the Loc
attribute of the tuple in relation S is "A", while the 1latter
shows that the Pno attribute is guaranteed to be 5 when the Loc
attribute is "B"., Notice that the former does not necessarily
mean that the suppliers at location A supply all the parts whose
numbers are less than 100. We did not distinquish these two cases
in the above discussion because the relation is still there. It
does not matter if the field values are "time-varying". But when
we try to delete the join operation the distinction is important.
We refer to the former as a "nondeterministic" dependency rule
and the 1latter where there is only one value satisfying the

consequence of the rule as a "deterministic" dependency rule.
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For the convenience of discussion, we consider the case
where there is only one constraint C(r.,A') of R on gome
attribute A' other than the join attribute A from which we can
possibly infer a new constraint C(r.A) on A, It is helpful to
regard the constraint C(r.A') on the relation R as a constraint
which finally leads to the set of values of the join attribute A
of R. If the A attribute values of R have nothing to do with the
A' attribute values of R, or to be specifiec, the constraint
C(r.A') does not suggest any constraint on A attribute, then the
A attribute values has to be determined by the time-varying
relation of R. Suppose there is a dependency-rule in the
knowledge data base from which we can infer a constraint on
attribute A, If the rule is '"nondeterministie", the join
attribute values are still time-varying. This leaves only the
case where there exists a dependency-rule and the rule is
deterministic, Now, if we can, from the new constraint C(r.A) and
the join expression r.A theta s.B, infer a new constraint
C(s.B), we can certainly delete the join operation of R and 8
and insert a new constraint C(s.B) in its stead. The same thing
is true with the join attribute B of relation S. If we can
derive, from a deterministic dependency-rule, some constraint
C(s.B), the join operation of S with R is redundant. The element
satisfying C(s.B) must be there no matter how the other side of
the join operation is constrained, since the database is in a

congistent state,
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The interesting thing is that the above join deletion can
itself be generalized to any join operation, But, for
simplicity, we 1limit ourselves to the Jjoin operation that

involves only a dangling relation,

Now, in order to eliminate the join operation with R, R must
be a dangling relation and all constraints of R are on the
semantically related attributes. When these conditions are met,
the attributes of R that are constrained in the query are our
target attributes. And the join attribute A of R (and/or B of S
) if it is semantically related in the knowledge database is also
our target attribute.

.

5.CONSTRAINT STRENGTH AND SEMANTIC QUERY PREPROCESSOR

Having determined the target attributes in query Q, we try
to infer new constraints on them. This could only be done by
using semantic rules in the knowledge data base. There are the

following cases that need to be considered.

1. The semantic rule r 1is a dependency rule and all the
constraints of the 1lefthand side of r are satisfied with

respect to some conjuncts in Q.

2. Either its 1lefthand side constraint is satisfied with
respect to some disjunct of a conjunct in some selection
predicate or if its righthand side of r is contradictory

to some disjunct of a conjunct in some selection
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predicate in the case of r being a simple dependency rule.

3. The semantic rule r 3is a production rule. All of its
lefthand side constraints are satisfied with respect to
some selection conjuncts of R and S, and the join
condition r.C theta s.,D appears in Q. That is, the rule
is applicable to relation R in Q. And, S is not a dangling
relation when the join condition of R and S is an

equi-~join condition,

4, The production rule is applicable to relation R whose join
partner S is a dangling relation and the join condition is

an equi-join condition.

5. The semantic rule r is an equi-join production rule, All
of its lefthand side constraints are satisfied with
respect to some selection conjuncts of relation R. There
is a link from S to R on matching the values of the join

attributes though the join condition does not appear in Q.

