EXAMPLES AND LEARNING SYSTEMS*

Edwina L. Rissland
Department of Computer and Information Science
University of Massachusetts
Amherst, MA 01003

Technical Report# 33-16

To appear in Adaptive Control of T11- Deflned Systems, Selffldge Rissland
and Arbib (eds.), Plenum, 1983.

EXAMPLES AND LEARNING SYSTEMS*

Edwina L. Rissland

Department of Computer and Information Science
University of Massachusetts
Amherst, MA 01003, U.S.A.

INTRODUCTION
Any system that learns or adapts -- whether well- or
ill-defined, man or machine -- must have examples, experiences, and

data on which to base its learning or adaptation. Too often,
however, the examples that form the basis of learning are taken for
granted. This paper will concentrate on the examples as a study in
their own right.

BACKGROUND

The importance of examples to learning systems can be seen in
many well-known A.I. programs. For instance, Winston's program
[1975] learns the concept of "arch" from a sequence of examples: of
arches and non-arches. The initial example, and examples that fail
to be an arch in just one aspect, "near misses", are what drive this
learning system. Samuel's Checker Player is another classic AI
program that makes use of examples [1963, 1967]. Samuel gave his
program libraries of specific book moves. His work is an example of
the interplay between examples, adaptation and learning systems.

Selfridge's recent COUNT and sorting programs [Selfridge 1979,
1980], as well as his classic PANDEMONIUM [Selfridge 19581, also
depend heavily on example data and problems. COUNT would not learn

¥The research reported in this paper was supported in part by the
National Science Foundation under grant no. IST-8017343.

its task -- how to count the number of symbols in a string -- if not
presented with a sequence of challenging but not too difficult
problems to solve. The sorting program would not be able to
adaptively tune itself -- learn the "best" choice of sorting method
to use-- if it did not have abundant experience with problems of
sorting lists.

These same observations can also be made about Soloway's
BASEBALL program [Soloway 19781, which learns the concepts and rules
of baseball by "watching" baseball games; and about Lenat's AM
program [Lenat 1977], which discovers new mathematical concepts
partly on the basis of how the concepts and control heuristies fare
on examples.

Examples also play a critical role in non-computer systems like
law, mathematics and linguistics. For instance, the law —-
especially common law, which is based on the doctrine of precedent
("stare decisis") -- is a wonderful example of a system which is
hard to define (despite its superficial resemblance to a rule-based
system) and which runs entirely in response to the examples -- i.e.,
cases -- presented to it. Cases must be adjudicated; the court
expresses the results as "holdings" and "dieta" (rules and comments
of the case); these lead to the further evolution of concepts and
rules which are then modified by further cases [Levi 1949, Berman
1968]. In legal scholarship and education, the cases may be
hypothetical; in some law classes, "hypos" become as "real" and
have as much import as actually litigated cases.

Examples are central to reasoning in mathematics in the cycle
of "proofs and refutations" [Lakatos 1976]: a mathematical concept
is refined in response to how the system, that is the mathematical
theory with all of its definitions, theorems, proofs, examples,
etc., fares in the face of examples, ranging from standard examples
to unusual "monsters". Of course, a rich set of examples is needed
for the guessing and inductive inference needed to get the system
started in the first place [Polya 1968].

In linguistics, examples too are central to theory formation
and in fact, many theories are built in response to what have now
become famous examples, or counter-examples, to other theories.
(See for instance, Gazdar's [1981, 1982] response to Chomsky's
assertion that English does not have phrase-structure grammar.) In
fact, Kuhn has pointed out that this interplay between an evolving
system and examples is ubiquitous in the history of science [Kuhn
1970].

Finally, in computer programming itself there is an "inevitable
intertwining" [Swartout and Balzer 1982] of the evolving system
(e.g., a program), as expressed in code and specifications, and the
examples used to test it out. One writes code, tests it out on

example data, and then (usually) revises the program;
specifications also evolve in this way. The programming and
debugging process is thus completely analogous to the cycle of
proofs and refutations in mathematics.

Thus, in summary, examples (by which is meant experiences,
data, instances) are critical grist for the mill of learning and
adaptation. Once this obvious, but key, point is recognized, one is
led immediately to questions like the following:

How should examples be grouped into types?

Do examples have structure?

How are examples related to one another?

What properties should an example satisfy?

Where do the desired properties come from?

