THE UBIQUITOUS DIALECTIC

- Edwina L. Rissland
Department of Computer and Information Science
University of Massachusetts
Arherst, MA 01003

Technical Report#83-15



Page 1

THE UBIQUITOUS DIALECTIC

Edwina L. Rissland*#

Department of Computer and Information Science
University of Massachusetts

Amherst, MA 01003

Abstract

In this paper, we discuss the central role played by examples in reasoning
in various fields like mathematics, law, linguistics and computer science.
In particular, we consider the dialectic between proposing a concept,
conjecture or proposition and testing and refining it with examples. We
provide several examples of this ubiquitous process.

1. INTRODUCTION

Examples are an important component of an expert's knwoledge of his field.

In mathematics, examples can be said to be as important to his understanding
as the traditionally exalted definitions, theorems and proofs (Rissland 1978).
In fact, some mathematical areas developed in response to troublesome
counter-examples like modern real function theory which has been called '"the
branch of mathematics which deals with counter-examples" (Munroe 1953).

In the law, examples -- that is, legal cases —-- are the basis from which

the law derives (at least in common law systems like those of the United
States and England): the law is made through court decisions by consideration
of specific problems in specific cases. The cases lead to rule-like decisions
which are then refined (or perhaps refuted, i.e., overturned) in subsequent
cases.

In linguistics, for instance in the study of syntax, linguistic rules are
derived from study of examples of actual language and are then subjected

to testing on more examples. Some examples are taken from the infinite store
of run of the mill sentences available to every natural speakerj;others like
certain difficult garden path sentences are fabricated and used like counter-
examples are in mathematics.

In computer science, examples -- for instance, test data and already existing
code -- are used at the heart of the programming effort. There is an
"inevitable intertwining" between the specification, attempted implementation,
and the test data of a program (Swartout and Balzer 1982).

*This research was supported in part by grant IST-80-17343 of the National
Science Foundation.

#This research was done in part while the author was a Fellow of Law and
Computer Science at the Harvard Law School.



Page 2

Kuhn made similar observations about theory evolution in scientific
disciplines like physics and astronomy (Kuhn 1970, 1974). In all these
disciplines, the theories and concepts would not be so finely tuned
nor convincing without the use of examples.

The examples are often used in a dialectic between a proposed idea,
proposition or theory and the examples used to test it out:

An idea is proposed. It is tried out on examples. Some examples
motivate tightening or refining it; others necessitate radical
redefinition or abandonment. This leads to a new idea and the
process repeats itself.

In the rest of this paper we give examples of this ubiquitous dialectic
and point out some of the similarities and differences in it as it
occurs in different fields.

2. MATHEMATICS: CONJECTURE and COUNTER-EXAMPLE

The opening chapter of Lakatos' wonderful book Proofs and Refutations
provides a quintessential example of the dialectic. The subject is
Euler's formula relating the number of vertices (V), edges (E) and
faces (E) of certain polyhedra in the equation V - E + F = 2.

The discussion -- placed in a hypothetical classroom among students
and a teacher -- opens with the primitive conjecture:

CONJ-1: For all polyhedra, V -E + F = 2.

After discussion of a proposed proof of CONJ-1l, which includes presentation
of a "local" (i.e., to the proof) counter-example and a patch of the

proof, student Alpha offers the first "global" (i.e., to the conjecture)
counter-example, the so-called "hollow cube", for which V- E + F = 4:

CEG-1: A pair of cubes, one of which is inside, but does not touch the other.

In response, student Delta shifts the burden of the problem onto the
definition of polyhedron, "It is a fake criticism. This pair of nested cubes
is not a polyhedron at all." Gamma, another student, tries to save CONJ-1
by offering the following definition of polyhedron:

DEF-1: A polyhedron is a solid whose surface consists of polygonal faces.
Delta offers the alternative definition:

DEF-2: A polyhedron is a surface consisting of a system of polygons.

(We can note that new problems may have been introduced with undefined terms
like "surface" and "system" and familiar, but yet undefined terms like
"polygon".)

Alpha then states triumphantly, "So! My counterexample has bred a new concept
of polyhedron." For the moment, DEF-2 becomes the accepted definitionm.
Regardless, Alpha gives two new counter-examples meeting the new defintion
but violating the conjecture since for both V- E + F = 3:



Page 3

CEG-2a: Two tetrahedra which have an edge in common.

CEG-2b: Two tetradedra which have a vertex in common.

Delta then parries by modifying DEF-2 by adding two technical conditions
which exclude CEG-2a and CEG-2b to arrive at definition 3:

DEF-3: A polyhedron is a system of polygons arranged in such a way that
(1) exactly two polygons meet at every edge amd (2) it is possible to get
from the indside of any polygon to the inside of any other..."

Alpha caustically then says, "Why don't you just define a polyhedron as a
system of polygons for which the equation V - E + F = 2 holds?" The class
calls this the "perfect definition" or "Def.P".