The semantic rules which fall into the above category are said to
be relevant to query Q. The question of whether a semantic rule
is constraint insertion relevant or constraint deletion relevant
to Q depends on the target attribute. From the relevant rule r,
we can derive a new constraint on some attribute B. The attribute

B is called a resultant attribute of r. We certainly require

that the resultant attribute B of r are one of the target

attributes we have determined,
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Definition, Let r be a semantic rule relevant to query Q in the
knowledge database. If the resultant attribute of r is a target

attribute for Q, then r is called an active rule,

Thus when some rule r in the knowledge data base is active,
we can always infer a new constraint on some target attribute,
When this new constraint is generated from applying a constraint

deletion relevant rule:
(all r in R )( C(r.A) ==> C(r.B) )

to some disjunct ( say, C'(r.A) ) in a conjunct and there already
exists in the conjunct a disjunct ( say, C'(r.B) ) which is
satisfied with respect to the resultant constraint ( say, C(r.B)
) of the rule, then the corresponding disjunct ( say, C'(r.A) )
should be deleted. When the resultant constraint comes from a
rule of case‘ 1 and 3, such a constraint does not necessarily
cater to our needs, because either the new constraint C'(r.A) on
is contradictory to the old constraint C(r.A) on A in Q, or the
new constraint C'(r.A) does not provide more information than
the old constraint C(r.A). This latter case takes place when
C(r.A) itself is satisfied with C'(r.A), i.e., when 8' is a
subset of S.

/

Example. Suppose we have the following schemes:

DEPT(Dno,Dname ,Location)
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EMP(Eno,Ename,Dno,Position)

The query Q 1is "find the names of those employees who work in
NY as accountants", If there is such a rule, then in the
knowledge data base that the accountant offices are either
located in NY or Boston. The new constraint we can infer from
the rule is of no wuse to us. Note 1if the relevant rule
stipulates that the accountant offices are only located in
Boston, then the constraint we can infer on attribute Location of
DEPT is contradictory to the constraint on gttribute Location of
DEPT in Q. Without the execution of the query, we know that

the query Q has no solution,

Definition. Let C(r.A) and C'(r.A) be two compatible constraints
on attribute A, S and S' are their solution ranges respectively
in the domain of A. We say

1.C(r.A) and C'(r.A) have the same constraint strength if S = S';

2.C'(r.A) has more constraint strength than C(r.A) if S n S'( n

stands for set intersection ) is a proper subset of S.

We postulate that, when we are talking about constraint
strength, the constraint on attribute A is T if A 1is not
constrained in the query, i.e., the whole domain of attribute A
is the solution range. With the concept of constraint strength,
we can determine whether an active semantic rule can generate

some needed constraint C'(r.A) on target attribute A.
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OQur query preprocessor first checks whether query Q is
satisfiable by examining all bound rules of the relations that
appear in Q. If some bound rules are contradictory to the
conjuncts of the selection predicates of relations in Q, then
even without executing the query the preprocessor can tell the
user that Q has no solution, When Q is satisfiable, the semantic
query preprocessor proceeds to determine the set of target
attributes. If there are some target attributes, it begins
examining the activeness of the semantic rules of the relations
of Q which are relevant to Q one by one. The new constraint

C!'(r.B) should be generated if the current rule is active.

Constraint Deletion Case. Suppose that A is our target
attribute. Constraint c'(r.B) has been generated using

constraint deletion relevant rule

(all r inR)( C'(r,A) -=> C'(r.B) )

If C(r.B), which appears in the same conjunct the rule applies,
is satisfied with respect to C'(r.B) then the constraint C(r.A)

which is satisfied with respect to C'(r.A) should be deleted.

Constraint Insertion Case. Suppose that B is our target
attribute. Constraint C'(r.B) has been generated using constraint
insertion relevant rule r. There are two cases that need to be

discussed.
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When r is a dependency rule, the dependency rule is used to
provide the most efficient access path to relation R if B is not
a Jjoin attribute. To solve the efficiency problem, we have the

following efficiency assurance conditions:

1. The new constraint C'(r.B) on attribute B should have more

constraint strength than the old constraint C(r.B);

2. The access to relation R through the constraint C'(r.B) on
attribute B is the most efficient one, i.e., if we use
the access path on attribute B, we need the least number

of estimated pages to retrieve the qualified tuples of R.