How can knowledge of examples be applied to ill-defined systems?

OOVl E=EW N =
L]

The rest of this paper addresses these questions.

TAXONOMIES OF EXAMPLES

When one considers the different effects and uses examples can
have with respect to learning systems, one can distinguish different
classes of examples. In this section, we briefly review the
"epistemological" classes of examples that we have found useful in
disciplines like mathematics and law [Rissland 1978, 1982].

It is important to recognize that not all examples serve the
same function in learning. For instance, expert teachers and
learners know that certain perspicuous ("start-up") examples provide
easy access to a new topic, that some ("reference") examples are
quite standard and make good illustrations, and that some examples
are anomalous and don't seem to fit into one's understanding. We
can develop a taxonomy of items based upon how we use them to learn,
understand and teach:

(a) start-up examples: perspicuous, easily understood and
easily presented cases;

(b) reference examples: standard, ubiquitous cases;

(¢) counter examples: limiting, falsifying cases;

(d) model examples: general, paradigmatic cases;

(e) anomalous examples: exceptions and pathological cases.

Start-up examples are simple, easy to understand and explain
cases. They are particularly useful when one is learning or
explaining a domain for the first time. Such examples can be
generated with minimal reference to other examples; thus one can

say they are structurally uncomplicated. A start-up example is
often "projective" in the sense that it is indicative of the general
case and that what one learns about it can be "lifted" to more
complex examples.

Reference examples are examples that one refers to over and
over again. They are "textbook cases" which are widely applicable
throughout a domain and thus provide a common point of reference
through which many concepts, results and other items in the domain
are (indirectly) linked together.

Counter-examples are examples that refute or limit. They are
typically used to sharpen distinctions between concepts and to
refine theorems or conjectures. They are essential to the process
of "proofs and refutations" [Lakatos 19761].

Model examples are examples that are paradigmatic and generic.
They suggest and summarize expectations and default assumptions
about the general case. Thus, they are like "templates" or "frames"
[Minsky 19751.

Anomalous examples are examples that do not seem to fit into
one's knowledge of the domain, and yet they seem important. They
are "funny" cases that nag at one's understanding. Sometimes
resolving where they fit leads to a new level of understanding.

An example of applying this classification scheme for an
introductory study of continuity from the domain of real function
theory might classify: the function f(x)=x as a start-up example;
f(x)=x*%2, f(x)=e**x as reference examples; f(x)=1/x as a
counter-example; "f(x) with no gaps or breaks" as a model example;
and f(x)= sin(1/x) as an anomalous example. The first example,
f(x)=x, is also a reference example (the "identity" function).
Thus, such a classification need not be exclusive. The anomaly
sin(1/x) will most likely become a favorite counter-example as one
understands that a function can fail to be continuous in at least
two ways, that is, by having gaps and breaks and by failing to
settle down to a limit. Thus, such a classification is not static.
Increased understanding will of course lead to qualifications on the
above model of a continuous function, although it will still serve
to summarize one's expectations.

In introductory LISP programming one deals with lists of atoms.
For the novice, the lists (A) and (A B C) are start-up examples; (A
B C) is also a reference example; NIL or (), a counter-example;
"left-paren atom atom atom ... right-paren", a model example.

The point here is not the particular parsing out of examples
into classes, for this depends on many considerations such as one's
level of expertise and purposes for taxonomizing; but that there
are classes of examples, and that such epistemological knowledge
about classifying examples (and other items) is an important part of
one's understanding. Such knowledge can be used to help focus one's
attention in learning and explaining, for instance by suggesting
heuristics like "Check out the conjecture on reference examples
before believing too strongly in it" or "Look for counter-examples
in the class of known counter-examples”.

STRUCTURAL ASPECTS OF EXAMPLES

In a complex domain like mathematics or law, there are several
types of structure. We can distinguish items, relations, spaces:

(1) items are strongly bound clusters of information: for
instance, the statement of a theorem, its name, its proof, a
diagram, an evaluation of its importance, and remarks on its
limitations and generality.

(2) relations between items: for instance, the logical
connections between results, such as predecessor results on
which a result depends logically and successor results which
depend on it.

(3) spaces are sets of similar types of items related in similar
ways: for instance, proved results and their logical
dependencies. Such a set of items and relations constitute a
space, in the case of results, a Results-space.

