Edward Jeffrey Conklin
All Rights Reserved

This work was supported in part by:

The National Science Foundation
Grant Number IST 8104984

ACKNOWLEDGEMENTS

This dissertation owes its existence to the direction, encouragement, collaboration,
and intellectual support I received from two people: Michael Arbib and David
McDonald. Besides his crucial guidance in the beginning stages of this work, Dr.
Arbib provided an orientation to Cognitive Science which is reflected throughout this
work. Dr. McDonald’s partnership in the design, implementation, and development of
the program was essential, and it is to him that I owe everything that I know about
language generation.

Likewise, Lyn Frazier was a wonderful linguistics mentor, and I am enormously
grateful to her for pushing me to be scientific (ie. “explicit”) about which claims in
this thesis I really believed in, and which of those were testable. Kate Ehrlich
gracefully guided me through the maze of designing, running, and reporting on
psychological experiments. I also thank David Waltz, Mitch Marcus, and Candy
Sidner for their interest and input over the years.

The students, faculty, and staff of the Computer and Information Science
Department have been a source of numerous dicussions and friendships (and volleyball
games). In particular, Jeff Bonar and Steve Levitan were the source of many long
and productive arguments during our “formative years” together. Terry Weymouth
went out of his way to keep me honest about my notions of computer vision. And
Bev Woolf kept me company on the computer for some of the most exciting nights
of my intellectual career.

On the more personal side, I would like to express my appreciation to my
parents for their loving support (financial and emotional) during what seemed like
(and was) such a long time.

For the discipline I had to develop to finish this work and the sheer satisfaction
of doing good work I thank Werner Erhard, who was instrumental in my discovery
of myself.

Finally, I thank my wife Marie for her support, her assistance whenever 1
needed it, and for putting up so graciously with the other woman in my life (this
thesis!). I couldn’t have done it without you!

ABSTRACT

DATA-DRIVEN INDELIBLE PLANNING
OF DISCOURSE GENERATION USING SALIENCE

May 1983
E. Jeffrey Conklin
B.A., Antioch College, Yellow Springs, Ohio
MS., Ph.D., University of Massachusetts
Directed by: Professor David D. McDonald

Natural language generation can be divided into two stages: deep generation, in
which the content and style of the utterance are selected and a specification of the
desired utterance is constructed, and surface generation (or “realization™), in which this
specification is converted into natural language using the syntactic, lexical, and
morphological rules of the language. Traditionally, the deep generation task of
selecting the topics of discourse (when not trivial) has been done using a
computationally expensive, goal-directed approach. In this thesis the salience of objects
in a database is used to provide a way to explore data-driven selection - a
computationally much less expensive approach to discourse planning.

The domain of generating descriptions of natural suburban scenes was used in
this research. The phenomenon of salience in such pictures was explored through a
series of psychological experiments -~ in some, subjects provided subjective ratings of
the relative importance of the items in various photographs; in others, subjects wrote
short textual descriptions of the same pictures. Analysis of the rating data provided
the basis for the beginnings of a theory of visual salience as a perceptual
phenomenon, while analysis of the combination of rating and textual data showed the
strong influence of salience on the order of mention of objects in the descriptions.

Based on the data from these experiments a program (GENARO) was written
which plans paragraph-length descriptions of visual scenes. The input perceptual
representation, though hand-built, is designed to simulate the output of a fully
operational computer vision system, and includes an annotation of objects’
representations with the empirically-based salience values. GENARO uses production
rules (each of which knows about some specific rhetorical or stylistic effect) to build
“rhetorical specifications”. Its processing is data-driven, ie. a “current-item” is
selected from a salience-ordered list of perceptual objects, and this object and its
salience are the primary determiners for the actions of the rhetorical rules. In
addition, all of GENAROs actions are jndelible — the control structure provides no
look-ahead or backup for the planning process.

The realization specification (“r-spec”) built by GENARO is realized as an
English sentence by a separate Al program, MUMBLE, written by McDonald as a
general purpose realization component.

The “planning” done by GENARO is distinctly localized and short-sighted, and
aims to take full advantage of the topic-ordering information captured in the data
base by the salience annotation. The fact that this localized planning is able to
devise quite natural-sounding paragraphs demonstrates that a data-driven approach to
deep generation is viable, and that salience can be a powerful heuristic in guiding
natural language generation.

TABLE OF CONTENTS

LISTOFTABLm-.......I..........l...ix

LISTOFFIGURESo.oococ.nccoaao.caooooooo-ucc.-oooocx

Chapter

L

mTRODUCHON '............l'.........O‘......l

11
12
13

14

Pickingadomain 2
Deep and Surface Geperation 3
The thrust of this research 3
131 A shortexample 4
132 Theclaims of this thesis 7
The organization of this thesis 8

BACKGROUND'.I...I.....Q............ll

21

22

Deep Generationt eeneeo.. 1
211 Systems with very restricted input 11
212 Data bases with selection prewired 12
213 Planning and deep generation 12
214 Summaryt e e 15
Salience e e e e e 16

mAIPRmRAMGENARO @ & & 0 06 0 &6 & 0 0 O ° 0 0 0o 0 0 0 0 0o 0 o 17

31
32

33

34

35

A brief explanation of MUMBLE 17
The Control Structure of GENARO 19
321 Packets and Iterative Proposing 19
322 The Organization of the System 21
323 The Algorithmcuuuu... 34
The Rules and their Interactions 35
331 The Rhetorical Primitives 36
332 Writing Rhetorical Rules 39
An Example of Generating a Description 43
341 The First Rspec00 enenn.. 44
342 The Second Rspec vvvvnvnunnen.. 53
343 The Third Rspect iivnunnee.. 60
344 The Last R-spect i ittt v inenee.. 63
Summary e e e e e e e e e e e . 65

Iv.

V.

THE SETTING FOR THIS PLANNER:¢ccc00ccceeeo. 67

41

42

The input perceptual representation 67
411 How the SALIENCE system works 68
412 The simulated perceptual representation 70
MUMBLE and the MUMBLE/GENARO interface m
421 How MUMBLE worksc.uveeuuun. 78
422 MUMBLESs dictionary 80
423 The grammar for scene descriptions 82
424 An example realization 88
425 Lexicalization 91
426 Why Deep Generation? 97

IMPLICATIONS OF THE MODEL¢cc000000e0....101

51

52

53

The claims of this thesis 101
511 Descriptions require salience 102
512 Salience is the primary strategy 103
513 Stepping down the USOL is sufficient 109
514 Rbhetorical structure is not recursive 112
515 Iterative proposing is necessary and sufficient 114
516 Rhetorical planning can be done indelibly 116
517 Salience is perceptual 120
518 Descriptions are object-driven 122
519 No feedback from surface to deep generation 123
5130 One rspec per sentence oot et ... 125
S111 Summary e e e e e 126
GENARO as a tool for linguistic research 127
521 Reifying object clusters 127
Summary e e e e e e e e e e e 134

CONCLUSIONS'.............I............135

6.1

6.2

Features and Limitations 135
611 Salience, 135
612 GENAROt 136
Some immediate extensions to the system 137
62.1 Ending rspec construction 137
622 Less salient properties and relations 138
623 The Current-item as a stack 138
624 Unrelated objects inone r-spec 139
625 Gestalts e e e 140
62.6 Exploiting the Paragraph Driver 140

APPENDIX A.LISTING OF GENAROTOP LEVEL 143

APPENDIX B.GENARO OUTPUTccccccscosessccece. 147

REmRENCm.....'..'....‘............'..... 173

NS ALUNE

LIST OF TABLES

Thematic-object weights 0 0..... 28
Rules and their control style 30
First r-spec: First round of proposals 46
The first r-spec: The second round of proposals 51
The second r-spec: The first round of proposals 55
Second r-spec: The second round of proposals 55
Third r-spec: First round of proposals 61

BRBREBC®RNavaAwNN

LIST OF FIGURES

One of the pictures used in the experiments 5
A short description of the picture in Figare 1 5
The initial data structuresttt ittt 6
The claims of this thesis 9
The Identification Schema in McKeowns System 14
The organization of GENARO 22
The grammar of I-8pecs it ittt it i e e ... 32
An example 1-spec e e e e e e e 32
The basic algorithm of GENARO 34
Afewnoteson LISP0.00 i inennn. 35
The tree for Introduce enenennn. 40
Therule $introt iiinenn. 41
The first rspec element0ttt tinurnn.. 41
The rule $propsal-obj 42
The USOL for thisexamplec¢c0vu.... 44
The first Currentditem 0t innnen.. 45
The rule $prop-colorttt et e 47
The LET statementttt iinnreeeennnnnes 47
The rule $propsalience0.0. 0 iunenrnun. 49
The rule $relnsalience000 i eninnennen.. 49
The first complete r-spec 52
The rule $mewitem e 54
The second Current-item 0t i vttt ennnnnn 54
The first part of the second rspec00u..... 56
The rule $condense-prop ittt i ittt e 57
The third Current-sitemt iveenenenene.. 58
The second rI-SPeC i it e e e e e e e e e e e e e e 59
The fourth Currentsitem0.o.... 60
The third rsspec ittt e e e 61
The function Next-curitem-salient-enough? 64
The final rspec in the example 65
KL-ONE representation of the winter house scene 71
Detail of a KL-ONE Network 72
MUMBLE’s grammar of dictionary entries 80
An example dictionary entry 81
The grammar of choices 81
Anexample of achoice, 8
An example partial parse tree e . 83
The syntactic forms for spatial relations 84
New and old items in an actual description 85
The second r-spec from the example description 89
The initial surface structure nnon... 90
An intermediate surface structure 90
An example of object-centered relations 95

EI8G

Salience-based versus relation-based rules 105
Paragraphs from the “lesioned“ model 106
A possibly recursively-structured paragraph 113
Clustering objects in KL-ONEc0o..v... 132

CHAPTER I

INTRODUCTION

In investigating the process of Natural Language Generation (NLG) there are
two major aspects to be addressed:

1. How to determine what to say, and what not to say; and
2. Determining how to express that which has been selected.

Part of the difficulty in a broad approach to NLG is that, while the second issue is
fairly well defined and is a straightforward extension of linguistic inquiry, the first
question (which I will call the problem of “selection”) opens the door to the
little-understood realms of pragmatics, speech acts, and discourse theory. Grice
observed ([Grice 1975], p. 67) that there is a conversational maxim to “Be relevant”,
but confessed that the issue of conversational relevance was complex and difficult.

Until recently the issue of how one decides what to say could not be discussed
in any detail because it was underspecified. On the simplest model the process of
deciding what to say requires a representation of “what is known” (in the sense of
“available for saying”) as the input, and what specifically is to be said and how to
say it (somewhat akin to a “deep structure”) as the output. Without specifications of
the input “thoughts” or “kmowledge” and this output “message”, however, linguists,
psychologists, and philosophers have not had the tools to have much of a conversation
about the details of the selection process.

The field of Artificial Intelligence (AJ) has at last provided the opportunity to
construct the tools with which language generation may be investigated. However,
NLG systems to date have generally avoided facing the selection problem squarely,
either by skipping it entirely (e.g. [Friedman 1969]), or by “pre-wiring” the solution
into the input data base (using “and-then-say” links between items) (e.g. [Davey 1979]
and [Mann and Moore 1981]). The recent systems which do offer serious solutions to
the Selection problem use powerful but costly search [Appelt 1982] and matching
[McKeown 1982] techniques to construct the message.

This thesis is based on an observation that is so simple that it seems to have
been overlooked: that speakers talk about what is imporfant to them in a particular
situation. More specifically, that the Selection process is guided (if not determined)
by the evaluation of what in the data base is important, or “salient”, and what is
not. Hence, one of the central issues of this thesis is, What makes something

Introduction

salient? Not only does this notion simplify the problem of What to say, it captures
an important aspect of human knowledge - that we have an intuitive sense of the
relative importances of the different things that we know about. The thesis goes on
to explore the strengths and limitations of a simple planning system which exploits
salience as a heuristic for text planning.

L1 Picking a domain

Since the generation process starts with a “meaning™ and finds linguistic
expression for it, the selection of the domain of discourse is crucial. The issues of
what is said and how it is said are so intertwined that the “How” cannot be usefully
studied in isolation ~ the “What” must also be considered’ Thus, part of building an
Al natural language generator for the purpose of studying how ideas are turned into
language is the selection of a domain which can provide the “seed” semantic content.’

For my research on generation I chose the domain of descriptions of pictures,
using as the domain data base a symbolic representation of the visual information in
a picture. Here there is a natural and direct correspondence between the perceptual
material presented in the picture image and the linguistic material in the textual
description. This correspondence can be used as a motivation of and check on the
rules and strategies that go into deciding what in the picture is important to mention
-~ and at what point in the text — and what can be omitted. Indeed, there are
levels of importance of items in a picture and there are degrees of rhetorical stress
on items in a text, and this correlation between “meaning” and language is perhaps
more accessible in studying scene descriptions than in most other kinds of textual
material.

! It is tempting to define salience in terms of what people talk about, but this makes it vacuous
by making it circular. To avoid this, salience must be approached as a pre-linguistic
phenomenon.

? By “meaning” I mean simply a packet of information which is to be expressed by the NLG
system.

3 In studying parsing, on the other hand, the input data is clearly specified (as a string in the
language), so one can more readily scparate the conventional study of How things are said (c.g.
syntax) from the study of semantic content.

4 Ironically, there is considerable interaction between the domain chosen and what one learns
about generation: the domain of discourse has a great deal to do with the style and structure
of the text generated about it.

Introduction 3

12 Deep and Surface Generation

Another aspect of NLG is that it is a process which naturally divides into two
phases. In the first phase selection takes place, reflecting the speaker’s goals, and the
selected material is composed into a “realization specification” (abbreviated “r-spec”)
according to high-level rhetorical and stylistic conventions. In the second phase the
r-spec is “realized” -~ the English text produced — in accordance with the syntactic
and morphological rules of the language’ I call the first phase “deep generation”,
instead of the more technique-oriented term “planning”, to reflect the view that its
use of actual planning techniques will be one of several methods available for
high-level structuring of the output.

This thesis presents a model of deep generation which performs data-driven
planning by taking advantage of the power of salience.

Rather than designing and building my own system for doing the second stage
“surface generation” (also known as “realization”), I chose to adopt McDonald’s
MUMBLE system [McDonald, 1981 MUMBLE was designed with a very flexible
input specification, thus making it useful as a general purpose realization component.
In fact, the process of using MUMBLE in the output part of a natural language
interface mainly involves building for it a “dictionary” which specifies the possible
English realizations for each term in the domain data base (see Section 4.2)

1.3 The thrust of this research

The purpose of this research has been to explore an approach to the planning
of text which is in some settings more natural than traditional methods. The
exploration has taken two forms: 1) experimental studies of people looking at pictures

51 use this new term — “realization specification® ~ in place of the term “message”, simply to
avoid some of the “baggage” which the less technical term carries.

¢ This distinction has also been made by Levelt [1979]) and Kempen [1977], using the terms
“conceptualizing” and “formulating”; by McDonald [1980], using the terms “speaker” and
“realization component”; and by Thompson [1977] and McKeown [1982], using a “strategic”
component followed by a “tactical” component.

7 This was actually a liability in doing this research (as further discussed in Chapter 4), because
it left the cutput of the deep genmeration component almost completely unspecified. It would
have been easier (although less flexible) if MUMBLE had had a rigid input language, since that
would have provided more constraints on the design of the decp generation component.

4 Intreduction

and describing them, and 2) the construction of an Al program, GENARO, which is
the deep generation component of a system which generates natural-sounding
descriptions of scemes. The program incorporates insights derived from the studies
into both its structure (by relying heavily on salience as a heuristic) and its knowledge
(by using rhetorical conventions culled from human-generated texts). The program
simulates human generation (speaking) performance: because it uses an efficient
data-driven approach to planning the text, and because its decisions are indelible, it is
effectively real-time in its planning, and it occasionally “talks itself into a corner” (i..
builds unrealizeable rhetorical specifications).

GENARO also provides a testbed in which rhetorical and thematic conventions
can be explored. The program uses a set of “rhetorical rules”, expressed as
production rules, to do its planning. Since changes in and additions to this body of
rules show up in the structure of the text produced by the system, it is possible to
discover specific rhetorical mechanisms, as well as to discover and test rhetorical
conventions in a very precise framework.

131 A short example.

“A picture is worth a thousand words.”
An old maxim

This section presents a trace of the generation of a short scene description,
showing briefly the steps that GENARO takes to plan a paragraph of text.
Figure 2 shows the specific paragraph which describes the picture shown in Figure 1.

The paragraph was generated from a (hand-simulated) perceptual representation
in which the most salient objects, in order of decreasing salience, were:

House, Fence, Door, Driveway, Gate, Mailbox, and Lighting.

The deep generation component maintains this list as the “Unmentioned Salient
Objects List” (USOL), and it is this data structure which mediates between GENARO
and the domain data base (see Figure 3). It should be stressed that the USOL
contains only objects ~ not properties of objects or relationships between objects —
since I specifically claim that such an “object-driven” approach is both more natural
and adequate to the task.®

® In general in this thesis I use the term “object” to refer to objects in the world as they are
represented in the domain data base, whereas “item” is any entity in the data base (e.g. objects,
properties, relations, etc.).

Introduction 5

Figure 1: One of the pictures used in the experiments.

“This is a picture of a white house with a fence in front of it. The house has a red
door and the fence has a red gate. It is a cloudy day.”

Figore 2: A short description of the picture in Figure 1.

There is one primary register in the system: “Current-item”. It contains the
object currently in focus (and the most salient object which has not previously been
mentioned). An object moves into focus by being “popped” from the USOL and
placed in the Current-item register, along with its most salient properties and
relationships (for ease of access). When formulating the r-spec, most of the rhetorical
rules then look only at the Current-item. (Some rules look down “into” the USOL,
or into the r-spec under construction, as elaborated below.)

GENARO stores its rhetorical conventions in the form of production rules’
The rules are organized onto several “packets” (e.g. Introduce, Shift-topic, Elaborate,
Conclude), which are used for high-level control of the paragraph structure.

A production rule is specialized parcel of procedurally-encoded information: there is a
“precondition part” which, if its various conditions succeed, triggers the “action part”, in which
the actions of the rule are specified.

6 Intreduction

The control mechanism for the production rules is “Iterative Proposing™ each
of the rules whose precondition is satisfied makes a proposal and gives it a priority;
the proposals are then ranked, and the one with the highest priority wins. “Winning”
generally means that the element that was constructed by that rule gets added to the
rspec. This process is repeated until the rspec is complete. (Repetition of this
proposing stage is necessary because the environment in which the rules” conditions
are evaluated changes as the r-spec grows.) The r-spec can thus be thought of as a
“molecule”, each of whose “atoms” is the result of a successful rule. These atoms are
called “r-spec elements”, and are the basic units which are processed by MUMBLE;
they are either objects, properties, or relations from the domain, or rhetorical
instructions that originate with GENARO.

In the course of producing a description many r-specs will pass from GENARO
to MUMBLE. Each rspec is produced “locally” within GENARO, without an
awareness of previous r-specs or a planning of future ones, and MUMBLE produces a
sentence for each r-spec it receives.

GENARO starts with an empty r-spec buffer and with Current-item set to
House, the first item (in this example) in the USOL (see Figure 3). There is a rule
which proposes to “Introduce(House)”; this rule’s conditions are that this is the first
rspec in the description, and that the salience of the Current-item is above some
specified threshold. In this example both of these conditions are met, and the r-spec
element Introduce(House) is proposed at a high rhetorical priority, thus guaranteeing
not only that it will be included in the first r-spec, but that it will be the dominant
element in that rspec. In the next round of proposing another rule proposes (and
this proposal wins) including the color of the house (e.g. Color(House,White)), not
because the color is itself salient, but to “flesh out” the introductory sentence. This
rule is included because it was noticed that salient items were rarely mentioned as
“bare” objects -~ some property was always given. (Note also that there are other
rules that propose mentioning properties of objects on other grounds, i.e. because the
property itself is salient.) Finally, there is a rule which notices that Fence is both
quite salient and directly related to the Current-item, and so proposes
In-Front-Of(Fence, House).

The USOL: Fence Door Driveway Gate Mailbox Lighting

The Current-item: House

Figure 3: The initial data structures.

The values of the two main data structures after House has been popped off
of the USOL and made the Current-item.

Introduction 7

Since the r-spec mow contains three elements and there are no strong grounds
based on salience or considerations of style to continue adding to it, the r-spec is sent
to the process MUMBLE, which immediately realizes it. MUMBLE's dictionary
contains entries for all of the symbols used in the r-spec, eg. Introduce, In-front-of,
House, etc., and these are used to construct a linguistic phrase structure tree which
then controls the realization process, outputing “This is a picture of a white house
with a fence in front of it.”. Back in GENARO, after the r-spec was sent, the
Introduce packet was turned off, the message buffer cleared, Door (the next unused
object) removed from the USOL and placed in the Current-item register, and the

Iterative Proposing process started over.

In building the next r-spec, Part-of(Door, House) and Color(Door, Red) are
inserted, by rules similar to the ones described above. However, there are no other
salient relations or properties to mention about the Current-item Door: nothing of
high rhetorical priority is left to be proposed.® There is, however, a rule called
“$condense-prop” which looks for “rhetorical parallels” and proposes them at low
priority (ie. they only win when there are no more useful rhetorical effects which
apply). $Condense-prop notices that both Door (the Current-item) and Gate (which is
somewhere “down” in the USOL) have the property Red, and that the salience of
Gate and of the property Color(Gate, Red) are above the appropriate thresholds, and
so proposes that Gate be made the new focus. When this action is taken, a
conjunction marker (a symbol know by MUMBLE to signal conjunction) is added to
the rspec, and Gate is pulled out of the USOL and made the Current-item.
Processing continues until both the color of Gate and the fact that it is a part of the
Fence are inserted. The r-spec created by these actions is realized (by MUMBLE) as
“The house has a red door and the fence has a red gate.”.

As the next USOL object (Driveway) is made the Current-item it is found to
have a below-threshold salience value. This triggers the Conclude packet being turned
on. In this packet is a rule which goes into the USOL looking for scene-level
“objects”, such as the lighting conditions in the picture (e.g. day or night), the season
of the year, etc. This rule finds and proposes the object “Lighting”, and this is sent
to MUMBLE as a single element r-spec, resulting in the sentence “It is a cloudy
day.”

132 The claims of this thesis.
As in all AL research there are a myriad of details and decisions in the

program itself. Some of these are deliberate and carefully chosen, while most are
unimportant implementation details. The distinction is important: in order to evaluate

9 Once a rule’s proposal is accepted that rule turns itself off until that r-spec is complete.

8 Introduction

the theory" offered here one must know which details of the program are
unimportant and which are substantive claims of the model.

Therefore, Figure 4 offers a list of the central claims of this thesis. The
fundamental claim being made by this thesis, of which each of these claims is a
particularization, is that

deep generation can be done quickly and effectively using a data-driven,
indelible planning phase, IF the domain data base is annotated with
salience.

The basis of this rapid planning is that the model is dara-driven and has very little
knowledge about global paragraph structure. Instead, it uses the salience in the data
base to steer a very localized planner (i.e. one that does not look forward or back in
deciding what to do next).

The 10 claims in Figure 4 specify precisely the important aspects of deep
generation which this system is designed to address. They comprise an initial theory
about NLG - proving a claim untrue constitutes an invalidation of the theory in the
particular form embodied in the program. Most of these claims are technical, and
require some discussion to be clear; this discussion is provided in Chapter 5, so these
claims are presented here simply to give the reader an orientation to the important
points to be discussed in this thesis.

14 The organization of this thesis

This chapter has presented an overview of the research reported in this thesis.
Chapter 2 presents the previous work that has been done in NLG, with particular
attention to the ways in which selection and deep generation have been handled.

An empirical exploration of the notion of visual salience, which is central to the
work presented in this thesis, is presented in a different Technical Report
(COINS TR 83-14). From the perceptual psychology experiments on scene descriptions
described there, it was determined

U In this thesis I will use the following terminology: a theory is a formal claim or a set of
claims about a system; a theory can be embodied in a model, which makes specific predictions
about the input/output behavior of the system; finally, a program is a machine-runnable
implementation of a model. This distinction is from McDonald [personal communication].

Introduction 9

10.

Some annotation of salience in the domain data base is necessary to organize
descriptions based on that data base.

Natural-sounding descriptions can be generated using as the primary selection
strategy: Mention the most salient things first.

I define the Locality Constraint to be the following limitation on the power of a
deep generator: each domain item is made the Current-item once, and the system
rules describe only the Current-item. The result is that an item is described at
only one point in the text; the claim is that this is sufficient to cover a broad
range of descriptive texts.

Descriptive paragraphs are not genmerated by a recursive (i.e. stack) mechanism.

No more or less than the power of Iterative Proposing is required to effectively use
rhetorical conventions expressed as production rules.

The planning of r-specs can be effectively managed indelibly — backtracking is not
needed, because the domain of rhetorical planning is resilient enough that it is in
fact difficult (at this level) to “paint yourself into a corner”.

Salience is perceptual, not linguistic. The components of visual salience are
computed as a by-product of seeing and “understanding” a picture, so that selection
based on salience relies not on some prespecified order of presentation in the data
base but rather reflects naturally the processing used to construct and maintain the
data base.

Perceptual descriptions are oriented to the objects in the domain data base, while
properties and relationships are secondary.

Feedback from surface to deep generation is expensive and unnecessary.
It is adequate to the interface between deep and surface generation to have the

basic unit of planning at the deep level correspond to a single sentence at the
surface level.

Figure 4: The claims of this thesis.

® that the notion of visual salience, as defined there, is a significant perceptual
phenomenon, and that it possesses an internal structure consisting of high-
and low-level and intrinsic and context-dependent components;

10

Introduction

® that it can be studied by the simple experimental techniques described in the
chapter;

® that salience organizes a perceptual data base in a way that allows greatly
simplified rhetorical planning in natural language generation, by playing a
powerful role in determining the order in which objects are mentioned in
scene descriptions; and

® that there are other textual organizing forces than salience, and that these
have to do with the relationship between objects in the domain.

Finally, it is suggested that the notion of salience, where it is applicable, can be a
powerful additional dimension in a data base.

In Chapter 3 the deep generation component GENARO is described, along with
a detailed example of its operation. In the example the extreme locality and
“myopia” of the program are demonstrated, and specific examples of the strengths and
failings of this approach are provided.

Chapter 4 then presents the computational setting in which GENARO operates.
At the input to GENARO is a visual representation, which is (as mentioned above) a
mockup of the internal model which a full-scale computer vision system would
construct during its analysis of an image. The representation is annotated with
salience values which were derived from the experiments. At the output from
GENARO is the MUMBLE surface generator. This system is described as an
interpreter of GENARO’s r-specs into English, with emphasis on the form of
dictionary entries and the process of writing them.

Chapter 5 is about the theoretical implications of this work. It presents a
thorough discussion of the above claims, as well as a discussion of the use of
GENARO as a tool for doing research into the rhetorical conventions in English.

Finally, in Chapter 6 the strengths and shortcomings of this research are
discussed, with an eye toward specific research topics for the future.

Background 11

CHAPTER I

BACKGROUND

2.1 Deep Generation

The problems confronted by the builder of a generation system are intimately
related to the domain which is chosen as the source of “ideas” to be expressed. The
choice of domain brings with it its own range of special problems, exceptions, and
heuristics. Work in the area of deep generation, including this thesis, is particularly
sensitive to this interdependence, since the interface between perception, conception,
and language is too rich to have allowed anything but spotty and partial treatments
to date. Before the problem of deep generation can be considered to be “solved” we
will need to have given the gift of language output to a computer system with
sufficient world knowledge and computational power to be capable of needing to say

everything that people might need to say.

In this chapter I review some of the previous efforts at deep generation. It is
noteworthy that this is a relatively short discussion. In the brief history of
computational linguistics, only a handful of workers have addressed the hard problems
that occur upstream from grammatical and lexical realization. Indeed, the fact that
the name “deep generation”, and the two-staged view of generation that it implies, is
relatively new reflects uncharted nature of the territory. Most work has either used
an input domain which presented few problems, or has somehow skirted the problems
presented by the input domain.

The following discussion is organized into three broad categories: systems which
skipped most of the deep generation process by hand-feeding the generator with a
very small packet of carefully structured information; systems which used a large input
data base but which built the solution to the selection problem into that data base;
and systems which did serious deep generation.

2.1.1_Systems with very restricted input.

The clearest examples of this kind of system are the various efforts in machine
translation, i.e. Herskovits [1973] and Brown [1974]). These systems accept an utterance
in one language, parse it into some internal representation, and feed this
representation to a generator which uses the grammar of a different language. There
is no need to reflect on or plan the contents or style of the output, since these are
completely specified by the input.

Background

Generators such as Friedman's [1969] which were primarily randomly driven
surface generators had essentially no input from which to plan. They were useful for
exploring grammatical issues in a generation framework. The systems that were
driven by ATN’, ie. Simmons and Slocum [1972] and Goldman [1974)], also tended
to focus on these surface generation issues.

2.12 Data bases with selection pre-wired.

Other workers chose to provide their system with an interestingly large domain
data base from which to generate. Usually, however, the solution to at least the
selection problem was pre-wired into the data base. Sometimes other deep generation
issues, i.e. level of detail and where to place emphasis, were pre-wired as well.

Meehan's generation system [1977] “composed” simple stories by using world
knowledge about the characters, the environment, and some rules of behavior and
motivation to construct an internal plan for the story. The order in which events
were described was largely prespecified, however. The level of detail was determined
by the limited detail in the system’s model of the world.

Davey’s system [1979] for describing a game of tic-tac-toe had both deep and
surface generation components. The input data base — a move-by-move description of
a game - had the kind of temporal links between the objects of description (i.e. the
moves of the game) that make the Selection process simple, since it is not only
adequate but desirable to simply mention the moves in the order in which they
occured. However, Davey's system also determined how to group the moves for each
sentence — a crucial issue, since too few or too many moves made for awkward text.
Each move’s strategic value had to be taken into account, so that a threat/response
pair, for example, did not get separated by a sentence boundary. Most importantly,
Davey’s system tackled the problem of how to express each move in the context of
its relationship to previous moves.

Mann and Moore [1981] used as their input data base a flow-chart for
responding to a fire alarm. The order of mention was, as with Davey, specified
essentially in terms of explicit “and-then” links in the domain data base. Decisions
about sentence size and style were made on the basis of general purpose heuristics
(and not on discourse context or sentence content).

2.13 Planning and deep generation.

A few systems have taken on the substantial problems in deep generation.
They use the generally thorough and expensive process of planning to do the selection
job. Cohen [1978] studied planning as a solution to the Selection problem in deep
generation. His system, which planned a speech act in response to a user’s question,
did its planning by using backwards chaining to search through a space of possible

Background 13

utterances and the goals they could achieve. More recently, in [Cohen et. al. 1981],
he has described a model (based on recognition of “intended plans”) which is

powerful enough to enable a computer program to act as a truly helpful partner in a
dialogue.

Appelt's KAMP [1982] system features the planning of utterances which satisfy
several goals. It uses planning in all phases of generation, from the selection of the
high-level illocutionary act (e.g. inform or request) to the syntactic structure and
lexical items of the text. Appelt claims that by treating the entire generation process
in this uniform way sub-goals at different levels of the process can interact, allowing
low-level decisions to influence high-level selection decisions. His approach also
explicitly rejects the view of generation as a multi-stage linear process - the planning
of what to say and how to say it are concurrent processes in a uniform framework.
Appelt’s system also features reasoning about what to say based on what the hearer
knows and wants, using a formalism based on possible worlds semantics of an
intensional logic of knowledge and action.

Finally, McKeown’s TEXT system [1982] generates explanatory paragraphs in
response to a data base query. This work represents a substantial advance in the use
of sophisticated selection strategies in the generation of multi-sentence texts, as well as
being an interesting approach to maintaining coherence relations between successive
sentences. Because of the similarities with the goals of my system, her system will be
reviewed in somewhat more detail than the others.

The inputs to the system are a data base and a user-generated query concerning
the data base. The data base is an Office of Naval Research data base on ships,
missiles, etc. expressed in a semantic-net formalism. There are three basic types of
questions the system can answer: “Describe X", “Define X”, and “Compare X and Y.
The specific question asked is used initially for two things: to select a small set of
schemas, each of which might be used to answer the question (which schema to use
is determined later); and to select a small subset of the data base, called the
Relevant Knowledge Pool, from which the data for the answer are selected. The
type of data in the Pool is then used to determine precisely which schema is to be
used in constructing the answer.

Since schemas play such a central role in this system it is useful to describe
them in some detail. McKeown constructed her schemas by studying actual samples
of text and generalizing their structure. An example is shown in Figure 5.
McKeown writes “A schema is a representation of a standard pattern of a discourse
structure which efficiently encodes the set of communicative techniques that a speaker
can use for a particular discourse purpose” [McKeown 1982]. Despite the fact that
the schema notation is highly suggestive of a context free grammar, McKeown claims
that her schemas are strictly descriptive of some observed textual phenomena, and are

14 Background

Identification Schema

Identification (class & attribute/function)
{Analogy/Constituency/Attributive/Renaming}*
Particular-illustration/Evidence+
{Amplification/Analogy/Attributive}
{Particular illustration/Evidence}

Example
“Eltville (Germany) 1) An important wine village of the Rheingau region. 2) The
vineyards make wines that are emphatically of the Rheingau style, 3) with a considerable

weight for a white wine. 4) Taubenberg, Sonnenberg and Langenstuck are among
vineyards of note.”

Classification of the Example’s Sentences

1. Identification (class & attribute)
2. Attributive

3. Amplification

4.

Particular illustration

In the schema “{}” indicates optionality, “/ indicates alternatives, “+” allows its item to
appear 1-n times, and “*” allows its item to appear O-n times.
Figure 5: The Identification Schema in McKeown System.

not “prescriptive”.!

! From a cognitive science perspective there is some question about the precise role played by
schemas in the TEXT system. On the one hand they are derived in an empirical manner from
actual samples of text, and in the computer implementation they stand squarely in the middle
of the processing — functioning both as data (or more accurately the “filter” through which the
data comes) and as control (guiding the actual structure of the paragraph being generated). On
the other hand, McKeown is careful to state that they do nmor function as grammars of English
text. While it may be a minor point, this makes it questionable that schemas are testable (ie.,
falsifiable), and, more generally speaking, leaves some doubt about what their theoretical status
is. This problem is an example of the tension between traditional AI. and cognitive science. To
enter the cognitive science arema requires making claims beyond the gross input/output behavior
of the system to the actual structures and processes used in the model.

Background 15

In TEXT schemas are implemented as Finite State Automata (FSA), which is
parallel to the Iterative Proposing conmtrol structure in GENARO: in TEXT all arcs
leaving a state are “taken”, but the best one is selected by the focus constraints, and
the state that it leads to becomes the next state. (Thus, although all possible next
states are explored, only one is actually taken.) This is similar to what happens in a
round of proposing of the rhetorical rules in GENARO: all of the rules which are
enabled make a proposal, the best of which is chosen to be actually done. The
major difference is that GENARO's “state space” is not explicitly specified — it is
implicit in the possible orderings among the rule firings.

Once a single schema is selected to guide the construction of the text which
answers the user’s question it is “layed down” on the data in the Pool and a
matching process seeks to fill the slots in the schema with facts (“propositions”) in the
data base. Here is where the focus mechanism is used — it helps to resolve conflicts
when there are several propositions competing for a slot in the schema. The filled
schema constitutes the r-spec — it is then sent to the surface generation (“tactical”)
component to be realized.

Selection is performed in TEXT during the process of schema filling. Three
processes collude to fill a schema: 1) if there are several competing slots then all of
them are filled; 2) if a given slot can be filled by several data base propositions then
all possible data points are taken to form a set from which one element will be
selected; and finally, 3) a function which embodies a set of FOCUS constraints is
used to select, from among these many propositions and slots, which ones provide the
most coherence. The first two of these processes actually function to increase the
number of alternatives of what to say next - if the nodes in the data base are
“bushy” there could be a large number of alternatives at this point. Thus the real
work of selection is left to the focus mechanism.?

2.14 Summary.

Mann et al [1981] suggested that there are currently four aspects of text
generation which require concentrated study in order to develop flexible and portable
text generation facilities:

1. A comprehensive, linguistically justified grammar,

2 As might be expected, some of the choices made on this basis are arbitrary, and must be made
by “tossing a coin”. It is precisely this problem that the notion of salience addresses: many of
these choices would not, in fact, be arbitrary if the data base were augmented with a salience
annotation on its objects, and the deep generator had access to this salience information.

Background

2. A knowledge-representation formalism that can encode diverse kinds of
information,

3. A model of the intended reader of the text, and
4. A model of discourse structure and control.

The work described in this thesis most potently addresses the fourth component,
although it connects strongly with the second component as well. In GENARO the
key is the use of salience as a heuristic which greatly reduces the cost of the
(generally expensive) process of planning what to say, what to leave out, and in what
detail to discuss what is to be said.

22 Salience

Although there has been considerable study of the processes of perceiving,
recalling and recognizing visual information (cf [Loftus 1982]), I have found little work
directly addressing the issue of salience in pictures. Hooper [1980] studied the visual
factors that contributed to the recognition of objects in scenes, but little of this study
can be applied directly to the problem of determining what makes a particular object
salient. Some of the work that has been done on image abstraction for image
storage and retrieval is relevant to visual salience. Brush [1979] used a numerical
rating technique in the study of pictures (as did I), but his subjects rated the entire
picture and major picture elements, and not the specific objects in the scenes.
Firschein and Fischler [1971] discussed methods of “content analysis” in library
pictures, including tackling the “problem of aboutness”. They note that “what a
document is about depends on what its reader will use it for”. Although the
influence of purpose and context on salience and descriptions is considerable, it is also
quite complex. I found that I was able to standardize this aspect of the perception
process in my experiments by instructing subjects to adopt a particular perspective.

The AI Program GENARO 17

CHAPTER 114

THE AI PROGRAM GENARO

In this chapter the LISP program GENARO' will be discussed in terms of its
operation as an Artificial Intelligence program (as opposed to its embodiment of a
theory of generation, which is discussed in the next chapter). This will include both
a description of the various assumptions underlying the system design and a detailed
discussion of how those assumptions were implemented in the program. This chapter
is divided into four sections: 3.1 presents a brief explanation of the operation of
MUMBLE, 32 is a technical discussion of the control structure of the program, 3.3
elaborates on the design of the rhetorical rules and their interactions, and 3.4 presents
a detailed trace of the program planning a paragraph, as an example of how all this
machinery works together.

3.1 A brief explanation of MUMBLE

In this thesis I have adopted the traditional view (in A.l) that natural language
generation is divided into two successive phases: a first phase in which selection takes
place, reflecting the speaker’s goals, and the selected material is composed into an
r-spec (“realization specification”) according to high-level rhetorical and stylistic
conventions, and a second phase in which the r-spec is realized — the text actually
produced — in accordance with the syntactic and morphological rules of the language.
I call the first phase “deep generation™ (after Brown [1973]) because it is the earliest
stage in generation at which non-linguistic domain information gets augmented with
linguistic information.