The teacher interposes with the comment "definitions are frequently proposed
and argued about when counterexamples emerge." He then asks that the discussion
continue under DEF-3 to which Gamma quickly offers the "urchin" or "small
stellated dodecahedron as a counter-example since for it V- E + F = -6.

Delta next offers DEF-4 which is a further refinedment of DEF-3. Alpha
counters with the'"picture frame'" counter-example, CEG-4, for which
V-E+F=0.

...And so continues what Lakatos' calls the "fundamental dialectic of
proofs and refutatioms".

3. THE LAW: DOCTRINES and CASES

In the law, the dialectic is between the evolving doctrines and the litigated
cases to which the doctrine is applied. This cycle is often simlated in
classroom discussions in law school with the proposing of a doctrinal proposition
and the probing of it with hypothetical cases ("hypos").

In common law systems, courts express decisions -- which superficially look
like rules but in fact are more like heuristics in the sense that they are

only rules of thumb -—- as "holdings" which are arrived at through stare decisis,
the reliance on precedent. Applying a holding to a new case -- primarily its
“"fact situation" -- usually provokes revision or at least, further interpretation.
Revisions often involve narrowing the applicability (or to use the language

of logic, "antecedent" conditions) or the outcome (" consequences") of the

rule, for instance by redefinition of the ingredient concepts. Rev131o? iﬁ
strikingly similar to that seen in mathematics: outright "monster barring",
"dividing and conquering" by distinguishing subclasses, addition of technical
conditions, etc.

The following is a record of a discussion which occured in the author's .\
torts class on the subject of "foreseeability", "liability" and "negligence’.
It arose from consideration of the English case of Stone v. Boltonm, in which
the plaintiff Miss Bessie Stone, was struck on the head by a cricket ball
hit out of the cricket grounds as she walked on the street outside of them.
It was said to be one of the longest balls ever hit and that no more than
six to ten balls had been hit otuside in thirty years. The grounds were
surrounded by a high wall.



Page 4

The initial doctrinal proposition before the class was:

PROP-1: Foreseeable harm implies liability.

PROP-1 was then tested on the following hypos:

HYPO-1: Defendant builds a dam which caves in and injures plaintiff.

HYPO-2: Defendant has an attack of epilepsy while driving a car and injures plaintif
HYPO-2a: Defendant in HYPO-2 has never before had an attack of epilepsy.

HYPO-2b: Defendant in HYPO-2 had one attack of epilepsy fifteen years ago.

HYPO-2c: Defendant in HYPO-2 has had several attacks of epilepsy.

After a few more hypos, the class considered the refined proposition:

PROP-2: If this is the first time, then one is not liable. o

The discussion continued with the following sequence of hypose, derived from
the original case through modifications.

HYPO-5: The cricket club only opened last year.
HYPO-6: It would cost the entire GNP to build a "high" fence.
HYPO-6a: Defendants in HYPO-6 choose not to build a "high" fence.

HYPO-6b: HYPO-6 + after one ball is hit ouside the grounds, defendants raise
the fence height by 3 meters. A year later, Bessie Stone is hit.

HYPO-6c: The ball in HYPO-6b that hit Ms. Stone was hit by the Babe Ruth of cricket.

This example exhibits many features of the dialectic: the putting forth of a
proposkion, the testing of it with one or more examples, the refining of it
in response to experience with the examples. It has the added featuresthat

the examples come in sequences which are generated by successive modifications
and that the sequences may arise from a real initial case (Rissland 1983).

This is in slight contrast to the mathematics example where only ‘one or

two examples are offered in response to a proposition or definition. This might
be because of the difference in the standards of "truth" in the two fields:
mathematical truth is basically absolute and binary; legal truth is subjective
and relative. There are no QED's in law, only interpretation, argument and

more argument. Thus, the need for strings of convincing or undermining examples.

4. LINGUISTICS: RULES and SENTENCES

In linguistics, rules of syntax are often motivated and then refined by consider-
ation of sentences and rules very similar to that of the law. As in law, one

has an unlimited number of examples readily available from one's personal
experience; this is different from mathematics where one must generate examples,

often with difficulty. This familiarity is often used by teachers in socratic
dialogues.

The following is typical of interchanges that occur in introductory courses.



Page 5

The teacher asks the class to formulate a rule for turning an English

sentence into a yes-no question. The students respond with an example
pair of sentences and a rule:

SENTS-1: John will go to class.
Will John go to class?
RULE-1: Interchange the subject and the first verb.

This rule is then tested with another example sentence pair and the rule is refined:

SENTS~2: John hasn't been here.
Hasn't John been here?

RULE-2: RULE-1 + "bring any negative along with the verb"

The teacher, responds with, '"Well, not always'" and provides the following example
sentences " -~ and the correct negative rule:

SENTS-3: John has not been here.
*Has not John been here?
Has John not been here?