In essence the idea is that examples (and other items) are
cohesive clusters of information which do not exist in isolation
from one another; there are relations between them. What
distinguishes a "space" from a "set" is the prominence of the
relations. The structure of a complex domain like mathematics
contains not just one but many spaces, each of which describes a
different aspect of knowledge. Examples are but one type of "item"
that comprise the knowledge in such domains; others include
concepts, results, strategies and goals [Rissland 1978, 1981b]. Of
concern in this paper are examples by which we mean specific
situations, data or experiences.

An example has many aspects or pieces of information that
comprise it: its name, taggings and annotations as to
epistemological class and importance, lists of pointers to other
examples from which it is constructed and to whose construction it
contributes, the process of how it is constructed, a schematic or
diagram, pointers to items like definitions in other spaces,

statements of what the example is good for or how it can be
misleading, sources of further information about the example.

Examples can be related by constructional derivation of how one
example is built from others. Examples plus this relation
constitute an Examples-space. For instance, in the LISP programming
example, the examples ((A) B C) and (A (B C)) can be thought of as
constructionally derived from the reference example list (A B C) by
the addition of parentheses.

The construction of a new example from others is a process that
is found in many fields, for instance law and mathematics. 1In
teaching the law, one frequently makes use of "hypothetical"
examples ("hypos") which are often constructed by modification of a
well-known reference example, e.g., a textbook case. In a Socratic
discussion between a law professor and his class, the teacher may
spin out a sequence of hypos to test out the class's understanding
and biases on a doctrinal proposition. Such a sequence might
contain increasingly more complex or extreme cases.

The following hypothetical examples are taken from a class
discussion in contract law. They were used to point out the
difference between the doctrines of "consideration" (which
emphasizes what the promisee gives the promisor in return for the
promise) and "reliance" (which emphasizes how the promisee acts in
reliance on the promise). These are two different ways to approach
the problem of determining which contracts are legally enforceable
as opposed to which are gratuitous gifts. The base case from which
the hypos are constructed through modifications is Dougherty v.
Salt, a standard case in a course in contract law [Fuller and
Eisenberg 1981].

Hypo1:
Facts: Aunt Tillie says, "Charlie, you are such a nice boy; I
promise to give you $10,000."

Hypo2:

Facts: Same as Hypol with the addition that Charlie says, "Dear
Aunt Tillie, I can't take something for nothing, let me give you my
third-grade painting."

Hypo3:
Facts: Same as Hypo2 except that Charlie offers to mow Tillie's
lawn.

Hypod:
Facts: Same as Hypo2 except that Charlie's last name is Picasso.

Hypo5:
Facts: Same as Hypol with the addition that Aunt Tillie's assets

are in ruin and that keeping her promise to Nephew Charlie means her
own children starve.

Hypob:
Facts: Same as Hypol with the addition that Charlie then makes an

unreturnable deposit on a new car.

Thus in summary there are internal and external structural
aspects to examples. The internal structure of an example concerns
the cluster of strongly bound information that comprises the
example, including pointers to other items like examples. The
external aspects concern the relations among examples, for instance
how one example is constructed from others.

CONSTRAINTS AND EXAMPLES

An important aspect of examples with respect to learning
systems is the obvious fact that examples possess certain
properties. For instance, the "near misses" in Winston's work are
examples that fail to be arches in exactly one of the required
properties of archness. What perhaps may not be so obvious is that
in selecting examples to give to a learning system, one does not
pick them at random: examples are generated for a purpose -- like
giving evidence for or against a conjecture -- and thus examples are
usually (carefully) chosen to possess certain desired properties,
which we call constraints.

We have called this process of generating examples that meet
prescribed constraints "Constrained Example Generation" or "CEG".
In past work, we have described, built, and experimented with a
model of the CEG process. See for instance, [Rissland 1980, 1981a,
Rissland and Soloway 1980a, 1980b]. It is based upon observations
of humans working problems in which they are asked to generate
examples satisfying certain constraints. Our model of CEG
incorporates three major phases: RETRIEVAL, MODIFICATION, and
CONSTRUCTION.

When an example is sought, one can search through one's
storehouse of examples for one that matches the properties desired.
If one is found, the example generation problem has been solved
through RETRIEVAL. In retrieval, there are many semantic and
contextual factors —-- like the last generated example -- and
therefore one is not merely plunging one's hand into an unorganized
knowledge base. Thus even though retrieval sounds simple, it can be
very complex.