In this section enough will be said about the surface generation system
MUMBLE to allow the reader to appreciate some of the issues involved in the
process of jointly inventing rhetorical rules for GENARO while writing the “dictionary
entries” for MUMBLE which allow it to “realize” GENARO’s specifications.

MUMBLE is a transducer from a symbolic representation (a “meaning”) into an
English utterance (that expresses the “meaning”). The input to this transducer is an
r-spec which is constructed by a “speaker” which knows what is to be said and how
it is to be expressed. The r-spec is written in a language which is defined by

! I will refer to the program GENARO (the LISP code written for this thesis) as distinct from
the larger generation system, which includes the simulated perceptual data base and MUMBLE.

18 The AI Program GENARO

MUMBLE’s “dictionary™ : the legal elements of r-specs, and their legal combinations,
are specified by entries in that dictionary, which also indicates how each element is to
be “realized” in English. A dictionary entry makes its specification using the terms in
MUMBLE's grammar. The grammar simply specifies the legal syntactic constructions
available to the dictionary entries.

The major problem in realizing an r-spec is that both the r-spec and the
grammar are sources of constraints on the final output. Hence the process of finding
a realization is one of finding a construction (i.c. an utterance) that satisfies two sets
of orthogonal constraints. One of the most interesting aspects of MUMBLE’s
operation is that it is “data-driven” — as the r-spec is interpreted a syntactic tree is
constructed top-down and left-to-right, and at each node the question is “What
grammatical construction can express this element of the r-spec”. This is to be
contrasted with a grammar-driven system in which the question at each node is
“What element of the semantic input corresponds to the current grammatical term?”

Suppose one desired to have MUMBLE say the sentence “The fence is white”.
One extreme approach would be to have a single dictionary entry called
“The-fence-is-white” which, when encountered as an element in an r-spec, directed the
construction of a phrase structure treec whose leaf nodes were the words “the”,
“fence”, “is”, and “white”. However, to assert that the fence is green (or any other
color) would require a new dictionary entry. Even if this output were given internal
linguistic structure by MUMBLE, it would nonetheless be a “canned” phrase.

A more flexible approach would be to take advantage of the fact that
dictionary entries can have arguments (like functions). That is, have in the dictionary
an “Assert-property(Object, Property)” entry which could then be invoked with the
(input) r-spec element “Assert-property(Fence, White)”. This entry would both invoke
the appropriate grammar rules to construct the tree, and specify where to put its
“object” argument (ie. as the head of the subject noun phrase) and its “property”
argument (i.e. as the adjective in the predicate adjective verb phrase)® Hence this
entry will serve to express the possession by an object of any attribute which could be
lexicalized as an adjective.

2 NB. While the dictionary defines the language in which the r-spec’s are written, it is often the
case that the dictionary entries are written to satisfy the needs of the r-spec elements. In fact
the process of tuning the interface between GENARO and MUMBLE is a dialectical one of
adjusting both the way in which r-spec elements are structured and the details of realization in
the dictionary entries. See Chapter 4.2.

3 The details of this tree construction and mapping semantic elements into structural slots is
covered in detail in Chapter 4.2.

The AI Program GENARO 19

This level of detail is adequate for an understanding of the interactions between
GENARO and MUMBLE that are discussed in this chapter. The operation of
MUMBLE is discussed in much greater detail in Chapter 4.

3.2 The Control Structure of GENARO

Programs can be roughly divided into the part that knows things about the
world, called “world knowledge”, and the part that controls how this information is
used, called the “control structure”. Often the world knowledge is broken up into
“modules” for flexibility and efficiency. The control structure does not “care” about
the content of the world knowledge itself, it simply arbitrates which modules in the
program are used and where their information flows. However, in Al. the choice of
control structure sometimes cannot be divorced from the claims being made about the
knowledge contained in the modules which it controls. The designer of an Al
system can either make the weak claim that the output behavior of the system
captures some aspect of intelligent human behavior, or the much stronger claim that
the system’s internal mechanisms are operationally equivalent to human cognitive
mechanisms. For example, under the strong claim interactions between modules which
are made impossible by the control structure amount to a claim that these interactions
do not occur in people performing the same task. In this thesis some of these
stronger claims are made about the implementation of GENARO, and these are
detailed in Chapter 5.

32.1 Packets and Iterative Proposing.

GENARO’s control structure is basically a production system: a collection of
independent production rules, each of which has a precondition and an action part.
If the precondition part is satisfied, the action part “runs”, producing whatever effects
it was written to achieve.

Production systems provide a nice control paradigm because:

® the production rules are modular and independent “chunks” of knowledge
about the domain, and are therefore quite flexible —~ individual rules can be
added and removed from the program without requiring any other changes;
and

® since rules are independent they can be expressed in any order, thus they
simulate a parallel machine, making this control regimen particularly
interesting cognitively.

However, there are some disadvantages with production systems:

The AI Program GENARO

® exactly because of their independence, rules can be quite difficult to
coordinate - different rules can, in theory, cancel each other’s effects,
undermine each other’s preconditions, and “cooperate” in complex ways that
are difficult or impossible to predict; getting such systems to work well in
practice thus requires considerable experimentation with and crafting of the
rules; and

® in traditional production systems only one of the rules whose preconditions
are satisfied is allowed to run [Nilsson 1980] - part of the job of the
control system then is to select which one gets to run, which can smear the
distinction between what the rule knows and does and what the control
system knows and does. (le., if the control system must use domain
knowledge to choose among “winning” rules, then the control system is no
longer domain independent.)

The last problem, of determining which rule to run next, is addressed in
GENARO by two specific additions to the basic production system paradigm. One is
the parcelling of the rules into “packets” (a la Marcus [1980]): each packet represents
a situation in which its rules are appropriate, and packets are then turned on and off
(thereby turning on and off the rules they contain) by a “driver” which is sensitive to
the development of the paragraph. This technique provides a level of description in
the control structure which often proves very useful (e.g. the “Introduce” packet in
GENARO contains rules which introduce a paragraph description). @ The other
enhancement to production systems that GENARO uses is called Iterative Proposing,
which provides that the “action” of each rule is simply to propose its actual action on
the data along with the “priority” with which it is making its proposal. The proposals
of all of the rules are collected, and the one with the highest priority is chosen to
perform its actual action. This is similar to the style of rule competition that was
used in PANDEMONIUM ([Selfridge, 1959].

The splitting of the traditional action part of a rule into a proposal and an
action requires that one be specific about terms: when a rule’s packet is on, I will
call that rule “enabled”; when the precondition of a rule succeeds, that rule is
“active” or “running”; when a rule runs, a “proposal” is submitted; finally, the result
of choosing a proposal is that the rule’s “action” is performed (sometimes referred to
as the rule “winning”).

Since the main work of GENARO is the construction of r-specs, the
fundamental action is the insertion of a new rhetorical element into the r-spec. This
is the action of most of the rules, although some rules have actions which are more
“control-like” (e.g., shifting the topic).

The advantage of Iterative Proposing is two-fold: it leaves the choice of which
of the active rules to run to the rules themselves (i.e. arbitration among the rules is
internal to the set of rules), and it provides the system with a priority metric, which
is recorded in the r-spec elements and which turns out to be useful to MUMBLE (see

The AI Program GENARO 21

Chapter 4).

322 The Organization of the System.

The overall organization of GENARO (presented in Figure 6) consists of 3
main parts:

® the 2 primary input data registers (through which the program examines the
domain data base): the Unused Salient Object List (USOL) contains the
objects in the domain, in order of decreasing salience, which have not yet
been mentioned in the description; and the Current-item, which contains the
object from the USOL which is currently under descriptive scrutiny by the
rules. Two subregisters are part of the Current-item register: (1) a list of
the properties of the Current-item object, in order of decreasing salience
(called Current-properties), and (2) a list of the relations the object is part
of (called Current-relations), also ordered.

® the rhetorical rules, which are organized into packets. The precondition
parts of the rules look primarily at the Current-Item, although they can also
look down into the USOL, and even back into the domain data base, as
well as into the R-spec.

® the current rhetorical-specification (i.e. the one under construction), or simply
r-spec. The r-spec contains the information being assembled to send to
MUMBLE, and is a list of r-spec elements (often just called “elements”),
each of which is the result of the action of one rhetorical rule, and which
specifies to MUMBLE the rhetorical effect intended by that rule. A
paragraph is generated in a very local way: each r-spec is constructed largely
on the basis of the domain data, without history about past r-specs or
planning of future ones, and each r-spec is realized as a single sentence by
MUMBLE.

Each of these parts has a deliberate connection to the theoretical claims about
this program; however, in this chapter I will largely just describe how the program
works (see Chapter 5 for a theoretical discussion of the system). The remainder of
this section gives a more elaborate description of the data structures, ending with a
brief description of GENARO’s algorithm.

The USOL and the Current-Item.

The Unused Salient Object List (USOL) and the Current-item are the driving
data structures of this program. Functionally they represent a view of the domain
data base in terms of salience, almost as if one could pick up the data base and
shake it so that it dangled in order of decreasing salience. The USOL can be

2 The Al Program GENARO

USOL
(leasc Rhetorical Rules
DATA a | salieat) (in packets)
BASE a2
A
o 0 o \ Elaborate Paragraph
° 0 ° 0 a €| priver
0 (most
o” 0 8 | salient) @ Conclude
ITEM . L Jl .L ¢
Proposed R-Spec Elements

be::az“ =) MU}.mLB

A block diagram of the GENARO system. The "0"s in the
"Data Base" represent objects in the domain representation,
whereas the "B"s are the thematic "shadows" of these ob-
jects used by GENARO for its rhetorical processing. Each
of the ovals in the "Rhetorical Rules" box is a packet
containing one or more rhetorical rule.

Figore 6: The organization of GENARO.

thought of as the program’s window into the data base, and the Current-item as the
specific object being “viewed”. Structurally, the USOL is simply an ordered list of

The AI Program GENARO 23

pointers to objects' in the domain; it is constructed at the beginning of the generation
of a description by scanning the domain data base, collecting all of the individuated
objects, and sorting them by their salience values.

The USOL is a programming convenience - it saves repetitive and
time-consuming scanning of the domain data base. However, if the data base were a
dynamic one, in which concepts were being created and destroyed and salience values
were changing (e.g. the visual data base of a moving robot), then the program would
have to be modified to either (1) require that such changes be reflected in the USOL
or (2) forego the USOL and scan the data base directly. Neither of these
alternatives is inconsistent with the theory or operation of GENARO (although some
care would have to be taken to prevent changes from taking place during critical
periods of a rule’s examination of the data base).

Objects are removed from the USOL in two ways during the course of a
description. Normally, the most salient object on the list (the “top” of the list) is
made the Current-Item, and is removed from the list (thus keeping the USOL a list
of unmentioned objects). The other way, less often used, is that a rule “reaches
down” into the USOL for the Current-Item (again, removing it).

The Rhetorical Rules.

Functionally each of the rhetorical rules captures a rhetorical or stylistic
convention of descriptive paragraphs. The intention of the system design is to provide
not only a testbed for prospective rhetorical rules but also a language in which they
can be expressed. At present the system contains only about 8 rules’ ; as the
number of such rules grows there will be increasing evidence from which to specify
this language precisely. Ultimately, writing the rules in a restricted language (the
language of rhetorical rules) makes an implicit claim that the terms of the language
are necessary and sufficient: the more constraining the language, the stronger (viz. the
more predictive) the claim. I claim that the language described below does constitute
such a theory for texts describing static situations.

Rules have two parts: a precondition and an action. These precondition contains
one or more predicates (a term which is either true or false when applied to an
argument), all of which must be true for the action to be performed. These
predicates variously examine:

“ By “objects” I mean simply the domain entities which denote actual objects in the world, e.g.
houses, fences, trees, etc.

’ This number reflects both the youth of this research endeavor, and the relative power of the
individual rules.

24 The AI Program GENARO

® the salience of an item (the Current-item, its properties and relations, or
some other object on the USOL);

® the “size” or contents of the r-spec (see below);

If the precondition is met, the rule proposes an action, but does not execute it — the
action is merely proposed. The proposal has a priority, which reflects how important
the rule regards its proposal to be, based on such things as the salience of the item
being proposed and the “intrinsic priority” of proposals made by that rule. When the
proposal with the highest priority is executed, it can:

® add one or several eclements to (the end of) the r-spec (this is the most
common action of a rule);

® take an item off of the USOL and make it the Current-Item;
® end the construction of the r-spec.

Each of the rules is contained in one of four packets: Introduce, Shift-topic,
Elaborate, and Conclude. Packets are controlled by a part of the control structure
called the Paragraph Driver. This is simply a demon-like routine which turns the
various packets on and off, thus orchestrating the high-level structure of the output
text® At the beginning of a description the Paragraph Driver has the first three
packets on (Conclude is off) @ Once any rule in the Introduce packet has
(successfully) run that packet gets turned off. At the end of the description, when
there are no more objects salient enough to describe, the Conclude packet is turned
on. When the rules in the Conclude packet have nothing more to say the program
ends.

Two of the packets are never used for high-level control: both the Shift-topic
and Elaborate packets are left on for the whole description generation process. That
is, the rules in these packets are not controlled by being turned on and off via their
packets (they could in fact be combined into one “Develop-description” packet).
Rather, there are two global numerical parameters, “*shift-factor” and “*level-of-detail”,
which are used by the rules in the Shift-topic and Elaborate packets, respectively, and
which provide a more sensitive control than simply enabling and disabling the rules
(and which are described below in section 3.2).

§ It turns out that paragraphs describing scenes have very little high-level structure — they are
largely “flat”, and the structure they do have derives almost entirely from the domain data
base (specifically, from the salience values there). Thus, the Paragraph Driver does very little
work in the current version of GENARO. I expect, however, that it will serve an important
function both in other, richer domains and in the generation of multi-paragraph texts.

The AI Program GENARO 25

Following is a list of the rules currently used by GENARO. These rules
evolved through a largely empirical process: starting with about a half dozen rules
(which were written on the basis of my own intuition), the program was run on the
input data base, each time generating the r-specs for descriptive paragraph’ As
weaknesses in these descriptions were observed, existing rules were “tuned up” and
new rules were written. In later stages of development there have been several data
bases on which to test the system, so that a greater range of rule interactions could
be explored.

Rather than describe the actions of rules in terms of the intermediating
processes of proposing and competing, I will simply say here what happens if the
rule’s proposal wins. Each of the rules listed here will be discussed in greater detail
later in the thesis:

Introduce packet rules
$intro — This is currently the only rule in the Introduce packet; it proposes an
r-spec element which essentially becomes, through MUMBLE, “This is a picture of ..”.
This rule has no preconditions, and its proposal is posted at a very high priority.
Elaborate packet rules

$prop-salience ~ Adds a property of the Current-item to the rspec. The
precondition is that the property be salient enough.

3prop-sal-obj - Specifically sees to it that the most salient property (if there is
one) of prominent objects gets put into the r-spec.

$prop-color — This rule specifically adds the color of the Current-item to the
rspec. Its preconditions are that the color of the object exist and be sufficiently
salient, and that the r-spec is not already too large®

3reln-salience — This rule adds the Current-item’s most salient relation to the
r-spec. Its precondition is that the relation be salient’ enough.

7 Recall that the input data base represents a “machine’s eye view” of the contents of a visual
scene, and that the system’s objective is to formulate a textual description that aptly describes
the scene so represented.

® As will be discussed below, this rule reflects my observation that color was used in subject’s
descriptions out of proportion to the salience of the color, ie. as a result of a stylistic device.

® Recall that the salience of a relation is based on the salience of the objects it relates, and on
some properties of the relation itself (such as the 3-D distance between the objects).

The AI Program GENARO

Shift-topic packet rules

$newitem - Takes the most salient object from the USOL and makes it the
Current-Item. The only precondition for this rule is that the r-spec not be empty
(ie, if you have not said anything about the Current-Item yet, do not move on to a
new item).

$condense-prop — This is one of several very powerful rules for “condensing” the
description of several objects into one r-spec based on some shared attribute of the
objects. That is, these rules locate similar objects and propose describing them
compactly using some parallel construction, eg. “Both X and Y are Z”. This rule
condenses on the basis of a shared properry between the Current-item and some object
on the USOL (recall that the “U” stands for Unmentioned). Its preconditions are:
that such a similar object exists, that the property shared by the two objects be
salient enough, and that the r-spec is not already too large. The rule proposes at a
low enough priority to assure that the Current-item has been reasonably described
before this rule’s proposal wins and the condensation occurs. The object that shares a
property with the Current-item object is pulled out of the USOL and made the
Current-item. Since there is a new Current-item, all of the rules come into play just
as if it were the beginning of a new r-spec, and the descriptions of both objects are
packed into one r-spec. (Condensing is discussed fully in Chapter 5).

Conclude packet rules

$light — This is the only rule in the Conclude packet at this point. Its r-spec
element describes the lighting of the scene (i.e. nighttime, cloudy day, etc.).

The rules will be further discussed below, both in section 32 and in Chapter 5.

The rule environment,

The rules listed above are the vessels of linguistic knowledge in the program -
if the program were a car, these rules would be the engine. In this section, the
environment in which the rules operate -~ the engine compartment - will be
described.

The gasoline of this system is the input data base. That is, GENARO is
“data-driven” by the objects, properties, and relationships that it finds in the visual
representation. These entities determine, via their salience values, what gets
mentioned, when, and in what detail. This is in direct contrast to a top-down
approach in which text is structured by the rhetorical rules (i.e. [McKeown 1982]). In
GENARO the information in the rules gives a rhetorically and stylistically pleasing
“shape” to the text, but it is the data base entities, and particularly their salience,
that determine the length and level of detail of the text.

The AI Program GENARO 27

GENARO does not, however, make any changes in the domain data base.”
Instead, it makes a copy of each entity in the data base and uses this new data
object for its internal manipulation and book-keeping. These are called
“thematic-objects”. There are four kinds: those for the objects, properties, and
relations in the data base, and a fourth kind, called “rhetorical thematic-objects”,
which are not a copy of anything and which are created by GENARO to become
r-spec elements with specific rhetorical effects. For example, the rule $intro constructs
a rhetorical thematic-object which has an entry in MUMBLE"s dictionary and which is
realized as something like “This is a picture of ..”. Other such thematic-objects can
signal MUMBLE to perform conjunction and other syntactic constructions.

Finally, the r-spec is a simple list composed entirely of r-spec elements, and all
elements are thematic-objects: an r-spec is constructed through the addition, by the
rules, of thematic-objects to it. (However, only a few of the thematic-objects created
for a description ever make it into an r-spec -~ the rest are simply discarded.) The
r-spec is built in strictly linear fashion: new elements are added to the end of the
list* (The distinction between domain objects, thematic-objects, and r-spec elements
will become clearer in the discussion of GENARO’s algorithm below.)

Another important element of the environment is a mechanism for measuring
the r-spec. Starting from the assumption that small r-spec’s produce simple sentences
and large r-spec’s produce complex sentences, GENARO requires a means of
estimating the complexity of the text that MUMBLE will be generating from the
r-specs that it receives. This is done through the notion of the “weight” of the
1-spec. A simple numerical value -~ a “weight” — is assigned to each kind of
thematic-object, based on the textual size and complexity that it is liable to incur.
As an r-spec is contructed, it can be weighed at any point simply by summing the
weights of its elements.

For example, since properties of objects are almost always realized simply as
prenominal adjectives, properties contribute relatively little weight to the r-spec. On
the other hand, rhetorical thematic-objects signalling conjunction and other complex
syntactic constructions contribute relatively large amounts of weight. Interestingly, one
exception to the large weight of rhetorical thematic-objects are those which signal
condensation, since the whole idea of a condensation is the application of essentially
the same descriptive text to several objects. For example, the sentence “The door
and the gate are red” is not much more complex than “The door is red”, although
the r-spec specifying the former sentence is considerably larger.

19 See Chapter 52 for a proposed exception to this convention.

U This leaves the burden of any “sorting” that must happen among r-spec elements to MUMBLE,
a job which it is already well suited to perform because it does a quick first-pass through each
new r-spec looking for elements which it knows to contain global constraints on the syntactic
structure.

28 The AI Program GENARO

In the research reported here thematic-objects were given the following weights:
Thus, an r-spec consisting of an object? (weight = 0), an Introduce element (weight =
2), a property (weight = 5), and a relation (weight = 1) will weigh 35. This has
been determined, through experimentation with the system, to be an optimum weight
for an rspec. For example, this is the weight of “This is a scene of a suburban
house with a fence in front of it”. The sentence “The house has a red door” has a
weight of 15 (a property plus a relation), while “In front of the house is a white
picket fence with a red gate and in front of that is a sidewalk with a person walking
on it” has a weight of 80 (four properties plus four relations plus a rhetorical
element for the conjunction).

Another element of the rule environment is the distinction between “unique”
and “common” r-spec elements. In an average round of proposing, several of the
rhetorical rules listed above will be active, producing several proposals. Only the best
of these proposals “wins”, resulting in either a new element added to the r-spec
(usually) or some other action. However, the “losers” are free to run over and over
again, until their proposal succeeds or the Current-item is changed. For rules which
specify their proposal to be unique, success disables that rule for the duration of the
construction of that r-spec (eg. the Sintro rule only wins once), while other rules,
whose proposals are common, depend on predicates in their preconditions to keep them
from winning excessively (e.g. condensing can occur several times in one r-spec, and
is limited only by the condense rules being sensitive to the “weight” of the r-spec).

thematic-object type Weight
object 0
property S
relation 10
rhetorical 20
condense 5

These values have been arrived at through repeated experiments with the program and
although not precise, they seem to be adequate to the coarse function that they serve.

Table 1: Thematic-object weights.

2 In this thesis objects were not inserted as their own r-spec elements, as implied in Table .
Whether or not aobjects are needed as independent elements depends on the processing demands
(by MUMBLE) on r-specs which have condense relations in them, and this will become clearer
as more experimentation is done with the various $condense rules. In any case, such r-spec
elements would serve a strictly syntactic function as place-holders in the r-spec, and thus would
have zero weight.

The AI Program GENARO 29

The designer of a rhetorical rule thus has two mechanisms available for
determining when the rule will win. One is to place predicates in the rule’s
precondition that block the rule from even proposing. For example, $prop-salience has
a predicate in its precondition for testing if the salience of the property that it might
propose is salient enough. This is a /Jocal constraint in the sense that the
precondition is based just on the salience of some property, and not on what other
rules are doing. Constraining rules through their predicates is a useful in cutting
down on the number of “serious” proposals which the control structure must handle.®

The other mechanism for controlling a rule is through the manipulation of the
priority at which it posts its proposals; this strategy is useful for more global
decisions" , since the arbitration of priority values happens among all active rules and
bence takes all active rhetorical factors into account. For example, $prop-color
proposes mentioning the color of the Current-item regardless of the salience of the
color — but it posts its proposal at a low enough priority that it will only win if
there is nothing more important to say about the Current-item. In other words,
although the rules are independent and highly localized sources of rhetorical
information, they communicate weakly through the process of their competition during
the proposing process. = When S$prop-color wins it has essentially received the
“message” from all other active rules that there is room in the r-spec for the color of
the Current-item and that it may now insert that element into the r-spec.”

The various rules in the system to date are listed with the type of control they
use in Table 2. “Local control” is via rule predicates checking salience values of
items, whereas “Global control” is via rules competing through the priority values with
which they post their proposals, Note that since all rules are controlled through the
competition of priority values, this mode of interaction is only marked here as
“Global control” when there is no “Local” use of salience values.

B This is a different Ievel of locality from that in the claim that GENARO’s planning is local in
scope. In the latter use of the term, the point is that GENARO does not keep track in any
explicit way of the structure of the text being generated, mor does it have any sense of a
“goal” towards which is it working.

" These local and global mechanisms are not completely separate: for a rule’s action to take
effect it needs both (a) all of its preconditions to succeed and (b) its proposal to have the
highest priority. These two mechanisms thus act in series, and a failure on either account
prevents the rule’s effect from being achieved.

% In order to prevent this rule from putting the Current-item color into full r-specs it has a
predicate which checks the r-spec’s weight in its precondition part. There is an alternative to
having each rule monitoring the of the rspec: a production rule called
$finish-building-rspec, which proposes ending the construction of an r-spec at a priority which is
a function of the weight of the r-spec. This idea is discussed in Chapter 6, and in fact is
illustrated in the sample program runs in Appendix 2.

The AI Program GENARO

Control Style

Rule Packet Local Global
$intro Intro x
$prop-salience Elaborate x

$prop-sal-obj ” x

$prop-color » x
$reln-salience » x

$newitem Shift-topic x
$condense-prop » x

$lighting Conclude X

Table 2: Rules and their control style.

The rules which use local control are more data-driven than the global control
rules —~ they are very sensitive to what is in the visual representation, especially to
the salience values. The global control rules, on the other hand, are the ones which
are sensitive to more rhetorical concerns, and which interact primarily in the realm of
the rhetorical priorities. Thus there are two broad classes of rules in the system, one
for rules which are data- and salience-sensitive and which function to determine the
contents of the r-spec (i.e. what is said), and one for rules which function to make
the r-spec rhetorically wellformed (i.e. more how it is said) and which compete with
each other via their rhetorical priorities.

This illustrates that at the level of deep generation both the What and How
issues are important, although there is not a rigid separation between how these two
concerns are processed. It also leads to a formulation of the deep generation process
as an interaction between two forces: one which seeks to have the structure of the
paragraph reflect the structure of the data (i.e. the data-driven part), and one which
operates to impose stylistic, thematic, and rhetorical (all of which I have generally
lumped into the term “rhetorical”) constraints on the paragraph structure. This is
intriguingly parallel to McDonald’s formulation of the surface generation process (i.e.
realization) as the resolution of a force to fully express the contents of the r-spec
with a force which constrains the utterance to remain within the grammar.

I !;e =Spec.

The r-spec can be thought of as the “idea” — the essential semantic content -

The AI Program GENARO 31

which is intended to be expressed by the speaker.® It is constructed to convey all of
the important decisions as to content and style to the realization component. In this
system I have further specified that it form a channel with as narrow bandwidth as
possible between the planner and realization components. The r-spec should contain
all and only the information needed, and the realization component cannot ask for
disambiguation or elaboration on an r-spec it has received. In fact, if the realization
component does not succeed in finding a realization for an r-spec it can only signal
this failure. (See Chapter 5.1 for a discussion of these GENARO/MUMBLE
interactions.)

In GENARO the r-spec is a rhetorical “molecule” which is constructed in a
register (called “R-spec”). The “atoms” of this molecule are the “specification
elements” (sometimes called simply “clements”). Every element in an r-spec has some
specific rhetorical function, and every element was added to the r-spec by some
rhetorical rule (though some rules can add several elements). Elements cannot be
changed or deleted once they are in the r-spec. Each element has a name (so that
they can refer to each other), and each has a “themeobjoperator” which specifies a
realization action via MUMBLEs “dictionary”.

R-spec elements can be of four types: object, property, relation, and
“rhetoreme”. The first three correspond to the three classes of domain entities in the
domain data base; to mention that an object has the property Red, for example, an
clement of type property would be inserted in the rspec. The fourth type,
“rhetoreme”, is for elements which have no domain correlate and which are inserted
only for their rhetorical function (e.g. Introduce(x)). The name (which I coined)
indicates that these are the smallest units of rhetorical information which the system
has.

The grammar of the r-spec is shown in Figure 7, and an example of an r-spec
(for “This is a picture of a white house.”) is presented in Figure 8. The first major
part of the r-spec, the “body”, specifies those elements which must be expressed in
the realization, while the “optional” contains the elements which are optional. This
distinction allows the planner to build large, complex r-specs but to “soften” them by

1 It could also be considered as a hypothesis on the form of the “language of thought”. I think,
however, that current r-spec format is too poor even to be considered as a hypothesis on the
“universal form”. (It does not address the issues of intentionality and self-reference, for
example.)

32 The AI Program GENARQ

<r-spec> == (RSPEC NO.i BODY [<rspec-elmt>]
OPTIONAL [<rspec-elmt>])
<rspec-elmt> :== (ELMT.j <elmt-type>

<elmt-header>
<elmt-body>)
<elmt-type> :== OBJECT, PROPERTY, RELATION, RHETOREME
<elmt-header> :== <themeobjoperator>
([<themeobjoperand>])
<elmt-body> :== [<themeobjspec>]
<themeobjspec> :== (<themeobjoperand>
[<themeobj-qualifier>])
<themeobj-qualifier> :== (SUPERC <themeobjsuperconcept>),
NEWITEM,
IBID
<themeobj-operator> :== a thematic object
<themeobjoperand> :== » » »
<themeobj-superconcept> == ” » »

Terms in capital letters are constants; terms in <>s are nonterminals; square brackets
([’s) indicate “onme or more of” the enclosed term; commas separate equal alternatives;
the letters “i” and “j” are used as index variables, eg. “NO.i” would become “NO1”
the first time, “NO2” the second time, etc.

Figure 7: The grammar of r-specs.

(RSPEC NO1
BODY
(ELMT1 RHETOREME introduce (house-1)
(house-1 (SUPERC house)
NEWITEM))
(ELMT2 PROPERTY color-of (house-1 white-1)
(house-1 IBID)
(white-1 (SUPERC white)))
OPTIONAL nil)

This example r-spec might result in the sentence “This is a picture of a white house”.
“SUPERC” names the super-concept (from the domain data base) of the object (for use
in lexicalization). “IBID” indicates that there is an entry for the object already in the
rspec. “NEWITEM” is explained in the text.

Figure 8: An example r-spec.

The Al Program GENARO 33

allowing the realization component to ignore difficult and unnecessary elements.”

The <elmt-header> is the part of the specification element that makes direct
contact to the dictionary in MUMBLE, and can be thought of as a function call: the
themeobj-operator is the name of the “function”, and the themeobjoperands are the
parameters with which it is called. (This is in fact literally the case within
MUMBLE, where each dictionary entry is implemented as a LISP function.)

For each themeobjoperand in the header there is a corresponding
<themeobjspec> which provides further information to the dictionary about how to
treat the operands. For example, when an object in the data base is being
introduced into the text for the first time it is marked as a “NEWITEM” so that
MUMBLE can provide the appropriate sentence structure and determiner.

What is surprising, perhaps, is that the single marker NEWITEM can carry as
much information as it does to MUMBLE. It would certainly be possible for
GENARO to specify the details of the actions MUMBLE should take with a new
item, e.g. using an indefinite determiner with that object’s noun phrase and making it
subject of the sentence. But the fact that this information can be more
parsimoniously represented in MUMBLE (in terms of how to process the NEWITEM
marker), and that the channel between programs is much narrower simply passing the
NEWITEM marker, suggests that this is a natural and important division of labor
between deep and surface generation. (For further discussion, see Chapter 5.)

Note also that none of the examples presented in this thesis use the “optional”
part of the rspec. However, it is offered here because it appears to provide
considerable power and flexibility to the GENARO/MUMBLE interface while
increasing the interface bandwidth only minimally. Also, its use is supported by the
intuitive sense of foregoing saying something that would fit semantically in the current
utterance but which would make the sentence syntactically too complex or overloaded.
(Note also that its use would have to be constrained so that it could hold only a few
elements: otherwise, it could be used to “sneak” the whole data base into the r-spec
leaving deep genmeration to be done by MUMBLE.)

7 It may be that there is a need for a part of the r-spec to be about more global rhetorical
parameters, such as tense, aspect, mood, tone, as well as temporal anaphora, quantifier scope,
negation, etc. I have chosen to deliberately exclude these issues from my research (see
Chapter 6). Eventually it will be important to study how these more global rhetorical concerns
can be incorporated into the simple machinery presented here (my hope is that they can be
added as independent self-contained modules), but for the present they must be ignored.

The AI Program GENARO

23 The Algorithm.

Like any production rule based system, GENARO has a very simple algorithm:
pick which rule to run and then run it, while maintaining the data structures used by
the rules. Through the use of Iterative Proposing GENARO goes one step further:
the rules themselves pick which one runs.

The basic algorithm for the program GENARO is shown in Figure 9 (see
Appendix 1 for a more detailed listing of the program). Readers unfamiliar with
LISP may find Figure 10 helpful in understanding the algorithm. The top-level
routine, GENARO, simply iterates on building r-specs and sending them to MUMBLE
until the end of the description is signalled.

Building an r-spec is done as follows: all of the proposed actions are gathered
together on the “proposed-rspec-elmts-list” and the register Rspec-elmt is set to the one
with the highest priority. Then, the function “insert-in-rspec” runs, either adding the
contents of Rspecelmt to the end of R-spec, or, occasionally, performing the
specialized action described next.

GENARO

(initialize-system)
(setq USOL (Order-by-salience

(Get-objects Domain-data)))
(set-current-item (pop USOL))

(repeat
(init-for-rspec)
(build-rspec)
(send-rspec-to-mumble)

until (end-description?))

BUILD-RSPEC

(repeat
(initialize-for-proposing)
(propose-rspec-elmts)

(setq rspec-elmt (pick-best-proposal))
(insert-in-rspec rspec-elmt)
until (rspec-complete?))

PROPOSE-RSPEC-ELMTS

(mapcar *rule-list eval) ; Runs the rules

Figure 9: The basic algorithm of GENARO.

The Al Program GENARO 35

In LISP notation each call to a function (termed “evaluation of the function”) has the
form “(<function-name> <arguments>)”, where the name of the function comes first
and is followed by the arguments, or “parameters”, which the function is being asked to
operate on. For example, the expression “(setq X (addl 5))” means to first find the
value of “(addl 5)”, which is 6, and then to set the variable “X” to this value; the
result is that the value of X is 6.

Good LISP programming style dictates that function names and their arguments be
highly descriptive, but some of the functions in Figure 9 may not be transparent. “Pop”
is a function which returns an item on the top of a stack while removing that item
from the stack. “Mapcar” takes the function named in the second argument and applies
it to each item in the first argument list. “Eval” is the basic LISP function which
“evaluates” (i.e. for functions, runs) LISP objects.

Figure 10: A few notes on LISP.

Sometimes Rspec-elmt is not really a rhetorical element destined for the r-spec
-~ sometimes it is a control action to be performed. For example, the action of the
rule $newitem adds nothing to the r-spec, but rather resets the Current-item register
to the next unmentioned object on the USOL. Therefore, special provision has to be
made for such “active” “rspec-elements”® If Rspec-elmt is specially marked (as a
function), then “insert-in-rspec” evaluates the element, performing the action. The
action can be either setting “Cur-item” to be a new object or setting a flag which
causes the predicate “rspec-complete?” to be true.”

3.3 The Rules and their Interactions

The use of production rules is an instance of data-directed control, a style of
programming in which control actions are explicitly bound to specific structures in the
input. The advantage of representing the rhetorical rules of the system in this way is
that they are compact, independent, and flexible units. They represent my best

8 This “hack” is the mechanism that allows rhetorical rules to take on elements of the control
process, manipulating the program’s registers and stacks. It is not cheating, however — none of
these control actions goes beyond the limits specified above (page 23). The names of the
functions in this part of the code should perhaps be revised to reflect the fact that more is
going on than just inserting elements in the r-spec.

® The use of a flag, normally a poor practice, here provides a bit more clarity on the
termination condition of the repeat/until loop.

The AX Program GENARO

attempt to date on the formalization of rhetorical and stylistic conventions of
descriptive texts, and as such constitute a “young” linguistic theory. One design goal
of the system, in fact, is that it provide a test-bed in which “rhetorical grammars”
(i.e. a set of rhetorical-rules) can be constructed and tested. Hence, what is perhaps
more interesting than the specific rules presented here is the process by which they
were developed, and the contraints and tradeoffs which this process revealed. This is
a somewhat intuitive and subjective process — as the specification of rhetorical and
stylistic conventions will probably always be.

In the past the problem with specifying rhetorical conventions in any detail has
been that there was no language, save English, with which they could be described —
no clearly specifiable “hooks” into the semantic world of thoughts and ideas from
which the text was to flow, and no precise delineation of where rhetorical planning
ended and grammatical started. With GENARO these hooks are provided, at the
cost of a very specific set of computational constraints. What makes the exercise of
rule-writing interesting is that the language in which rules may be written for
GENARO is quite constrained, hopefully in natural ways. (To facilitate the
discussion of the rules, the following section outlines the primitives of their language.)

There is another important point here, one that will be elaborated in Chapter 5
- that the writer of rhetorical rules for GENARO will also be writing the
grammatical rules for MUMBLE, and that there is an intimate connection between
these two sources of knowledge. (Particularly interesting are issues about where to
put decision-making processes which could be placed either in GENARO or
MUMBLE.) Operationally, finding ways to give linguistic expression to facts in the
domain data base is a process of coordinating knowledge at the distinctly different
levels of deep and surface generation.

For example, in GENARO the r-spec is built in a strict linear fashion, without
any restructuring or editing before it is sent to MUMBLE. This fact, along with the
lack of any kind of backtracking in the control structure, constitutes a strong
processing claim. Not only is GENARO doing deep generation without any attempt
at planning-like optimization of the anticipated rhetorical effects, but its decisions are
indelible - MUMBLE receives rhetorical elements in exactly the order in which they
were offered by the rules.

33.1 The Rhetorical Primitives.

It was stated above (page 23) that the rhetorical rules make a series of
linguistic claims about the structure and content of English descriptive paragraphs.
Similarly, the terms in which the rules are written specify a set of operations which
can be thought of as the primitives of examining and asserting rhetorical elements for
the rspec. Of course, these operations are dependent on the “machinery” (i.e. the
control stucture) of this particular system — they could not be “plugged in” to another
deep generation program without considerable translation effort. It is nonetheless

The AI Program GENARO 37

desirable to formulate these operations as abstractly and generally as possible, since it
is at least possible that these primitives are more widely applicable than within the
specific framework of GENARO. Therefore, below are listed the primitive operations
which are used by the rhetorical rules.

The Preconditions of the rules can examine:

1. the salience of the Current-item;

2. the salience or existence of properties and relations of the Current-item;

3. the salience or existence of objects, properties, or relations on the USOL;

4. the “weight” of the r-spec under construction (see discussion page 27); and

5. the contents (elements) of the r-spec under construction.
The rules specifically cannot examine:

® previous r-specs;

® the pending proposals of other rules (during a round of proposing);

® any future event - rules are not allowed to post “demons” which wait for
some condition in the future which, when true, triggers an action or

proposal.

The action parts of the rules can:

1. propose an r-spec element (this is the most common action);

2. get a new Current-item, either through the normal action of simply
“popping” the USOL or, in the case of the condense rules, by reaching
down into the USOL and pulling out an object; and

3. terminate the construction of the current r-spec.

Part of the methodology employed in this research has been the assumption that
the weaker and more restrictive the primitive operations are, the more potent is the
theory which they implicitly describe. Conversely, if arbitrary LISP functions could be
expressed in the language of the rules (i.e. if there was a mapping from LISP to the
rule language), then the virtual machine in which the rules run would have the power
of a Turing machine, weakening considerably the claims of the theory.

38 The AI Program GENARO

The operations listed above describe a virtual machine that can be characterised
as being very localized — it only supports rules which are “short-sighted” and which
have immediate effects. To summarize this machine:

There are three data structures: the USOL, the Current-item, and the
R-spec; the first two represent successive distillations of the domain data
base, and are available only for inspection and a very limited form of
modification by the system’s rules (i.e. movement of items from the
USOL to the Current-item); the R-spec is also examinable, and is the
only place where planned rhetorical elements can be placed. The rules
must perform their action at the moment that their proposal wins, and
there is no backup or lookahead® Once construction of an r-spec is
completed it is sent immediately to MUMBLE, and the process is begun
again with an empty r-spec and a new Current-item from the USOL.