The first condition deals with the efficiency comparison among
the constraints on the same attribute. Among the constraints on
different attributes of the relation, we use the estimated number
of pages to make sure that the access path introduced is the
most efficient one. When the efficiency assurance conditions are
met, C'(r.B) should be combined with the old constraint C(r.B)
to generate C"(r.B) which is then ANDed with the rest of the
query expression, Once C" (r.B) fails to provide the most
efficient access path to the relation, it should be deleted from
the query expression when our semantic query preprocessing ends,
The deletion of C"(r.B), in this case, depends on whether it was
generated entirely from some semantic rule, i.e., whether there
once existed some constraint C(r.B) in the query expression

which was used in the generation of C"(r.B).
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Now, sSuppose B is a Jjoin attribute and the rule is a
deterministic dependency rule. If relation R of which B is an
attribute is a dangling relation, C(r.B) should be migrated to
the other side of the join operation, i.e., C'(r.B) should be
combined with the join condition r.B theta s.D to generate some
constraint on the join attribute of S and the join operation with
R is wunnecessary if this is done. If relation R is not a
dangling relation and R has a join operation with the dangling
relation S, then the join operation of R with S should be

discarded and C'(r.B) is ANDed with the query expression.

When r is a production rule, we require that the newly
generated constraint C'(r.B) has more constraint strength than
the old constraint C(r.B), If this is true, then C'(r.B) should
be combined with the old constraint C(r,B) to generate C"(r.B)

which is ANDed with the rest of the query expression,

Equi-join Introduction Case. This happens when the rule is a
production rule which is equi-join introduction relevant to Q.
As in the case of a dependency rule which 1is constraint
insertion relevant to Q, we require that if the equi-join
operation of the new relation S with relation R is to be
introduced thé access of relation R through the clustered link
of S to R should also meet the efficiency assurance conditions,
When these conditions are met, the equi-join condition r.,C=s.D
and the resultant constraint C(s.B) should be ANDed with the

query expression, If later, the link access path of S to R fails
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to be the most efficient access path to relation R, the join

operation of R with S should be discarded,

Equi-join Elimination Case. Suppcse that S is a dangling
relation and the join condition of S with its partner is an
equi-join condition r.C=s.D, The success of eliminating the join

operation with S depends on the existence of the semantic rule

( all r in R )( some 3 in S )(r.C=s8.D)

If there is such a rule, then we should check whether the
conditions of the Corollary or Lemmas are satisfied. If they are,
then the corresponding conjunct should be marked as deletable.
The join operation with R is deleted together with all its
constraints only when all the constraints of R have have been

marked as deletable,

Note that in the above process query Q is unsatisfiable
whenever C'(r.B) generated by some deletion-relevant rule is
contradictory to some conjunct C(r,B) of the selection predicate

F of R in Q.

The above process is repeated once Q has been modified so as
to provide more information to the conventional query
optimization phase. The process is terminated when no

modification has been made to Q.
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6. COMPARISONS
The method proposed here considers a superset of the
strategies adopted by some other methods [King81]. We shall only

give three simple examples which show that the proposed semantic

query preprocessor can reduce the I/0 costs substantially,

Example. Suppose that we have the following schema:

APPLICANT(Ssno, Jobtitle, Officeno,...)

Assume that the relation has 50,000 records, occupying 5000

pages (10 records per page). There are 100 different jobtitle's.

The Jobtitle field is indexed by a two level B-tree and the

index (not clustered) occupies 200 pages (250 records per page).

consider the following query Q:

{ a.Ssno | APPLICANT(a) & a.Officeno = 17 }

Suppose that there is the semantic rule:

(all a of APPLICANT)(a.0fficeno=17 -->a.Jjobtitle='programmer’)

we can transform Q into Q!

{-a.Ssno | APPLICANT(a) & a.Officeno = 17

& a.Jobtitle = 'Programmer' }
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With the other strategy, this modification is not considered
since the index on Jobtitle is not clustered. Lack of this
information, sequential scan of the file APPLICANT is needed. The

cost is 5000 pages,

But with our strategy, the modification is carried out. The
conventional query optimizer can use the index on Jobtitle to
access the desired records of APPLICANT. Accessing the index on
jobtitle will require 2 random page accesses and 4 sequential
page accesses, The selectivity factor for Jobtitle =
*programmer' is 1/100 (500 out 50,000). The total cost is 6 index

pages + 500 data pages from APPLICANT which is 506 pages.
Example. Let us proceed to the following query:

{ a.Ssno } APPLICANT(a) & ( a.Officeno = 17

V a.Jobtitle = 'programmer' ) }
Assume that we have the semantic rule:
(all a of APPLICANT)(a.Jobtitle = 'programmer'--> a,0fficeno=17)
Ouf strategy transforms the query into the following one:
{ a.Ssno | APPLICANT(a) & a.Officeno = 17 }

But with the other strategy, no modification is made and the
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conventional query optimizer uses file scan method to retrieve
the qualified records. The cost is 5000 pages. Our strategy leads
to the accesses through the index on QOfficeno and the cost is 506

pages.