However, when a match is not found, how does one proceed? 1In
many cases, one tries to MODIFY an existing example that is judged
to be close to the desired example, or to have the potential for
being modified to meet the constraints. Often the order of examples
selected for modification is based on judgements of closeness
between properties of known examples and the desiderata, that is,
how "near" the examples are to what is sought.

If attempts at generation through modification fail,
experienced example generators, like teachers or researchers, do not
give up; rather they switch to another mode of example generation,
which we call CONSTRUCTION. Under construction, we
include processes such as combining two simple examples to form a
more complex one and instantiation of general model examples or
templates to create an instance. Construction is usually more
difficult than either retrieval or modification.

General Skeleton of the CEG Model

CEG has subprocesses for: Retrieval, Modification, Construction,
Judgement, Control

Presented with a task of generating an example that meets specified
constraints, one:

1. SEARCHES for and (possibly) RETRIEVES examples JUDGED to satisfy
the constraints from an EXAMPLES KNOWLEDGE BASE (EKB); or

2. MODIFIES existing examples JUDGED to be close to, or having the
potential for, fulfilling the constraints with domain-specific
MODIFICATION OPERATORS; or

3. CONSTRUCTS an example from domain-specific knowledge, such as
definitions, general model examples, principles and more
elementary examples.

In examining human protocols, one sees two types of generation:
(1) retrieval plus modification; and (2) construction. That is,
one does not necessarily try first retrieval, then modification,
then construction; sometimes construction is attempted
straightaway. Clearly, this model needs many other features to
describe the CEG process in its entirety; more details can be found
in [Rissland 1981al.

To give the reader an idea of the richness and complexity of
the CEG process, we present here a synopsis of a CEG problem taken
from the domain of elementary function theory. The problem is:

Give an example of a continuous, non-negative
function, defined on all the real numbers such that it
has the value 1000 at the point x=1 and that the area
under its curve is less than 1/1000.

Most protocols for this question began with the subject
selecting a function (usually, a familiar reference example
function) and then modifying it to bring in into agreement with the
specifications of the problem. There were several clusters of
responses according to the initial function selected and the stream
of the modifications pursued. A typical protocol went as follows
[Rissland 19801]:

"Start with the function for a "normal distribution". Move it
to the right so that it is centered over x=1. Now make it
"skinny" by squeezing in the sides and stretching the top so
that it hits the point (1, 1000)."

"I can make the area as small as I please by squeezing in the
sides and feathering off the sides. But to demonstrate that the
area is indeed less than 1/1000, I'll have to do an integration,
which is going to be a bother."

"Homm. My candidate function is smoother than it need be: the
problem asked only for continuity and not differentiability. So
let me relax my example to be a "hat" function because I know
how to find the areas of triangles. That is, make my function
be a function with apex at (1, 1000) and with steeply sloping
sides down to the x-axis a little bit on either side of of x=1,
and 0 outside to the right and left. (This is OK, because you
only asked for non-negative.) Again by squeezing, I can make the
area under the function (i.e., the triangle's area) be as small
as I please, and I'm done."

Notice the important use of such modification operations as
"squeezing", "stretching" and "feathering", which are usually not
included in the mathematical kit-bag since they lack formality, and
descriptors such as "hat" and "apex". All subjects made heavy use
of curve sketches and diagrams, and some used their hands to
"kinesthetically" describe their functions. Thus the
representations and techniques used are very rich.

Another thing observed in all the protocols (of which there
were about two dozen for this problem) is that subjects make
implicit assumptions -- i.e., impose additional constraints -- about
the symmetry of the function (i.e., about the line x=1) and its

maximum (i.e., occurring at x=1 and being equal to 1000). There are
no specifications about either of these properties in the problem
statement. These are the sort of tacit assumptions that Lakatos
[1976] talks about; teasing them out is important to studying both
mathematices and cognition.

CONSTRAINT GENERATION

Generating examples from constraints presupposes that there are
constraints. That is, that properties of examples can be expressed
in a language of constraints, and that one actually knows what one
wants in the example sought, that is, the constraints. To put it
another way, there is a prior problem of constraint generation.

The constraints are often generated from consideration of one's
intended use for the example-to-be. For instance, if one were
testing a program known to work on simple cases, one would want
examples that are more complex or rare, for instance an anomalous or
counter-example. If one could not find a satisfying example in
one's "Examples Knowledge Base", perhaps organized as an
Examples-space, one would need to generate it. To do this one could
express the desiderata for the example in terms of constraints and
then proceed with the CEG process.