There is one exception to the extreme locality reflected in this architecture, and that
happens in the Paragraph Driver. Since this part of the machine turns the packets
on and off, it has the ability to impose a global structure on the generated text.
Currently this mechanism is used only to introduce and conclude the paragraph, using
the packets Introduce and Conclude. (See Chapter 6 for a discussion of using this
mechanism for multi-paragraph texts.)

The advantage of this approach is
® that this machine is adequate to do salience-based rhetorical planning,

® that exactly because of the weakness of the machinery it can perform its
planning very quickly, and

® that because of the possibility of “dead-ending” in its interaction with
MUMBLE it presents a testable and psycholinguistically interesting theory of
deep generation.

» Backup provides a program with the ability to make a “tentative” decision - if it turns out to
be wrong later on, the program can return to the point where the decision was made and
make another choice. Lookahead allows a similar kind of flexibility ~ the program can “look
ahead” to some extent, anticipating the consequences of the alternatives at a decision point,
and hence making a more informed choice. However, GENAROs decisions, like MUMBLE’s,
are indelible and unforeseeing.

2 Another way of viewing the overall architecture of GENARO is that it is comprised of two
very simple and weak machines, an Iterative Proposing rule driver and a Paragraph driver,
connected in a way to provide performance well beyond either machine alone.

The Al Program GENARO 39

332 Writing Rhetorical Rules.

The experiments on salience (reported in [Conklin, Ehrlich, and McDonald 1983))
yielded a substantial body of texts and their associated salience ratings. These texts
were used as the starting point in the design of the rules, although my own intuitions
as a native speaker also played a large role. The rest of this section will present the
process by which two of the simplest rhetorical rules evolved, illustrating the empirical
approach which GENARO was designed to support. Familiarity with this section
should allow the reader conversant in LISP to formulate their own GENARO-style
rhetorical rules. The section following this one will present a detailed example of the
generation of a short description, so questions about the operation of the rules
presented next should be suspended until both sections have been read.

Many of the subjects” descriptions began with the phrase “This is a picture of
.." or “This picture shows ..”. The job of designing rhetorical rules for GENARO
generally has two parts: deciding when to use a rhetorical construction, and specifying
how to the realization component in a concise form. In this case (ie., at the
beginning of a description), the decision to use it is could be simple: simply detect
that nothing has been said yet® In fact, it is even easier to simply start the system
up with the Introduce packet turned on, and then to turn it off at the end of the
first r-spec. The rule which introduces the description, $intro, therefore has no
preconditions (it is controlled via its packet).

The action part of the rule must somehow tell MUMBLE to construct the tree
structure for the phrase “This is a picture of” and to leave a hook in the structure
for the noun phrase describing the theme of the picture. The difficult part of this
choice is that there are so few constraints on it. The simplest action is to pass to
MUMBLE an r-spec like “Introduce (X)”, where MUMBLE's dictionary has an entry
for “Introduce” which constructs the phrase marker shown in Figure 11, and which
binds “X”", the thing introduced, to the final NP position. A similar structure could
be built for the phrase “This picture shows”, and the choice between them could be
left as a random decision to be made by MUMBLE (barring some criterion on which
to base the decision)®

2 This could be done by using a “nothing-has-been-said-yet” flag, but no such flag is available to
the rules, nor do they have the ability to set or check it. (This is not to say that it could
not be added, but to do so would be to extend the rhetorical rule language, and, in the
interest of parsimony, such extensions should only be made as the result of a careful
argument.)

3 As will be explained in Chapter 4, MUMBLE always forms its phrases grammatically, using a
tree representation of the internal structure. While a phrase could be represented as a “word™
in MUMBLE, this is a bad way to capture idioms and other canned phrases since it forbids
any morphological modifications to words inside the phrase.

40 The AI Program GENARO

BASIC-CLAUSE
SUBJECT PREDICATE
“’I'Illis” VP-PlllBD-NP
v PRED-ADJ
“i::" mmnmp- '

NS AN

DET HEAD “of” NP

| | /

“a” “picture” <X>

Figure 11: The tree for Introduce.

The rule must specify what object in the domain data base to use as the
argument to this “Introduce” term. The obvious choice is the Current-item, since at
the beginning of the description process the Current-item will be the most salient
object in the domain data base

The Introduce specification element is proposed at a high priority because it is
an obligatory element in the first r-spec (i.e. if the rule can fire, it must). Priorities
normally range from zero to one, so I chose to propose this element with a priority
of two times the salience of the Current-item (which salience will normally be close
to 10), assuring that it will normally be the first to win. (If there are no very
salient objects in the picture, however, the priority will be low enough that some
other introductory rule which is designed to handle such situations can win.)

Finally, the rule must be prevented from firing more than once. Within the
first rspec this is done by proposing the Introduce element as “unique” (see
discussion, page 28): once this proposal has won, the control system will prevent it
from being proposed again during the construction of the current r-spec. To prevent
this rule from firing in subsequen:t r-specs, it is in a packet (the Intro packet) which is
turned off when the first r-spec is sent.

There are complications to this simple scheme. If the picture is of swo houses, of roughly
equal salience, the desired output would be “This is a picture of two houses ..”. However,
the Introduce term would have already been bound to only one of these houses (the more
salient one). To keep this section simple such complications will be discussed in Chapter 5.

The AI Program GENARO 41

Thus, this rule could be paraphrased as saying simply “Propose to introduce the
Current-item as the topic of the picture.” The actual form of the rule used in
GENARO is shown in Figure 12. The function “propose” takes two arguments: the
first is the r-spec element which is created by “create-rspec-elmt”, and the second is
the numerical value of the priority at which the proposal is to be made (the “at” is
ignored). The function “create-rspec-elmt” takes four arguments: the first two specify
the type and name of the r-spec element, the third one names the theme-object which
is the “argument” of this r-spec element (i.e. the one it refers to), and the fourth
argument specifies that this element is to be unique (i.e. if it wins, no other such
proposals will be entertained). @When this rule’s proposal wins, the specification
element that is inserted into the r-spec is shown in Figure 13 (see Figure 8 above).

(Sintro
preconditions
actions
(propose
(create-rspec-elmt ‘rhetoreme

“introduce
Current-item
“unique)

at (* 2.0 (get-salience Current-item))))

This rule is controlled by being in the Introduce packet. The function
“create-rspec-elmt” is explained in the text. (Keep in mind that the action of this rule
is simply to make a proposal — the created r-spec element is included in the r-spec only
if that proposal has the highest priority.)

Figure 12: The rule $intre.

(ELMT1 RHETOREME introduce (house-1)
(house-1 (SUPERC house)

NEWITEM))

This element specifies to MUMBLE that the dictionary entry introduce be run with the
single “argument” house-l. “SUPERC house” names the immediate superconcept of
house-1, and NEWITEM is added because the theme-object house-1 is marked as
‘“unmentioned”.

Figure 13: The first r-spec element.

The AI Program GENARO

As another illustration of capturing rhetorical conventions, it was observed that
people rarely mentioned prominent objects without modifying the object’s noun phrase
in some way. “This is a picture of a white house” or “.. a New England house”
were preferred to the more austere “This is a picture of a house”. To capture this
convention I wrote a rule called “$prop-sal-obj” (because it proposes a property of a
salient object). It had the following requirements:

1. that it only propose mentioning a property if the Current-item was salient
enough, and

2. that it propose the most salient of that object’s properties.

The resulting rule is quite simple, and is shown in Figure 14, It could be
paraphrased as saying “If the Current-item is very salient and has any properties at
all in the domain data base, propose saying the most salient of those properties.”

The first requirement (above) is fulfilled by the precondition on the salience of
the Current-item (a value of 9 represents a very high threshold). The second
requirement is fulfilled automatically by using the fact that part of the Current-item
register is the Current-properties list, which lists in order of decreasing salience the
properties of the Current-item; the first of these is thus the most salient property.
This proposal is made at a fixed priority of 35: low enough that it only wins when
all of the fairly important elements are already in the r-spec, but high enough to
prevent it being skipped over. Notice that the salience of the property itself is not at
issue in this rule - the fact that the house is “white” or “New England style” is

($prop-sal-obj

preconditions
(greater-than (get-salience current-item) .9)
(not (null current-properties))
actions
(propose
(create-rspec-elmt ‘property
(first current-properties)
current-item
“unique)
at 35)

The function “greater-than™ is true if the first argument is greater than the second one.
The function “first” returns the most salient property of the Current-item, because
“current-properties” is ordered by decreasing salience.

Figure 14: The rule $prop-sal-obj.

The AI Program GENARO 43

hardly salient. However, prominent objects receive “claboration” through this simple
technique. When this rule’s proposal wins, the following element is added to the
1-spec:

(ELMT2 PROPERTY color-of (house-1 white-1)
(house-1 IBID)
(white-1 (SUPERC white))))

(again, see Figure 8).

Before leaving the subject of writing and coordinating rhetorical rules there are
two global variables, *shift-factor and *level-of-detail, which deserve elaboration. The
purpose of these variables, which are called rule parameters, is to coordinate the rules
at a global level® For example, the rules in the Shift-topic packet use *shift-factor
to coordinate the salience at which they will propose actions leading to a new
Current-item. Likewise, *level-of-detail is used by the rules in the Elaborate packet to
coordinate the salience required for details to be proposed. Both rule parameters are
multiplicative factors and have a standard value of 1.0 (hence by default they have
no influence on the system’s behavior).

In this section I have tried to provide the flavor of composing rhetorical rules
for GENARO. In the next and final section of this chapter a fairly detailed example
of the generation of a short description will be presented.

34 An Example of Generating a Description

The purpose of this section is to provide the reader with a more concrete sense
of the way the system works, especially with respect to the interactions between the
rhetorical rules, and the tension between making decisions on the rhetorical
(GENARO) versus the grammatical (MUMBLE) side of the fence. The picture being
described will be the house scene shown in Figure 1 (page 4), and the input domain
data base will be the hand-built KL-ONE network representing this picture shown in
Chapter 4. The following account discusses the operation of GENARO through the
construction of the four r-specs which lead to the following target description:

» This is not coordination in the sense of inter-rule communication, since the rules cannot set
these parameters, only obey them.

4 The AI Program GENARO

This is a picture of a two story house with a fence in front of it.
The house has a red door and the fence has a red gate. Next to the
house is a driveway. It is a cloudy day.

The reader may wish to refer to the basic algorithm in Figure 9 (on page 34)
in reading the following account. This account does not explain the process of
realizing the deep-generated r-spec’s in MUMBLE - that is left for Chapter 4.

34.1 The First R-spec.

The program starts with “initialize-system”, which simply does the initial
bookkeeping for the control system. Next the objects in the domain data base are
ordered by decreasing salience and the USOL is set to this list* Let us suppose that
this process yields the USOL shown in Figure 15.

The next action is that the top object on this list (House-1) is “popped” into
the Current-item register; an automatic part of this process is that the two
“sub-registers”, Current-properties and Current-relations, are set to the lists of the

USOL object Salience

House-1 10
Fence-1
Door-1
Gate-1
Driveway-1
Mailbox-1
Porch-1
etc.

Lhaaaio

The objects on the USOL for this example and their respective salience values. (These
salience values were adjusted to simplify this exposition of the operation of the program,
and are not the empirically derived values.)

Figure 15: The USOL for this example.

% Ope implementation detail is that all of the individuated objects in the network (ic. those
representing actual objects in the world) share a common superconcept called
“**individuated-objects”. This concept provides quick access to the objects in the scene - it
only remains to access the salience value for each of these and then sort this list of objects on
the basis of their respective salience values.

The AI Program GENARO 45

properties and relations, respectively, of the Current-item (and these lists are also in
order of decreasing salience). In this example Current-item would now be as shown
in Figure 16. Finally, the R-spec register is set to the skeleton:

(RSPEC NO1 BODY nil OPTIONAL nil)
where the “nils” are empty lists (see Figure 7).

The program is now ready to begin building the first r-spec. The function
“build-rspec” does this job by repetitively having all of the rules make their proposals
and then performing the action specified by the proposal with the highest priority.
During the proposing phase the proposals are kept on the “proposed-rspec-elmt-list”,
which is maintained in order of decreasing priority. As shown in Table 3, in this
example six of the 8 rules in the system make proposals. Each of these proposals is
described below in some detail” (While this level of detail is not practical for the
whole example, it is necessary in the beginning.)

Current-item: House-1

Current-properties: (two-story-building-1
white-1
new-england-house-1)

Current-relations: (in-front-of-1 {Fence-1}
part-of-8 {Door-1}
next-to-3 {Driveway-1}
part-of-9 {Porch-1}
etc.)

The Current-item register and its subregisters. The lists in each of the subregisters are
ordered by decreasing salience (although the salience values are not shown here). The
objects with which the Current-item has the various relations shown in the
Current-relations subregister are shown in {}’s.

Figure 16: The first Current-item.

The name of a proposal is based on the name of the themeobj embedded in the proposal: a
“§” is added to the front of the themeobj name, and another number — “-j° — is added to the
end. Eg. the themeobj “$white-1” gets proposed the first time as “$$white-1-17, the second
time as “§$white-1-2", etc. Note that this is an extrapolation of the naming of themeobjs —
the themeobj “$white-1” got its name through the addition of a “$” to the front of the domain
object -~ “white-1” -~ from which it was derived. To summarize, “<item>-i" ->
“S<item>~i" > “$$<item>-i-j".

The AI Program GENARO

The proposed-rspec-elmt-list (no. 1 wins)

No.

AN S WN =

Proposal Priority Rule
$Sintroduce-1-1 200 Sintro
$$in-front-of-1-1 85 S$reln-salience
$$two-story-building-1-1 40 S$prop-salience
$$two-story-building-1-2 38 $prop-sal-obj
$$newcuritem-1-1 35 S$newitem
$$white-1-1 20 S$prop-color

This table shows the six rules which fire in the first round of proposing (in column 4)
and their respective proposals and priorities (in columns 2 and 3). The priority values
are determined by their respective rules, as explained in the text.

Table 3: First r-spec: First round of proposals.

The proposal with the lowest priority is made by “$prop-color™ — its purpose is
to specifically mention the color of the current-item, based on the observation that
people use that property often in their descriptions of visual scemes. This rule says
“If the Current-item has a color and the rspec is not already too heavy, propose
saying that color.” The precise form of the rule is shown in Figure 17. The “let”
statement is explained in Figure 18. In this case a temporary assignment is made to
the variables “color” and “cut-off-weight”. “Color” is bound to the first property on
the Current-properties list that is a color. “Cut-off-weight” is bound to a threshold
weight which is calculated to be somewhat smaller (.8) than the product of the global
parameters for the optimum r-spec weight and the level of detail (the value 8 is a
guess).

The second precondition, “(less-than (weigh-rspec) cut-off-weight)”, then
determines if the r-spec is already too “heavy” to support an elaboration of the
Current-item with its color. The function “(weigh-rspec)” simply sums the weights (see
above, page 27) of all of the elements in the r-spec at the time of the proposal.
Indeed, as the r-spec describing “House-1” grows it will reach a weight great enough
to cause this second precondition to fail.

The first precondition is simply that the object has a color in the domain data
base at all. In this case both preconditions were met (with “White-1” being the color
of “House-1") and the proposal called “$$white-1-1” is made at priority 02 - that is,
that potential r-spec element is inserted into the proposed-rspec-elmt-list (see Table 3).
As with many of the thresholds, the value of 02 is a first guess at a priority value
that will be low enough to succeed only when there’s little else to say, yet high
enough that it does occasionally succeed.

The AI Program GENARO 47

($prop-color
(let (color (get-themeobj-of-type ‘color current-props)
cut-off-weight (times *minimum-rspec-weight
*level-of-detail
0.8))
preconditions
(not (null color))
(less-than (weigh-rspec) cut-off-weight)

actions
(propose
(create-rspec-elmt “property
color
current-item
‘unique)
at 2)))

This rule proposes to mention the color of the Current-item. The “let” statement creates
three local variables for use in the preconditions and actions parts. Specifically, the
“cut-off-weight” is a threshold r-spec weight above which this rule will not even bother
to make its proposal — its formula is discussed in the text.

Figure 17: The rule $prop-color.

The “let” statement is a LISP programming technique for making the computation either
more efficient or perspicacious. The general form is

(LET (variable-1 expression-1
variable-2 expression-2

<body>)

The parenthesized expression after the “LET” consists of any number of
<variable>/<expression> pairs, such that the <expression> is evaluated and the
<variable> is assigned (or ‘“bound to” in LISP terminology) that value. These bindings
are temporary and local - they only hold for the « of the LET, and are lost after
the LET statement. In GENARO this is important in preventing accidental interactions
between rules.

Figuore 18: The LET statement.

48 The AI Program GENARO

The next higher priority proposal is made by the rule “$newitem”. This rule
runs whenever the r-spec is empty. It says essentially “If the r-spec is empty (i.e. it
is a brand new r-spec), and no other better proposals are being made, throw out the
Current-item and get the next one from the USOL.”® This is, in fact, the standard
mechanism by which the next object is gotten from the top of the USOL to the
Current-item register: in the somewhat sparse domain data bases which have been
used to date it usually happens that when the last r-spec has just been sent to
MUMBLE (so that the new r-spec is empty), there is nothing more “of interest” (i.e.
of high enough priority) to say about the old Current-item. Then $newitem flushes
the old Current-item and gets the next one from the USOL. This rule will be
discussed further at the end of the construction of the current r-spec about “House-1”
(see below).

The proposal of “$prop-sal-obj” is the next highest priority (this rule was
described above, page 42). In this case, the Current-item House-1 is counted as a
prominent object - with a salience greater than .9 -~ and its most salient property,

“two-story-building-1”, is proposed by this rule.

This property is also proposed by rule “$prop-salience”, at a slightly higher
priority. This rule could be paraphrased as saying “If there is a property of the
Current-item that is salient enough, propose saying it.” The purpose of this rule
(which is shown in Figure 19) is to see to it that, if a property of the Current-item
is highly salient, it gets mentioned. (Recall that the standard value of *level-of-detail
is 10.° This rule is different from the previous ones in that it bases the priority of
its proposal directly on the salience of the thing being proposed: the more salient the
property, the more likely it is to find its way into the r-spec.

The proposal that was next to highest in priority in this first round of
proposing was made by “Sreln-salience”. This rule does for the relations of the
Current-item what “Sprop-salience” does for its properties: it says “If the most salient
relation of the Current-item is salient enough, propose it.”™® The coded form of the

% This rule embodies the implicit claim that if there is no salient elaboration of an object then
we do not describe the object at all, since the only way that an object can be described is by
virtue of some properity or relationship.

® In fact this rule only looks at the most salient of the propertics of the current item: if this
property is salient enmough, it is proposed for mention; the other properties, being of lower
salience, are not of interest to this rule. This is yet another form of the basic claim of this
thesis: if a property other than the most salient one is to be mentioned it will be by some
specific rule looking for some specific rhetorical feature.

* It is worth noting in passing that the separation, maintained within the input data base and
within the rules, between properties and relations makes a rather strong claim that these
entities enjoy distinct perceptual and linguistic roles. See Chapter 4.1 for a discussion of the
source of this distinction.

The Al Program GENARO 49

($prop-salience
(let (priority (times *level-of-detail
(get-salience
(first current-properties))))
preconditions
(greater-than priority .3)
actions
(propose

(create-rspec-elmt ‘property
(first current-properties)
current-item
“unique)
at priority)))
This rule is interesting because the priority of the proposal is based on the salience of

the Current-item’s most salient property. Note also that while the “priority” appears in
the precondition, this is just a short-hand way of checking the property’s salience.

Figure 19: The rule $prop-salience.

rule is shown in Figure 20. In this case, the relation “in-front-of-1”, between Fence-1
and House-1, is proposed at the priority of .85.

($reln-salience
(let (priority (times *level-of-detail
(get-salience
(first current-relations))))
preconditions
(greater-than priority 3)
actions
(propose
(create-rspec-elmt °relation
(first current-relations)
current-item
‘unique)
at priority)))

In this rule (as with S$prop-salience in Figure 19) the priority is calculated at the
beginning of the rule, based on the salience of the most salient relation.

Figore 20: The rule $reln-salience.

50 The AI Program GENARO

Finally, at the highest priority, the rule “Sintro” proposes to introduce House-1.
This rule was discussed in detail above (page 41); its proposal, “$$introduce-1-1”, wins
and is placed in the r-spec. Thus at the end of the first round of proposing the
r-spec looks like this:

(RSPEC NO1
BODY
(ELMT1 RHETOREME introduce (house-1)
(house-1 (SUPERC house)

NEWITEM))
OPTIONAL nil)

The qualifier “NEWITEM”, incidentally, is added automatically to r-spec elements
when the object being qualified was marked as unmentioned. Once that item is
inserted into the r-spec, however, it gets marked as mentioned. This information is
maintained in the item’s themeobj. In fact, the main reason for having the level of
representation of themeobjs is so that such facts as whether or not an item has been
mentioned can be kept around, without having to modify the domain data base. In
this case, the themeobj S$house-1 gets marked as mentioned -~ specifically, as
mentioned in the first r-spec.

If this r-spec were sent to MUMBLE as it is, it would be realized as something
like “This is a picture of a house”. The program judges this to be too little semantic
content, based on the weight of the r-spec (that is, the weight of the single rhetoreme
element, which is 20 -~ see page 27 for details)) and so the predicate
“rspec-complete?” fails, leading to another round of proposing.

At this point it may seem to the reader computationally inefficient that a whole
round of proposing produces only one r-spec element. Many of the proposals made
on this round are likely to made again on the next round, by the same rules.
Nevertheless, because the r-spec itself is one of the data structures available to the
rules for both examination and modification, this repetition is mecessary to assure that
rules are always basing their proposals on the most current information. Besides, if
the rules are thought of as independent machines operating in parallel® such
extravagance is a natural and desirable part of the control stucture (even if it is
slower on a serial machine).

As in the last round, the first thing to happen is that the
Proposed-rspec-elmts-list is cleared. At the end of proposing only four of the six rules
from the first round have fired again, and no new rules have fired (see Table 4).

3 Note that while r-spec construction is inherently linear and serial, deciding on the next element
for the rspec can be done in parallel. Note also that generating from a dynamic data base
would make the parallel aspect even more important, since selection deliberations would need
to proceed quickly and without data base changes during the element selection process.

The AI Program GENARO 51

$Intro does not fire this time because its r-spec element is marked as “unique”,
causing the control structure to prevent the rule from firing again during this r-spec.
The other rule missing in this round, $newitem, required an empty r-spec as one of
its preconditions — this is clearly no longer the case. The other four rules from the
last round all fire again on identical grounds, so last time’s “runner-up”, $reln-salience,
wins on this round. Its r-spec element is:

(ELMT2 RELATION in-front-of-1 (fence-1 house-1)
(fence-1 (SUPERC fence)
NEWITEM)
(house-1 IBID))

and the whole r-spec would be realised as “This is a picture of a house with a fence
in front of it.”, but the weight of this r-spec (3.0) is still too small to send to
MUMBLE. This assessment is made in a number of ways (discussed below), but all
of them use a global parameter called “’minimum-rspec-weight”, which specifies the
minimum weight allowed for an r-spec, and the value of which is 3.8 for the example
in this chapter.

In the third round of proposing nothing has changed except that $reln-salience
is no longer making its proposal. Recall that once a themeobj is inserted into the
r-spec it is marked as mentioned, and that this blocks that themeobj being proposed
by any rule This opens the way for $prop-salience’s proposal,
“$$two-story-building-1-5” at priority 40, to (finally) be the highest priority proposal
when the dust settles on this third round of proposing. The r-spec element which
gets added is straightforward, and the whole r-spec is shown in Figure 21. MUMBLE
would realize this r-spec as “This is a picture of a two story house with a fence in
front of it.”, and in fact this is the r-spec that is sent to MUMBLE in this example.
This is not because this r-spec has gone over the *minimum-rspec-weight, but because
there is “nothing left to say”.

The proposed-rspec-elmt-list (no. 1 wins)

No.

1

2
3
4

Proposal Priority Rule
$$in-front-of-1-2 85 S$reln-salience
$$two-story-building-1-3 40 S$prop-salience
$$two-story-building-1-4 38 $prop-sal-obj
$$white-1-2 20 $prop-color

The four rules which fire in the second round of proposing. (Note that the names of
the proposals indicate how many times their themeobj has been proposed, eg.
$in-front-of-1 is being proposed for the second time in “$$in-front-of-1-2".)

Table 4: The first r-spec: The second round of proposals.

52 The AI Program GENARO

(RSPEC NO1
BODY
(ELMT1 RHETOREME introduce (house-1)
(house-1 (SUPERC house)
NEWITEM))
(ELMT2 RELATION in-front-of-1 (fence-1 house-1)
(fence-1 (SUPERC fence)
NEWITEM)
(house-1 IBID))
(ELMT3 PROPERTY two-story-building-1 (house-1)
(house-1 IBID))
OPTIONAL nil)

Figure 21: The first complete r-spec.

To understand this, recall that the proposing process continues until the
predicate “rspec-complete?” is true.

BUILD-RSPEC

(repeat
(initialize-for-proposing)
(propose-rspec-elmts)
(setq rspec-elmt (pick-best-proposal))
(insert-in-rspec rspec-elmt)

until (rspec-complete?))

One of the conditions of this predicate is that the Proposed-rspec-elmts-list is empty.
That is, at the end of proposing, no rule had made a proposal, and this is what
happens in this case. Of the three rules which ran in the last round, $prop-salience,
$prop-sal-obj, and $prop-color, the first two are blocked because their proposed r-spec
element, two-story-building-1, is already in the r-spec. $prop-color, on the other hand,
has withdrawn its proposal to mention the color of House-1 (i.e. White-1) because its
precondition on the weight of the r-spec has failed.

Specifically, the weight of this three element r-spec is 35, but the
“cut-off-weight” threshold computed by $prop-color is only 3.04. This cut-off-weight is
the product of three factors: the *minimum-rspec-weight (which is 3.8), “0.8”, and the
*level-of-detail (whose value is 1.0). The first two factors reflect my desire to have
this rule only propose the color of the Current-item if the r-spec was less than 80%
of its optimum weight. The third factor, *level-of-detail, is a global parameter which
has a fairly straightforward meaning —~ if a more or less detailed description is desired
this parameter can be adjusted accordingly. In this case, if *level-of-detail had been
slightly higher (i.e. 125 or greater), the cut-off-weight computed by $prop-color would
have been above the r-spec weight. Thus the rule would have fired, proposing

The AI Program GENARO 53

“White-1” at priority .20, and this time it would have won since there would have
been no competition from other rules. In this case the final r-spec would be realised
as “This is a picture of a white, two story house with a fence in front of it.™

42 e Second R .

Once the r-spec is sent to MUMBLE, GENARO (specifically the function
“end-description?”) checks whether this is the end of the description. This depends
chiefly on the next object on the USOL - if its salience is below a threshold the
Conclude packet is turned on. In this example the next item on the USOL is
Door-1, whose salience of 8 is well above the threshold, so the function “build-rspec”
is called again.

The Proposed-rspec-elmts-list and R-spec are cleared and another round of
proposing occurs. However, Current-item is still House-1 — nothing has occured to
change it, and in fact it is certainly possible that there was still a great deal to say
about it. In this case, for example, $prop-color proposes once again (still at a priority
of 02) that the color of the house be mentioned. But since the r-spec is empty
$newitem also makes its proposal — at a priority of 35. Recall that $newitem also
ran at the very first round of proposing for the first r-spec; at that time, however,
there were 4 other rules that had proposals with higher priorities.

$Newitem is one of the rules whose action is not to insert an element into the
r-spec, but rather is a function which gets evaluated, performing an action. The
action, in English, is “If the object that will be the next Current-item is salient
enough, pop it from the USOL into Current-item, otherwise signal the end of the
description by clearing the input registers”. The actual rule is shown in Figure 22.
In this case (next-curitem-salient-enough?) is true, so the proposed action — which is
also executed - is to pop the next object on the USOL, which is Door-1, into
Current-item.® This is the standard procedure for getting a new Current-item. It
provides the flexibility of allowing several r-specs to be built about the same
Current-item if there are enough salient things to say. In all of the runs studied so
far, however, after each r-spec is sent to MUMBLE one round of proposing is spent
with $newitem getting the next Current-item.

2 See Chapter 6 for a way of using a rhetorical rule to signal the completion of building an
r-spec.

3 Note that the object Fence-1, which was above Door-1 on the USOL, was mentioned in the
last R-spec, and so is no longer “unmentioned”. This does not mean that nothing more can be
said about Fence-1, but it does pose problems -~ see the discussion in hypothesis Ib in
Chapter 5.

54 The AI Program GENARO

($newitem

preconditions
(null r-spec)
actions

(build-function
(if (next-curitem-salient-enough?)
then (set-curitem (pop-usol))
else (setq usol nil
cur-item nil)))
at 35))

One of the rhetorical rules whose proposal is an action, not an r-spec element. Note
the distinction between the propose action, which is executed (if the precondition
succeeds) when the rule is run, and the constructed action, which is built by
(build-function) but which is only executed if the proposal succeeds.

Figure 22: The rule $newitem.

Figure 23 shows the new Current-item, Door-1. All of the rules which make
proposals in the first round of proposing with this new Current-item have already
been explained. When the proposing is over, the Proposed-rspec-elmts-list contains
four proposals, as shown Table 5.

Briefly, $prop-color is proposing mentioning that the door is red on the basis
that (a) the door has a color and (b) the r-spec is still quite “light”. $Newitem’s
proposal is based on the R-spec being empty at the moment. $Prop-salience is
proposing the color of the door because this property is quite salient: in the data base
the salience of property Red-1 is .80. Finally, $reln-salience has the highest priority
proposal, which is to mention that Door-1 is a part of House-1, and this rhetorical
element is duly inserted into the r-spec.

In the next round the proposals are as shown in Table 6; the two “red”
proposals from the last round persist this time, and a new rule, $condense_prop, has
made a proposal at a very low priority. With the winner of the second round of

¢

Current-item: Door-1

Current-properties: (red-1)
Current-relations: (part-of-2) {House-1}

Figure 23: The second Current-item.

The AI Program GENARO 55

The proposed-rspec-elmt-list (no. 1 wins)

No. Proposal Priority Rule

1 $$part-of-2-1 0.81 $reln-salience
2 $$red-1-1 0.80 $prop-salience
3 $$newcuritem-3-1 035 $newitem

4 $$red-1-2 020 $prop-color

This table shows the four rules which fire in the first round of proposing for the
Current-item Door-1.

Table 5: The second r-spec: The first round of proposals.

The proposed-rspec-elmt-list (no. 1 wins)

No. Proposal Priority Rule

1 $$red-1-3 0.80 $prop-salience
2 $$red-1-4 020 $prop-color

3 $$condense-prop-1-1 0.05 $condense-prop

The three proposals made in the second round of building the r-spec for Door-1.

Table 6: Second r-spec: The second round of proposals.

proposing inserted, the r-spec is as shown in Figure 24. If this r-spec were sent to
MUMBLE it would be expressed as “The house has a red door”® However,
GENARO has more to say.

In the next round the only proposal is by S$condense-prop. This rule spots
objects of lower salience than the Current-item (objects on the USOL) which share
with the Current-item a property, and condenses the description of such objects into
the description of the Current-item. Underlying this rule is a claim that two objects
in a picture which have the same property, e.g. that they are both red or broken or
in the foreground, can be described more concisely (following Grice’s dictum for
economy of expression) by being described together. I have termed such items
“rhetorically parallel”, because the shared perceptual element between two items invites
specialized treatment at the rhetorical planning level. Specifically, $condense-prop says
“Look down the USOL for a ‘parallel object” (one which shares a property with the

3 Or as one of the transformational variants of this sentence. See Chapter 4.

56 The AI Program GENARO

(RSPEC NO2
BODY
(ELMT1 RELATION part-of-2 (door-1 house-1)
(door-1 (SUPERC door)
NEWITEM)
(house-1 IBID))
(ELMT2 PROPERTY red-1 (door-1)
(door-1 IBID))
OPTIONAL nil)

The r-spec for Current-item Door-1 after two rounds of proposing.

Figuore 24: The first part of the second r-spec.

Current-item in this case)® ; if the parallel is strong enough (see below) and the
r-spec is not already too heavy, then construct an action whose effect (if executed) is
(1) to remove the parallel object from the USOL and make it the Current-item and
(2) to put a ‘condensation marker” in the r-spec to signal what has happened to
MUMBLE.” The precise form of the rule is shown in Figure 25. In this example,
the Current-item Door-1 is red, and this rule detects that Gate-1 (the gate of the
fence), which happens to be the object on the top of the USOL, is also red. Since
this is the sole proposal for this round, Gate-1 is made the new Current-item.

The first thing that $condense-prop does (see Figure 25) is to do a search down
the USOL, starting at the top and checking each object to see if it and the
Current-item have any properties which have the same superconcept, e.g. Red-1 and
Red-2 both have the superconcept Red. If such an object is found, certain facts
about the object, such as its name, its position on the USOL, and the kind of
similarity (e.g. “property: red”), are packed into “parallel-object”. This temporary
variable is then referenced by the preconditions and actions of the rule.

There are three preconditions:

1. that there is such an object;

3 Note that the first parallel object found will also be the most salient such object on the
USOL.

The Al Program GENARO 57

($condense-prop
(let (parallel-object
(find-parallel-object “property))
preconditions
(not (null parallel-object))
(parallel-enough? parallel-object)
(less-than
(weigh-rspec)
(times 0.7 *minimum-rspec-weight))
actions
(let (temp
(create-rspec-elmt ‘rhetoreme
‘condense-prop
“(Current-item
parallel-object)

“unique))

(build-function
(set-curitem-to-parallel-object
parallel-object)
(add-to-rspec temp))
at .05))))

The rhetorical rule $condense-prop. The first “let” gets a vector of descriptors describing
the first USOL object which is rhetorically parallel to Current-item and puts that vector
in “parallel-object”. The first two preconditions make sure that there is such an object
and that it is salient enough. The action does two things: (a) builds an r-spec element
describing the proposed condensation, and (b) builds a proposed action which pulls the
parallel object out of the USOL and makes it the Current-item and then adds the r-spec
element constructed in (a) to the r-spec. Full details are in the text.

Figure 25: The rule $condense-prop.

2. that it is parallel enough — this involves: (a) it not being too deep into the
USOL, and (b) both properties (of the Current-item and the parallel object)

The AI Program GENARO

being salient enough* ; and

that the r-spec is not too heavy to accomodate a condensation — since
describing a second object in the same r-spec can lead to an excessively
heavy r-spec, condensation is not started if the r-spec is already moderately
heavy.

If all three of these preconditions are true, a proposal is constructed in the
following manner:

1.

an r-spec element is created which signals that a condensation has occured
in the r-spec and points to the parallel elements; this element is set aside
in a temporary variable called “temp”;

the first action of the proposal is the removal of the parallel object from
the USOL and the setting of the Current-item to this object; and

the second action is the insertion into the r-spec of the element constructed
in step (1) and set aside in “temp”.

(Note that the r-spec is not sent on to MUMBLE as part of this process.)

As stated above, in this example $condense-prop does indeed find a parallel
object, and in fact wins with its proposal, making the Current-item as shown in
Figure 26 and adding to the r-spec a rhetorical element of type “rhetoreme™:

(ELMT3 RHETOREME condense-prop (door-1 gate-1)

(door-1 IBID)
(gate-1 (SUPERC gate)
NEWITEM)))

Current-item:

Gate-1

Current-properties: (Red-2)
Current-relations: (Part-of-3) {Fence-1}

Figure 26: The third Current-item.

% Note that this condition blocks condensing on just any two objects which share some property
- certainly one does not want to condense the description of a green house with the green
trees around it. But in such cases the salience of at least one of the properties will be below
threshold — green is a very low salience property of a tree.

The AI Program GENARO 59

The major functions of this element are (a) to have a specific marker in the r-spec
which indicates to MUMBLE that a condensation has taken place, and (b) to point to
the pair of condensed objects. MUMBLE has an entry for “condense-prop” (as
discussed in Chapter 5), and this entry specifies the linguistic constructions (e.g.
conjunction, ellipses, verb phrase reduction) which can be used to realize the
condensation.

In the next round of proposing the rules are working with a new Current-item,
Gate-1. This- object has the shared attribute (i.e. red) and a single relation (ie.
part-of). When both the property and the spatial relation of Gate-1 are inserted into
the r-spec there is nothing left to say, and the r-spec, as shown in Figure 27, is sent
on to MUMBLE. There are several ways that such an rspec could be realized; my
personal preference is “The house has a red door and the fence has a red gate”,
though one could also say “Both the door of the house and the gate of the fence
are red”. The dictionary entry for condense-prop would contain a specification for
the structure of both of these constructions, as well as any others that appealed to
the author of the dictionary.

(RSPEC NO2
BODY
(ELMT1 RELATION part-of-2 (door-1 house-1)
(door-1 (SUPERC door)
NEWITEM)
(house-1 IBID))
(ELMT2 PROPERTY red-1 (door-1)
(door-1 IBID))
(ELMT3 RHETOREME condense-prop (door-1 gate-1)
(door-1 IBID)
(gate-1 (SUPERC gate)
NEWITEM)))
(ELMT4 RELATION part-of-2 (gate-1 fence-1)
(gate-1 IBID)
(fence-1 IBID))
(ELMT5 PROPERTY red-2 (gate-1)
(gate-1 IBID))
OPTIONAL nil)

The r-spec based on two Current-items, Door-1 and Gate-1, condensed into one r-spec by
$condense-prop.

Figure 27: The second r-spec.

60 The AI Program GENARO

But suppose that Gate-1 had not had Part-of-2 (with Fence-1) as its most salient
relation, but rather, say, that there was a person standing next to the gate, i.e.
Next-to(Gate-1, Person-1). Then Next-to would have been in the r-spec in place of
Part-of, and the resulting sentence would have been (at best) something like “The
house has a red door, and there is a red gate with a person next to it.” While this
is certainly acceptable, it is less compact and more awkward than the more parallel
constructions above. This demonstrates that there are degrees of rhetorical parallelism,
and that the criteria for condensation are probably more complex than are captured
in $condense-prop as it is shown.

The operation of this rule also illustrates a potential problem that stems from
the weakness of GENARO's control machinery — once an object has been the
Current-item and has been replaced in that role, there is mo way for it to be
described any further, except in relation to other objects which have become the
Current-item. Thus it would be possible to design the system’s rules in a way that
prematurely threw away a Current-item, i.e. while there still was more salient material
to mention. The solution is to specify rule parameters in such a way that rules
which might replace the Current-item do not run until those doing elaboration of the
Current-item are done — in GENARO this is done by having the priorites of rules in
the Elaborate packet be generally higher than those in the Shift-topic packet. Also
the global parameter *shift-factor can be used to “turn down” (or up) the Shift-topic
rules as a group.

343 The Third R-spec.

At the beginning of the third r-spec the r-spec register is cleared, the packet
driver is checked (but no packets are switched on or off), and, with the Current-item
still Gate-1, the first round of proposing yields only the proposal from $newitem to
get the next object from the USOL. This is Driveway-1, and Figure 28 shows what
it looks like once inserted into the Current-item.