RULE-3: Any contracted negative stays with the verb.

The teacher gave the answer away for negatives, a relatively unimportant point,
in order to move the discussion along, hopefully to the issue of main versus
auxilliary verbs. The students eventually offer the following:

SENTS-4: John ran to the store.
*#Ran John to the store.
Did John run to the store.

The students are surprised and ask, "Where does the did come from?"

Note that while the teacher does not have a monopoly on the examples, the
expert does have a more thorough and more structured knowledge of them.

In general, expert knowledge is more structured than the novice's. The point
for this discussion is that examples are critical and indispensible elements
in the dialectic.

5. COMPUTER SCIENCE: PROGRAMS and DATA

These same observations apply to the writing of computer programs. One starts
out with a problem or description of what the program is supposed to do,
codes up a first version, tests it out, .and then debugs, i.e., revises, the
code.

The dialectic also occurs on the level of the program specification since it

is nearly impossible to write a complete specification. Some argue that it

is in fact impossible (Selfridge 1983). This leads one to seek alternative ways
to describe what one wants in a program: using examples to illustrate what is
wanted in certain cases is one way of doing this. Formal specification and
illustrative examples are complementary descriptions which compensate for

each others weaknesses.



Page 6

One can see this dynamic intertwining of specification, program and

example data particularly well in the context of interactive (interpretive)
programming enviromments, like those for LISP. Instead of reproducing -
an example record here, the author suggests that the reader try programming
a little problem and keeping track of the data used to debug the program,
the versions of the program, and the versions of the specifications.

In looking at expert programmers, one will see not only heavy use of
test data but also use of different classes of examples. For instance,
any LISP hacker knows to test a program on NIL, the empty list since

NIL is a standard trouble-maker, or counter-example, in the LISP domain;
novices must be taught this (e.g., see Friedman's Little LISPer). Experts
know to try a variety of testing examples that span the possibilities:
from simple "start-up" cases like (A), to standard "reference" cases
like (A B C), to more complex ones like ((A B) ((C)) ). The more complex
ones are often generated by modifications of simpler ones with respect
to structural features like list length and depth of atoms (Rissland and
Soloway 1980).

6. CONCLUSIONS

In this paper, we have discussed the dialectic of proposing a concept,
conjecture or proposition, testing it with examples, and then revising
it in light of the experience with the examples. We have given examples
from several diverse disciplines which we feel indicate its ubiquity.

In this ubiquitous dialectic, examples play a critical role. They are
essential to the evolution of the concepts, conjectures or propositions.
The examples sometimes must be generated, othertimes they are well-known.
Sometimes they come in sequences, as in the law; sometimes only one or
two at a time, as in mathematics. Features of the examples used include
their taxonomic class, such as known counter-example or simple case. -

We have not discussed how one decides what examples to use in this
dialectic process nor how to find or generate them. The latter is the
subject of our past work on constrained example generation ("CEG") (Rissland

1980, 1981). The former is a complex question which we are currently
investigating.



Page 7
7. REFERENCES

Kuhn, T. S., The Structure of Scientific Revolutions kK second Edition.
University of Chicago Press, 1970. -

» "Second Thoughts on Paradigms". In The Structure of Scientific
Theories, Suppe (ed.), University of Chicago Press, 1974.

Lakatos, I., Proofs and Refutations. Cambridge University Press, London, 1976.

Munroe, M. E., Introduction to Measure and Integration. Addison-Wesley, 1953.

Rissland, E. L., Constrained Example Generation.Technical Report 81-24,
Department of Computer and Information Science, University of Massachusetts,
Amherst, MA, 1981.

, "Example Generation'. In Proceedings Third National
Conference of the Canadian Society for Computational Studies of Intelligence.
Victoria, B. C., May 1980.

, "Examples in Legal Reasoning: Legal Hypotheticals'. Submitted
for publication, 1983,

, "Understanding Understanding Mathematics". Cognitive Science,
Vol. 2, No. 4, 1978.

Rissland, E. L., and E. M. Soloway, "Overview of an Example Generation
System". In Proceedings First National Conference on Artificial Intelligence.
Stanford University, August 1980.

Selfridge, 0. G., "Non-Algorithmic Software: A Proposal'. Submitted for
publication, 1983.

Swartout, W., and R. Balzer, "On the Inevitable Intertwining of Specification
and Programming". CACM Vol. 25, No. 7, July 1982.



DATA-DRIVEN INDELIBLE PLANNING
OF DISCOURSE GENERATION USING SALIENCE

EDWARD JEFFREY CONKLIN

COINS Technical Report 83-13
June 1983

(See also COINS TR 83-14, “An Empirical Investigation of Visual
Salience and its Role in Text Generation™)

Parts of this Report were submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
May 1983

Computer and Information Science