In hypos for a Socratic discussion in law, such constraints
would include pedagogical, rhetorical, doctrinal constraints, such
as, those in our previous example, arising from the doctrine of
consideration. The constraint upon the object given by Nephew
Charlie to his Aunt Tille might be loosely described as '"being
something of value"; this constraint is then varied from something
of little value (the typical third-grade painting), to something of
some value (mowing the lawn), to something of great value (a
"Picasso" third-grade painting).

If one were giving examples of lists to a neophyte LISP
programmer, one would make use of domain-specific constraints having
to do with "length" (of the list), "order" (of atoms in the list),
"depth" (of certain atoms), and whether the list is a "LAT" (i.e., a
list of atoms) or a more complex list [Rissland and Soloway 1980bl.
For instance, one might want a list such that: (1) it has length 3,
and (2) the depth of the first atom is 3. The list (((A)) B C)
satisfies both constraints and may be thought of as generated from
the reference example (A B C) by a sequence of modifications
affecting depth. The lists (((A) B) C) and (((A B C))), which are
also generated by modifications affecting depth through the addition
of parentheses, satisfy the second (depth) but not the first
(length) constraint. Thus, modifications designed to remedy one
constraint deficiency might, in the language of Sussman [1973],
"clobber a brother goal", that is, another constraint. Such
interactions can make the CEG problem quite complex.

APPLICATIONS TO ILL-DEFINED SYSTEMS

In this section we suggest how examples can be used in probing,
debugging, specifying, or otherwise dealing with an ill-defined or
not well-understood system.

Examples can be useful for probing a system. Consider the
following scenario. We've just logged on and are trying to learn
how to use or test a system, or a new feature of it. Suppose it
were a program to sort letters into alphabetical order.

To probe this program, we might start off by saying, "If this
program really works, it ought to do simple little things; it
certainly ought to handle A, B, C. If it fails on A, B, C, we know
there's a problem from the very beginning." Suppose we find it's OK
on A, B, C, a standard start-up or reference example in this
mini-domain.

Now we'd try something a bit more complex, like a longer 1list,
say more of the beginning of the alphabet. This is a slight
embellishment of the beginning example, arising from a length
constraint. Suppose it works on such an example -- which is good
since the program didn't have to do "anything" -- let's give the
program an opportunity to exercise itself on some other simple cases
like C, B, A or the alphabet in reverse order. Then, we might
introduce a couple of letter interchanges like A, C, B or M, O, N,
P, R, Q. These involve order as well as length constraints and can
be generated with an "interchange" modification.

Thus we're probing the system with a sequence of increasingly
complex cases derived from standard simple ones. With a minimal
level of confidence in the program established, we could go on to
test it on more difficult or limiting cases.

We might now check if the program can handle known troublesome
examples like a singleton list, like "A", or the empty list, which
are known from experience to be some of the cases that make programs
cough and sputter, that is, counter-examples. The singleton list
often causes problems because of the false assumption that there's
(always) going to be more than one element. A LISP programmer would
know of another well-known trouble maker: the empty list, NIL. It
is an important case in recursive procedures. In fact, it is a
favorite (i.e., reference) example with any LISP hacker. 1In the
sorting domain, there would be some other specific things that are
known to cause problems, for instance, repeated elements. Thus we
are using knowledge about the examples and about the context and
task in evaluating a system.

Note that we are not examining or altering the code, which can
be considered a lower level representation of the program; rather
we're staying on a representational level more akin to the purposes
of the program, that is, what the program is supposed to do, or more
realistically, what we believe it's supposed to do. We're dealing
with the system at arm's length and just probing and asking if the
program appears to work by our experience with it on selected, and
well-chosen, examples.

Such probing of a system in this manner is similar to testing
theorems. (Again, we have the analogy with mathematiecs, which has
been discussed by De Millo et al. [1980].) One can never show that
it works by just trying examples, we can only show, perhaps, that it
doesn't work, just as one counter-example can refute a conjecture.
However, having a variety of instances that work establishes
confidence, even if it doesn't end the verification process. By
selecting enough well-chosen cases, one can "span" the possibilities
and obtain a sense of the program's correctness. One of the
differences between a novice and an expert programmer (or
mathematician) seems to be the richness of the "spanning" examples
used: novices tend to forget to check the program on complicated or
known counter-examples and anomalies, even simple ones like NIL.
Thus part of the art of expert programming is epistemological
knowledge of the type we have described in previous sections of the
paper.