Current-item: Driveway-1
Current-properties: nil
Current-relations: (next-to-3 {House-1}

next-to-6) {Bush-1}

The Current-item Driveway-1; note that it has no properties in the domain data base.

Figure 28: The fourth Current-item.

The AI Program GENARO 61

The first round of proposing in the construction of this r-spec yields two
proposals, as shown in Table 7, the best of which is to mention the relation between
Driveway-1 and House-1.

In the next round no proposals are made. This is because there is not much
about Driveway-1 in the data base (i.e. it has no properties), and also because there is
nothing in the remaining USOL with which it can be condensed. The resulting r-spec
contains only one element (see Figure 29), and would be realized simply as “There is
a driveway next to the house.”, or “Next to the house is a driveway.”

It may strike the reader that this sentence states a fact that is so ordinary, or
predictable, that it would not normally be included in a description. However,
whether or not this is the case is left, in this system, as a perceprual issue - the
more ordinary a fact is, the lower its salience, on the same grounds that its salience
is higher the more unexpected it is. Thus a vision system whose world knowledge
indicated that houses always had driveways next to them would have accorded the
driveway very little salience in its perception of this scene, and GENARO would have
accordingly been very unlikely to mention it.

Another issue brought up by this r-spec is its small size. Recall that this
system assumes a one-to-one correspondence between r-specs and sentences: MUMBLE
must produce exactly one sentence for each r-spec sent it. Furthermore, there is a

The proposed-rspec-elmt-list (no. 1 wins)

No. Proposal Priority Rule
1 $$next-to-3-1 0.72 $reln-salience
2 $$newcuritem-5-1 035 $newitem

Table 7: Third r-spec: First round of proposals.

(RSPEC NO3
BODY
(ELMT1 RELATION next-to-3 (driveway-1 house-1)
(driveway-1 (SUPERC driveway)
NEWITEM)
(house-1 IBID))
OPTIONAL nil)

Figure 29: The third r-spec.

62 The AI Program GENARO

correspondence between the weight of an r-spec and the complexity of the sentence
resulting from it, i.e. light r-specs cannot be realized as complex sentences. This is a
strong claim, but one that, after much experimentation with the system, there was
little reason not to make. Certainly it is easier to consider the interactions between
the rhetorical rules in GENARO and the dictionary entries in MUMBLE having made
this assumption. And there is no compelling reason as yet to complicate the
r-spec/sentence correspondence.

Although this r-spec (“NO3”) is very “light”, and its realization is, accordingly,
quite brief, such sentences were quite common in the paragraphs written by subjects
in the experimental studies, and seem to indicate places where there is a fairly
isolated piece of nonetheless salient information. The style of people’s descriptions,
and of the texts generated by this system, thus reflect the “style” of the information
being communicated.

However, the subjects also seemed willing to conjoin two completely unrelated
clauses, as in “Next to the house is a driveway, and in the foreground of the picture
is a mailbox”. This kind of construction leads to an interesting question: Where in
the planning process did the decision to conjoin these two unrelated objects happen?
Did the subjects plan it from the beginning, or did they plan each clause separately
and decide (during realization) to conjoin them because they were so short? Or, as a
third possibility, did they plan the first clause and then, seeing that it was short,
decide to talk about the second item without closing the sentence? That is, is the
conjunction decision made before the planning of the first clause, after the planning
of both clauses, or between clauses?

The proper psycholinguistic study could probably answer this question, but in
this case GENARO makes some claims. The first proposal requires that the planner
look ahead and decide to conjoin based on a guess that it will not have much to say
about either object” , and thus that the surface size of the descriptions of both
objects will be small. The second proposal asks nothing of GENARO and leaves the
decision to conjoin for MUMBLE to make; although MUMBLE is capable of making
this decision, it, like GENARO, will have to base its decision on an estimate of the
eventual size of the second clause. However, this scheme violates the one sentence
per r-spec convention adopted for this study, since it would take two r-specs to make
the conjoined sentence. And although it would be fruitful to investigate the reasons
for making this decision in GENARO versus in MUMBLE, this line of questioning
will not be pursued here.

Such a “look ahead” is legal for GENARO to make. A rule could be made that made this
proposal just based on a few cheaply observable parameters of the Current-item and the object
on top of the USOL plus a guess that there would not be much to say about either of these
objects. However, if its “guess” were thorough enough to spot, say, a condensation that would
happen on the USOL object, then it would be doing real look ahead, and this would be

illegal.

The AI Program GENARO 63

The third proposal also requires GENARO to guess, but only about the size of
the description of the second object. Since the decision to package the second
element (about the mailbox) with the first element (about the driveway) must be
made before computing the second element, this decision would be partially blind, and
would be wrong sometimes. For example, with suitable modifications (see Chapter 6)
GENARO could easily run $newitem (thus getting a new Current-item object from
the USOL) without sending the current r-spec and clearing that register — in this case
making Mailbox-1 the Current-item. (In so doing it could also insert some kind of
marker into the r-spec indicating to MUMBLE that this had happened.) It could
then go on to describe the mailbox in the same r-spec with the driveway, and
MUMBLE would be able to produce from this compound r-spec the kind of conjoined
sentence at the beginning of this paragraph. Without using lookahead, however,
GENARO runs the risk of finding itself with a full rspec and still many salient
things to say about the new (the second) Current-item (see the discussion of
Hypothesis 1.a in Chapter 5). There are three options at this point: 1) plan a large
r-spec that is likely to result in a long run-on sentence; 2) stop planning (and saying?)
the current sentence and replan the second conjunct with some of its material
transferred into a subsequent r-spec; or 3) arbitrarily drop the over-loading material
from the r-spec (and do not say it). This issue is discussed more fully in Chapter 5.

344 The Last R-spec.

The last r-spec in this example description leads to the sentence “It is a cloudy
day.”, yet the USOL contains no object “day”, “clouds”, or even “sky”. Where does
this r-spec come from?

The answer starts with my observation that subjects often ended their description
of a picture with some kind of global comment on the whole scene, as a way of
‘“wrapping it up”. Some typical comments were “The landscaping is nice.”, “Its a
cloudy day in winter.”, or “This is not an interesting picture.”. The job of the rules
in the Conclude packet is to generate the r-specs underlying such comments. But the
trigger for drawing the description to an end is salience: when the new Current-item
is below a certain salience value, the Conclude packet is turned on, some concluding
remark is (or remarks are) made, and the whole system stops.

In this case, the next item on the USOL, Mailbox-1,*® has a salience below the
threshold. This decision is made by the action of the rule $newitem: recall that
$newitem (Figure 22) uses the predicate “Next-curitem-salient-enough?” to decide
between popping the next USOL item into the Current-item and signalling the end of
the description. This function, shown in Figure 30, simply compares the salience of

3% Actually the next two items on the USOL, Mailbox-1 and Porch-1, both have the same salience
(05). In cases like this the program makes an essentially random choice between the
equal-salience items.

64 The AI Program GENARO

(defun next-curitem-salient-enough? nil
(greater-than (get-salience (top usol))
(times *theta *level-of-detail)))

The function that determines when to end the description. “*Theta” is a global variable
for the minimum salience threshold used by this rule. “*Level-of-detail” is factored into
this function so that when a higher level of detail is specified (by increasing this global
parameter) the program includes less salient objects in the description, as well as saying
more detailed (i.e. less salient) things about each object.

Figure 30: The function Next-curitem-salient-enough?.

the item on the top of the USOL with the threshold for minimum object salience
(“*theta™).

Since Mailbox-1 is below this threshold the action proposed by $newitem is to
wipe the Current-item clear. This action is equivalent to setting an
“end-the-description™ flag, but it has the added advantage of blocking proposals which
are extraneous to the Conclude packet. The Paragraph-driver detects that the
Current-item is empty and responds by turning on the Conclude packet. To date this
packet contains only one rule: “$light”. The purpose of this rule is to comment on
the illumination in the picture. The rule looks into the USOL specifically for
“house-scene-1”, which is the high-level frame in which all of the picture-level
information is kept. Specifically, this concept has properties (“slots” in frames
terminology) for “sky cover”, “time of day” (e.g. day, twilight, or night), and “season
of the year™ , and these are available to the Conclude rules via the
Current-properties subregister. On the basis of this information $light offers the r-spec
shown in Figure 3. MUMBLE’ dictionary has an entry for “cloudy-day” which
specifies the clause “It is ...”.

The paragraph which is typed out by MUMBLE,

¥ In Chapters 4 and 5 I argue that these roles are naturally computed by a computer vision
system in the process of understanding what is in the image — that claim will be assumed
here. Also, in Chapter 6 there is discussion of the possibility of having the “properties”
Sky-cover etc. be concepts which appear on the USOL as “objects” in their own right, thus
assuring that they get mentioned in the paragraph in accordance with their salience.

The AI Program GENARO 65

(RSPEC NO4
BODY
(ELMT1 PROPERTY cloudy-day-1 (house-scene-1)
(house-scene-1 (SUPERC outdoor-scene)
newitem)
OPTIONAL nil)

Figure 31: The final r-spec in the example.

This is a picture of a two story house with a fence in front of it.
The house has a red door and the fence has a red gate. Next to the
house is a driveway. It is a cloudy day.

is a very short example of the style and content of text produced by this system, but
has served here to illustrate the operation of GENARO and some of the rhetorical
rules. Since this discussion focused on the operation of GENARO, which is only one
part of the larger system, many important issues about the computational context
have not been addressed. In the next chapter both the content of the VISIONS data
base and the operation of MUMBLE will be taken up. In the chapter after that the
strengths and limitations of this system will be discussed.

35 Summary

In this chapter I have attempted to explain the operation of GENARO as a
model of deep generation without getting too deeply into the many theoretical and
controversial issues which the design of this very simple program raises. These will
be thoroughly discussed in Chapter 5.

To summarize the important points about GENARO, then:

® The machinery of this program is very weak considering the intuitive
difficulty and complexity of rhetorical planning. The restrictions on the
preconditions and actions available to the rhetorical rules, plus the lack of
any backtracking or lookahead facility, makes this an extremely localized
(and even “myopic”) planning device.

® The rhetorical rules represent an empirical theory about the rhetorical
conventions required to generate scene descriptions. (These conventions,
while probably culturally dependent, are not specific to English, and may in
fact be linguistic universals.)

66 The Al Program GENARO

® The interface to MUMBLE, and the combination of these two indelible
programs, makes a series of psycholinguistic claims which can be verified or
disproved empirically. For example, GENARO can overflow an r-spec and
be forced to dispatch it to MUMBLE before it is complete, and r-specs can
be formed by GENARO which cannot be realized by MUMBLE.

® Because of its simplicity, GENARO is a very fast rhetorical planner®
Nonetheless, because of its reliance on perceptual salience, the quality of its
output is high.

“ A description such as the one presented in this chapter took between 6 and 70 seconds of
CPU time to plan (on a VAX 11/780), depending on whether certain program options were
turned on. Compiling the code, especially the KL-ONE interpreter, would result in a
significant speed increase. See Appendix 2 for more details.

The Setting for this Planner 67

CHAPTER v

THE SETTING FOR THIS PLANNER

One view of the Al program GENARO presented here is that it links two
other Al programs: one that “knows about” the visual world and one that “knows
about” English language. This chapter presents these two other programs, SALIENCE
and MUMBLE, and discusses some of the issues that arose in designing and
debugging the respective interfaces.

The SALIENCE system is a hypothetical computer vision system (patterned after
the VISIONS system, [Parma 1980, Hanson 1978]) capable of constructing a complete
three dimensional model of the contents of a natural scene. In this thesis I focus on
the three dimensional model itself, and not the vision system which constructs it,
although enough attention is paid to the system to justify the claims made about its
representation. It is this representation which acts as the input to GENARO.

At the output end, the operation and data structures of the realization
component, MUMBLE, will be presented, with emphasis on the issues that arise in
the division of labor between deep and surface generation.

4.1 The input perceptual representation

Years ago, when I was looking for a Master’s Project topic, I hit upon the idea
of building a natural language interface for the computer vision system under
development here at the University of Massachusetts (called VISIONS, see [Parma,
1980]). It soon became clear that building both a parser and a generator that were
useful was an unrealistic project. However, in the process of examining the problem
of giving a voice to the VISIONS system, I discovered that a perceptual
representation offers several advantages to the study of language. By it nature, a
perceptual representation is a non-linguistic structure which describes the objects in the
image and their attributes and relations. By being non-linguistic the representation
prevents cheating (for example, precompiling linguistic decisions into the perceptual
representation). Additionally, since the job of a computer vision system is to map
color images into 3-D representations of the parts of the image, there is a natural
motivation for and check on the semantics of sentences generated from these
representations (i.e. Is the person really “in front of the house” spatially, as the
description says?). Finally, the domain of pictures of suburban house scenes, which
has been the domain of input images for the VISIONS system, is quite suitable for
gathering empirical data on the correspondence between natural scenes and people’s
textual descriptions of them.

68 The Setting for this Planner

The problem with using VISIONS, or any current computer vision system, is
that the state of the art simply is not yet to the point of building, from raw visual
data of an actual outdoors color photograph, a complete and consistent
three-dimensional model of what is in the scene. Yet it was just such a
representation that was needed in order to study the generation of natural language
texts from a non-linguistic data base. I could have solved this by simply building the
representation by hand without being concerned with the machinery which produced it
—~ but this would mean that all elements of the representation were essentially
unmotivated and arbitrary. On the other hand, I could have decided to wait until
the computer vision problem was solved and a working system built: the representation
it used would certainly be well-motivated! = The compromise I settled upon was to
“design” my own “computer vision system”, one which did do a full analysis of a
complex picture, if only on paper. This system, which 1 have named “SALIENCE”,
is described below. Its design is based on what I understand the philosophy of the
builders of the VISIONS system to be, based on years of interaction with this group.!
The only part of the SALIENCE system that has actually been coded into the
computer is a hand-built mockup of the final representation that one might expect
from a fully functional visual analysis. To make this clear, the following section
provides a brief explanation of how the SALIENCE system is designed. Following
that, the hand-built representation will be presented, including a discussion of where
the salience annotation in the representation came from.

411 How the SALIENCE system works.

Broadly speaking, the process of perception can be viewed as a process of
building an internal model of some external world based on sensory data from that
world and generic knowledge about it. In visual perception the problem is to

“interpret two-dimensional ... images of complex scenes, such as house
and road scenes. The interpretation process involves constructing a set
of consistent models where each model contains an object-labeling of
regions in the image and their location in three-dimensional space.
Construction of these types of models is critically dependent on an
ability to interpret typically imperfect information with the context of
domain- and world-knowledge, goals, and current assumptions.” (Wesley
and Hanson [1982] describing the goal of the VISIONS system.)

It is difficult to appreciate the vast amount of subtle analysis that goes into reducing
a visual image consisting of millions of points of light into a model which specifies a
three dimensional reconstruction of the scene represented in the image. The approach

! In addition to several classes on the VISIONS system, I served as a Research Assistant with
that group early in my graduate student career. My association with them has continued to the
present, including many long discussions on the hard problems in mechanical scene analysis.

The Setting for this Planner 69

of the SALIENCE system, following the original VISIONS system design, is to
combine bottom-up analysis of the raw visual image with top-down frame-based
hypotheses about the subject matter of the scene. The bottom-up analysis is akin to
the preprocessing that occurs in animal vision systems: converting a huge number of
minute data points into a much smaller number of edges and regions. Further
processing merges the edge and region information, as well as merging multiple edges
into single edges, and multiple regions into single regions.

But such low-level processing is “blind” ~ there are many places in pictures of
actual scenes where the human visual system “fills in” missing, noisy, and erroneous
low-level data. Such filling in requires knowledge of what is supposed to be there in
the image, and for this people have, and computer vision systems need, a wealth of
knowledge about objects in the world, the range of sizes, shapes, and orientations that
they can be found in, the kinds of colors and textures they take on, and their
normal relations with other objects in the world. What is more, this information
must be accessible in a way that allows the bottom-up processes to ask “Here’s a
possibly related collection of regions and edges — what object might they represent?”

The design of the SALIENCE system is that this high-level knowledge about
the world is organized into a hierarchy of 3-D frames, each of which contains
information about some object (or collection of objects) in the “real world”, and
which specifies the obligatory, optional, and illegal “fillers” which that frame may
have on its “slots”. For example, once the system has enough edge and region data
to suggest that there may be a house in the image it will apply its generic knowledge
about what parts houses typically have and how they are typically spatially arrayed to
attempt to impose identifications on regions which would otherwise be ambiguous.

Along with each schema being considered the system maintains a “confidence
value” in that schema - the more slots which are filled in a schema X, and the
higher the confidence values in each of those filler schemas, the higher the confidence
value in schema X. An image is considered to be “scen and understood” when there
is a scenelevel frame (i.e. House-scene), or a collection of them, which has a
confidence value that is some threshold amount greater than any other schema’s
confidence value.?

2 There is a difference between human and computer vision in the following respect: people
seem to have only one interpretation of the data at a time, ic. they tend to “snap” onto a
high-level interpretation of a scene that is exclusive of all others (viz. the Necker Cube
phenomenon), whereas a computer can easily have two high-level schemas with equal confidence
values, and without specific machinery for forcing the choice the program will remain in an
interpretation “limbo”.

70 The Setting for this Planner

412 The simulated perceptual representation.

Ultimately the goal of computer vision analysis is to have an internally
consistent assemblage of schemas® such that each point in the image is accounted for
by some frame, and each frame has for all of its obligatory slots either a filler or
some “explanation” for the absence of the filler.

A local implementation [Woolf, 1981] of the knowledge representation language
KL-ONE [Brachman, 1979] was used for these simulated data bases. The network for
the picture in Figure 1 (page 4) is presented in Figure 32, and a detail from that
network is shown here in Figure 33.

KL-ONE is a highly structured language in which to express semantic networks.
It features a very limited set of inter-node arc types (such as “Superconcept” and
“role”) which can serve only a syntactic role in the network — arcs cannmot carry
domain information (e.g. “is-in-front-of” arcs are disallowed). Nodes can be of two
main types: concepts and roles. All of the domain information is carried in these
concept and role nodes, and in the structure of their interconnection.

Several points can be made concerning the representation and its underlying
ontology.

® The basic unit of the KL-ONE representation language is the concepr —~ in
this application concepts function to represent objects, properties, relations,
and gestalts in the domain (ie. in the “world”); each of these will be
elaborated below.

® A concept can either be “generic”, representing a general description of an
item, or “individuated”, representing a specific item in the world.
“Superconcept” links are used to join these two levels, as well as to describe
the vertical conceptual hierarchy within each level. For example, the
superconcept of “House-1” in Figure 33 is “House”.

® “Horizontal” relationships between concepts are captured using “roles”™: these
specialized nodes attach to a single concept and are used to describe that
concept, much as “slots” are part of a frame and serve to describe that
frame. For example, the “Agent” role in the figure belongs to the
“In-front-of-1” concept, and expresses its relationship to the concept
“Fence-1”. In the local dialect of KL-ONE the roles attached to object
concepts have a further differentiation into “attribute” or “subpart” roles:
the former links the object to concepts functioning as properties of that
object, while the latter links the object to objects which are subparts of it
(usually structurally).

? For a discussion of the notion of frame systems and schema assemblages see Arbib [1977].

The Setting for this Planner 71

Flgnuu:KL-ONEreprmnuuonofduwlnlerhomem.

The KL-ONE network representing the “perception” of the SALIENCE
program, of the winter house scene (page 4). This figure actually shows
only the instantiated concept nodes (see below) ~ the full (implemented)
network, including the generic level concepts, contains 73 concept nodes.
The salience values shown represent the averages of the empirically derived
values (see [Conklin, Ehrlich, and McDonald 1983)).

e e . -:”

72 The Setting for this Planner

Houses

-Superconcept

In-front-of-1
(Object) Y
(Style)

[1-(Salience)

B Salieﬁce)
Wooden
Picket-1

(Color) =

‘white"
Figure 33: Detsail of a KL-ONE Network.

A simple KL-ONE perceptual network. It contains facts that would be
expressed in English as “In front of a white house is a wooden picket
fence.” Concept nodes, which are ellipses, can represent objects, properties
of objects (e.g. “white-17), relationships (eg. “in-front-of-1"), and gestalts
(none shown). Role nodes, which are the small squares, act as “slots” for
the concepts which own them, specifying the role played by another concept
to their owner.

The internal model of the visual scene is built from concepts functioning in one
of the following categories#

 This cpistemology is not adequate to represent actions involving more than one object (eg.
Drive(Person, Car)), nor beliefs (eg. Believes(Listener,Red(Door))). Actions involving a single
object, however, can be treated as properties of that object (eg. Running(Person), or even
Standing(Person)).

The Setting for this Planner 73

1. “objects™: the fundamental entities in the domain, these represent actual
objects in the world. Thus, these concepts do not modify or relate entities
but are themselves modified and related. For example, the concept for the
generic object House describes houses in general (including their structural
subparts), whereas the concept for House-1 describes a specific house in a
specific scene, and points to specific subpart concepts, specific properties,
and specific relations.

2. “properties” (or “attributes”): concepts which function to modify, elaborate,
or specify the objects in the domain (e.g. the color of an object -

Red(Door)).

3. “relations™. concepts which express a relationship between two objects (e.g.
In-front-of(Fence, House)).

4. “gestalts”: concepts which express complex relationships or properties among
many of the domain concepts (often not expressible as a satisfactory
predicate of any small number of arguments). For example, the
House-Scene concept, the Season-of-the-Year concept, and such aspects of
the image as the landscaping, whether or not the picture is in focus, and
even the similarity of this picture to another are in this category.

Thus, these four categories cover everything that can be perceived by the SALIENCE
system.

The _Salience Annotation.

This section discusses what salience is (see also [Conklin, Ehrlich, and McDonald

1983], how it is calculated as a parameter of the perceptual process, and how it is
represented in the KL-ONE visual representation.

In the KL-ONE data base which is “generated” by the SALIENCE system all
four classes of entities have salience values. Recall that in KL-ONE a concept is
“modified” by its role nodes. Thus, one of the attribute roles that all concepts have
is the Salience role, whose value is a number between 0.0 and 10. In the simulated
representations these salience values were taken from the experimental data. The
average salience rating provided by the subjects for each object in a given scene was
converted from its 0 to 7 value by dividing by 7, and the result was used in the
network.’

5 Actually, this is not entirely true. The experiments only gathered salience values for objects.
Therefore the salience values shown for properties and relationships represent my own estimation
of the relative saliences of these entities.

74 The Setting for this Planner

This is fine for the hand-built representation, but it must also be shown that
the SALIENCE system would generate these values and place them in its data base.
I claim that SALIENCE, or any computer vision system of comparable ability, not
only could compute salience values comparable to those that were experimentally
derived, but that it would do it for free, without any special computational effort.
This amounts to the claim that salience is an aspect of perceptual, not rhetorical,
processing. I therefore further claim that it is only possible to compute salience while

performing the perceptual analysis.®

The model that results from this perceptual analysis is a subset of the body of
world knowledge — in an important sense “understanding” a picture is identifying a
cohesive subset of what is known about the world (“finding the right frames”) with
the elements of the perceptual input. One of the most difficult problems in vision
research is the efficient selection of the elements of world knowledge which provide
the best (i.e. most complete) account of the raw visual data [cf Selfridge 1982]. In
this light the components of salience can be described more abstractly. Since salience
has several components, and these are different for each of the categories objects,
properties, and relations, each of these must be discussed separately.

Object salience. First, visual processing relies on the conventions of centrality
and size to direct its attention so that its first analyses are of those parts of the
photograph which are most likely to yield a potent model for identifying the rest of
the scene” Larger regions toward the center of the photograph would thus make the
best candidates for initial investigation. Second, elements of the image which are
unexpected (ie. which do not have a good “fit” with their slot in the hypothesized
frame) are important to the efficient allocation of resources. Thus, frames would
need to be annotated with some measure of their “goodness of fit” into the frame
assemblage, for use in the evaluation of the quality of the “explanation” offered by
the frame assemblage. (Recall that frame assemblages are competing with each other
for the best account of the data.) Finally, information about the intrinsic importance
of various items in the scene signals the need for the allocation of additional
resources towards the confirmation of their indentification (e.g., if the system is told,
as part of its world knowledge, that people are intrinsically important, it would
require higher confidence values on instantiations of the “people schema™).

S Note that this is weaker than the claim that salience itself is used by the perceptual analysis
process. It may be that the elements of salience are merely by-products of the analysis.

7 One might object that perception always happens in a context, and that the kind of perception
that occurs depends on the goals of the viewer. This is certainly true - viewers will assign
salience in a scene depending on what they think the point of looking at the picture is.
However (as pointed out in Chapter COINS TR 83-14) there is an ambient context for viewing
pictures to which the following analysis appeals: The picture is a communication act, and it is
generally used to show or tell the viewer something. This issue is further discussed at the end
of this section.

The Setting for this Planner 75

The three factors listed above are all computed or are easily available within
the normal course of internal model building for the SALIENCE system. They are
also precisely the three major components of object salience as they were described in
Chapter COINS TR 83-14: size and centrality, unexpectedness, and intrinsic salience.?

Property Salience. Calculating the salience of properties and relationships is a
bit more subtle, since these are about objects and are therefore dependent on the
object’s salience for their own salience. Properties derive their salience from 1) their
unexpectedness (the color of a red house ~ in New England — would be quite
salient), 2) their intrinsic salience (the color of a fire engine is also salient, but only
because red is a bright, attention-attracting color), and 3) (perhaps) the salience of the
object to which they are attached.’

Relationship salience. Likewise, the salience of a specific relationship depends on:
1) its unexpectedness (e.g. “the car on-top-of the house”); 2) the physical distance
between the objects being related (eg. if all else is the same, In-front-of(Objectl,
Object2) is more salient than In-front-of(Object3, Object2) if Object2 is closer to
Objectl than Object3 is); 3) (perhaps) its intrinsic salience (some relationships,
e.g.“in-front-of”, may be more important in general than others, e.g. “in-back-of”); and
4) (perhaps) the salience of the objects being related.

Regarding the salience of properties and relations the following caveat should be
observed: these salience values are meant to be relative to each other with respect to
some object, and not “between” objects. That is, it may well be meaningless to talk
about the relationship between the salience of the color of the gare and the salience
of the color of the door.

® It is conceivable that there are other components of salience which are not computed by the
SALIENCE system as described here. See the discussion of Hypothesis IV in Chapter § for a
refutation of this objection.

® This part of the claim would predict, for example, that given two cars of the same color in a
picture in which one of the cars is more salient because it is lying on its roof and has people
standing around it, the color of the upside down car would be more salient. This claim is
quite ammenable to empirical investigation, of the same type described in
Chapter COINS TR 83-14.

© Note that the claim here is that the salience of objects, properties, and relationships are all
mutually interdependent, ie. the salience of a property depends in part on the salience of the
object which it modifies, and this salience comes in part from the salience of the object’s
propertics and relations. Should this turn out under empirical study not to be the case it
would in no way weaken the claim that salience is computed for free by the visual analysis
process.

76 The Setting for this Planner

Gestalt Salience. 1 do not offer here an account of how the salience of gestalts
might be calculated, though it would surely have at least the components of
unexpectedness and intrinisic salience (Out-of-focus is intrinsically salient; the gestalt
Snow-covered-ground in a picture of a palm tree on a tropical beach would be salient
due to its unexpectedness").

In any case, what is important is that all of the above-ited factors that
function as components of visual salience are readily available as parameters in the
visual analysis processing, supporting the claim made above that salience is a
byproduct of perceptual processing, and not an extra computational expense required
by the design of GENARO.

Text generation systems in the past (see Chapter 2) have often used a data
base containing, essentially, “and then ..” links. It should also be clear from this
discussion that salience is not such a “pre-wiring” of a data base with the order in
which items should be mentioned. Such systems side-step the hard issues involved in
doing selection by building the solution -~ the order in which items are to be
mentioned - into the data base.

However, the charge could be made that the hand-built representations used in
this system had effectively prespecified the order of mention, via the ordering over
items implicit in their salience values. That is, in one sense there is only an
implementational difference between on the one hand specifying “A <and-then> B”
and on the other mentioning items in order of decreasing “value” and valuing A
higher than B. However, it must be clear that since salience is in principle computed
and independent of the rhetorical planning process, the design of this system allows it
to be automatically senmsitive to changes in the visual input, which would not be
possible if the order of selection were actually prespecified. For example, in the
visual represention of a robot navigating through an environment the salience values
of the perceived objects would be constantly shifting, and the kind of description the
robot’s GENARO/MUMBLE system generated would be changing as it moved.

The role of context.

As mentioned above, context has a powerful influence on how a scene is
perceived, and especially on how salience is assigned to objects, properties, etc. in the
scene. It could be claimed, in fact, that any discussion of salience without a precise
specification of the conditions of the viewing act, including the beliefs and values of
the viewer, was specious. The various statistical analyses in Chapter COINS TR 83-14
showed, however, that, while context and the viewer’s purpose do play a role, these

Of course, there is the issue of precisely what is unexpected in a “troubled” sceme: in a picture
of a bush growing in the middle of a highway is it the bush or the highway that is out of
place? With gestalts this problem becomes significant, because the gestalt can apply to a
considerable portion of the image.

The Setting for this Planner 77

are sufficiently shared among members of the same culture that a discussion of the
“normal” perception of and salience assignment in a scene is reasonable.

This shared context can be identified: pictures are communication acts, and as
such the viewer can use in their analysis the context that the picture was taken in
order to communicate something, specifically to show or tell the viewer something.
The rules of using this medium effectively are the subject of courses in photography
and art, and will not be discussed here. However, it is interesting to note how some
of the parameters of salience that were discussed above follow from the
communicative context.

The size of an object’s image is largely a function of how far the photographer
was from the object, and the centrality is a function of how the camera was pointed.
These sources of salience, then, reflect the decisions that went into the photographer’s
choice of viewpoint, and therefore the communicative intention of the photographer.

Of course, there are more specific and constraining contexts than the
communicative one described above. The same house picture will get different
reactions from a real estate broker, an architect, an energy specialist, and a burglar.
If the viewer is asked to find “what’s wrong with this picture” it will affect their
perception process. These factors will bias the perception process by shifting the
intrinsic saliences associated with items in the viewer’s world knowledge, as well as
affecting how resources are allocated for the analysis (i.e. whether fine detail is
important, or action, or mood, etc.). In conclusion, much important work remains to
be done in this area, but it is the work of perceptual psychologists and builders of
computer vision systems, and is not crucial to the understanding and use of salience
in computational linguistics.

42 MUMBLE and the MUMBLE/GENARO interface

Once GENARO has planned and built an r-spec, that specification must be
realized, ie. a grammatical English utterance must be found which conveys the
message(s) in the specification. This is the part of the generation process that is truly
language specific, since it is at this stage that the rules of the grammar and of
lexicalization are used to find an utterance in the language which fulfills the
specification.

McDonald’s MUMBLE system [McDonald 1980, 1981a, 1983a, 1983b] fulfills this
requirement superbly. Not only is the system designed to be a flexible tool of
linguistic research (i.e. the grammar and lexicon are both specified as data bases used
by the control system), it also embodies some strong claims about processing during
realization (e.g. left-to-right top-down indelible construction of the text). In this latter
half of the chapter some details of the operation of MUMBLE will be discussed in

78 ' The Setting for this Planner

section 42.1; its dictionary and grammar will be discussed in sections 422 and 423;
424 will present an example of the process of realizing one of the r-spec’s from the
extended deep generation example in Chapter 3; the issue of lexicalization will be
touched on in 425; and in the last part the difference between GENARO and
MUMBLE will be discussed.

The combination of GENARO and MUMBLE represents a complete model of
the generation process, one that uses relatively “weak” subsystems embodying
interesting claims about needed processing power. One of the most exciting aspects of
this model is the opportunity it affords to investigate the interaction between deep and
surface generation. For example, what amount of detail an r-spec should contain,
whether or not the surface processor should be able to ask “questions” of the deep
processor (or vice versa), and which subsystem should contain some of the specific
processes needed around the interface.?

Another interesting aspect of this combination of programs is that both
programs are designed to be essentially real time in their generation. This is a large
part of what the “weakened mechanisms” mentioned above buys this system. That is,
at the cost of being fallible this system is able to produce natural-sounding text from
a non-linguistic representation at a rapid rate. In fact, it is precisely its fallibility
that makes this system psycholinguistically interesting (see Chapter 5).

42.1 How MUMBLE works.

MUMBLE is the first program of its kind to be specifically designed for use
with source programs that use different representational systems. It embodies several
psycholinguistically plausible limitations to its computational power: strictly left to right
production and refinement of text, linguistically motivated limitations on the
examinable buffer, indelible decisions (no backtracking), and a structural distinction in
the treatment of function words versus content words. In addition, the system is
driven by the “message” to be expressed (the r-spec), rather than by the grammar.
Finally, the linguistic structure of the text being produced is explicitly represented,
thus allowing flexibility, generality, and perspicuity of the grammar rules.

MUMBLE can be thought of as a pair of transducers.® The first one takes

2 Unfortunately, many of these issues require extended research with the whole system that has
not been done to date, due to difficulties in getting MUMBLE to run on the VAX computer
at the University of Massachusetts, as well as the enormous processing demands of seriously

investigating these empirical systems questions.

B It is not actually a pair of transducers, however, since the functionality of the two “virtual”
transducers has been folded into a single control structure. The justification for this
implementation is too detailed for presentation here (but see [McDonald 1981c]).

The Setting for this Planner 79

the elements of the r-spec (in the order in which they occur) and builds the surface
phrase structure tree, using the dictionary entries for the respective r-spec elements to
direct the process. The second transducer then walks through the tree, using the
grammar to produce output text at the leaf nodes. There are four psycholinguistically
interesting aspects to this operation:

® The transducers operate “on-line”, i.e. the output from the first transducer
must be completely consumed by the second transducer before the first one
can go on to the next r-spec element at the same level.

® The output of both processes is indelible: both the surface structure tree and
(more obviously) the output text cannot be changed once they are produced
by their respective processes. Thus, as with GENARO, neither of
MUMBLE’s transducers has any provision for backtracking or lookahead.

® Decisions are made based on local information onmly, that is, contextual
information that is local at the position in the tree to the node at which
the decision is being made. The tree cannot be scanned for information -
any global information needed for a decision must have been anticipated at
the point where it was local and deliberately set aside at that point.

® Finally, the overall process must operate in quasi-real time; i.e. the number
of operations between the consumption of two r-spec elements or the output
of two words must be no greater than some fixed maximum which is
unrelated to the size of the input or output streams. (This is stronger than
the usual time bound of linear time.)

The “dictionary” is the data structure which is used by the first transducer. It
specifies the vocabulary of the r-specs, by associating elements from an r-spec with
potential realizing phrases: for each r-spec element there is a dictionary entry which
specifies how that element may be expressed. This specification is in terms of the
linguistic vocabulary established by the grammar. The grammar is then used by the
second transducer to: 1) interpret the tree into text, and 2) enforce the constraints
and conventions specified in the grammar. The user of MUMBLE does not actually
need to know a great deal about the details of its control mechanisms, since the
user’s job is simply to use and/or extend the grammar to provide the range of
English needed for the specific application, and, more importantly, to write dictionary
entries for each of the terms in the user’s data base, specifying how those terms are
to be realized when they are encountered in an r-spec.

80 The Setting for this Planner

422 MUMBLE’s dictionary.

The input interface to MUMBLE is defined by the dictionary. Each possible
r-spec element has an entry in the dictionary specifying a realization, or often a range
of realizations, for that element. Thus, the process of writing GENARO’s rhetorical
rules cannot take place without considering how the r-spec elements they produce will
be realized by their respective dictionary entries.

Specifically, the realization is specified in terms of parse tree substructure which
is to be placed into the tree. When tailoring MUMBLE to a new domain (a new
“speaker” in McDonald’s terms), most of what one does is write a dictionary entry
for each term in the domain data base that might find its way into an r-spec.
Entries must be written in a “dictionary entry language”, which constrains and
specifies what the writer must provide and what can be done by the entry. When
the program is loaded, the dictionary entries are compiled into a computationally fast
tabular form to enhance the program’s run-time performance.

The grammar for dictionary entries is presented in Figure 34. For those
familiar with LISP the syntax of an entry will be familiar as a specialized form of a
LISP function, with essentially a name, parameters, and a body. The body of an
entry consists of a series of “decisions” which are evaluated sequentially. An example
of a dictionary entry is shown in Figure 35.

A decision is a series of production-rule-like condition/action pairs: if the
condition is true, the action is invoked — but in decisions the actions are always
“choice-applications”. Each choice-application is like a function call to a “choice”

<entry> :== (DEFINE-ENTRY entry-name
<parameter-list>
[<decision-form>])
({local-variable})
(decision-name {DEFAULT
<choice-application>}
[[<predicate>]
<choice-application>])
<choice-application> :== (choice-name {<parameter-list>})

<parameter-list> :
<decision-form> :

Figure 34: MUMBLE grammar of dictionary entries.

Terms in <>’s are non-terminals in the grammar; ()’s and terms in upper
case are constants; expressions separated by | are alternates of which exactly
one must be chosen; expressions in {}’s may occur zero or more times; and
expressions in []'s may occur one or more times.

The Setting for this Planner 81

(define-entry in-front-of (agent object)
default
(x-is-reln-y agent “#$in-front-of object))

Figure 35: An example dictionary entry.
The MUMBLE dictionary entry for the domain relation “in-front-of”. It has

a single decision, which is composed of a single choice-application, invoking
the “x-is-reln-y” choice.

(“choices” are also “functions” and are described immediately below). Thus, an entry
is evaluated by taking each decision in turn and evaluating the series of choices that
compose the decision. The entry in Figure 35 has a single choice, which is to express
the relationship in the form “x is relation y”. For example, if the r-spec element
were “(ELMT1 RELATION in-front-of-1 (fence-1 house-1) ..)”, the entry for
“in-front-of” would be invoked with the parameter “agent” bound to “fence” and
“object” bound to “house”, and would simply pass “fence” and “house” through to its
single choice. In more elaborate entries, which had more than a single default
choice, each choice would have a predicate: when the entry was being “run” the first
choice found to have a true predicate (one that evaluated to true) would be the one
that was invoked (see “<decision-form>” in the grammar).

A choice, then, is a LISP-like function whose action adds a piece of English
syntactic substructure to the surface structure tree under construction. The grammar
of choices is shown in Figure 36.

There are two major parts to a choice, one that provides linguistic structure and
one that maps semantic elements into that structure. The “<structure>”" part specifies
the piece of linguistic substructure to add to the phrase marker, using the vocabulary

<choice> :== (DEFINE-CHOICE choice-name
<parameter-list>
{<phrase-part>}
{<map-part>})
<parameter-list> :== ({local-variable})
<phrase-part> :== PHRASE <structure>
<map-part> == MAP <map>

Figure 36: The grammar of choices.

The “<structure>” and “<map>”" elements are explained in the text.

82 The Setting for this Planner

of the grammar. This structure will have “slots”, into which the parameterized values
in the r-spec clement are inserted. The “<map>" part specifies where each such
value in the r-spec element is to be inserted into the structure being built.