Example. Suppose that we have the following schema:

EMP(Ename, Job, Dno,...)

DEPT(Dno, Dname, Loc,...)

Assume that EMP has 2000 records, occupying 100 pages (20 records
per page) and DEPT has 200 records which occupies 20 pages (10
records per page). The Job field is indexed by a two level
B-tree. There are 100 different Job's and the index occupies 10

pages ( 200 per page ). Consider the following query Q:

{ e.Ename | EMP(e) & DEPT(d) & e.Dno = d.Dno

& d.Loc = 'A' & e.Job

'secretary’' }

Suppose that we have the following semantic rule:

(all d of DEPT)( d.Loc = 'A'==> d.Dno = 15)

With the other method, the rule is not helpful if there is no

index on Dno attribute of DEPT. S0 if we use the nested 1loop

method to process the query, the cost is 423 pages (2+1+20 pages

to retrieve the records of EMP plus 20%*20 pages to do the join),
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Our method transforms the above query into the following form:

{ e.Ename | EMP(e) & e.Dno = 15 & e,Job = 'secretary' }

The estimated cost of processing the above query is only 23

pages.

Semantic query optimization method for a specifiec class of
languages 3similar to IDA ([Sagalowicz77] has been proposed and
some heuristics are used to generate a set of queries equivalent
to the original one and, for each one in the set, a call is made
to the testing phase where the cost is estimated. The testing
phase is a cost estimator which is derived from [Selinger79].
Thus trees for all execution plans are constructed, costs
involved are estimated and the execution plan with the minimum
cost is chosen for the specific query which is equivalent to the
original one, Finally the query with the minimum cost is chosen
from among the set and passed to conventional query optimization
for further processing. We know that for every user query Q,
there exists a minimum query in the sense of the number of
attributes involved. If constraints on at most n additional
attributes can be added to this minimum query using the semantic
rules in the knowledge database, 2%*¥n calls are necessary to

choose the query with the minimum cost.
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The cost estimator [Selinger79] works as follows. First, the
best way is found to access each single relation for each
"interesting" tuple ordering ( every Jjoin column defines an
"interesting" order ) and for the unordered case. Next, the best
way of Jjoining any relation to these is found, subject to the
heuristics for join order ( i.e., we only consider join orders
which have join predicates ). This produces solutions for joining
pairs of relations. Then the best way to join sets of three
relations is found by consideration of all sets of two relations
and joining in each third relation permitted by the join order
heuristics, etc. After the complete scolutions have been found,
the cost estimator chooses the cheapest solution which gives the
required order of execution, The probablistic mathod in our
approach is in 1line with the conventional query optimization
method we assume, The efficiency assurance conditions in our
approach provide the most efficient access paths to respective
relations, Thus, the output of the query preprocessor is
deterministic in the sense that only one query tree needs to be
produced, This query can be directly sent to the conventional
query optimization phase for further processing and no efficiency

is lost.
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7. SUMMARY

We have proposed a query preprocessing method for SJP
expressions by incorporating the concept of constraint strength
and probablistic method into the semantic query optimization.
The problem of eliminating the join operation in SJP expressions

is also discussed.

It is to be noted that the semantic query optimization
method confirms the following idea [Stemple80] that the general

query optimization technique would have the following structure

.
.

High Level Query
]

|
i
i
Query Tree
!
d
: ? ?
: : :
QT1 cee QTi o QTn semantically
H equivalent trees
]
i i ;
i i i
Program i1 ... Program ij ... Program ik equivalent

programs

Best Program
The present paper deals with the selection of the right one among

the semantically equivalent trees.
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It should also be mentioned that the semantic query
preprocessor must pass some informantion to the conventional
query optimization phase, such as using the link of R to S to
execute the join of R and S if R is introduced by the semantic
query preprocessor. The information about the independence of
constraints on the relations in Q should also be made available
to the conventional query optimizer, since some constraints may

not be independent.
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