Referring to the choice for “x-is-reln-y” in Figure 37, the phrase part uses the
terms defined in MUMBLE’s grammar to build the tree shown in Figure 38, where
the underlined terms are “slots” to be filled by the arguments of the rule. The map
part of the x-is-reln-y choice then specifies that the value of “x” (which was the
“agent” in the “in-front-of” entry and which has the value “fence”) be inserted as a
child of “subject” in the tree. Likewise, “in-front-of” and “house” are directed into
the “prep” and “prep-obj” slots, respectively. Thus the example r-spec element given
above would be realized in this case as “A fence is in front of the house”. (The
determiner slots are filled by a dictionary decision which is shared among all entries
which have a noun phrase realization, based on information found in the r-spec
specifying properties of Fence-1 and House-1.)

423 The grammar for scene descriptions.

In MUMBLE the grammar is represented as a collection of specialized functions
which constitute the vocabulary used by the dictionary for specifying the linguistic
structures to build. MUMBLEs realization process is strictly constrained by the

__grammar - it is nearly impossible to have “canned phrases” lacking in linguistic

(define~choice x-is-reln-y (x r y)
phrase (basic-clause ()
predicate (vp-pred-adj ()
pred-adj (prepp

)
map ((x . (subject))
(r . (predicate pred-adj prep))
(v . (predicate pred-adj prep-obj))))

Figore 37: An example of a choice.

The “phrase” part of this choice specifies a piece of tree structure to be
built, using terms from the grammar, and the “map” part specifies how to
insert the values of the three parameters of the choice, “x”, “r”, and “y”,
into the tree structure.

“ If neither “Fence-1” nor “House-1” were marked as a “NEWITEM”, then both would by
default be realized using the definite article in the determiner slot.

The Setting for this Planner 83

BASIC-CLAUSE
SUBJECT PREDICATE
VP-P}ZED-ADJ
A\ PRED-ADJ
“ils” PR|EPP

PREP PREP-OBJ

Figure 38: An example partial parse tree.

This tree is constructed by the Choice shown in Figure 37, in conjunction
with the grammar entries for each of the terms in the tree
(“BASIC-CLAUSE”, “VP-PRED-ADJ”, etc).

structure.

Unlike the dictionary, MUMBLE's grammar is relatively stable between speakers.
Applying MUMBLE in a new domain requires writing a whole new dictionary, as the
interface to the new speaker, but the grammar only needs to have any new English
constructions added which are necessary to express the meanings of the new speaker.

One result of the analysis of the salience experiments was a large corpus of
paragraph-length scene descriptions. The data showed that scene descriptions can
cover the whole range of English, but that there was a certain stylized subset that
was widely used. It was this subset of English that I adopted as the target for the
GENARO/MUMBLE system.

The four relationship constructions.

The vast majority of clauses in scene descriptions are for describing spatial
relationships. 1 have catalogued the syntactic forms available for this function, and it
turns out that there are just four common ones (see Figure 39). The figure shows
each of the four forms in a template notation (although such templates are not used

5 Any phrase which was to be left without linguistic structure would have to be specified as a
word, as in “kick-the-bucket”. Such a treatment would prohibit any morphological changes to
elements of the canned phrase (e.g. “kicked-the-bucket™).

84 The Setting for this Flanner

Example relationship: In-front-of(Fence, House)
Template notation: Relation(Agent *, Object)

Form SIMPLE
Template: <Agent> is <Relation> <Object>
Example: A fence is in front of the house.
Description: The basic form. It has somewhat more
stress on the <Agent> than the other
slots.

Form THERE
Template: There is <Agent> <Relation> <Object>
Example: There is a fence in front of the house.
Description: A simple variation on Form SIMPLE. More
interesting than Form SIMPLE, it more
strongly stresses the <Agent>.

Form REL-FIRST
Template: <Relation> <Object> is <Agent>
Example: In front of the house is a fence.
Description: This form fronts the <Relation>, stressing
it slightly. It sounds more interesting
than Form SIMPLE. It is sometimes used to
break the flow of the text.

Form HAS
Template: <Object> has <Agent> <Relation> it
Example: The house has a fence in front of it.
Description: By fronting the <Object>, this form serves
to stress it.

Figure 39: The syntactic forms for spatial relations.
* The new item being introduced is always in the <Agent> slot (see text).

In the template notation used here, “Agent” simply indicates the first
argument of the Relation, while “Object” is the second argument.

in GENARO or MUMBLE), and gives an example and a brief description of the use
of each form.

The Setting for this Planner 85

Introducing a new item

In the average paragraph description of a picture the main item or theme is
introduced in the first sentence. Successive sentences then relate a new item to some
previously mentioned item. This pattern repeats until all of the most important
objects in the scene have been mentioned. Each clause in such paragraphs, then,
describes two objects, an “Old-item” and a “New-item”, and provides the relationship
that holds between them. Figure 40 illustrates this kind of “chaining” structure.
Notice that the Old-item does not need to be mentioned explicitly —~ part of our
world knowledge is that where there is a house there is almost always a yard. It is
also interesting that almost all of the spatial relations in this paragraph are expressed

i) This is a picture of a large white wooden house.
<New-item> <New-item>
ii) In front of the house is a white fence.
<Old-item> <New-item>
iii) In the yard is a tree.
<Old-item> <New-item>
iv) Next to the house is a driveway, which is
<Old-item> <New-item><Old-item>
mostly shaded by a large rree.
<New-item>
v) In front of the house is a street and sidewalk.
<Old-item> <New-item> <New-item>
vi) Across the top of the picture are power cables,

<Old-item> <New-item>
and in the lower lefr is a white mailbox on a
<Old-item> <New-item>
brown beam.
<New-item>
vii) It is late afternoon.
<New-item>

Figure 40: New and old items in an actual description.

This paragraph was written by a subject in the experimental studies.

86 The Setting for this Planner

as prepositions — in this discussion I will only discuss such relations."

As each new item is introduced in the chaining it does not go arbitrarily into
either the <Agent> or <Object> slots in the various forms. Rather, as mentioned in
Figure 40, the Agent slot normally is filled by the New-item. This is not to say that
the Agent/New-item position is always focal — Form HAS stresses the Object/Old-item.
This issue is discussed further below.

It is also apparent from the paragraph in Figure 40 that sentences in actual
descriptions are more complex and ornate than the simple templates listed in
Figure 39. Several clauses can be conjoined together, or several noun phrases
(representing several New-items). And beside the normal elaboration of objects”
descriptions, using pre- and post-nominal modifiers, people elaborate the relationships,
often with a participle, eg. “There is a fence running in front of the house”.
Nonetheless, the basic unit of the descriptive paragraph is the relation, expressed in
either its simple form, or one of the transformational derivatives.”

The uses of the forms

Each of the forms has a different rhetorical force (see Figure 39). Form
SIMPLE is the basic “vanilla” form, and was used infrequently by the subjects in our
experiments. Part of its limitation is that it appears to stress all three elements
(Agent, Object, and Relation) equally. Form THERE is a more “flavorful” variation,
and also serves to highlight the Agent. Form REL-FIRST stresses the Agent and,
secondarily, the Relation. It has the advantage of leaving the Agent/New-item in
sentence-final position, where it may be arbitrarily elaborated. It also seems to have
more of a “breaking” force in the flow of the text than any of the other forms; this
may account for its popularity in short paragraphs (e.g., it was used almost exclusively
in the sample paragraph above.) Finally, Form HAS places more stress on the
Object/Old-item, which it fronts; it is used infrequently, and is at least useful for
providing syntactic variety.

1S Although spatial relations are expressed in other ways, non-prepositional forms are almost
exclusively used in expressing relations from the little used viewer centered frame of reference,
as discussed below. For example, “The tree obscures the roof of the house” is another way of
saying “The tree is in front of the roof” but which stresses the viewer centered frame of
reference.

" The treatment of these syntactic constructions as a simple form plus three transformational
derivatives stems from the way they are generated in MUMBLE. No claim is being made
here about the “correct” linguistic analysis.

The Setting for this Planner 87

Some informal experimental results

One of the first questions about these forms (especially in terms of generating
them) is whether there are some combinations of forms that are better than others.
The evidence, in fact, is that all of these forms can be used successively (i.e. can
form a pair of clauses). I performed an informal experiment in which subjects were
asked to rate each of the 16 possible permutations of sentences expressing two spatial
relations (i.e. “A white fence is in front of the house, and a sidewalk is in front of
the fence.” is a (SIMPLE,SIMPLE) pair).

The results were essentially negative. With only three experimental subjects,
there was not one combination which was unanimously disapproved of, nor any that
were unanimously approved of. This supported my observation, based on familiarity
with the textual data from the description experiments, that almost any transition
between forms could be found, although there were forms which flowed together
more melifluously than others.® Also, subjects” descriptions illustrated a wide variety
of uses and combinations of the syntactic forms. A few paragraphs used the
REL-FIRST form to the exclusion of all others, while some used only Form THERE.
Thus, the limited data from these informal experiments precludes drawing any
conclusion except that preferences for combinations are personal and widely varied.

Use of the forms in the system.

Adding these four forms to the grammar of MUMBLE is a straightforward
task. Form SIMPLE is derived directly using the phrase structure component of
MUMBLE’s grammar, and the other three forms are derived by writing three new
entries for the transformation component.

A more difficult issue is: Should MUMBLE or GENARO decide which form to
use? This amounts to the following two questions. What factors are involved in

choosing the syntactic form? Which component has more ready access to these
factors?

To answer the first question requires a theory of focus and stress - although
each of the forms stresses some part of the semantic predicate more than others, it is
not clear what makes one item more “stress-worthy” than the others. Stress (both
acoustic and syntactic) interacts with quantifier scope, already-backgrounded material,
etc. (cf. Grosz, Reichman, Hobbs).

® This is part of the problem with research on rhetorical conventions — it is very difficult to get
hard data, to show that “this rhetorical combination is always wrong”. Incidentally, though
there was very little agreement about it, subjects scemed to prefer the combinations (SIMPLE,
REL-FIRST) and (THERE, REL-FIRST) the most.

88 The Setting for this Planner

The data from the above simple experiment do suggest that one property of the
interface between deep and surface generation is that deep generation has few direct
restrictions on or requirements for syntax used by the surface component, only weak
constraints. This has lead us to the view that, for the moment, GENARO should
generally leave the decision about which syntactic construction to use to MUMBLE.”
Thus, when the implementation of the generation system is complete, MUMBLE'’s
decisions about which form to use will initially be random, followed by the addition
of constraints and interactions to the grammatical rules based on observed stylistic
“failures” in the generated text.

424 An example realization.

In Chapter 3 we saw how GENARO operated to construct a series of r-specs
that composed a scene description. In this section the operation of MUMBLE in
realizing one of the r-specs in that description is presented. The sentence that will be
explained is “The door of the house is red, and so is the gate of the fence.” (The
operation of MUMBLE is presented in greater detail in [McDonald 198ic], and this
specific example is reviewed, from the perspective of MUMBLE, in [McDonald 1982b].)

The r-spec underlying this sentence is shown again in Figure 41 (the original
appeared on page 55).

When MUMBLE receives this r-spec it first scans it for rhetoremes, making
note of the “condense-prop” element, and then begins immediately with the top-down
realization process. R-specs are processed from top to bottom, but in two passes — in
the first pass the first rhetoreme element encountered is used to create the root node
of the tree; in the second pass, all elements are processed.®

¥ One possible exception to this is that since (a) the Form REL-FIRST has the rhetorical force
of a break, and (b) breaks occur when $newitem runs and pops the next arbitrary object off of
the USOL, it seems that it would be useful (and cheap) for GENARO to post advice to
MUMBLE to use this fronted-PP form whenever $newitem had run.

This is a relaxation on the stipulation that MUMBLE process the r-spec in strictly top to
bottom linear order. If this stipulation is to be observed GENARO will be required to put its
elements in an order that MUMBLE can process them in linearly, e.g. with the condense-prop
element first in this r-spec. This, on the other hand, would require that GENARO’s rules
have the power to specify where in the r-spec a new element is to be inserted; currently,
GENARO builds the r-spec in strictly linear order. This tension illustrates one of the tradeoffs
between deep and surface generation that can be explored empirically with this system. Le. in
which program is the added machinery for non-sequential r-spec processing the most
parsimonious? This question is not answered in this thesis.

The Setting for this Planner 89

(RSPEC NO2
BODY
(ELMT1 RELATION part-of-2 (door-1 house-1)
(door-1 (SUPERC door)
NEWITEM)
(bouse-1 IBID))
(ELMT2 PROPERTY red-1 (door-1)
(door-1 IBID))
(ELMT3 RHETOREME condense-prop (door-1 gate-1)
(door-1 IBID)
(gate-1 (SUPERC gate)
NEWITEM)))
(ELMT4 RELATION part-of-2 (gate-1 fence-1)
(gate-1 IBID)
(fence-1 IBID))
(ELMT5 PROPERTY red-2 (gate-1)
(gate-1 IBID)))

Figure 41: The second r-spec from the example description.

The r-spec based on two Current-items, Door-1 and Gate-1, condensed into
one r-spec by $condense-prop.

The dictionary entry for “condense-prop” has two choices: one is to merge the
subjects of the relations (e.g. “Both the X and the Y are Prop.”), and the second is
to use some form of VP-deletion (e.g. “The X is Prop, and so is the Y.”). In this
case the second of these forms is chosen on the basis of complexity in the r-spec:
the specifications of the two halves of this r-spec (the parts before and after the
condense-prop rhetoreme) are complex enough (i.e. weigh enough) that the first choice
would likely lead to an awkward sentence (e.g. “Both the door of the house and the
gate of the fence are red.”). This criterion is built into the condense-prop dictionary
entry. The surface structure that is built by this choice is shown in Figure 42.

With this root part of the surface stucture in place, MUMBLE begins its
traversal. Starting at node “[c1]” each node is expanded according to its dictionary
entry and the grammatical forms invoked in that entry. For example, [c]] is
expanded as a basic clause, which consists of just a subject and a predicate. The
nodes are expanded in a depth-first manner, yielding the partial surface structure
shown in Figure 43. At this point there are two strong sources of constraint on the
realization of “elmt-5”: the fact that it is in a conjunction, and the fact that it has
been marked to undergo VP-deletion. MUMBLE knows that any parallel decisions
made in the second (or succeeding) conjuncts should be made using the same choices
that were made in the first conjunct. For example, since a “red” property was
realized in the first conjunct, and another such element is about to be expanded, this

90 The Setting for this Planner

CONJUNCTION

[c1] [c2 vp-deletion]
elmt2 elmt5
| |
| !
(modifies door-1 elmt-1) (modifies gate-1 elmt-4)

Figure 42: The initial surface structure.

The root and first two nodes of the surface structure. Note that the
structure uses the element names to represent what elements have yet to be
realized and where they fit into the structure. The condense-prop entry
knows that it is the property elements in the r-spec which are the target of
the parallel being drawn, so that all other elements are subordinated to

these.
CONJUNCTION
[c1] [c2 vp-deletion]
CLAUSE elmt5
|

[subject] [pedicate] (modifies gate-1 elmt-4)
[det][modifiers][head][qualifiers] iverb][pmd-adj]
the door be J-P

[prep][prep-obj] [specifier][head][complement]
of NP

red

[det][modifiers][head][qualifiers)
the house
Figure 43: An intermediate sorface structure.

The phrase structure tree after the first clause has been realized. So far
MUMBLE has output “The door of the house is red, and ..".

The Setting for this Planner 91

constraint will dictate that the same predicate adjective form that was selected before
be used again.

The force of the directive to perform VP-deletion is to either transform the
selected predicate adjective construction into a “predicate-preposed” form (where the
repeated predicate can be pronominalized as “so is”) or to leave the word order the
same and add an adverb such as “too” or “also”. The second choice is reserved for
very light elements (in order to avoid stranding the adverb at the end of a complex
clause), so the first form is chosen.

The rest of the traversal proceeds in the same way as for the first conjunct,
resulting in the second clause being “.. and so is the gate of the fence”. No
deliberations over the realization decisions are needed since the constraint to make the
same choice as in the last conjunct dominates the action.

425 [exicalization.

In generation the process of lexicalization involves the selection of the word (or
phrase) which best realizes the meaning of a semantic term. The “lexicon” is the
data structure which provides the mapping from “meanings” to words. The difficulty
of doing the mapping depends on the entities in the domain data base — if there is a
one-to-one mapping from entities in the data base to words in the lexicon? then the
lexicalization process is largely trivial.

One of the reasons for choosing a visual representation as the input data base
to GENARO was that there was a natural check on the temptation to load up the
representation with linguistic assumptions. For example, if the data base were to
contain an entity called Fence-in-front-of-house, and the lexical entry for this entity
specified that it always be realized with the canned text “There is a fence in front of
the house”, then much of the interesting hard work of the generation process would
have been hard-wired into the “perceptual” representation.

On the other hand, a computer vision system that actually “understood” the
image it was working on -~ in the sense of having an interpretation of the scene
which included identification of the objects in it and their three dimensional locations
— would also provide high-level knowledge about the objects in the scene and their
relationships. Once you have done the hard work of identifying a collection of
regions with the frame for “house” in the world knowledge base, then anything that
is known about houses in the world (including their lexicalization as “house”) is
available. The distinction between such high-level conceptual information and

3 In fact, “canned text” is nothing more than a trivial mapping from domain entities to words,
phrases, sentences, and in some cases whole paragraphs — each of which still exists as a single
“lexical entry”.

92 The Setting for this Planner

linguistic information is not crisp: there is a gray area in which it is very hard to
distinguish whether a given fact is linguistic (i.e. including rhetorical and stylistic) or
not.

Linguistic versus non-linguistic facts.

The practical problems with working in this gray area are well illustrated by the
problem of describing objects which form a class or cluster but which are also
separate objects. If several trees are visible in the front yard in the picture, they
may be best described as a single entity: the “trees in the front yard”. Other
examples are the “clouds in the sky”, the “path to the front door” (which consists of
separate stones or tiles laid roughly in a row), and the “bikes in the yard” (where
there are two bicycles lying in front of a house).

The fundamental issue in each case is whether the clustering itself provides an
important key to the visual identification of the objects or the scene as a whole.
That is, if the process of doing the visual analysis would be well-served by knowing
about the possibility of a particular kind of clustering (as is certainly the case for the
“clouds in the sky”), then that concept should be in the world knowledge of the
vision system. On the other hand, there are certainly cases where objects are
mentioned together in a description for rhetorical reasons, and not because they form
a perceptual entity. The “bikes in the yard” is probably such an example, especially
if they are lying at opposite ends of the yard in the picture.

Thus it would appear that some object clusterings are perceptual objects and
some are rhetorical objects, and the distinction has to do largely with the goals of the
visual perception component and the personal preferences of its designers. This will be
true in any Al domain where a computer is being used to construct in internal
model of a complex environment. In fact, when building the linguistic interface to
such systems the status of a given fact as linguistic or not can be treated quite
pragmatically, depending on whether the fact is most efficiently and flexibly encoded
in the linguistic or prelinguistic components. (The problem of object clusterings is
further discussed in Section 5.2.)

As mentioned above, when hand-building the perceptual representation I made
an effort to avoid encoding it with linguistic information. However, since there was
no working computer vision system available as a “referee”, decisions about what was
“cheating” were based on my understanding of the needs and abilities of a
“SALIENCE” system (see page 68). Subsequent use of this representation has shown
that some of those decisions did indeed allow linguistic facts into the “non-linguistic”
Tepresentation, most noticeably in terms of lexicalization issues that were side-stepped.?

2 Some interesting issues in lexical decomposition and generative semantics were also revealed, but
these will not be discussed here.

The Setting for this Planner 93

Lexicalization and the domain data base.

Each of the three classes of perceptual entities in the visual representation -
objects, properties, and relationships -~ have their own lexicalization requirements.
Basically the issue with each class is the extent to which “solutions” to the hard
lexicalization problems were implicit in the design of the representation of that class.
Each of these classes will be reviewed below, along with a discussion of their
lexicalization.

Objects - These represented the objects in the scene. Since the SALIENCE
system would have a token for each object it does not matter whether that token
were named “House-1” or “G258” —~ there is still usually a simple correspondence
between object tokens in the data base and words in the lexicon. And this
correspondence can be implemented as a simple table look-up mechanism between
object concepts and the word that realizes them. Of course there will be perceptual
entities which do not have a specific name (e.g. the regions where the Sky is visible
through Foliage), and there will be entities which have several names (e.g. “House”,
“Cottage”, “Building”, “Home”, etc.). =~ However, such problems are beyond the scope
of this thesis.

Properties — These one-place predicates were generally represented in the
KL-ONE data base as concepts which were pointed to by (ie. were fillers for) the
role nodes of objects. Again, their names were very suggestive — Red-1 was meant
to represent a specific color (in some general color representation scheme) that the
system would treat as “Red”. That is, it does not matter what the property “Red” is
labeled in the data base, but if the system has potentially identified a region as a
Firetruck and does not link it to Red-1 (or whatever it is called), it should weaken
the Firetruck hypothesis; conversely, if what is thought to be a Road does have that
concept as a filler on its Color role then the Road hypothesis should be weakened.

In an actual computer vision system, however, there would be no need (except
for the convenience of the system designers) to have the concept that represented the
color red be labeled “Red”. What would be important would be a formula associated
with this property concept which specified the range of (Red, Green, Blue) color
vectors that would be allowed as instantiations of that node. This property concept
could then be specified by object concepts (e.g. “Firetruck™ as a constraint on the
acceptable fillers of their “color-of” role.

As with object concepts, lexicalization of such property concepts would then be
a matter of table look-up of the correct word.

Relations. The lexicalization problem becomes quite complex for relation
concepts. In the KL-ONE data base these concepts were given names like
“in-front-of-1”, meaning simply the first instance in the data base of an “in front of”
relationship between two objects. This of course assumes that the SALIENCE system
used “in-front-of” as a spatial primitive, which further assumes that that particular

9% The Setting for this Pianner

abstraction was a useful device in performing the perceptual analysis. Whether or not
this is the case is open to debate, and depends on the extent to which the builders
of the computer vision system found the in-front-of relation to be a potent constraint
in specifying spatial inter-relations between objects that were allowed, disallowed, and
preferred. As with all of the locative prepositions, “in front of” may seem like a
basic perceptual entity, but examination reveals it to have a rather rich semantics (see
[Cooper 1968]). That is to say, it is only fair to presume that a term that is a
linguistic primitive (e.g. a locative preposition) is also a perceptual primitive if it can
be argued that the term is doing real work in the processing of the perceptual
analysis.

What are the criteria for perceptual primitives? As stated above, perceptual
processing can be powerfully viewed as determining what subset of the system’s world
knowledge -~ what schema assemblage —~ can best account for the perceptual data,
which in turn leads to the need to specify, in the world knowledge, the distinctions
and constraints which actually distinguish between items in the world. In the case of
spatial relations the question can be stated as “What is the most powerful set of
primitive relations which can be made for stating constraints on objects’ relationships?”
There are many choices. Since the system is constructing a three-dimensional model
it needs a coordinate system, such as a three axis Cartesion system, in which to
specify the locations (and sizes) of the objects in the scene. Such a system provides
an absolute frame of reference in which spatial positions may be specified as a three
place vector. It is awkward, however, for the expression of relationships berween
objects ~ for these relations one would prefer an object-centered frame of reference,
especially for objects which distinguish between their sides (i.e. “front”, “back”, etc).

In designing the visual data base for this system I considered the following
system. Part of the description of each object is a list of all of its relations with
other scene objects.® Since the descriptions are object-centered, these relations are not
commutative.

The relation that object A has to object B could be expressed, for object A, in
a polar coordinate system: Relation (A, B) would be expressed as the “range” (a term
from gunnery), in feet, and the “bearing”, in degrees. The zero degree bearing would
define “straight ahead”, based on a judgment of which side was that object’s front
side, which would be based in turn on world knowledge about the object. Some
objects, e.g. bushes and trees, have no front side, so relations of these objects would
be expressed as a single “range” value.

I felt, however, that a coordinate system that used feet (and fractions thereof)
and degrees provided too much detail, even for high-level visual processing, and that
a representation that was coarser, or more abstract, was needed. Such a system is

B As a practical matter one would not want or need to specify all inter-object relations, only
those that were some combination of near enough and salient enough.

The Setting for this Planner 95

illustrated in Figure 44. The range is limited to three values, corresponding roughly
to “pext-to”, “mear”, and “far”. The bearing is likewise limited to four values,
corresponding to “in-front-of”, “on-the-right-side-of”, “behind”, and “on-the-left-side-of™.

< “_' 4 \
PR
/ : M .. . o '\
The space around Person: g ®
8 /
\\ Fy /
N
- v
.\"\ .70
. .‘ 7~
G‘ E 6‘
The space around House: s T
M4 .
. /. N
Pl “‘,-\
, - o o * ' &‘\
8, \

The overlapping of these spaces, showing that
Relation(Person, House) = (R2, B3)
but
Relation(House, Person) = (R2, B1):

Figure 44: An example of object-centered relations.

In the diagram the dotted lines define the boundaries between “ranges”, so
that objects within the first dotted line are at range R1, those between that
line and the next are at range R2, etc. The dashed lines define the
boundaries for “bearings”, so that (for objects which have a front and back)
the “front side” is bearing B1, the right side is bearing B2, etc.

96 The Setting for this Planner

My claim is that such a system, by greatly reducing the amount of detail in the
description of spatial relations, facilitates the specification and use of relational data in
the high-level part of a computer vision system, as well as simplifying the
lexicalization problem for relations. Whereas a full polar coordinate system using feet
and degrees would require the use of complex formulas to determine if something
were “in front of” an object, the proposed system divides up the space around an
object into a finite number of regions, and the area that is “in front of” that object
- that area in which other objects are “in front of” it — can be specified simply as a
subset of these regions.

In summary, the purpose of this discussion has been to illustrate some of the
problems in the representation and lexicalization of spatial relations. = Domain
relationships must be expressed in the terms that are useful to the system which
builds and uses the domain data base. In this domain, the use of such linguistic
primitives as “in-front-of” in the data base turns out to have been a theoretically
questionable choice. It was beyond the scope of this thesis, however, to extend the
already considerable work that has been done in exploring the exact semantics of the
various locative prepositions (see [Cooper 1968], [Bogess 1978], [Waltz 1981], [Herskovits
1982]).

Gestalts. Finally, there is the issue of representing and lexicalizing gestalts in
the domain data base. Recall that gestalts are domain entities that express complex
interrelationships between multiple domain objects, such as the fact that a scene is a
House-scene, or that the Time-of-year is winter. Such entities, although they can be
compactly represented as concepts within KI-ONE, do not always find such compact
expression in English. Sometimes they are realized as phrases, and even clauses, and
thus are not lexicalized per se® Of course, there are also single word realizations for
many gestalts, e.g. “landscaping”, and these could be lexicalized in the same way as
object concepts.

There is more than a theoretical problem with allowing into the domain data
base primitives that are more linguistic than perceptual. It is possible to combine a
non-symmetrical linguistic relation (e.g. In-Front-Of, Behind)® and a specification of
which of its arguments is to be the New-item, and get an r-spec which is realizable
only using Form SIMPLE. For example, suppose that a picture was being described
in which a fence was large and central, with a house visible behind it in the
background; the Fence has already been mentioned, and now the r-spec contains

% Those gestalts that have standard phrasal realizations, eg. “the time of year”, could well have
a single lexical entry.

® Note that there are many examples of such non-symetrical pairs in English, e.g. “above” and
“below”, “tall” and “short” (“How tall is he?” is not the opposite of “How short is he?”). The
members of these pairs, although superficially simple opposites, have different presuppositions.

The Setting for this Planner 97

In-Front-Of(Fence, House) and New-item(House). Now, one might say “The fence is
in front of a house” to introduce the House (though in my dialect this is at best
weak). But all of the following constructions are bad:

THERE: *There is the fence in front of a house
REL-FIRST: *In front of a house is the fence.
HAS: *A house has the fence in front of it.

If the Fence were the New-item (expressed using Form SIMPLE as “A fence is
in front of the house”), as was the case in previous examples, or if the relation were
Behind(House,Fence) (e.g “There is a house behind the fence”), then this problem
would not have arisen.

THERE: There is a house behind the fence.
REL-FIRST: Behind the fence is a house.
HAS: The fence has a house behind it.

What this indicates is that I have gotten “caught” for having linguistic
information in the “non-linguistic” data base. If the data base had used “pure”
perceptual (non-linguistic) relational primitives, and if the system were really set up to
do the hard work of lexicalization, then the above problem would not have occured.
The choice of whether to use “In front of” or “Behind” would be left until after the
New-item relations had been specified (by GENARO) and the choice would be
straightforward.

To correct for this problem in the current implementation two things would
have to be done. First, the relationships in the perceptual data base would have to
be rewritten along the lines of the perceptual primitives outlined above. This would
not affect the operation of GENARO, except to add the complication of handling the
cases when two relationships held between two objects (see Figure 44), and choosing
which one to use. Second, the dictionary would need to be altered: rather than
separate entries for “in-front-of”, “next-to”, etc., there would be a single entry,
“Spatial-Relation”, which would compute the correct lexicalization from the range and
bearing arguments passed to it.

426 Wh Generation?.

What is the value added by the process of deep generation? Il.e. what essential
work is it doing that CANNOT be done by machinery designed for surface
generation, or, at least, that can only be done much more expensively by that
machinery?

In this discussion I will brashly equate GENARO with deep generation and
MUMBLE with surface generation. Thus the most straightforward way to answer the
question is to show why MUMBLE could not simply look into the VISIONS data

The Setting for this Planner

base and generate well-formed paragraphs. Briefly the argument goes like this:
MUMBLEs control structure is designed for repeatedly 1) making a choice among
alternative forms for realizing a r-spec element based on a fixed dictionary entry, and
then 2) indelibly building a piece of surface structure as a direct result of that choice.
In order to build a paragraph the r-spec element would have to be something like
“Describe-picture” ~ with its corresponding dictionary entry containing alternate
templates for the construction of paragraphs.

One of the problems with having MUMBLE do its own selection is that such
template schemes are typically inflexible, and require a level of description of the
domain data that is detailed enough to allow delicate decisions yet “coarse” enough
that the options at decision points can be inspected and evaluated cheaply. (This is
not to say that such a template could not be designed, but I hope to show below
that doing so would be like forcing a square peg into a round hole.) In the most
general case, for example, all possible rhetorical constructions would have to be
anticipated by the builder of the template, as well as all potential interactions between
template slots.

For example, the first slot would be “Introduce-Main-Item”, whose ultimate
effect would be to produce a sentence like “This is a picture of a ..”. At this point,
GENARO uses a whole set of demon-like production rules, each looking into the
domain data base for the raw materials necessary to propose its specific rhetorical
effect. For MUMBLE to perform a similar operation would require

1. that the r-spec “contained” the entire portion of the domain data base that
was eligible for mention in the text; and

2. that the dictionary entries were written directly in the language of the
domain data base, and not (necessarily) in a language that would support
(or even allow) rhetorical deliberations.

It is GENARO’s free competition among separate and independent “knowledge
sources” that makes its architecture ideally suited for high-level linguistic planning.
And it is precisely this style of loosely-coupled rule interaction that is so difficult to
achieve with MUMBLE. That is, MUMBLE’ design does not allow it to freely
examine the contents of its input and organize what to say and what not to say
based on desired rhetorical effects. This is not a failure of MUMBLE: McDonald
specifically claims (McDonald 1981) that MUMBLE was built within the major Al
paradigm for generation of an utterance, which establishes two distinct and loosely
coupled processes. The first process, to which McDonald gives the generic name “the
speaker”, speaks the language of the domain data base and is responsible for
determining what the desired rhetorical effects are and selecting what specific elements
of domain knowledge to include in the utterance under construction. (This includes
choice of the main items — the “topic(s)” — and specification of the level of detail.)
The product of this process is a specification of the content and style of the utterance
(the r-spec) which is used by the second process, “realization”.

The Setting for this Planner %9

The job of realization, then, is to find a linguistic expression of the specification
which is consistent with the grammar of the language. MUMBLE is such a device:
for generality, it uses a user-definable “dictionary” which specifies the language in
which the r-specs may be written. The r-spec is “expanded” in a top-down fashion,
with the psychologically interesting constraint that decisions are “indelible” ~ thus the
realization of an input r-spec occurs as an indelible, depth-first process of successively
elaborating nodes in a linguistic surface structure tree (from which the output words
are taken directly) until all of the leaf nodes are lexical items.

GENARO, on the other hand, is an attempt to build a generalized “speaker” —
a system which embodies domain-independent (as well as domain-dependent) rhetorical
conventions in a control structure which allows planning (if via a weak mechanism) of
the r-spec. GENARO is also designed to explore the limits of the use of salience
(which is taken to be a natural metric contained in the domain data base) as a
heuristic in the economical planning of rhetorically effective paragraphs. The choice
of a production rule control structure for GENARO allows free and flexible mixing
of diverse rhetorical and stylistic conventions. But this freedom is limited in
GENARO to rule interaction ~ once the rule’s element has been added to the r-spec
there is no going back. That is, like MUMBLE, GENARO uses the indelibility
constraint. While this is not as free an algorithm as full scale planning, in which
elements might be removed from the r-spec as well as being added, it appears to be
powerful enough to

Implications of the Model 101

CHAPTER \'

IMPLICATIONS OF THE MODEL

In this chapter the more theoretical aspects of the work presented in this thesis
is discussed. In the first section, 5.1, the psycholinguistic implications of the system
are discussed, while the second section, 52, discusses the use of GENARO as a tool
in doing cognitive science research.

S.1 The claims of this thesis

In this section the underlying claims about the power of the machinery in the
model are discussed, drawing on the details of the salience experiments, GENARO,
and MUMBLE as revealed in the preceeding chapters. The spirit of those claims,
and of this chapter, is to make strong claims for the implications of the design and
implementation of this generation system, and then to discuss strengths and weaknesses
of these claims openly.

The fundamental claim being made here is that

deep generation can be done quickly and effectively using a data-driven,
indelible planning phase, IF the domain data base is annotated with
salience.

To reiterate the intended meanings of these terms, by “deep generation” I mean the
process of reasoning about conceptual and rhetorical facts, as opposed to the narrowly
linguistic reasoning that takes place during realization. By “effectively” I mean that
mechanically generated descriptions for a picture will be indistinguishable from those
generated (specifically, spoken) by people. And by “data-driven, indelible planning” I
mean a style of control in which the input data directly specifies the planner’s process
of applying its knowledge, and which involves neither lookahead or backtracking.

I will not argue the above claim directly; instead, I have broken it down into a
series of subclaims, each of which takes a specific feature of GENARO and examines
its necessity and sufficiency in terms of a model of human performance in speech’
generation. Some of the most interesting and daring claims have to do with the

! The model being presented here is aimed at accounting for the kind of real-time rhetorical
planning that people do during speech, not the more laborious and methodical process of

102 Implications of the Model

limited power of the machinery in the model, and whether the performance failures
of the model demand more powerful machinery or more clever use of the
mechanisms that are there. Ideally, such failures will demand nothing — if they
coincide in a principled way with human generation failures.

Part of what is at issue here is the human/superhuman fallacy - a system
which generated text without ever hesitating or making a false start, even if possible,
would not make a very interesting model of human generation performance, since
humans make a wide variety of errors during generation. If, however, the system
failed under certain situations and succeeded under others, it has at least the potential
of constituting a theory of human generation performance. And the more the
Input/Output behavior of the system corresponds to that of people — the more the
circumstances that cause humans trouble are shared by the system - then the more
evidence there is for the theory.

Thus, from a Cognitive Science standpoint, the interesting question is not “Does
the system make errors in generation?”, but rather “How do the errors of this system
coincide with human performance failures? and “How do the costs of specific
operations in the system compare with measurements of speed and memory load in
human subjects performing similar tasks?”

In each of the following sections a claim is presented, the means for testing
that claim are discussed, and where available the actual results from experiments with
subjects and with the model are presented. Many of the discussions of the testability
of a claim turn on the problem of evaluating whether some mechanism in the
program has “worked” or not. This devolves to the problem of evaluating whether a
text paragraph is stylistically and rhetorically acceptable. The reader is cautioned in
advance, therefore, that “proofs” of a mechanism’s adequacy in this area are generally
soft. (Psycholinguistic means for testing such claims are mentioned where I have
worked them out.)

The first claim is that

Hypothesis 1

Some annotation of salience in the domain data base is necessary to
organize descriptions based on that data base.

This is another way of stating the commonsense notion that an understanding of
what is important, and what is unimportant, is essential to a sensible discussion about
anything. The hypothesis can best be tested by proving the falsity of the
contrapositive: that perfectly adequate descriptions can be produced without any
information about salience in the domain data base.

Implications of the Model 103

Testing this claim.

Intuitively, it is hard to imagine how one could describe a picture of a house,
say, using a visual data base in which no information about relative salience was
available, ie. in which the house was represented in the same way, and with the
same detail, as the fence in the foreground or the small flower at the base of the
fence. On what basis would the topic of the introductory sentence “This is a picture
of a ..” be selected? If one did not use salience itself as the criteria, one would end
up having to use the components of salience (as defined here) anyway, such as size,
centrality, and expectedness.

The only reasonable alternative to selection based on salience factors is the use
of strategies dealing with the form of the data base itself. For example, it might be
proposed that the house could be identified as the main item in the scene because its
concept node had the most role nodes, or had the largest number of subsumed
subconcepts. But these factors are very dependent on the nature and scope of the
perception system’s generic knowledge about the objects in the scene, and are
therefore at best only secondarily related to the specifics in any given scene. That is,
if the system happened to “know™ a great deal about cars, then the above strategy
would find any car in any picture to be the main item in that scene, regardless of its
placement in the image.

Some empirical evidence in support of this claim is described below in the
discussion of testing Hypothesis La.

3.12 Salience is the primary strategy.
The second claim is that

Hypothesis 1.a

Natural-sounding descriptions can be generated using, as the primary
selection strategy: Mention the most salient things first. A second
strategy, Mention items that are directly related (in the domain data
base) to the previous item, is of secondary importance in the selection
of what to say next.

This claim is a refinement of Hypothesis I; it specifies that there are two major
selection strategies, and that the salience-based one has considerably more influence
than the relation-based one. This claim takes on greater significance when these
strategies are contrasted with other possible selection strategies. It asserts that the

104 Implications of the Model

primary strategy is not based on (directly) the arrangement of objects in the scene,
nor on functional or structural relationships among the objects in the scene. That is,
one might imagine that it was necessary to scan through the objects in the scene (i.e.
center of the picture outwards) to get an appropriate order in which to mention those
objects. But this hypothesis claims that selection is primarily a function of salience in
conjunction with domain relationships.

Testing this claim,

There are several ways of testing this claim. If the operation of the system
actually is primarily salience-based then the quality and range of the descriptions it
produces will be an empirical measure of the truth of this claim. There may well be
rhetorical constructions that are simply out of reach of such a simple design. For
example, a description that discussed the background objects as a group in great detail
and then moved on to discuss the foreground objects would have a paragraph
structure which required more global awareness during deep generation than
GENARO provides to its rules?

One source of potential confusion in this discussion is the distinction between
what the content of the text is and how it got there. This claim is nor that other
selection strategies cannot lead to well-formed descriptions. In fact it is clear that
people use a multitude of strategies in planning descriptions. In the sentence “This is
a picture of a house with a fence in front of it” the mention of “fence” could be
due to the salience of the fence, but it also could be due to the speaker’s desire to
mention something more foregrounded than the house, or a belief that good picture
description style demands that fences be mentioned in the same sentence with the
object they surround.’

Rather, the intent here is to establish the minimal conditions for generation of
a well-formed paragraph-length scene description. Additional strategies, more complex
conventions, more powerful planning machinery, and feedback between the surface and

2 Certainly these other factors enter into the salience-based strategy, but indirectly - the
calculation of salience, as described here, subsumes the other perceptual factors.

3 However, GENARO could “accidentally” produce such a structure if the saliences of the objects
happened to be distributed in the right way, ie. with all of the background objects having
higher salience than the foreground objects, and no strong relations between background and
foreground objects.

4 Note that these are both rhetorical motivations for mentioning the fence. If I had listed the
speaker’s possible preoccupation with white fences (or whatever), that would count as the
speaker’s use of the salience strategy, since “preoccupation” is just a form of intrinsic salience.

Implications of the Model 165

deep generation Processes all may contribute to the richness of human language. The
intent here is to discover the minimal machinery and linguistic knowledge to achieve
acceptable texts, since on this framework a solid theory of the richer aspects of

languagegeneraﬁoneouldbe
ForHypothesisl.atobenueatleGSthonditionsmusthold:
] thatthesystemisindeedpﬁmaﬁlysaliencedﬁven,and
° thatthedescripﬁonsitgenemtesareaecurateandnammlwunding.

The first condition is somewhat open to interpretation. GENARO's architecture is
heavily structured tO support the salience-based strategy. The USOL is
salience-ordered, the Current-item is nothing more than the most salient unmentioned
object, and both the Current- ies and Current-relations subregisters of the
Current-item are salience ordered. However, GENARO’s arhitecture supports two
kinds of rules: those which use these structures in the “intended” way (as stacks
whose only visible member is the item “on top”) and those that override the salience
ordering and look inside of the various lists. As Figure 45 illustrates, of the 8 rules
in the system, only $prop-color and $condense-prop have the ability to reach into the
salience-ordered lists and remove an item. Furthermore, these rules generally run at
low priorities, sO their contribution to the average r-spec is considerably less than the
salience-based rules. On the condition that this is a complete set of deep generation
rules for this domain, the rule set itself would be evidence for the primacy of the
salience-based strategy. This set of rules is still quite preliminary: it is quite likely
that many specialized of idiomatic constructions exist for English scenc descriptions
which have not been captured here. Considerable experimentation and development
remains to be done before any claims can be founded on the make-up of this rule

Rule Relation-based?

$prop-color yes

$condense-prop yes

nmﬁzsﬂmwvmrdsﬂon-usedmm.

«Relation-based” means that the rule has the ability to propose an item

which is not the Current-item or its most salient property of relation.

PRI

106 Implications of the Model

A better test of this hypothesis is to generate paragraphs with a “lesioned”
model: disabling alternately those parts of the system which are salience-based and
then those which are relation-based will give some measure of the relative importance
of those two aspects of the model. To implement a lesion of the relation-based
operations is as simple as removing the two relation-based rules: $condense-prop and
Sprop-color. To implement a lesion of the salience-based operations is also simple:
just scramble all three of the salience-ordered lists (USOL, Current-properties, and
Current-relations) into random order, thus disposing of the salience information that
was encoded on them.

The results of this experiment show graphically the importance (and primacy) of
salience in scene descriptions. Figure 46 shows three paragraphs: the first is a
“baseline”mnofthesystemontherepresentaﬁonforthepictureinChapterl(a
thorough trace of this run is provided in Appendix 2); the second paragraph was
generated by turning off the relation-based rules; the third was generated by
scrambling the salience-order lists in the system. (It should be remembered, however,
that, becauss GENARO and MUMBLE had not, at the time of this writing, been
actually connected together, the text shown is a hand-simulated realization of r-specs
actually generated by GENARO. However, MUMBLE is clearly capable of producing
text of this complexity and grammatical range.)

Implications of the Model 107

This is a picture of a white, two story house with a fence in front of it and a
driveway next to it. This New England house also has a bush and a tree next to it.
Both the door of the house and the gate of the fence are red. The house has a white
porch. Next to the fence is a road, and there is a mailbox in front of the road.

This is a picture of a white, two story house with a fence in front of it and a
driveway next to it. This New England house also has a bush and a tree next to it.
The door of the house is red. The gate of the fence is red. The house has a porch.
Next to the fence is a road, and there is a mailbox in front of the road.

This is a picture of some columns. A house has a red door and a fence has a
red gate. Next to the house is a driveway. The house has a white porch.

Figure 46: Paragraphs from the “lesioned“ model.

A “normal” * baseline description of the picture in Figure 1 (page 4), a

description of the same picture with the relation-based operations “lesioned”
' out, and another description with the salience-based overations “lesioned”.

(The Conclude packet was kept turned off for these runs, preventing the rule;

$light from running, to simplify the expasition.)

108 Implications of the Model

In the second paragraph all that has been lost is the condensation of the
descriptions of the Door and the Gate into the same sentence, and the modification
of the Porch with its property White. (In the first paragraph these elements were
contributed by $condense-prop and S$prop-color, respectively.) The third paragraph,
besides its rhetorical awkwardness, is simply wrong. It demonstrates that without a
notion of what is perceptually important in a picture attempts to describe the scene
are doomed. Without the annotation of salience (or its raw materials: size, centrality,
and so on) the representation lacks crucial perceptual information that is specific to
this picture. Indeed, it could have been a picture of some columns ~ it is possible to
imagine a picture for which the salience-lesioned paragraph is appropriate (if still
somewhat awkward).

The second condition on the truth of Hypothesis La, that the descriptions
generated by the system be accurate and natural sounding, is amenable to a
Turing-style test: take a picture and mix descriptions of it that were generated by
people and by the system, and test how well human subjects can differentiate between
them. If subjects can guess the source of the descriptions with statistical reliability,
then the claim has been disproved. This experiment has not been performed, due to
the present technical difficulty of getting more than a very few mechanically-generated
descriptions —~ see Chapter 6.

Finally, there is another source that is helpful in determining the sufficiency of
the salience strategy. In [Conklin, Ehrlich, and McDonald 1983Jit is claimed that
there was only a fair correlation (about 52) between the salience rating data and the
textual data. One way this might be interpreted is as a measure of the importance
of the salience strategy in subjects” descriptions. If the subjects were using only the
salience strategy a correlation of 10 between the rating and textual data would be
expected. If, on the other hand, the salience of an object had nothing to do with
when it was mentioned one would expect a 0.0 correlation.

The correlation of 052 could be thought of as meaning that roughly 50% of
selection and the resultant object ordering was due to the use of salience-based
selection. The other 50%, presumably, was due to other strategies, e.g. the
relation-based strategy. However, it would mistaken to give full weight to these data,
however, because of the procedural difficulties and dangers inherent in reducing
peoples” notions of salience and their written paragraphs to a few statistics based on
simple quantification procedures (these procedures are described in detail in [Conklin,
Ehrlich, and McDonald 1983]). However, the 50% figure is high enough to be at
least weakly confirming of Hypothesis La.

Implications of the Model 109

3.13 Stepping down the USOL is sufficient.
The third claim, and another subclaim of Hypothesis I, is that
Hypothesis 1.b

I define the Locality Constraint to be the following limitation on the
power of a deep generator: each domain item is made the Current-item
once, and the system rules describe only the Current-item. The result
is that an item is described at only one point in the text; the claim is
that this is sufficient to cover a broad range of descriptive texts.

For example, before it becomes the Current-item the Fence might be mentioned by
virtue of being related to the Current-item (i.e. “.. a house with a fence in front of
it.™), but it will not be described; and once Fence has had its chance as the
Current-item, it will only be mentioned again by being related to something further
down the USOL (i.e. Sidewalk). This claim actually has two parts:

1. that each object gets only one chance to be the Current-item, and
2. that only the Current-item gets described.

I distinguish here between “mentioning” and “describing”. An item is
mentioned by having an explicit reference to it in the text (eg. in “The fence is
green.” both the object Fence and its property Green are mentioned). An item is
only described when there is some elaboration to the reference which gives additional
information about the item (e.g. only the Fence is described in “The fence is green”).
In GENARO's architecture only objects are described (by becoming the Current-item;
see Hypothesis V below), and description occurs through the proposing of the items
from the Current-properties and Current-relations subregisters.

Testing this claim.
Some possible interactions that are barred by this claim are

® A stack underlying the Current-item, so that items described could be
pushed onto this stack and popped off for further description later on (see
also hypothesis I.c);

® Giving rules the ability to propose properties or relations of objects other
than the Current-item.

Much of the force of this claim hangs on what may seem to be an
implementation detail: whether or not to remove an object from the Unmentioned
Salient Object List when it is mentioned (i.c. mentioned by virtue of being related to

110 | Implications of the Model

the Current-item). In the current implementation such objects are removed from the
USOL at the moment they are mentioned. For example, in the example in
Chapter 3, part of describing the House (when it was the Current-item) was
mentioning its relationship to the Fence. But when Fence is removed from the
USOL on the basis of being mentioned in this rspec — because it is indeed
“mentioned” at that point — then the potential for an interesting problem is created.
Suppose the USOL is (House Fence .. Road ... Sidewalk ..); Fence gets mentioned in
the r-spec with House, removing it from the USOL. But suppose that the relation
Next-to(Fence, Sidewalk) is very salient; because only the Current-item gets described,
this relation will not get mentioned until Sidewalk becomes the Current-item.
However, if while Road is the Current-item Sidewalk gets mentioned, ie. in the
relation Next-to(Road, Sidewalk), then Sidewalk will be removed from the USOL for
the same reason Fence was. Hence neither Sidewalk nor Fence ever becomes the
Current-item, and the relation between them is never mentioned. In fact, neither one
is ever properly described — only mentioned briefly.

This is a nice example of a failure of the simple control structure and the
Locality Constraint it embodies. It indicates that the machinery is, in places, too
weak to generate acceptable texts. This is methodologically very important: the intent
of the experiments with this system have been to determine what the minimal
machinery and linguistic knowledge are to produce “acceptable” scene descriptions.
And while there is certainly some latitude in the definition of “acceptable”, it is
important for the claim of minimal power that the program sometimes falls below this
minimum (otherwise, how would you know that it was minimal?). Another point for
the methodology used here is that it is generally easier and clearer to add power to
control mechanisms than to take it away.

Of course, it is not crucial to GENARO, or even to the Locality Constraint,
that objects which are mentioned via a relation with a Current-item get removed from
the USOL, and the example above suggests that it is wrong to do this. But there is
a complication associated with the obvious alternate scheme of requiring that all
USOL objects become the Current-item on their way from the USOL. Suppose, in
the above example, that items which are only mentioned, e.g. Fence in the first
sentence, are not marked “mentioned”, and are left on the USOLS In this case,
after the initial sentence “This is a picture of a house with a fence in front of it”,
whenever Fence became the Current-item it would lead to some sentence like “The
fence is white and has a gate.” This would describe the most salient property and
relation of Fence, but the bridge between this sentence and the first mention of
Fence would be awkward at best. That the Fence is White would perhaps be better
mentioned in the first sentence, e.g. “This is a picture of a two story house with a
white fence in front of it.” (The best place for stating that “The fence has a gate”

S This is equivalent to the more precise modification to the program of making the USOL into
an “Undescribed Salient Object List”, and having the system mark objects as “described”
instead of “mentioned”.

Implications of the Model 111

would depend on the salience of Fence and what other relationships it had to objects
in the scene.)

But such constructions, in which an object is described (not just mcuutioned) in
two different sentences, are impossible under the Locality Constraint, the basis of this
Hypothesis. An object either gets completely described when its turn as the
Current-item comes, or it does not get described at all (only mentioned)” How much
this actually impairs the range of descriptive texts generable by GENARO is an open
question, requiring further experimentation with the system to answer.

There are at least three independent enhancements to the machinery of this
model that would allow it to generate these more natural r-specs (i.e. r-specs in
which two non-parallel objects were described). However, these enhancements do not
seem to observe the Locality Constraint it its strict sense (i.e. that each domain item
is made the Current-item once, and the system rules describe only the Current-item).
The following description of these enhancements relies on a distinction between the
three major components which comprise GENARO. These components are the rules,
the algorithim, and the data structures. Previously the distinction was made between
the control structure (the “machinery” of the program) and the rhetorical rules. Here
I am further distinguishing within the control structure between its data structures
(eg. the USOL) and the algorithm, which specifies both how information can move
between data stuctures and how and when the rules can run. (This is a powerful
distinction that can be made when analyzing any Al program.)

Each of these components could be enhanced to provide the additional power
needed to avoid the holes in the planning described above.

® Making the action of switching Current-items during r-spec construction more
commonplace, by adding to the rules the ability to discern when to perform
this powerful action.

® Adding to the algorithm the ability to TEMPORARILY set the Current-item
to some other object which is being mentioned (e.g. Fence, in the example
above), so that if the new object had any highly salient properties or
relations they could be expressed.

® Adding to the data structures a “Related-item” register, which would be set
when any relations of the Current-item were being put into the r-spec; the
Related-item register would combine some of the properties of the last two
options: the rules would have to know how to use it, and it would have

7 An object’s description may extend over more than one adjacent sentence — this would be done
by modifying the rules which control the actions of ending r-spec construction and sending the
rspec on to MUMBLE so that they allowed dispatching the old r-spec without bringing in a
new Current-item (see Chapter 6).

112 Implications of the Model

higher salience thresholds than the Current-item register has.

Theseareprsentedtogivethereaderasenwofhowonemightgoaboutextending
this deep generation model, and will not be explored here any further (but sece
Chapter 6).

[Give an example of some of the complications that arise from using any of
these schemes to have two levels of focal-ness. This demands a full experiment. 1)
Select an enhancement (eg #3); 2) Make up a data base/picture in which everything
is either salient or not; 3) Describe in detail how the system can plan itself into a
corner; 4) thus, claim this enhancement requires much more global control to use
effectively, so that 5) it is not a simple patch to extend the power of GENARO, and
finally 6) present full scale planning as a probably-too-powerful solution to these
complications. Refer to Hypothesis V. (indelibility))

2.14 Rbhetorical structure is not recursive.
The fourth claim is that

Hypothesis I.c

Descriptive paragraphs are not generated by a recursive (ie. stack)
mechanism.

This amounts to the claim that the machinery for parsing and generating
paragraph structure of the order of a finite state automaton (FSA) in power. In
general, stack mechanisms are more powerful, because they can generate/parse
(hereafter simply reffered to as “generate”) structures which are indefinitely embedded.
However, any specific paragraph has a finite (and usually very small) amount of
embedding, and whatever that amount is, an FSA could be made which had enough
states to be able to generate it. The key difference is that if just one more level of
embedding were added to the paragraph structure, the stack machine could still deal
with it, but the FSA could not.

The difficulty with claims about the nature of the underlying structure, as this
one is, is that they must argue from behavior to internal mechanisms, since the
internal mechanisms of language are themselves inaccessible for direct study. To
prove this claim wrong would require a demonstration that, no matter how deeply
embedded the structure of a paragraph was, a person could generate it. On the
other hand, it cannot be proved correct, since there is no behavior of which an FSA
is capable but a stack mechanism is not.

However, it is nonetheless worthwhile to examine paragraph structure in terms
of the structure of the text itself. In these terms the problem is whether the
structure of text is basically recursive, or whether there simply is a certain amount of

Implications of the Model 113

returning to a previously mentioned object to further describe it. Another issue is
how the power of GENARO relates to that of an FSA with respect to paragraph
structure.

One consequence of the last hypothesis (#1b) is that once introduced, objects
are only returned to by way of some related object being described. This is in
contrast to the notion that we describe a certain item to a point, then set ir aside
while elaborating something relating to it, and then return to describing it further.

The notion that discourse structure is recursive is proposed, among others, by
Barbara Grosz [Grosz, 1980], and is also quite intuitive. However, since the claim of
recursiveness requires a stack mechanism (if only of limited depth), and since this
extra machinery adds conmsiderably to the power of the current program, it is
therefore undesirable unless justified by the data.

Testing this claim.

Again, this Hypothesis cannot be “proved”, though it might be weakened by a
well-formed paragraph which bad a necessarily recursive structure. Figure 47 presents
what may be such a paragraph. A “recursive structure” analysis of this paragraph
would claim that it starts out being about the scene itself and its main object, the
HOUSE, then “pushes the stack” to elaborate the PORCH (4), then pushes the stack

M
@
©)

)
()
(©)
0)

@®

This is a picture of a large old plantation home.
The house is surrounded by large trees, and
a field extends beyond it in the background, with
some mountains in the distance.
There is a porch in the front of the house, and
4 large columns at the front of the porch.
There are chairs on the porch, along with a table, and
some of the chairs look like rocking chairs that face
off towards the mountains.
The porch is white, as is the whole house, except for
a black trim around the windows.

(etc.)

Figure 47: A possibly recursively-structured paragraph.

This paragraph was written by the author to make a point. While it would
be easier to evaluate with a copy of the picture it claims to describe, the
point here is simply that it is a “good” paragraph - that it is smooth and
natural sounding.

114 Implications of the Model

again to elaborate some things on the PORCH ((5) and (6)). Then it pops back to
discussing the PORCH itself ((8)); presumably it would eventually pop back to further
description of the house.

However, the deep generation model offered here can nearly generate this
description, without any enhancements to the machinery of the model. According to
the current hypothesis, this paragraph consists of (at least) four simple shifts to the
next most salient object: HOUSE, PORCH (4), CHAIRS on the PORCH (6), and
color of the PORCH (8). The weak link in this claim is that in this paragraph that
last shift was to a propersy, rather than an object. Evidently, in order to produce
this paragraph we must either give up the current hypothesis or the claim that
descriptions are “object-driven” (Hypothesis V), since there is no way to produce
sentence (8) in that position using the current architecture (i.e. without somehow
making the Current-Item PORCH once again). Strictly speaking, then, this hypothesis
is false.

However, there is one last thing to say for non-recursive machinery: that while
it cannot produce all legal paragraphs, it can produce a subset of them which
expresses all of the semantic content of the full set. Hence, if sentence (8) were to
come immediately after sentence (4), this paragraph would no longer be recursive, and
in fact, with appropriate use of pronouns, is also smoother, at least in my dialect?
In any case the rearranged paragraph is not inferior to the one which had recursive
structure, and the intent of Hypothesis Ib is to claim that there are no situations or
their descriptions which demand recursive structure, i.e. no expressive power is lost by
foresaking recursively structured paragraphs for those structured locally using salience.

S5.15 Iterative proposing is necessary and_ sufficient.
The fifth claim is that
Hypothesis Il
No more or less than the power of Iterative Proposing is required to

effectively use rhetorical conventions when they are expressed as
production rules.

8 The paragraph in that case would be: “(1) This is a picture of a large old plantation home.
(2) The house is surrounded by large trees, and (3) a field extends beyond it in the
background, with some mountains in the distance. (4) There is a porch in the front of the
house. (8) It is white, as is the whole house, except for a black trim around the windows. (5)
There are 4 large columns at the front of the porch. (6) There are chairs on the porch, along
with a table, and (7) some of the chairs look like rocking chairs that face off towards the
mountains.”

Implications of the Model 115

Iterative Proposing (IP.) is the control structure used by GENARO; it follows
the traditional production rule paradigm, with the additional provision of a system of
“priorities” which are posted by the competing rules and which determine which of
the active rules actually achieves its particular action. Thus the rule’s knowledge is
applied by successive rounds in which two things happen: all active rules make a
proposal, and the best of these is “run”.

The claim here is that this control structure is necessary and sufficient for
efficiently coordinating GENARO's rhetorical rules’

Testing this claim.

The sufficiency of 1P., as with all other aspects of the system, rests on the
judgment that the overall behavior of the system is sufficient: if the system is simply
the sum of its parts, and the system is sufficient, then the parts are necessarily
sufficient. Thus the sufficiency of IP. ultimately rests on the judgment of the
sufficiency of GENARO as a deep generation component.

Perhaps, however, the system is more than sufficient — perhaps it has more
than enough computational power to generate scene descriptions. In this case some
part would be unnecessary (where “part” is taken very loosely), and the claim of
necessity would be false. Specifically, given the production rule framework, are
iteration and proposing both necessary? Recall that proposing entails that, in a given
round, only one rule wins and gets its way, as opposed to all the rules which are
eligible running and getting their way all on the same round. [Iferation is the natural
complement to proposing — only one rule fires for each round, so the program
iterates through many rounds of proposing to give the rule set a larger opportunity to
“express” its knowledge.

Given the one-rule-per-round aspect of proposing, iteration is clearly necessary -
almost no r-spec would be complete with only one element in it® But is proposing
necessary, i.e. why not let all the rules that have a proposal win and have their way?

’ This claim may be circular in a sense, ic. the rhetorical rules described here are to some
extent written so that they demand exactly the power of Iterative Proposing. 1 argue below,
however, that more power is not necessary, and that less would cause a serious loss of
performance.

¥ Of course, the notion of “r-spec element” could be expanded to be a semantic packet large
enough to specify a complex sentence, or even a paragraph. However, to do so would be
equivalent to claiming one sentence of output per rule proposal (since a 1:1 correspondence
between r-specs and sentences has already been imposed — see page 21 and Hypothesis VLb,
below), which would place a demand on the rules that lead to a severe loss in generality and
flexibility.

116 Implications of the Model

The example trace of the generation of a description in Section 3.3 contained
several instances in which a series of elements were inserted into the r-spec in an
order-dependent manner -~ latter elements were proposed based on the insertion of
previous elements into the r-spec. This amounts to a very limited form of inter-ruie
communication: since the only actions available to rules are additions to the r-spec or
changes in the Current-item, and since both of these data structures are also available
for inspection by the rules’ preconditions, a one-way narrow-bandwidth channel exists
betweenanﬂebeingprowssedandthewinningnﬂmthatpreceededitinthecurrent
rspec. In particular, any of the rules that check the r-spec in their preconditions
clearly will require more than one round of r-spec building in order for that check to
be at all useful.

For example, all of the condensing rules base their actions both on the
existence of a rhetorically parallel object somewhere in the USOL and on the size of
the r-spec not being too large. Without multiple rounds of successive r-spec building
(ie., if all rules which fired achieved their action), several condensing rules could
propose condensations that would catastrophically overload the r-spec any time the
Current-item had several potential parallels. Although such collisions could be
programmed around, it would be at the cost of adding considerable power to the
rhetorical rule language and to the complexity of the rules themselves.

Not only the proposals but also their priorities must be recalculated after each
element is inserted in the r-spec, since rules can base the priority of their proposal on
the weight of the r-spec.

In summary, IP. offers a weak form of inter-rule communication that is still
strong enough for efficient coordination of rhetorical effects in the course of the
construction of an r-spec. LP. is necessary, since loss of either the proposing or the
iterative aspects would critically damage the power of the system.

5.1.6 Rhetorical planning can _be done_indelibly.
The sixth claim is that
Hypothesis 111
The planning of r-specs can be effectively managed indelibly -~
backtracking is not needed, because the domain of rhetorical planning is

resilient enough that it is in fact difficult (at this level) to “paint
yourself into a corner”.

Implications of the Model 117

Testing _this claim,

The planning of a descriptive text is done as a pair of iterative processes: the
construction of successive r-specs describing objects of lower and lower salience in the
scene, and the insertion of successive rhetorical elements into each r-spec as it is built.
These processes have a very simple control structure — they are both indelible, since
there is no look-ahead or backtracking. While this is an unusual design for a
planner, it makes a strong claim about the complexity of the process, which is, if
decp generation can be done well deterministically without extravagant costs elsewhere
in the process (eg. backup hidden by being hard-wired into the rules) then this
planning process can be said to be inherently deterministic."

There is at least one specific situation in which GENARO fails to plan
adequately (described next), and which either counts as evidence that GENARO, due
to its indelibility and/or its extreme locality, is not a sufficient model of deep
generation, or is an illustration of the system successfully modeling a human
performance failure.

This failure occurs as a result of the inability of the system to look ahead even
one r-spec element.” Suppose that the r-spec is filled up to 75% of its optimum
weight and there are two competing proposals: one is a condensation, the other is
Finish-building-rspec. =~ The later proposal is being made at a low priority (slightly
lower priority than the condensation proposal), to avoid the r-spec being too light.
Thus the condensation succeeds, pulling in a new Current-item and starting a fresh
round of proposing. Since the Current-item is new, there will be several high priority
proposals based on it. But as the r-spec gets heavier, Finish-building-rspec is making
the priority of its proposal higher and higher. At some point the r-spec is overweight
enough that Finish-building-rspec wins, and the r-spec is sent to MUMBLE for
realization. However, since the cutoff point was determined without respect to either
r-spec content or “goals” of the condensation rule® , and since r-spec construction was
cut off when proposals were still being made at a high priority, there is a good
chance that the resulting r-spec will be awkward, or perhaps even impossible, to
realize grammatically.

U That is, the rule of parsimony dictates that, even if a strong, nondeterministic mechanism can
account for a phenomenon, if a weaker, deterministic mechanism can account as well for the
same phenomenon then the process itself can be said to be of the type of the weaker
mechanism, ie. deterministic.

2 The difference between lookahead and backtracking is largely implementational. Both serve to
give the control structure a gap between when a choice is contemplated and when it must
actually be committed to.

B Condensation rules do not have goals per se, but they count on the property or relation upon
which the condensation was based being (independently) inserted into the r-spec.

118 Implications of the Model

For example, suppose that just before the condensation the r-spec would have
been realized as “The door of the house is red ..”, and that the condensation made
“gate” the Current-item, and that “gate” had the salient properties “red” and “broken”
and the salient relation “part-of(fence)”. Assuming the same dictionary entries as
were presumed in Section 424, and following that same processing, MUMBLE would
next choose to realize the second clause under the constraints that it is a second
conjunct and that it is marked for VP-deletion. If MUMBLE chose to follow the
same realization as was described in that example, it would complete the realization
of the second conjunct as “.. and so is the gate of the fence ..” without ever having
encountered a suitable node in the surface structure at which to expand the “broken”
element in the r-spec.

This could just be a failure in MUMBLE: the grammar rule which allowed VP
deletion could detect conditions that would cause it to fail and would force some
other (less complex) realization. This could also be a failure of rhetorical planning:
GENARO?s specification of condensation, and the resulting choice in MUMBLE to
realize the r-spec as a pair of conjoined clauses, lead the system down a blind alley.
If GENARO had “known” that it was going to be adding several salient properties of
the parallel object to the object’s description, it could have signalled that to
MUMBLE early in the r-spec, possibly leading to the realization “The house has a
red door, and the fence has a broken red gate that is on fire.”

The general issue here is that GENARO talks to MUMBLE in a language that
is both extremely large (perhaps infinite) and only loosely defined. From GENARO’s
point of view the range of possible r-spec’s is limited only by the number of rules
and the contraints provided by the packet-switching mechanism. MUMBLE, on the
other hand, has dictionary entries that are written with specific r-spec elements, or
combinations thereof, in mind. In any domain GENARO will surely create r-spec’s
which the dictionary writer has not anticipated. One’s hope is that MUMBLE's
dictionary is written with enough flexibility and redundance that even unanticipated
r-spec’s will be realized correctly, due to the linguistic generalizations that are
captured in its dictionary and grammar. However, GENARO’ control structure
offers so few limitations to the possible patterns of rule firings and interactions that
there will always be the likelihood of breakdowns, ie., r-spec’s which from
GENARO’s standpoint are perfectly well-formed but which MUMBLE"s dictionary is
not capable of realizing.

One of the most likely modes of failure will be r-spec’s which are too long, as
described above. The psycholinguistically interesting question is, Is there evidence of
such behavior in people? Clearly people stop in mid-sentence, and start their
utterance over with a different construction. But is this because they inadvertantly
tried to pack too much into their “internal r-spec”, only to find that they have to

Implications of the Model 119

either say something ungrammatical or start over?® Unfortunately, the kind of studies
necessary to resolve these psycholinguistic issues are beyond the scope of this thesis.
The force of this claim, however, is that it will be found that there are clear analogs
between the errors of the GENARO/MUMBLE system and those of people.

“One of the most likely modes of failure will be r-spec’s which are too long, as
described above. The psycholinguistically interesting question is, Is there evidence of
such behavior in people? Clearly people stop in mid-sentence, and start their
utterance over with a different construction. But is this because they inadvertantly
tried to pack too much into their “internal r-spec”, only to find that they have to
either say something ungrammatical or start over?® Unfortunately, the kind of studies
necessary to resolve these psycholinguistic issues are beyond the scope of this thesis.
The force of this claim, however, is that it will be found that there are clear analogs
between the errors of the GENARO/MUMBLE system and those of people.”

COMMENT: It should be possible, for example, to collect a corpus of errors made by
subjects describing pictures out loud for an experimenter and tape recorder. This
would be huge project, however. Not only would we have to accumulate enough
data to get some errors, but we would then have to look hard at the grammar for
MUMBLE and see how we would account for specific empirical errors. Too much
work. Later.

COORDINATING SEVERAL CONDENSATIONS

Another rhetorical construction that is problematic for GENARO is the
coordination of several condensations. For example, suppose that in the Winter House
Scene of Figure 1 the door of the house, the gate of the fence, and the box of the
mailbox were all the color red, and were on the USOL in that order. One possible
description of this situation would be an utterance like “There are three red things in
the picture: the house door, the fence gate, and the mailbox”, or at least “The house
door, the fence gate, and the mailbox are all red.” However, the current set of
thetorical rules could not put all three objects into the same r-spec, because the r-spec
would be too heavy, and it is difficult for the rules to coordinate several (even two)
condensations. Specifically, $condense-prop checks the weight of the r-spec before
suggesting a condensation, and any reasonable cut-off weight for general r-specs would

¥ There is a methodological danger with such questions: while it is fairly straightforward (if
tedious) to gather data on people’s performance failures, one must be very careful about
attributing these to a particular condition in the generation machinery (e.g. “r-spec overload™).

'S There is a methodological danger with such questions: while it is fairly straightforward (if
tedious) to gather data on people’s performance failures, one must be very careful about
attributing these to a particular condition in the generation machinery (e.8. "r-spec overload“).

120 Implications of the Model

be too low to allow a second condensation within one r-spec.® Unless the condense
rules can be rewritten within the current control framework this limitation stands as
a real shortcoming of simple LP., one that would surely be remedied by doing “real”
planning of rhetorical effects as part of the r-spec building process. That is, one
might imagine that the same “short-sighted” rules could be orchestrated by a more
powerful control mechanism, one which, say, collected all possible condensations and
then allowed a “meta-condensation” rule to look at the collection, looking for further
condensations. Such a rule could notice the proposals to condense the house door
with the fence gate and the fence gate with the mailbox, and could propose a single,
more encompassing condensation.”

3.1.7 Salience is_perceptual.
The seventh claim is that

Hypothesis 1V

Salience is perceptual, not linguistic. The components of visual salience
are computed as a by-product of constructing an internal model of the
scene in a picture, so that selection based on salience is a scheme in
which order of mention is distinctly nor prespecified in the visual
representation.

In other words, the annotation of an object’s visual salience can be provided as a
natural part of the perceptual analysis of that object in the image, and it is this
analysis which determines when the object should be mentioned.

“ It may in fact be possible to alter $condense-prop so that multiple-condensation constructions
could be made. In fact, it could be done just using a more elaborate scheme of assigning and
checking weights of r-spec elements. The key might be: (1) changing the weight assigned to
condense elements (the more there were of the same type, the more NEGATIVE their
weight); or (2), what is the same as (1), letting $condense-prop raise the *optimum-rspec-weight
global used by $Finish-building-rspec; or (3) again the same kind of thing, create a type of
rspec element that has negative weight and let the rules “barter” about sending the r-spec in
the currency of its weight — each time $condense-prop added another condense rhetoreme, thus
setting up the “goal” of some amount of r-spec building, it could deposit a certain amount of
these “lifting elements” to finance the weight of the new elements.

[Another way out: look into the visual representation for situations like <several objects with
the same salient color> and do the condensation (as reification will have to be done) at the
perceptual level. Why not? Clearly the difference between perceptual and rhetorical objects
and concerns is blurred throughout this project - is reification a perceptual or conceptual or
rhetorical phenomenon? See Part Two of this (implications) chapterl]

Implications of the Model 121

The significance of this claim is that, unlike previous efforts at generating text
from a large data base (e.g. [Goldman 1974], [Swartout 1977], Davey [1979], [Mann
and Moore 1981]), the input data base to this system is not “pre-wired” for the order
in which items in it are mentioned. Furthermore, because the salience annotation is
assigned as an integral part of the system using the data base (SALIENCE), the
selection process and the resultant ordering of objects in the text are directly
responsive pre-linguistic forces. This application for studying the selection problem is
much more realistic than in domains in which the order of mention of objects is
prespecified.

Testing this claim.

The justification of this claim appeared in the previous chapter (page 74). It
was argued there that there are three necessary components of visual salience, and
each one is computed as the by-product of a necessary subprocess of the perception
process. The current claim might be shown wrong in two ways. It might be that
one or any of these specific subprocesses are actually unnecessary for machine
perception. In that case the corresponding component(s) of salience would not be
computed “for free”, but rather would involve extra processing. Whether or not this
is the case is unfortunately an academic issue until a full-blown system for doing
visual perception is operational, and it can be determined what the necessary and
sufficient subprocesses for perception are — hence, this subcase is untestable at present.

The other way that this claim could be wrong is that there may be other
components of visual salience besides those listed above, and these may have nothing
to do with perception.” In other words, it may be that there is a fourth component
of visual salience that would need to be computed by a non-perceptual process. Now,
it is in fact clear that at least one such component exists: it is the component of
salience that reflects the internal state of the cognitive system (e.g. emotional state),
only one part of which is perceptual. It is such factors that I labeled as “noise”
when doing the statistical analysis of the experiments with salience ratings (see
[Conklin, Ehrlich, and McDonald 1983)). The question is, do such factors have a
place in this model? Ultimately, they do, but in taking the two slices of cognition
called “perception” and “deep generation” and studying how they are linked, which is,
broadly speaking, what this thesis is about, one comes perilously close to needing to
include such things as “awareness” and “attending” in the theory, and this is simply
far beyond the scope of the state of the art in AIl. Hence this subcase is also
untestable.

* There may also be components of salience which were not specified above but which are, when
analyzed, still found to be derived from elements of the basic perception process. Such a
component would actually serve to lend credence to this Hypothesis, and in any case would not
upset it.

122 Implications of the Model

1 Descriptions are obj iven.
The eight claim is that
Hypothesis V

Perceptual descriptions are oriented to the objects in the domain data
base, while properties and relationships are secondary.

This claim is implemented directly in the model, in the form of the USOL
(Unused Salient Object List) and the Current-item register. Since the USOL contains
only objects, and is the sole source of data for the Current-item register, the only
entities that the system focuses on describing are domain objects. Another way to say
this is that GENARO is “object-driven”.

Testing this claim.

This claim is supported by the fact that, as a strategy in the approach described
here, the system uses it and produces well-formed descriptions. The claim would be
discredited by a situation in which a property or a relation needed to be mentioned
early, even though the property’s object or the relations” objects were not salient.
For example, suppose that one were describing a house scene in which the car was
parked, not in the driveway, but on the peak of the roof of the house, somewhat
precariously. Suppose further that both the house and the car were perfectly normal
in all respects, except of course for their unusual and improbable relationship.
Clearly this relationship is highly salient, and would be mentioned very early in the
description. Does not this situation contradict this Hypothesis?

The answer is that for two objects to have a highly salient relationship they
must also be salient themselves. In the example, the house, and certainly the car,
would be highly salient objects. The reason for this lies in the processing of the
SALIENCE system. I claim that objects derive their salience in part from their
properties and relations, so that it cannot happen that a low salience object has a
high salience property or relationship.”

It could in fact be argued that the identification of objects is the primary task of the
perception process — that cbjects are the primary entity of perception, and that properties and
relations are perceived as being “about” objects. In any case, this hypothesis does not rest on
this stronger claim: even if objects are not the primary perceptual entity, they are certainly on
an equal footing epistemologically with properties and relations, and that is all that is needed
for this hypothesis to hold.

Implications of the Model 123

Since the identification of an object cannot in any way be separated from the
identification of its properties and relations, any property or relation which is
unexpected or intrinsically salient lends its salience to the object which it is “about”.
For example, a blue house is odd enough to demand a bit of extra processing to
confirm the identification of the regions in question as a house, thus increasing both
the salience of the house and of the property blue. However, the property blue
applied to a tree could be cause for discarding the tree hypothesis altogether, and
thus would make the tree itself (in the event that the tree hypothesis was still the
best one available for that region) and its property blue extremely salient.

And because objects are defined to derive a portion of their visual salience
from the salience of their properties and relations to other objects, it is impossible for
a low salience object to have highly salient properties or relations. Basically,
properties and relations are “about” objects in a way which is not reciprocated.®
Thus, it is enough to drive rhetorical planning from the salience of the objects in the
data base, and to have the system organized to move only the objects around within
the machinery (i.e. the USOL and the Current-item register), knowing that the other
classes of entities (properties and relations) will come with them?

3.19 No feedback from surface to deep generation.
The ninth claim is that
Hypothesis VI.a
Feedback from surface to deep generation is expensive and unnecessary.

Feedback is expensive because it requires between these processes a whole other
“channel” of communication ~ SG (surface generation) must be able to formulate
precise diagnostics about its failure in processing the received r-spec, and DG (deep
generation) must be able to interpret these “messages” and use them to modify the
sent r-spec to correct for the error. Feedback is unnecessary because it is cheaper to

® When this system and SALIENCE are extended to handle moving pictures and action, this
theory will have to be expanded to include the preeminence of action in the perception
process. More important than the identity of an object hurtling at one is its speed and
trajectory, and the simple epistemolgy offered here would need to be extended to include such
(property-like) descriptors.

2 By the same argument, gestalts (the fourth class of perceptual entities) have a status more like
that of objects: they are not about any specific object, although they arc based on many things
in the scene at once (e.g. time of year, time of day, picture focus, etc). Gestalts should thus
be included in the USOL, and be described as the Current-item according to their salience.
See Chapter 6.

124 Implications of the Model

allow the system to fail occasionally — people do (in the form of production errors —
see [Garrett 1975]). Furthermore, people are able to detect that the utterance they
are producing or have just produced is ambiguous, yet the generation process is a
poor place to have to do this® (except of course for conmstructions that are canned
and which can therefore be marked in the grammar as potentially ambiguous). That
is, one can imagine a production system in which the realization component was able
to detect ambiguity in its output and to signal this condition to the planning
component. However, in a full language system capable of input and output,
concurrent parsing of the text being produced offers an inexpensive way to detect
ambiguities in the output material, especially under the assumption that the parser has
“nothing else to do” when the generator is running.

Testing this hypothesis.

What would qualify as a disproof of this claim? Feedback might be required if
MUMBLE (the SG) needed some information that was not provided in the r-spec.
However, such situations could also be remedied by having GENARO (the DG)
anticipate the questions and provide the answer in advance. It is possible that such
extra work on the part of GENARO would be expensive, or that the r-spec would
grow unmanageably large with information anticipating all such questions. But neither
of these conditions “proves” the need for feedback.

The other possibility is that MUMBLE might need to signal that it has been
sent down a “garden path” by GENARO's r-spec, and that it needs GENARO to
replan it (avoiding the part of the specification which caused the problem). This
would be a very different kind of feedback, however, because by the time MUMBLE
has detected that it has taken a dead-end path, it is too late. Some of the surface
structure already completed would have to be thrown away to take advantage of the
new “corrected” r-spec from GENARO, but MUMBLE's processing is left-to-right and
indelible. This kind of “feedback” is indeed necessary for a fully functioning
generation system, in order for it to detect and correct its own errors. But at this
level the feedback could as well come from a parallel on-line parsing process — it is
not the kind of fine-tuning feedback from SG to which this claim is meant to refer.

2 Generally speaking, an ambiguous structure is one to which more than one tranmslation of an
input can be given. It is natural (almost unavoidable) to detect ambiguity during the process
of analyzing (parsing) speech or text - it is signaled (in the simplest case) by having more than
onc grammar rule which could apply. Likewise, production is sensitive to ambiguity in its
(logical/semantic) input. However, in neither process is it natural to detect ambiguities in the
process’s output, because the rules are not (without explicitly adding it) “looking forward” at
the structure that they are creating.

Implications of the Model 125

Thus this claim is almost impossible to disprove, since it rests heavily on the
design of the DG and SG components. In general any specific failure or
awkwardness of the system which appeared to require feedback from SG to DG could
be remedied by either giving the SG better facility for handling the problem or, more
likely to succeed, altering the DG so that it did not leave the resolution of the
ambiguity unspecified.

The claim about the expense of feedback is likewise difficult to weigh — which
is more expensive, signalling specific errors during generation, or designing the system
to avoid most of them and putting up with the failures that remain? This is an
empirical question that will have to be answered through experience with using the
system.

2.1.10 One r-spec per sentence.
The tenth claim is that

Hypothesis VI.b

It is adequate to the interface between deep and surface generation to
have the basic unit of planning at the deep level correspond to a single
sentence at the surface level.

This is not to say that the r-spec must be complete before MUMBLE starts to
realize it - MUMBLE could have started on the realization of an r-spec before
GENARO has finished with it Rather, the basic “packet” of information at the
thetorical level is the r-spec, and making the assumption that it will get realized as a
single sentence greatly simplifies the design of the rhetorical rules and their dictionary
entry counterparts in MUMBLE.

This claim specifically prevents designing MUMBLE's dictionary and/or
grammar so that it was able to successfully realize in two sentences an r-spec that
was too big for one. Such flexibility within MUMBLE, if it were possible, would
undermine the principle of locality which lead to the failure described above
(hypothesis I, page 117). That is, this claim simply states a restriction necessary to
keep the GENARO/MUMBLE system interestingly weak. (Note that it also prevents
MUMBLE from accumulating more than one r-spec before starting to realize them as

a compound r-spec.)

B There are, however, serious ramifications for where in the realization the latter parts of the
r-spec can be put.

Implications of the Model

5.1.1) Summary.
In this section GENARO was presented as an initial theory of human language
generation. That is, it was claimed that the external behavior of the system

approximated that of humans generating text, and further, some claims were made
about the explanatory adequacy of the internal mechanisms of the system. The
following list presents a short “scorecard” summary of the results of this chapter.
(The underlined parts listed here are merely short phrases meant to be suggestive of
the full claims ~ they are nor the claims themselves.)

1.

2.

10.

Descriptions require salience: well established; almost a logical necessity.

Salience is the primary strategy: well established, though the relation-based
strategy runs a close second.

Stepping down the USOL is sufficient: probably false, but can be fixed with
simple extension.

Rhetorical structure is not recursive: no simple conclusion.

Iterative proposing is necessary and sufficient: well established; depends on
judgements of the quality of the system’s output.

Rhetorical planning can be done indelibly: no simple conclusion.
Salience is perceptual: true.
Descriptions are object-driven: well-established.

No feedback from surface to deep generation: a useful constraint; fairly well
established.

One r-spec per sentence: a useful constraint; quite implementation dependent.

Implications of the Model 127

§2 GENARO as a tool for linguistic research

In this section I present GENARO in another light: as a tool for investigating
rhetorical and stylistic conventions.

For example, the notion that one should “say what is relevant or salient” is
clearly a maxim of everyday conversation. If this system only offered evidence for
the efficacy of this rhetorical maxim in producing scene descriptions it would not be
a significant contribution. Part of the value of the system is that it provides a
computational framework in which one may study rhetorical and stylistic conventions
in a more detailed and specific way.

The domain of style and rhetoric has not yielded easily to linguistic
investigation; this has been due in part to the lack of any techmical language or
precise paradigm in which potential rhetorical facts could be suggested and tested.
Grice commented on this in his famous paper on conversational maxims [Grice, 1975].
He differentiates his “Cooperative Principle”, that participants in a dialogue cooperate
to move the dialogue forward according to certain rules, into submaxims falling into
four categories: Quantity, Quality, Relation, and Manner. After discussing some
submaxims in the first two categories, he comments on the category of Relation:

Under the category of Relation 1 place a single maxim, namely, “Be
relevant.” Though the maxim itself is terse, its formulation conceals a
number of problems which exercise me a good deal; questions about
what different kinds and foci of relevance there may be, how these
shift in the course of talk exchange [sic], how to allow for the fact
that subjects of conversation are legitimately changed, and so on. I
find the treatment of such questions exceedingly difficult, and I hope to
revert to them in a later lecture.

Although salience and relevance are distinct, they have enough in common that
Grice’s comments can be taken to illustrate the complexity and difficulty confronting

a non-computational approach to the study of the rhetorical issues of what to say and
how to say it.

In this section I will examine a single rhetorical convention and the process of
writing a rule which captures it.

52.1 Reifying object clusters.

This section discusses the problem of identifying a set of objects which should
be treated rhetorically as a single object. I use the term “reification” for this process,
to emphasize that a new “object” has been brought into existence, if abstractly. The

128 Implications of the Model

general problem was also discussed in Chapter 4 (page 92) - the following two
paragraphs are repeated from that discussion.

If several trees are visible in the front yard in the picture, they may be best
described as a single entity: the “trees in the front yard”. Other examples are the
“clouds in the sky”, the “path to the front door” (which consists of separate stones or
tiles laid roughly in a row), and the “bikes in the yard” (where there are two
bicycles lying in front of a house).

The fundamental issue in each case is whether the clustering itself provides an
important key to the visual identification of the objects or the scene as a whole.
That is, if the process of doing the visual analysis would be well-served by knowing
about the possibility of a particular kind of clustering (as is certainly the case for the
“clouds in the sky”), then that concept should be in the world knowledge of the
vision system, and would be represented as a single entity in its interpretation of the
scene. On the other hand, there are certainly cases where objects are mentioned
together in a description for rhetorical reasons, and not because they form a
perceptual entity. The “bikes in the yard” is probably such an example, especially if
they are lying at opposite ends of the yard in the picture.

In this section the key issue is the design of a “$condense-reify” rule for
GENARO. That is, what would be involved in writing the rule that captured the
thetorically-motivated reifications in scene descriptions. Here are the key issues
involved:

1. Some reifications seem to be perceptually based, others are generated
rhetorically, and some fall in a gray area in between® How can this be
accounted for?

2. Several instances of the same kind of object in a scene do not always lead

to their being described as an object cluster. What are the criteria by
which reification occurs?

3. How are these perceptual and rhetorical object clusters represented in the
domain data base?

4. In what sense is reification a condensation of the description of several
parallel objects?

Each of these questions is discussed below.

% A related problem is the linguistic distinction between count nouns and mass nouns, but this
has more to do with how a collective concept is lexicalized.

Implications of the Model 129

Perceptual vs. rhetorical clusters.

Here are some other examples of object clusters that might be mentioned in a
typical house scene:

the trees in the yard

the leaves in front of the fence
a flock of birds

the tools by the car

the cars in the driveway

the UFO’s in the scene

SUhwBNE

Here are some collections of objects which would probably not be clustered (unless
there were some unusual shared aspect to all of the objects):

7. the bushes in the picture
8. the architectural structures in the scene
(e.g. the house and garage)
9. the leaves on the left half of the tree
10. some houses (where there is one large and central
house in the scene and another one just visible
in the distance)

Note that some context is imaginable for each of the clusters in items 1.
through 6. that would make it a bad cluster (e.g. the trees are too distant and widely
separated to be clustered). Likewise, one can imagine circumstances which could
cause any of 7. through 10. to be considered a good cluster. Thus context and/or the
purpose or goals of the viewer have a considerable impact on the reification process.
However, this will be dealt with minimally below — the context that pictures function
to show or tell something® will be considered adequate to allow a meaningful
discussion.

The first list above omitted one class of objects which are always “clustered”:
the parts that make up an object! The parts are themselves objects (which are
themselves composed of objects), so that the structural subparts of an object are
trivially clustered together — into the object itself. A fence is a collection of pickets
and runners, structurally connected. This is reification in the purest sense. In fact, a
fence would never be described as “a group of pickets connected together”, because it

would have existed in the perceptual representation as an object on perceprual
grounds, and thus clearly would be available for free to the generation system.

» See the discussion on the effects of context on salience, Section 4.12, “The role of context”.

130 Implications of the Model

A more interesting case of perceptual clustering is exemplified by clouds in a
partially cloudy sky. Here the clouds are not structurally connected, although it
seems reasonable that they would be clustered perceptually. That is, in addition to
each cloud being represented as an object concept, the collection of clouds would be
represented as the object concept “theclouds-in-the-sky”. Likewise, the “flock of
birds”, the “cars in the driveway” and the “UFO’ in the scene” all are tightly
enough bound together within the cluster that it is reasonable to argue that they are
perceived as separate objects and as a collective entity.

In another case, several flat stones lying unconnected on the ground are a
perceptual object (a “path”) if they are linearly arranged. In this case, I claim, a
Sfunctional feature ties these objects into a cluster object: the stones are used to walk
on. Such objects would probably also be computed in the perceptual representation,
although the case for this claim is weaker, since function is a very high-level aspect
of world knowledge.

On the other hand item 1., “the trees in the yard”, might only be an object for
rhetorical reasons: the trees can be widely separated, of different varieties, sharing
only proximity to some house, or containment in a fence. In such cases it would be
dubious to claim that they are perceived as a group. However, when describing the
scene we have a choice between not mentioning them, enumerating them, or alluding
to them as a group. Especially with the goal of brief description, things which do
not have common groupings and corresponding group names - that is, which are not
perceptual objects — may be lumped together as a rhetorical expedient. The key
requirement for clustering objects, be it on rhetorical or perceptual grounds, is that
they share the same description to some extent.

The criteria for clustering.

Object clusters thus seem to exist on a continvum from structurally-based to
thetorically-based. However, 1 propose that the criteria for reification are similar
throughout this continuum. Clearly some collections do not get reified. Why not?

The list of good and bad clusters above suggests some criteria:

1. Widely separated objects are harder to cluster, whereas those in close
proximity are easier.

2. Likewise, objects which share some kind of containment, as in by a fence, a

yard, or the sky, are more easily clustered.

3. The objects must be very similar: two bicycles will cluster more easily
than a bicycle and a tricycle, or even a good and a broken bicycle. This
is especially true for rhetorical clusters, since the point is that they share
the same description.

Implications of the Model 131

4. They should be of roughly equal salience: two houses are less likely to be
clustered if one of them is on fire.

S. Finally, the number of objects is important: the more there are, the easier
it is for them to be clustered. If there are only two, not much economy
is gained by clustering them (at least rhetorically).

These criteria (and there may be others) are fairly orthogonal, so that the decision to
cluster can be thought of as based on a boolean function which has at least five
input arguments.

resenting obj Just

KL-ONE offers a natural way to represent clustered objects® (The following
discussion is specifically with respect to perceptually-based clusters, though it will be
claimed later that all clusters are represented the same way.) Whether or not they are
clustered, a group of objects of the same type will be represented as a set of
individuated object concepts sharing the same generic concept. Figure 48, part A,
shows a segment of a KL-ONE network representing three trees which have not been
clustered. As part B shows, clustering is represented by adding a new concept to the
network. It has a single role for its members, and the fillers of that role are the

objects that compose the object cluster. In this scene the two oak trees have been
clustered.

Note that, like all other concepts, the cluster object concept has a salience
value. This is natural: this additional object is a perceptual entity, and has the same
sources of salience (size and location, intrinsic salience, and unexpectedness) as any
other objects. Furthermore, the salience value can serve to position the cluster object
within the USOL, so that it gets described in accordance with its salience.

$condense-reify.

To account for rhetorically-based clustering within GENARO's framework will
require a rule which condenses objects of the same type. Its operation would be
similar to $condense-prop: when a new object became the Current-item
$condense-reify would look down the USOL¥ checking each object to see if it was
the same kind of object as the Current-item. This could be done by simply checking

% For a review of KL-ONE syntax, see page 70.

7 It might actually be more effective for this rule to look directly into the domain data base,
depending on whether or not all of the cbjects in the representation are included on the
USOL or not.

132 Implications of the Model

Ny XY Trees-in-
the-yard-1

Figure 48: Clustering objects in KL-ONE.

The “diff” arcs differentiate the “member™ node of the cluster object into its

if the USOL object shared an immediate superconcept with the Current-item. All
such objects would be gathered together in a local buffer within the rule and checked
to see which ones, if any, were “clusterable” with the Current-item. The criteria for
clustering were listed above, and these would be captured in a function which
measured “clusterability” among objects. Let us call this function “cluster?”, and let
us further suppose that this function determines the salience of the cluster object it
creates. .

Theintrisuingaspectofthisnﬂeisthatitcouldcratethedusterobjectin
cither of two ways: as a themeobj (as all other rhetorical rules operate), or as a
perceptual object, in the same manner as described immediately above. That is, there
is nothing wrong, in principle, with allowing a rhetorical rule to make changes in the
domain data base. Such actions have been avoided to this point, since they reduce
the independence of GENARO from its input data base, but this is largely an
aesthetic matter. And the advantage is that doing 50 makes two interesting claims:

1. That all cluster objects are represented in the same way, regardless of their
source; and

2. That perceptual objects can be created as a result of the language process —
dacﬁbingseveralobjectsasbeingclusteredreaﬂtsinseeingthasa
cluster.

The second claim accords nicely with the intuitive observation that perception, even of
a static picture, is not a static representation, and that it responds to other cognitive
processes.

Implications of the Model 133

The action performed by $condense-prop, if its proposal won, was to remove an
object from the USOL and make it the Current-item, setting it up to be described
next. I am proposing here that $condense-reify actually creates the object (as
described above) in the KL-ONE data base, and that it removes from the USOL all
of the objects subsumed by the new cluster object, and that it makes the cluster
object the Current-item.

One aspect of this mode of reifying object clusters is that rhetorically-based
cluster objects should replace their most salient member object on the USOL, and
thus be treated as if their salience were equal to this most salient member, regardless
of the salience which is actually assigned by the function (condense?). It might be
objected that this is undesirable: it is possible that the salience of the cluster object
will be considerably greater than that of any of its members. In a city street scene,
for example, in which all the men are wearing bowlers (derby hats), each bowler will
be low in salience, but collectively they might be unexpected enough (at least in the
US.) that their cluster object would have a high salience.

It is debatable, however, that in such situations the cluster object would be
rhetorically-based. Is it not as likely that such an unusual situation (e.g. the bowler
example) would be perceptually odd (and salient) encugh to have triggered clustering
during the perceptual anmalysis? If so, then the mode of operation of $condense-reify
makes an additional claim: that there will only be small gaps between the salience of
an object cluster and its most salient member, since situations leading to large gaps
will have already been clustered perceptually. And since this salience gap is (at most)
small, there is no loss of performance in mentioning the rhetorically-based cluster
object at the point in the description when its most salient member would have been
mentioned.

Summary of reification.

This section has illustrated using GENARO to do essentially cognitive science
research. Starting with an observed rhetorical phenomenon (object clustering), we
studied when it happened, the way it would be represented, and how this
representation would be manipulated by a rhetorical rule which captured the
phenomenon. A rule with some rather surprising properties emerged, and its
operation made it possible to speculate, in a general way, about the relationship
between perception and language.

134 Implications of the Model

53 Summary

This chapter has covered the most theoretical aspects of the design and use of
GENARO. The first section elaborated the various claims that are embedded in the
design of the program (though it was seen that some of these claims are weak or
untestable). The second section provided an detailed example of the use of
GENARO (and the framework in which it operates) as a tool for doing cognitive
research.

Conclusions 135

CHAPTER Vi

CONCLUSIONS

This thesis describes a body of cognitive science research which featured (1)
psychological experiments studying the perceptual phenomenon of salience, and (2)
construction of an Al program which demonstrated that a very fast and very
localized kind of rhetorical planning was possible using salience as a heuristic. This
chapter reviews the features and limitations of this program (section 6.1), as well as
examining some exciting extensions which could be made to it (section 6.2).

6.1 Features and Limitations

6.1.1 Salience.

Since the basis of the rhetorical planner GENARO is the existence in its input
data base of a salience annotation, it is important to determine how broadly
applicable the notion of salience is. What kinds of processing besides perceptual
analysis are likely to compute salience in their data base? Is the aspect of internal
mode] building crucial, or are there other processing goals which have salience (or its
components) as a byproduct? Would it be useful to hand-code salience values into an
otherwise hand-coded data base?

The key feature of salience that makes it promising for other applications is
that it is a simple numerical encoding of the relative importances of different facts in a
data base. Whether it is computed by the “expert system” using the data base or by
a separate process which knows about user goals, and even if it is coded into the
data base by hand, it has the effect of providing another dimension — the dimension
of salience - to a data base. Metaphorically speaking, if all of the facts in a data
base are of equal value the data base can be thought of as flar. Adding salience
gives the data depth: instead of having to work with the entire data base at one
time, a user or a system can view it in “slices” of diminishing salience. Clearly this
has application beyond generating descriptions of the data, since in any large data
base (that is not inherently “flat”) queries, reasoning, and search could all take
advantage of this dimension.

' 1 take if for granted that any computer system doing perceptual analysis (in any perceptual
modality) will be computing the elements of salience. For example, I claim that a computer
vision system capable of perceiving objects and actions in a moving picture will also be
computing salience.

136 Conclusions

Another advantage of salience is that it implicitly encodes a measure of
“obviousness”. One of the most important things to know about the relationship
between your listener and what you have to tell them is what is obvious to them, so
that you can avoid saying those things [Grice 1975]. As Mann et al. [1981] point out,
this information is best thought of as part of a “model of the reader”, ie. a data
structure which represents at least what is obvious to the reader and what they have
already been told, and perhaps also what the reader believes and what their current
attention is on. In GENARO the latter two factors are ignored. However,
thematic-objects which have been mentioned in some way in an rspec are marked as
“mentioned”, thus keeping track of what the reader has been told. On the
assumption that what is obvious to the reader is also obvious to the speaker, this
system also (indirectly) encodes the obviousness of its visual information - as salience.
That is, whatever it is that might make an object salient — that is was unexpected, or
large and central, or a rare or interesting object in itself — would also make it
unobvious to a reader who could not also see the picture being described. In short,
GENARO has a simple model of its audience.

The notion of salience will prove to be a weak heuristic, however, in data bases
in which all facts are equally salient. For example, if none of the major components
of visual salience (i.e. size and centrality, unexpectedness, and world-knowledge-based)
have analogs in the domain covered by the data base, I suspect that that domain is
inherently flat (with respect to salience). Also, salience will be of limited value
where the system is highly sensitive to context and the computation of those
components of salience which are responsive to that context is expensive.

6.12 GENARO.

The other important contribution of this thesis is the demonstration that text
planning (ie. deep generation) can proceed in a limited form without the
computational expense of weighing alternative plans, reasoning backwards from desired
thetorical goals, or devising a maximally dense parcel which achieves many rhetorical
goals. Certainly people are capable of these things, but there are domains of
discourse in which even people forego complex planning. Furthermore, if we are to
provide computers with real-time language generation abilities we will have to settle
(temporarily) for less than Shakespearean prose.

GENARO is able to rapidly select what to talk about and package it according
to some simple rhetorical conventions. The resulting text (via MUMBLE) is of good
quality and, because the system is highly data-driven, closely resembles in structure
and content the input data. Because of its speed the system can be made to
accomodate a dynamic data base — one in which the facts are changing during the

Conclusions 137

generation process? Also, the program is designed to support developmeni and
refinement of the rhetorical conventions it uses.

For what applications is GENARO ill-suited? If no salience annotation is
available in the input data base, the salience-driven approach is certainly at a loss.
Furthermore, to the extent that the salience annotation leaves large “slices”, i.e. large
subsets of the data base with the same salience values, the additional power (and
cost) of the traditional planning mechanisms will be needed’ Some possible
applications of the system are discussed below in section 6.3.

62 Some immediate extensions to the system

Although GENARO is by design a weak and localized planning device, there
are some shortcomings that were described in this thesis which had little or no
theoretical merit. In this section some of these shortcomings are examined, along
with the specific changes that are being implemented concurrent with this writing.

6.2.1 Ending r-spec_construction.

Although most of the production rules in GENARO operate by adding elements
to the r-spec, there are a few (e.g. $newitem) which accomplish rhetorical effects via
performing a control action. One control action which is a candidate for such
encoding is the process of determining when an r-spec is the right size (or weight) to
be sent to MUMBLE. The current mechanism is a function in the control structure
which monitors the weight of the r-spec and signals the proposing loop to stop when
that weight passes a certain threshold (see page 52 for details). Since the size of the
r-spec is a rhetorical parameter, however, it would be better if that parameter were
controlled by a rule. In the near future I will be implementing such a rule,
$finish-building-rspec, which will have as its action signalling the proposing loop to
stop! The intriguing aspect of this rule is that it can make its proposal at a priority
which is a function of the weight of the rspec: the bigger the r-spec gets, the

? For example, the output of a computer vision system which was analyzing a dynamic scene, eg.
a movie.

* In such circumstances GENARO is forced to make arbitrary choices among the equal salience
items. It remains to be seen how often this leads to poorly structured text — the model makes
the implicit psychological claim that the order of mention among equal salience items is
non-critical.

* Use of this rule in an actual run of GENARO is shown in Appendix 2.

138 Conclusions

higher the priority at which this rule is proposing to “finish building the rspec”.

This will be a more flexible scheme for controlling r-spec size. It will allow
the rule body to build large r-specs when there are many salient things to say about
an item; likewise, when there is little to say, $finish-building-rspec’s proposal will win
easily while the r-spec is still small.

622 Less salient properties and relations.

The reader may have noted that, in the very simple set of rhetorical rules
described here, there was no mechanism for a salient property or relationship of the
Current-item to be expressed unless it happened to be the most salient property or
relation. The Current-properties and Current-relations subregisters were ordered in
order of decreasing salience, but the rules $prop-salience and $reln-salience only knew
to propose the top item on each of these lists. Furthermore, the lists did not change
during the construction of an r-spec for a Current-item.

The next enhancement is to modify these subregisters so that they behave in
the same manner as the USOL: when the top (most salient) item is mentioned,
remove it from the list, exposing the next most salient item as the top’ In this way,
$prop-salience and $reln-salience would continue to propose properties and relations of
the Current-item as long as the top item continued to be salient emough. Possibly
these rules would also need to be modified so that the priority at which they posted
their proposals was a function of the salience of the item which they were proposing.

623 The Current-item as a stack.

In Chapter 5 Hypothesis Lb (page 109) asserted that objects only appeared as
the Current-item once (and that this was adequate). Hypothesis Lc (page hypic_pn)
went on to specifically assert that descriptive paragraphs are not generated by a stack
mechanism. Nonetheless, it is interesting to speculate on the advantages and problems
with providing a stack for the machinery of GENARO.

There are two immediate modifications which this additional power would allow.

® Two objects could be described in the same r-spec, since the first
Current-item object could -~ by being pushed “into” the stack — be “set
aside” temporarily, while the second object was the Current-item.
Presumably the stack would be popped at the end of the r-spec to restore
the first (and more salient) object as the Current-item.

5 Use of this convention is shown in an actual GENARO run in Appendix 2.

Conclusions 139

® On a larger scale, objects could be stacked up indefinitely in the
Current-item stack, spanning many r-specs. This style of use of the stack
would allow recursively structured texts.

In general, the problem with this scheme is its power: pushing items into a
stack is a nice way to set them aside temporarily, but the decision of when to pop
the stack presents major complications which the simpler machinery completely avoids.
In the first option above the problem is what to do with the temporary Current-item
object when it gets popped. Should it go back into the USOL, to be made the
Current-item again later, or should it be thrown away (as is usual with Current-item

objects)?

The second option presents this same difficulty on a larger scale. It establishes
two alternative actions that might be taken when a Current-item is thoroughly
described: taking the next object from the USOL, or popping the Current-item stack.
The proper use of this additional alternative is an interesting application for future
research with the system.

624 Unrelated objects in one r-spec.

A related proposal is the simple modification of allowing the rule $newitem to
get a new Current-item object during the construction of a single r-specS Currently
$newitem only runs when the r-spec is empty, so that it serves the function of having
each new r-spec start with a fresh Current-sitem. By allowing this rule to run
whenever there were not much to say about a Current-item object, r-specs would get
constructed which described two (probably) unrelated objects, resulting in sentences like
“There is a driveway next to the house, and a mailbox in the foreground.”
Curiously, such constructions were fairly common in the experimental written
descriptions. This simple proposal makes a claim about how such sentences come to
be: the speaker finds they have said everything that is salient about one object, but
feels that the sentence is still too short, so they “tack on” a short description of
another object.

Actually, the proposal being made here makes a stronger claim, since in
GENARO the second object is chosen from the USOL, and hence only on the basis
of its salience. That the second object’s description should also be brief is a kind of
planning that GENARO does not currently do. However, since the thematic-objects
on the USOL already have their Current-propertics and Current-relations lists
compiled, it would be inexpensive to extend the predicates available to the rhetorical
rules to include a heuristic estimate of the r-spec weight that such USOL objects will
require to be described.

¢ This proposal was also discussed in Chapter 3 on page 62.

140 Conclusions

625 Gestalts.

In Chapter 4 it was claimed that there were four classes of entities necessary to
describe static scenes: objects, properties, relations, and gestalts. The last category,
gestalts, was defined to cover “concepts which express complex relationships or
properties among many of the domain concepts”, for example, the landscaping, or the
season of the year. Not much use was made of this class in the current
implementation of GENARO, however, because I felt that the rhetorical phenomena
that it accounted for was secondary to those of the other classes. In experimenting
with the system, however, I discovered two specific applications of gestalts which
allowed substantial improvements to the system.

The first application dealt with the way in which such topics as the season of
the year (e.g. summer, winter, etc.), the time of day (eg. day, night, twilight, etc),
and the weather (e.g. sunny, cloudy, snowing, etc) were brought into the description.
In the current implementation these items are properties of the scene-level schema, i.e.
they are attributes of the top-level schema which organizes information about the
whole scene (cf. page 64 in Chapter 3). And they are introduced into the description
by rules in the Conclude packet, although only one rule, $light, has been used to
date. This scheme has the disadvantage that it only allows these gestalts to be
mentioned in the conclusion of the description” If a gestalt were particularly salient
(eg. a winter scene in which the falling snow is visible), however, then it should be
mentioned at a point in the paragraph consistent with its relative salience in the
scene.

There is a simple mechanism for doing this: consider gestalts to have the same
status as objects and sort them into the USOL. In this way gestalts would get
described via being the Current-item exactly as objects do, at a point that reflected
their salience in the picture. The observation that such items as lighting and time of
the year are mentioned late in descriptions would be accounted for by according them
a low salience in the visual representation, so that only if there were something
unusual or unexpected about them would they be mentioned before the conclusion.

626 Exploiting the Paragraph Driver.

In GENARO the packets for the rhetorical rules are controlled by the
“Paragraph Driver”. This simple device simply performs some simple checks (e.g. Is
this the very first thing being said?) at the beginning of each round of proposing and,
based on the results, turns packets on or off® Its purpose is to provide global

7 This scheme was originally prompted by the informal observation that many subjects mentioned
the season and/or the lighting at the end of their descriptions (if they mentioned them at all).

® Recall that there are four packets: Introduce, Shift-topic, Elaborate, and Conclude.

Conclusions 141

“shape” to the structure of a paragraph. It turned out, however, that scene
descriptions have very little structure’ besides the one generated locally by applying
the salience-based and relationship-based rules (see the discussion of Hypothesis L.a in
Chapter 5).

However, it is likely that paragraphs in other domains and multi-paragraph texts
will have more complex global structures, and will require more than a purely local
mechanism to generate them. For example, in her work on describing facts in a data
base, McKeown [1982] found that there were several paragraph-level schemas which
accounted for rhetorical structure over a large range of expository texts. These
schemas were expressed as context free grammars, the primitives of which were
descriptors such as “attributive”, “amplification”, and “restriction”. ©Each descriptor
specified the rhetorical function of a sentence or clause in the text as a generic
speech act. A legal “sentence” in this paragraph grammar, then, was a description of
a legal rhetorical structure for an expository paragraph.

If each descriptor in this more complex domain (e.g. general expository text)
corresponded to a packet of GENARO-style rules, and the Paragraph Driver in
GENARO were equipped with McKeown’s “schema” grammar for a particular type of
expository text (e.g. ‘“identification”), then it quite possible that GENARO’s
machinery would support the generation of paragraphs with rich internal structure.
This is an interesting experiment, and is the natural direction to take with the
extension of the system to other domains, but the point here is simply that there is
nothing in the design of GENARO which is inconsistent with this kind of high-level
structure, as long as it does not require lookahead or backtracking to implement.”
However, whether GENARO’s machinery can actually support this kind of global
planning, without radical change, is a issue that can be resolved only by trying it.

It is also interesting to mote that the above extensions to the Paragraph Driver
would involve adding at least a register for keeping track of the paragraph-level
“Current-topic” (as well as mechanisms for accessing and changing it). The result
architecture would have two primary registers driving the rules: the Current-topic and
the Current-item. This accords nicely with the findings of Foss [1982], who showed
that these two kinds of items were the two that were primed for in subjects reading
of descriptive text. It has been pointed out above that there were several clear
advantages to developing this system in the domain of generating scene descriptions,

? More precisely, the only global structure needed in scene description paragraphs is that the first
sentence be introductory. No additional structure is needed for producing good quality

descriptions.

1 Such high-level structure is, however, inconsistent with the spirit of GENARO, which is to
investigate the limits of an extremely localized and myopic style of planning, including having
no representation, implicitly or explicitly, of a global structure or pattern for the text being
generated.

142 Conclusions

including the naturalness of the salience annotation in the visual representation and
the structural simplicity of the descriptive texts. The contribution of this work as an
Al system, however, will be measured in terms of the range of applications in which
it can serve as the generator part of a natural language interface.

LISTING OF GENARO TOP LEVEL

APPENDIX A

LISTING OF GENARO TOP LEVEL

(defun GENARO nil
(comment (top level routine of the planning system.))
(init-system)
(make-description))

(defun INIT-SYSTEM nil
(comment (initializes all of the various global variables.
called by genaro.))

(get-envmt-file)

(terpri)

(writeln “This run is on ”
envmt-file
(time)
(date))

(writeln “Comments (if any) on this run:”)
(print-run-notes (setq run-notes (get-run-notes-from-user)))
(cleanup-themeobjs)
(comment (registers:))
(init-parameters)
(init-*rule-list *lesion)
(setq usol (make-usol)

msg nil

msg-list il

on-packets-list

(makeset “(intro shift-topic elaborate)))

(set-cur-item (pop-usol))
(setq main-item cur-item)
(comment (counters:))
(setq msg-count 0)
(setplist “*counters nil)
(comment (flags:))
(setq *slow-run t

*again nil

*descr-done

nil

143

14 LISTING OF GENARO TOP LEVEL

*pop-props&reins
t)

(defun MAKE-DESCRIPTION nil

(comment (repeatedly builds r-specs and sends them to
MUMBLE. called by genaro.))

(repeat nil
(init-for-msg)
(build-msg)
(mumble-msg)

until (end-descr?)))

(defun BUILD-MSG nil

(comment (builds the msg by repeatedly proposing a set
of msgelmts and picking the best one. called by
make-description.))

(init-build-msg)

(repeat nil
(init-proposing)
(propose-msgelmts)
(setq msgelmt (pick-best-msgelmt))
(insert-in-msg msgelmt)
(mark-mentioned msgelmt t)

until (msg-complete?)))

(defun INIT-PROPOSING nil
(comment (initializes for a round of msgelmt proposing.
clears the proposed-msgelmt-list from the last
time. called by build-msg))
(setq proposed-msgelmt-list nil)
(if (null *quiet-mode) (writeln)
(packet-switching)
(if (null *quiet-mode)
(writeln)
(writeln “Beginning proposing ...")))

(defun PROPOSE-MSGELMTS nil
(comment (after checking the paragraph-level script this
routine sets which rule packets should be on
accordingly and then gives all of the rules a
chance to fire. called by build-msg.))
(mapcar *rule-list try-rule))

LISTING OF GENARO TOP LEVEL

(defun PICK-BEST-MSGELMT nil
(comment (since proposed-msgelmt-list is built to be in
decreasing order the only thing to worry about is
if there are more than one with highest priority.
for now I'll just take the first one that was
proposed. called by build-msg.))
(car proposed-msgelmt-list))

(defun INSERT-IN-MSG (msgelmt)

(comment (if the value of the themeobj that *msgelmt* points to
is a lambda-expr it gets run. if not the themeobj gets
added at the end of msg. called by build-msg.))

(if (not

(eq (setq *again (show-state
“Just before inserting the msgelmt ...”))
“again))
(let (temp (eval (eval msgelmt))
themeobj (eval msgelmt))
(cond ((null themeobj))
((and (listp temp) (eq (car temp) Tambda))
(apply temp nil))
(t (ncondconc msg (list msgelmt)))))))

(defun MSG-COMPLETE? nil

(comment (decides when to stop building this message and send
it to mumble. if the *again flag is set then just go
around again without having “executed” or inserted
any msgelmts. if *finish-rspec is set then
$finish-building-rspec has won.))

(comment (called by build-msg.))

(cond ((eq *again "again) nil) (t *finish-rspec)))

(defun MUMBLE-MSG nil
(comment (records the msg. prints the message on the console
& waits for operator approval if the *slow-run flag is
on. will eventually actually start mumble as another
process and send it the message as a message! called
by make-description.))
(if msg
(setq msg-count (addli msg-count))
(let (cur-msg (get ‘msg ‘cur-msg))
(set cur-msg msg)
(ncondconc msg-list (list cur-msg))

145

146 LISTING OF GENARO TOP LEVEL

(break:jc ‘mumble-msg)
(cond (*quiet-mode (show-message-brief cur-msg))
(t (terpri)
(show-message cur-msg)
(princ

(terpri)))))

(defun END-DESCR? nil
(comment (decides when to end the description. based on length
of description and salience of the last cur-item.
called by make-description))
(cond ((or *descr-done (and (null msg) (talked-out?))) t)
(t (break:jc ‘end-descr?))))

(defun TALKED-OUT? nil
(comment (true if the message and the usol are both empty.
called by packet-switching.))
(and (null usol) (null cur-item)))

GENARO Output 147

APPENDIX B

GENARO OUTPUT

THE FOLLOWING TEXT IS LITERAL OUTPUT FROM THE GENARO
PROGRAM. SUBSEQUENT ANNOTATION OF THIS OUTPUT APPEARS IN
UPPER CASE.

This run is on world43. 18:19:33.93 9-APR-1983

“WORLD43” IS THE REPRESENTATION OF THE WINTER HOUSE SCENE, AS
SHOWN IN FIGURE 1.

Comments (if any) on this run:
(an empty line ends the comment)
(* uses the previously typed comment)

This is a base-line run with normal default settings for
the system parameters WORLD43 is the representation of the
winter house scene shown in Figure 1.

Initially the usol is: ‘

(house-1 fence-1 door-1 gate-1 driveway-1 mailbox-1 porch-1 road-1
porch-2 columns-1 sidewalk-1 columns-2 bush-1 bush-2 roof-1 tree-1
windows-1 yard-1)

Cur-item just got reset to $house-1. THE TOP (MOST SALIENT) USOL
ITEM IS POPPED INTO “CUR-ITEM”.
The USOL now is: (fence-1 door-1 gate-1 driveway-1 mailbox-1 porch-1
road-1 porch-2 columns-1 sidewalk-1 columns-2 bush-1 bush-2 roof-1
tree-1 windows-1 yard-1)

THE FIRST ROUND OF PROPOSING - EACH RULE
Beginning proposing ... THAT IS IN AN ACTIVE PACKET IS “TRYED".
trying $prop-color ...
-> in $prop-color, need (lesspr msg-wt [= 0.0] cut-off [= 3.04])
trying $condense-prop ...
trying $prop-salience ... THE ABOVE EXPRESSION SHOWS THE PARTICULARS

trying $prop-sal-obj ... OF THE BOOLEAN FUNCTION WHICH DECIDES
trying $reln-salience ... IF THE RULE $PROP-COLOR SHOULD RUN.
trying S$light ... (MSG-WT AND CUT-OFF ARE VARIABLES)
trying Sintro ...

trying $newitem ...

trying $finish-building-rspec ...

148 GENARO Output

Just before inserting the msgelmt ...
Cur-item and friends: $house-1
($2-story-building-1 $white-1 $new-england-house-1)
($in-front-of-1 $next-to-3 $next-to-2 $next-to-4)

THE CURRENT ITEM, THE CURRENT-PROPERTIES LIST, AND
THE CURRENT-RELATIONS LIST ARE SHOWN FOR EACH ROUND.

The msg so far: nil

The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$introduce-1-1 200 Sintro

2 $$in-front-of-1-1 057 $reln-salience
3 $$2-story-building-1-1 056 S$prop-salience
4 $$newcuritem-1-1 040 $newitem

5 $$2-story-building-1-2 038 $prop-sal-obj

6 $3white-1-1 020 $prop-color

THE RULE $INTRO WINS THIS FIRST ROUND. (THIS STYLE OF DISPLAY
OF THE PROPOSED-MSGELMT-LIST IS DESCRIBED IN CHAPTER 3.)

Beginning proposing ... (THE SECOND ROUND OF PROPOSING)

trying $prop-color ...

-> in $prop-color, need (lesspr msg-wt [= 2.0] cut-off [= 3.04])

trying $condense-prop ...

-> in parallel-enough?$1, need (lessp usol-posn [= 1] max-dist
[= 4.0)

-> in parallel-enough?$2, need (greaterpx cur-item-prop-sal [= 0.4)
*parallel-prop [= 0.3))

-> in parallel-enough?$3, need (greaterpx pobjprop-sal [= 03]
*parallel-prop [= 03)])

trying $prop-salience ...

trying $prop-sal-obj ...

trying $reln-salience ...

trying $light ...

trying $intro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $house-1
($2-story-building-1 $white-1 $new-england-house-1)
(Sin-front-of-1 $next-to-3 $next-to-2 $next-to-4)

GENARO Output 149

The msg so far: ($$introduce-1-1)

The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$in-front-of-1-2 057 $reln-salience

2 $$2-story-building-1-3 056 $prop-salience

3 $$2-story-building-1-4 038 $prop-sal-obj

4 $$finish-rspec-1-1 022 $finish-building-rspec
5 3white-1-2 020 $prop-color

$RELN-SALIENCE WINS WITH ITS PROPOSAL TO MENTION
IN-FRONT-OF(FENCE-1, HOUSE1). NOTE ALSO THAT IN THIS ROUND

THE RULE “SFINISH-BUILDING-RSPEC” MAKES A LOW PRIORITY (.22)
PROPOSAL -~ THIS RULE PROPOSES TO STOP BUILDING THE CURRENT
R-SPEC AND SEND IT TO MUMBLE, AND THE PRIORITY OF ITS PROPOSAI
IS A FUNCTION OF THE SIZE (WEIGHT) OF THE R-SPEC. SEE THE
DISCUSSION IN CHAPTER VIIL.

Beginning proposing .. (THE THIRD ROUND OF PROPOSING)
trying $prop-color ...
-> in $prop-color, need (lesspr msg-wt [= 3.0] cut-off [= 3.04))
trying $condense-prop ...
-> in parallel-enough?$1, need (lessp usol-posn [= 1] max-dist
[= 4.0]
-> in parallel-enough?$2, need (greaterpx cur-item-prop-sal [= 0.4]
*paraliel-prop [= 03])
-> in parallel-enough?$3, need (greaterp:rr pobjprop-sal [= 0.3]
*parallel-prop [= 03])
trying $prop-salience ...
trying $prop-sal-obj ...
trying S$reln-salience ...
trying $light ...
trying $intro ...
trying $newitem ...
trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $house-1
($2-story-building-1 $white-1 $new-england-house-1)
($next-to-3 $next-to-2 $next-to-4)

AS A RESULT OF THE MOST SALIENT RELATION OF HOUSE-1,
IN-FRONT-OF-1, BEING INSERTED INTO THE R-SPEC, THAT RELATION
IS AUTOMATICALLY POPPED OFF OF THE CURRENT-RELATIONS LIST,
LEAVING THE NEXT MOST SALIENT RELATION, NEXT-TO-3, IN THE
‘SPOTLIGHT’ AT THE FRONT OF THAT LIST. THIS RELATION ACTUALLY

150 GENARO Output

GETS INTO THE R-SPEC (BELOW).
The msg so far: ($$introduce-1-1 $$in-front-of-1-2)

The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$2-story-building-1-5 0.56 $prop-salience

2 $$next-to-3-1 048 Sreln-salience

3 $$2-story-building-1-6 038 $prop-sal-obj

4 $Sfinish-rspec-2-1 032 Sfinish-building-rspec
5 $$white-1-3 020 $prop-color

IN THIS ROUND THE PROPOSAL TO FINISH BUILDING THE R-SPEC HAS
RISEN TO A 32 PRIORITY. IT WILL KEEP RISING AS THE R-SPEC
GROWS, UNTIL IT WINS.

Beginning proposing ...
trying $prop-color ...
-> in $prop-color, need (lesspr msg-wt [= 35] cut-off [= 3.04])
trying $condense-prop ...
-> in parallel-enough?$1, need (lessp usol-posn [= 1] max-dist
[= 40D
-> in parallel-enough?$2, need (greaterp:r cur-item-prop-sal [= 0.4]
*parallel-prop [= 03])
-> in parallel-enough?$3, need (greaterpx pobjprop-sal [= 03]
*parallel-prop [= 03])
trying $prop-salience ...
trying $prop-sal-obj ...
trying $reln-salience ...
trying S$light ...
trying $intro ...
trying $newitem ...
trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $house-1
($white-1 $new-england-house-1)
($next-to-3 $next-to-2 $next-to4)

The msg so far: ($$introduce-1-1 $$in-front-of-1-2
$$2-story-building-1-5)

THE R-spec AT THIS POINT WOULD BE REALIZED AS “THIS IS A PICTURE
OF A TWO STORY HOUSE WITH A FENCE IN FRONT OF IT.”

The proposed-msgelmt-list (no. 1 goes to the msg):

GENARO Output 151

1 $3white-14 056 $prop-salience

2 $$next-to-3-2 048 S$reln-salience

3 $$white-1-5 038 $prop-sal-obj

4 $$finish-rspec-3-1 037 $finish-building-rspec

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...

-> in parallel-enough?$1, need (lessp usol-posn [= 1] max-dist
[= 4.0D

-> in parallel-enough?$2, need (greaterpr cur-item-prop-sal [= 0.4]
*parallel-prop [= 03]

-> in parallel-enough?$3, need (greaterpx pobjprop-sal [= 03]
*parallel-prop [= 03)])

trying $prop-salience ...

trying $prop-sal-obj ...

trying S$reln-salience ...

trying $light ...

trying $intro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $house-1
($new-england-house-1)
(Snext-to-3 $next-to-2 $next-to-4)

The msg so far: ($$introduce-1-1 $$in-front-of-1-2
$$2-story-building-1-5 $$white-1-4)

The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$next-to-3-3 048 $reln-salience

2 $$new-england-house-1-1 042 $prop-salience

3 $$finish-rspec-4-1 042 S$finish-building-rspec
4 $$new-england-house-1-2 038 $prop-sal-obj

Beginning proposing ...
trying $prop-color ...
trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...
trying $reln-salience ...
trying $light ...

trying Sintro ...

152 GENARO Output

trying $newitem ...
trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $house-1
($new-england-house-1)
($next-to-2 $next-to-4)

The msg so far: ($$introduce-1-1 $$in-front-of-1-2
$82-story-building-1-5 $$white-1-4 $$next-to-3-3)

The proposed-msgelmt-list (no. 1 goes to the msg):
$$finish-rspec-5-1 052 $finish-building-rspec
$$new-england-house-1-3 042 $prop-salience
$$new-england-house-1-4 038 $prop-sal-obj
$$next-to-2-1 033 $reln-salience

SN -

IN THIS ROUND $FINISH-BUILDING-RSPEC FINALLY WON WITH ITS
PROPOSAL, TERMINATING CONSTRUCTION OF THIS R-SPEC. THE
FOLLOWING R-SPEC IS THEN SENT TO MUMBLE.

R-spec msg-1 is:

THIS R-SPEC WOULD BE REALIZED BY MUMBLE AS
“THIS IS A PICTURE OF A WHITE, TWO-STORY HOUSE WITH A FENCE
IN FRONT OF IT AND A DRIVEWAY NEXT TO IT.”

msgelmt: $$introduce-1-1 (Sintroduce-1)
$Spriority 20

$$proposed-by S$intro

themeobj: $introduce-1 (nil)
$mentioned 1
$object $house-1
Stype rhetorical

msgelmt: $$in-front-of-1-2 ($in-front-of-1)
$$priority 057
$$proposed-by $reln-salience

themeobj: $in-front-of-1 (in-front-of-1)

$sal 0.95
$object $house-1
$agent $fence-1

Stype reln

GENARO Output

$mentioned

msgelmt: $$2-story-building-1-5

$Spriority 056

($2-story-building-1)

$$proposed-by $prop-salience

themeobj: $2-story-building-1

$object
$Stype

$sal
$mentioned

msgelmt: $$white-1-4
Spriority 0.56

(2-story-building-1)
$house-1

prop

04

1

(Swhite-1)

$$proposed-by $prop-salience

themeobj: $white-1
$object
Stype
$sal
$mentioned

msgelmt: $$next-to-3-3
$$priority 0.48

(white-1)

Shouse-1
prop
04
1

($next-to-3)

$$proposed-by S$reln-salience

themeobj: $next-to-3
$sal
$object
$agent
$type
$mentioned
-~ end of R-spec -

(next-to-3)
08

$house-1
$driveway-1
reln
1

Packet intro is turned off.

Beginning proposing ...
trying $prop-color ...
trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...
trying $reln-salience ...
trying Slight ...

trying Sintro ...

THE INTRO PACKET IS ALWAYS TURNED

OFF AT THE END OF THE FIRST R-SPEC.

154 GENARO Output

trying $newitem ...
trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $house-1
($new-england-house-1)
($next-to-2 $next-to-4)

ALTHOUGH THE RULE “NEWITEM” IS CLOSE TO WINNING WITH ITS PROPOSAL
TO GET THE NEXT OBJECT FROM THE USOL, “SHOUSE-1” IS STILL THE
CUR-ITEM, AND OTHER RULES STILL HAVE MODERATE PRIORITY THINGS TO
SAY ABOUT THE HOUSE. (SNEWITEM WILL ONLY RUN WHEN THE R-SPEC IS
EMPTY, TO AVOID NON-DELIBERATELY SWITCHING TO A NEW CUR-ITEM IN
MID R-SPEC.)

The msg so far: nil

The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$new-england-house-1-5 042 Sprop-salience
2 $$newcuritem-2-1 0.40 $newitem

3 $$next-to-2-2 033 $reln-salience

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...

-> in parallel-enough?$1, need (lessp usol-posn [= 1] max-dist
[= 4.0D

-> in parallel-enough?$2, need (greaterpx cur-item-prop-sal [= 0.4]
*parallel-prop [= 03]

-> in parallel-enough?$3, need (greaterpr pobjprop-sal [= 03]
*parallel-prop [= 03])

trying $prop-salience ...

trying $prop-sal-obj ...

trying $reln-salience ...

trying $light ...

trying Sintro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $house-1
nil

($next-to-2 $next-to-4)

The msg so far: ($$new-england-house-1-5)

GENARO Output 155

The proposed-msgelmt-list (no. 1 goes to the msg):
1 $$next-to-2-3 033 S$reln-salience
2 $$finish-rspec-6-1 007 $finish-building-rspec

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...

-> in parallel-enough?$1, need (lessp usol-posn [= 1] max-dist
[= 4.0D

-> in parallel-enough?$2, need (greaterpr cur-item-prop-sal [= 0.4]
*parallel-prop [= 03]

-> in parallel-enough?$3, need (greaterpx pobjprop-sal [= 03]
*parallel-prop [= 03))

trying $prop-salience ...

trying $prop-sal-obj ...

trying $reln-salience ...

trying Slight ...

trying $intro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $house-1
nil
($next-to-4)

The msg so far: ($$new-england-house-1-5 $$next-to-2-3)
The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$next-to-4-1 033 $reln-salience
2 $$finish-rspec-7-1 0.17 $finish-building-rspec

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...

-> in parallel-enough?$1, need (lessp usol-posn [= 1] max-dist
[= 4.0D

-> in parallel-enough?$2, need (greaterpx cur-item-prop-sal [= 0.4]
*parallel-prop [= 03)

-> in parallel-enough?8$3, need (greaterpx pobj-prop-sal [= 03]
*parallel-prop [= 0.3])

trying $prop-salience ...

trying $prop-sal-obj ...

trying $reln-salience ...

156 GENARO Output

trying Slight ...

trying $intro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $house-1
nil IN THIS RUN THE SETTING OF THE
nil RULE PARAMETERS IS SUCH THAT
EVERYTHING THERE WAS TO SAY ABOUT THE
HOUSE IN THE DATA BASE GOT MENTIONED (BOTH
PROPERTY AND RELATION LISTS WERE EMPTIED).

The msg so far: ($$new-england-house-1-5 $$next-to-2-3
$$next-to-4-1)

The proposed-msgelmt-list (no. 1 goes to the msg):
1 $$finish-rspec-8-1 027 $finish-building-rspec

THIS R-SPEC IS SENT TO MUMBLE, WHERE IT IS REALIZED AS SOMETHING LIKE
“THE NEW ENGLAND STYLE HOUSE HAS A BUSH AND A TREE NEXT TO IT.”

R-spec msg-2 is:

msgelmt: $$new-england-house-1-5 ($new-england-house-1)
$$priority 0.42
$$proposed-by $prop-salience

themeobj: $new-england-house-1 (new-england-house-1)

$object $house-1
Stype prop
$sal 03
$mentioned 2

msgelmt: $$next-to-2-3 ($next-to-2)
Spriority 033
$$proposed-by $reln-salience

themeobj: $next-to-2 (next-to-2)

$sal 055
$object $house-1
$agent $bush-1
Stype reln
$mentioned 2

msgelmt: $$next-to-4-1 ($next-to-4)

GENARO Output

$$priority 033
$$proposed-by $reln-salience

themeobj: $next-to-4 (next-to-4)

$sal 055
$object $house-1
$agent $tree-1
Stype reln
$mentioned 2

~— end of R-spec —

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...

trying $reln-salience ...

trying $light ...

trying $intro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $house-1
nil
nil

THIS TIME AT THE BEGINNING OF A NEW R-SPEC $NEWITEM WINS ...

The msg so far: nil

The proposed-msgelmt-list (no. 1 goes to the msg):
1 $$newcuritem-3-1 0.40 $newitem

Cur-item just got reset to $door-1.

The USOL now is: (gate-1 driveway-1 mailbox-1 porch-1 road-1 porch-2
columns-1 sidewalk-1 columns-2 bush-1 bush-2 roof-1 tree-1 windows-1
yard-1)

Beginning proposing ...
trying $prop-color ...
<> in $prop-color, need (lesspr msg-wt [= 0.0] cut-off [= 3.04])

158 GENARO Output

trying $condense-prop ...

trying $prop-salience ...

trying $prop-sal-obj ...

trying $reln-salience ...

trying $light ...

trying $intro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $door-1
($red-1)

($part-of-1)

The msg so far: nil

The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$red-1-2 112 $prop-salience
2 $$part-of-1-1 054 $reln-salience

3 $$newcuritem-4-1 0.40 $newitem

4 $$red-1-1 020 $prop-color

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...

-> in parallel-enough?$1, need (lessp usol-posn [= 1] max-dist
[= 4.0)

-> in parallel-enough?$2, need (greaterpx cur-item-prop-sal [= 0.8
I*parallel-prop [= 03]

-> in parallel-enough?$3, need (greaterpx pobjprop-sal [= 0.7]
*parallel-prop [= 03)])

trying $prop-salience ...

trying $prop-sal-obj ...

trying $reln-salience ...

trying $light ...

Just before inserting the msgelmt ...
Cur-item and friends: $door-1
nil

($part-of-1)

The msg so far: ($$red-1-2)

GENARO Output 159

The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$part-of-1-2 054 S$reln-salience
2 $$condense-prop-1-1 035 $condense-prop
3 $$finish-rspec-9-1 007 Sfinish-building-rspec

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...

-> in parallel-enough?$1, need (lessp usol-posn [= 1] max-dist
[= 4.0)D

<> in parallel-enough?$2, need (greaterp:r cur-item-prop-sal [= 0.8
J°parallel-prop [= 03]

<> in parallel-enough?$3, need (greaterpx pobj-prop-sal [= 0.7]
*parallel-prop [= 03]

trying $prop-salience ...

trying $prop-sal-obj ...

trying $reln-salience ...

trying $light ...

trying Sintro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $door-1
nil
nil

NOTHING ELSE WOULD BE SAID ABOUT THE DOOR, EXCEPT THAT THE RULE
$CONDENSE-PROP HAS NOTICED THAT THE GATE OF THE FENCE IS ALSO
RED, AND DECIDES THAT THIS SHARED PROPERTY IS SALIENT ENOUGH

IN BOTH CASES TO WARRANT CONDENSING THE OBJECTS’ DESCRIPTIONS.

The msg so far: ($$red-1-2 $$part-of-1-2)

The proposed-msgelmt-list (no. 1 goes to the msg):
1 $$condense-prop-2-1 035 $condense-prop
2 $$finish-rspec-10-1 0.17 $finish-building-rspec

THE GATE IS MADE THE CURRENT-ITEM AND IS DESCRIBED AS USUAL

(NO PROVISION HAS BEEN MADE IN THE $CONDENSE-PROP SHOWN HERE TO
GUARANTEE THAT “RED-2”, THE BASIS FOR THE CONDENSATION, GETS
MENTIONED). THIS HAS NOT BEEN A PROBLEM YET (SINCE PROPERTIES
SALIENT ENOUGH TO BE CONDENSED ON HAVE ALWAYS GOTTEN MENTIONED)
I DONT WANT TO MAKE ANY CLAIMS ABOUT THE “ACCIDENTAL” CHARACTE}
THIS OPERATION.

160 GENARO Output

Cur-item just got reset to $gate-1.

The USOL now is: (driveway-1 mailbox-1 porch-1 road-1 porch-2
columns-1 sidewalk-1 columns-2 bush-1 bush-2 roof-1 tree-1 windows-1
yard-1)

Beginning proposing ...
trying $prop-color ...
<> in $prop-color, need (lesspr msg-wt [= 15] cut-off [= 3.04])
trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...
trying $reln-salience ..
trying $light ...
trying $intro ...
trying $newitem ...
trying $finish-building-rspec ...
Just before inserting the msgelmt ...
Cur-item and friends: $gate-1
($red-2)
($part-of-2)
The msg so far: ($$red-1-2 $$part-of-1-2 $$condense-prop-2-1)

The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$red-2-2 098 $prop-salience

2 $$part-of-2-1 048 Sreln-salience

3 $$red-2-1 020 $prop-color

4 $$finish-rspec-11-1 0.17 $finish-building-rspec

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...

trying $reln-salience ...

trying $light ...

trying $intro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $gate-1
nil

GENARO Output 161

($part-of-2)

The msg so far: ($$red-1-2 $Spart-of-1-2 $$condense-prop-2-1
$$red-2-2)

The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$part-of-2-2 048 $reln-salience

2 $$finish-rspec-12-1 022 $finish-building-rspec

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...

trying $reln-salience ...

trying S$light ...

trying $intro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $gate-1
nil
nil

The msg so far: ($$red-1-2 Spart-of-1-2 $$condense-prop-2-1
$$red-2-2 $$part-of-2-2)

The proposed-msgelmt-list (no. 1 goes to the msg):
1 $$finish-rspec-13-1 032 $finish-building-rspec

THIS R-SPEC COULD BE REALIZED IN MANY WAYS: “BOTH THE DOOR OF THE
HOUSE AND THE GATE OF THE FENCE ARE RED”, “THE HOUSE DOOR IS RED,
SO IS THE GATE OF THE FENCE”, ETC. WORK IS CURRENTLY UNDERWAY TO
EXPLORE THE RHETORICAL DEMANDS AND CONSEQUENCES OF THESE
CONSTRUCTIONS.

R-spec msg-3 is:

msgelmt: $$red-1-2 ($red-1)
$$priority 112
$$proposed-by $prop-salience

themeobj: $red-1 (red-1)
$object $door-1

162 GENARO Output

$Stype prop
$sal 08
$mentioned 3

msgelmt: $$part-of-1-2 ($part-of-1)
Spriority 054
$$proposed-by $reln-salience

themeobj: $part-of-1 (dec30-0037)
09

$sal X
Sagent $door-1
Sobject $Shouse-1
Stype reln
$mentioned 3

msgelmt: $$condense-prop-2-1 ($condense-prop-2)
$$priority 03528
$$proposed-by $condense-prop

themeobj: $condense-prop-2 (lambda)

$simil (props (red))
$mentioned nil

$object ($door-1 $gate-1)
Stype rhetorical

msgelmt: $$red-2-2 ($red-2)
$Spriority 098
$$proposed-by $prop-salience

themeobj: $red-2 (red-2)

$object $gate-1
$Stype prop
$sal 07
$mentioned 3

msgelmt: $Spart-of-2-2 ($part-of-2)
$$priority 048
$$proposed-by $reln-salience

themeobj: $part-of-2 (dec30-0105)

$sal 08
$agent $gate-1
Sobject $fence-1
Stype reln
$mentioned 3

~— end of R-spec —

GENARO Output

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...

trying $reln-salience ...

trying $light ...

trying Sintro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $gate-1
nil
nil

The msg so far: nil

The proposed-msgelmt-list (no. 1 goes to the msg):
1 $$newcuritem-5-1 0.40 $newitem

Cur-item just got reset to $mailbox-1.
The USOL now is: (porch-1 road-1 porch-2 columns-1 sidewalk-1
columns-2 bush-1 bush-2 roof-1 tree-1 windows-1 yard-1)

Beginning proposing ...
trying $prop-color ...

-> in $prop-color, need (lesspr msg-wt [= 00] cut-off [= 3.04])
trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...
trying $reln-salience ...
trying $light ...
trying $intro ...
trying $newitem ...
trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $mailbox-1
($white-7)

($in-front-of-3)

163

164 GENARO Output

The msg so far: nil

ALTHOUGH THE MAILBOX HAS A PROPERTY AND A RELATION IN THE DATA
BASE, THE RULES FIND THAT NEITHER OF THEM IS SALIENT ENOUGH,

AND THE WINNING PROPOSAL IN THIS FIRST ROUND OF PROPOSING

IS TO THROW OUT THE MAILBOX CURRENT-ITEM AND TRY THE NEXT

MOST SALIENT OBJECT, PORCH-1.

The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$newcuritem-6-1 0.40 $newitem
2 $$in-front-of-3-1 033 $reln-salience
3 $$white-7-1 020 $prop-color

Cur-item just got reset to $porch-1.
The USOL now is: (road-1 porch-2 columns-1 sidewalk-1 columns-2
bush-1 bush-2 roof-1 tree-1 windows-1 yard-1)

P22 22 222 2Rt bttt]

Beginning proposing ...
trying $prop-color ...

-> in $prop-color, need (lessprr msg-wt [= 00] cut-off [= 3.04])
trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...
trying $reln-salience ...
trying $light ...
trying Sintro ...
trying $newitem ...
trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $porch-1
($white-2)

($part-of-3)
The msg so far: nil

The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$part-of-3-1 045 $reln-salience
2 $$newcuritem-7-1 0.40 $newitem
3 $$white-2-1 020 $prop-color

BEEBERBRERRESE LB ESED

Beginning proposing ...
trying $prop-color ...
-> in $prop-color, need (lessprr msg-wt [= 1.0] cut-off [= 3.04])

GENARO Output 165

trying $condense-prop ...

-> in parallel-enough?$1, need (lessp usol-posn [= 2] max-dist
[= 4.0D

-> in parallel-enough?$2, need (greaterpr cur-item-prop-sal [= 02
J°parallel-prop [= 03]

<> in parallel-enough?§3, need (greaterpr pobjprop-sal [= 02]
*parallel-prop [= 03]

trying $prop-salience ...

trying $prop-sal-obj ...

trying $reln-salience ...

trying $light ...

trying $intro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $porch-1
(Swhite-2)
nil

The msg so far: ($$part-of-3-1)
The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$white-2-2 020 Sprop-color
2 $$finish-rspec-14-1 012 $finish-building-rspec

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...

-> in parallel-enough?$1, need (lessp usol-posn [= 2] max-dist
[= 4.0D

-> in parallel-enough?$2, need (greaterpxr cur-item-prop-sal [= 02
J*parallel-prop [= 03]

-> in parallel-enough?$3, need (greaterpx pobjprop-sal [= 0.2]
*parallel-prop [= 03]

trying $prop-salience ...

trying $prop-sal-obj ...

trying S$reln-salience ...

trying $light ...

trying $intro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $porch-1

166 GENARO Output

nil
nil

The msg so far: ($$part-of-3-1 $$white-2-2)

The proposed-msgelmt-list (no. 1 goes to the msg):
1 $$finish-rspec-15-1 0.17 $finish-building-rspec

THIS R-SPEC COMES OUT AS “THE HOUSE HAS A WHITE PORCH”. (A RULE
BEING DEVELOPED - DESCRIBED IN CHAPTER S5 - WOULD AT

THIS POINT HAVE CONDENSED THE DESCRIPTIONS OF PORCH-1 AND PORCH-2,
SINCE THEY ARE BOTH PART OF THE SAME HOUSE.)

R-spec msg-4 is:

msgelmt: $$part-of-3-1 ($part-of-3)
$$priority 045
$$proposed-by Sreln-salience

themeobj: $part-of-3 (dec30-0038)

$sal 0.75
Sagent $porch-1
$object $house-1
$type reln
$mentioned 4

msgelmt: $$white-2-2 ($white-2)
$$priority 02
$$proposed-by $prop-color

themeobj: $white-2 (white-2)

$object $porch-1
Stype prop
$sal 02
$mentioned 4

— end of R-spec —

Beginning proposing ...
trying $prop-color ...
trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...
trying $reln-salience ...
trying Slight ...

GENARO Output 167

trying $intro ...
trying $newitem ...
trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $porch-1
nil
nil

The msg so far: nil

The proposed-msgelmt-list (no. 1 goes to the msg):
1 $$newcuritem-8-1 040 S$newitem

Cur-item just got reset to $road-1.
The USOL now is: (porch-2 columns-1 sidewalk-1 columns-2 bush-1
bush-2 roof-1 tree-1 windows-1 yard-1)

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...

trying $reln-salience ...

trying $light ...

trying Sintro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $road-1
($suburban-1)

($next-to-1 Sin-front-of-3 $in-front-of-2)

The msg so far: nil
The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$next-to-1-1 0.42 $reln-salience
2 $$newcuritem-9-1 0.40 $newitem

Beginning proposing ...
trying $prop-color ...
trying $condense-prop ...
trying $prop-salience ...

168 GENARO Output

trying $prop-sal-obj ...

trying $reln-salience ...

trying Slight ...

trying $intro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $road-1
($suburban-1)

($in-front-of-3 $in-front-of-2)

The msg so far: ($$next-to-1-1)
The proposed-msgelmt-list (no. 1 goes to the msg):

1 $$in-front-of-3-2 033 Sreln-salience
2 $3finish-rspec-16-1 0.2 S$finish-building-rspec

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...

trying $reln-salience ...

trying $light ...

trying $intro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $road-1
($suburban-1)

($in-front-of-2)

The msg so far: ($$next-to-1-1 $$in-front-of-3-2)

The proposed-msgelmt-list (no. 1 goes to the msg):
1 $$finish-rspec-17-1 0.22 $finish-building-rspec

THIS R-SPEC IS REALIZED AS "A ROAD RUNS IN FRONT OF THE FENCE, AND
THERE IS A MAILBOX IN FRONT OF THE ROAD.” NOTE THAT THE MAILBOX DID
GET MENTIONED, BY VIRTUE OF ITS RELATIONSHIP WITH THE ROAD.

R-spec msg-5 is:

GENARO Output 169

msgelmt: $$next-to-1-1 ($next-to-1)
$$priority 042
$$proposed-by S$reln-salience

themeobj: $next-to-1 (next-to-1)

$sal 0.7
$object $fence-1
$agent $road-1
Stype reln
$mentioned 5

msgelmt: $$in-front-of-3-2 ($in-front-of-3)
Spriority 033
$$proposed-by $reln-salience

themeobj: $in-front-of-3 (in-front-of-3)

$sal 055
$object $road-1
$agent $mailbox-1
Stype reln
$mentioned 5

—— end of R-spec ——

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...
trying $prop-salience ..

trying $prop-sal-obj ...

trying $reln-salience ...

trying Slight ...

trying Sintro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $road-1
($suburban-1)

($in-front-of-2)

The msg so far: nil

The proposed-msgelmt-list (no. 1 goes to the msg):
1 $$newcuritem-10-1 040 $newitem

170 GENARO Output

AT THE BEGINNING OF THIS R-SPEC $NEWITEM DOES ITS FAMILIAR “FETCH” OF
THE NEXT MOST SALIENT OBJECT. HOWEVER, AS HAPPENED TO MAILBOX,
NOTHING ABOUT THE BACK PORCH IS SALIENT ENOUGH TO MENTION.

Cur-item just got reset to $porch-2.
The USOL now is: (columns-1 sidewalk-1 columns-2 bush-1 bush-2 roof-1
tree-1 windows-1 yard-1)

Beginning proposing ...
trying $prop-color ...

-> in $prop-color, need (lesspr msg-wt [= 00] cut-off [= 3.04])
trying $condense-prop ...
trying $prop-salience ..
trying $prop-sal-obj ...
trying $reln-salience ...
trying $light ...
trying $intro ...
trying $newitem ...
trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: $porch-2

($white-3)

nil

The msg so far: nil

The proposed-msgelmt-list (no. 1 goes to the msg):
1 $$newcuritem-11-1 040 S$newitem
2 $$white-3-1 020 $prop-color

WHEN $NEWITEM GOES TO POP THE NEXT OBJECT OFF OF THE USOL, HOWEVER,
IT FINDS THAT THE OBJECT ITSELF IS BELOW THE SYSTEM'S LOWER THRESHOLD
ON OBIJECT SALIENCE, AND ITS ACTION IS TO SIGNAL THIS CONDITION.

** The salience of the new cur-item ($columns-1) is at or below 03
(it is 0.30), so the description is ended.

THIS TRIGGERS TURNING ON THE “CONCLUDE” PACKET, WHICH CONTAINS THE
RULE “SLIGHT” ...

Packet shift-topic is turned off.

Packet elaborate is turned off.

GENARO Output 17

Packet conclude is turned on.

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...
trying $prop-salience ...
trying $prop-sal-obj ...

trying $reln-salience ...

trying $light ...

trying $intro ...

trying $newitem ...

trying S$finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: nil
(Swhite-3)
nil

The msg so far: nil

The proposed-msgelmt-list (no. 1 goes to the msg):
1 $$light-6-1 0.80 $light

Packet finish is turned off.

Beginning proposing ...

trying $prop-color ...

trying $condense-prop ...

trying $prop-salience ...

trying Sprop-sal-obj ...

trying S$reln-salience ...

trying Slight ...

trying Sintro ...

trying $newitem ...

trying $finish-building-rspec ...

Just before inserting the msgelmt ...
Cur-item and friends: nil

($white-3)

nil

The msg so far: ($$light-6-1)

The proposed-msgelmt-list (no. 1 goes to the msg):

12 GENARO Output

1 $$finish-rspec-18-1 022 $finish-building-rspec

(E.G. DAY OR NIGHT, CLOUDY OR CLEAR, ..) IS MENTIONED. SINCE THE
PRINTING OF THIS RUN THE DETAILS OF REPRESENTING AND PROCESSING THIS
GESTALT HAVE BEEN REFINED CONSIDERABLY.

R-spec msg-6 is:
msgelmt: $$light-6-1 ($light-6)
Spriority 08

$$proposed-by $light

themeobj: $light-6 (nil)
$mentioned 6
$object nil
$type rhetorical

—— end of R-spec -~

REFERENCES 173

REFERENCES

Appelt, Doug, Planning Natural Language Utterances to Satisfy Multiple Goals, Ph.D.
Disseration, Stanford University (to appear as a technical report from SRI
International), 1982.

Arbib, Michael A., "Parallelism, Slides, Schemas, and Frames”, in Systems: Approaches,
Theories, Applications, W. E. Hartnett (ed.), D. Reidel Publishing Company,
Dordrecht-Holland, 1977.

Arnheim, Rudolf, Art and Visual Perception: A Psychology of the Creative Eye, University
of California Press, Berkeley, 1974.

Boggess, Lois, Computational Interpretation of English Spatial Prepositions, Ph.D. thesis,
University of Illinois, 1978.

Brachman, R., A Structural Paradigm for Representing Knowledge, Report 3605, Bolt,
Beranek, and Newman, Cambridge, Mass., 1978.

Brown, Gretchen, "Deep Generation”, an unpublished class paper at M.IT., 1973.

——, Some Problems in German to English Machine Translation, Massachusetts Institute of
Technology, Technical Report 142, December 1974. Project MAC.

Brush, Robert, "The Attractiveness of Woodlands: Perceptions of Forest Landowners in
Massachusetts”, Forest Science, Vol. 25, No. 3, pp. 495-506, 1979.

Clancey, W. (to appear) "The Epistemology of a Rule-Based Expert System: A
Framework for Explanation”, Journal of Artificial Intelligence; also available as
Heuristic Programming Project Report 81-17, Stanford University, November 1981.

Cohen, P., On Knowing What to Say: Planning Speech Acts, University of Toronto,
Technical Report 118, 1978.

Cooper, G. S., "A Semantic Analysis of English Locative Prepositions”, Bolt, Beranek,
and Newman report #1587, B.B.&N., Cambridge, 1968.

Conklin, Jeffrey “A Scene Description System: Preliminary Survey”, unpublished Master’s
Thesis, Department of Computer and Information Science, University of
Massachusetts, Amherst, Mass., 1979.

-~— and D. McDonald “Salience: The Key to the Selection Problem in Natural Language
Generation”, in the Proceedings of the Association for Computational Linguistics,
Toronto, Canada, 1982.

174 REFERENCES

—--, K. Ehrlich, and D. McDonald, "An Empirical Investigation of Visual Salience and
its Role in Text Generation”, in Cognition and Brain Theory, Vol. 6, No. 2, Spring
1983, or as COINS TR 83-14, COINS, University of Massachusetts at Ambherst,
01003.

Davey, A., Discourse Production, Edinburgh University Press, Edinburgh, 1979.

Dehn, N., "Memory in story invention”, in Proceedings of the Third Annual Conference of
the Cognitive Science Society, University of California, Berkeley, August 1981.

Didday, R. L. and M. A. Arbib, "Eye Movements and Visual Perception: A “Two Visual
System® Model”, in Int. J. Man-Machine Studies, Vol. 7, pp 547-569, 1975.

Firschein, O. and Fischler, M. A., "Describing and Abstracting Pictorial Structures”, in
Pattern Recognition, Vol. 3, pp. 421443, 1971.

Friedman, J., "Directed random generation of sentences,” Communications of the ACM 12,
(6), 1969.

Garrett, M., "The Analysis of Sentence Production”, in Psychology of Learning and
Motivation, Academic Press: New York, Vol. 9, 1975.

Goldman, N. M., Computer Generation of Natural Language from a Deep Conceptual Base,
Ph.D. thesis, Stanford University, 1974.

Grice, H. P. (1975) "Logic and Conversation”, in P. Cole and J. L. Morgan (Eds.)
Syntax and Semantics: Speech Acts, Vol. 3, Academic Press, N.Y.

Grosz, B. J., "Focusing and description in natural language dialogs,” in A. Joshi, et al.
(eds.), Elements of Discourse Understanding: Proceedings of a Workship on
computational Aspects of Linguistic Structure and Discourse Setting, Cambridge
University Press, Cambridge, 1980.

Hanson, A. R. and Riseman, E. M. ”"VISIONS: A Computer System for Interpreting
Scenes”, in Computer Vision Systems, Hanson, A. R. and Riseman, E. M. (Eds),
Academic Press, New York, pp 449-510, 1978.

Herskovits, A., The generation of French from Semantic Structure, Stanford Artificial
Intelligence Labratory, Technical Report 212, 1973.

Hooper, K., "Picture Recognition: A Consideration of Representational Media and
Realism”, unpublished paper, 1980.

Kempen, G., "Building a Psychologically Plausible Sentence Generator”, presented a the
Conference on Empirical and Methodological Foundations of Semantic Theories for
Natural Language, Nijmegen, The Netherlands, 1977.

REFERENCES 1758

Loftus, G. R., "Models of Picture Recognition”, in Learning by Eye, R. Wu and S.
Chipman (Eds.), 1982.

Mann, W., Madeline Bates, Barbara Grosz, David McDonald, Kathleen McKeown, and
William Swartout, "Text Generation: The State of the Art and the Literature”,
Information Sciences Institute technical report RR-81-101, Marina del Rey,
California, 1981.

Mann, W. and Moore, J. "Computer Generation of Multiparagraph Text”, American
Journal of Computational Linguistics, 7:1, Jan-Mar 1981, pp 17-29.

Marcus, M. A Theory of Syntactic Recognition for Natural Language, MIT Press,
Cambridge, Massachusetts, 1980.

McDonald, David D., Language Production as a Process of Decision-Making under
Constraints, PhD. dissertation, MIT, 1980.

—-, "Language Generation: the source of the dictionary”, in the Proceedings of the
Annual Conference of the Association for Computational Linguistics, Stanford
University, June, 1981a.

—, "MUMBLE: A Flexible System for Language Production”, in the Proceedings of the
7th IICAI (Vol. II), Vancouver, B.C., Canada, 1981b.

— and J. Conklin ”Salience as a Simplifying Metaphor for Natural Language
Generation”, in the Proceedings of the Annual Conference of the American
Association of Artificial Intelligence, 1982a.

-, "Natural Language Generation as a Computational Problem: an Introduction”, in
Computational Models of Discourse, M. Brady and R. Berwick (Eds), MIT Press,
Cambridge, Mass, 1983a.

-——, "Description Directed Control: Its implications for natural language generation”, in
International Journal of Computers and Mathematics, Vol. 9, No. 1, 1983b.

McKeown, K. R. Generating Natural Language Text in Response to Questions aboust the
Data Base Structure, Ph.D. Dissertation, Moore School of Electrical Engineering,
University of Pennsylvania, 1982.

Meehan, J. R., "Using planning structures to generate stories”, American Journal of
Computational Linguistics, Fiche 33, 1975.

—, "TALE-SPIN, an interactive program that writes stories”, in Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, August 1977.

Parma, Cesare C., Hanson, A. R., and Riseman, E. M. “Experiments in Schema-Driven

176 REFERENCES

Interpretation of a Natural Scene”, in Digital Image Processing, Simon, J. C. and
Haralick, R. M. (Eds), D. Reidel Publishing Co., Dordrecht, Holland, 1980 pp
303-334.

Searle, S. R., Speech Acts: An Essay in the Philosophy of Language, Cambridge University
Press, Cambridge, England, 1969.

Selfridge, Oliver G., "Pandemonium, a Paradigm for Learning.” In Proceedings of the
Symposium on Mechanisation of Thought Processes. D. V. Blake and A. M. Uttley,
eds. London: H. M. Stationery Office, 1959.

Selfridge, P. G., "Reasoning About Success and Failure in Aerial Image Understanding”,
TR 103, Computer Science Department, University of Rochester, N.Y., May 1982.

Simmons, R., and J. Slocum, "Generating English discourse from semantic networks.”
Communications of the ACM 15, (10) October 1972, 891-905.

Soloway, Elliot, Beverly Woolf, Eric Rubin, and Paul Barth "Meno-II: An Intelligent
Tutoring System for Novice Programmers”, Proceedings of International Joint
Conference in Artificial Intelligence, Vancouver, British Columbia, 1981.

Swartout, W. A Digitalis Therapy Advisor with Explanations, Massachusetts Institute of
Technology, Laboratory for Computer Science, Technical Report, February 1977.

Swartout, W. Producing Explanations and Justifications of Expert Consulting Programs,
Technical Report 251, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1981.

Thompson, H., (1977) "Strategy and tactics: a model of language production”, in Papers
Sfrom the I3th Regional Meeting, Chicago Linguistic Society.

Waltz, David, and Lois Boggess, "Visual Analog Representations for Natural Language
Understanding”, in the Proceedings of IICAI-79, pp. 926-934, 1979.

Waltz, David, "Generating and Understanding Scene Descriptions”, in Elements of
discourse understanding, Joshi, Webber, and Sag (Eds.), Cambridge University Press,
1981.

Wesley, Leonard P. and Hanson, Allen R., "The use of an Evidential-Based Model for
Representing Knowledge and Reasoning about Images in the VISIONS System”, in
proceeding of the Workshop on Computer Vision, Ringe, New Hampshire, IEEE
Computer Society Press, August 23-25, 1982.

Winograd, T., Understanding Natural Language, Academic Press, New York, 1972,

Woolf, Beverly, "The U. Mass. KL-ONE System”, unpublished user’s manual, Department

REFERENCES 7

of Computer and Information Science, University of Massachusetts, Amherst, Mass.,
1981.

	01.pdf
	02
	03