Also note that in this scenario the problem of evaluating the
answer required little work on our part: alphabetical order is
obvious by inspection. 1In other cases of generating test data,
there's a lot more work involved to being a critic. (See
[Dietterich and Buchanan] in this volume.)

These remarks also apply if we are writing or debugging a
program. Using specific examples to work out a solution helps one
to deal with the complexity or lack of specification of the
solution. It might well be the case that the kind of examples used
in probing might be different from those in design and
implementation.

Since it is impossible to completely specify a program under
every condition -- because, for instance, the context of the system
is changing or one is not sure of what one wants —- using examples
to show what the program should do in certain situations, especially
those that matter to the specifier or that are too difficult to
describe in symbols or words —- provides another means of describing
the program. Together traditional specifications in words, logic or
symbols joined with example cases provides a better specification
than either alone; each mode compensates for and complements the
other.

CONCLUSIONS

In this paper we have discussed examples in their relation to
learning systems and in their own right. In particular, we have
described the structural aspects of examples, including their
internal structure as a strongly bound cluster of information and
their external relations to other examples through construction. We
have used constraints to approach the problem of generating examples
with specific properties and have described the prior problem of
constraint generation which involves interactions between the system
and the examples or example user. Lastly, we have suggested that
examples are central to probing, debugging and even specifying
systems: they can probe a system and they can help describe it by
showing how it does or should operate.

Thus, in our approach we concentrate on the role that examples
(that is, experiences, instances, data) play in systems, well- or
ill-defined, and find that they are a rich study in themselves. Not
only are they interesting, in fact they are central. As that great
polymath Oliver Wendell Holmes put it:

"The 1life of the law has not been logic; it has been
experience"

And it is experience we are capturing with examples.

REFERENCES

Berman, H. J., "Legal Reasoning". 1In International Encyclopedia of
the Social Sciences, MacMillan, 1968.

De Millo, R.A., Lipton, R.J., Perlis, A.J., "Social Processes and
Proofs of Theorems and Programs", Communications of the ACM,
Vol. 22, No. 5, May 1979. Reprinted in the Mathematical
Intelligencer, Vol. 3, No. 1, 1980.

Fuller, L. L., and M. A. Eisenberg, Basic Contract Law. West
Publishing Co., Minn., 1981.

Gazdar, G., "Phrase Structure Grammar". In Jacobson, P., and G.K.
Pullun (Eds.) The Nature of Syntactic Representation, Reidel,

1982, pp. 131-187.

Gazdar, G., "Unbounded Dependencies annd Coordinate Structure".
Linguistic Inquiry 12 (1981), 155-184.

Kuhn, T. S., The Structure of Scientific Revolutions. Second
Edition. University of Chicago Press, 1970.

Lakatos, I., Proofs and Refutations. Cambridge University Press,

London, 1976. Also in British Journal for the Philosophy of
Science, Vol. 19, No. 3, May 1963.

Lenat, D. B., "Automatic Theory Formation in Mathematics",
Proceedings of Fifth International Joint Conference on
Artificial Inteligence. Cambridge, MA., 1977.

Levi, E. H., An Introduction to Legal Reasoning. University of
Chicago Press, 1949.

Minsky, M. L., "A Framework for Representing Knowledge". In The
Pyschology of Computer Vision, Winston (ed), McGraw-Hill, 1975.

Polya, G., Mathematics and Plausible Reasoning, Volumes I and II.
Princeton University Press, 1968.

Restatement, Second, Contracts. American Legal Institute,
Philadelphia, 1981.

Rissland, E. L.,"Examples in the Legal Domain: Hypotheticals in
Contract Law". In Proceedings Fourth Annual Conference of the
Cognitive Science Society. Ann Arbor, August 1982.

, Constrained Example Generation. COINS Technical Report
81-24, University of Massachusetts, 1981a.

» The Structure of Knowledge in Complex Domains. COINS
Technical Report 80-07, University of Massachusetts, 1981b.
Also to appear in Proceedings NIE-LRDC Conference on Thinking
and Learning Skills, Lawrence Erlbaum Associates.

, "Example Generation". In Proceedings Third National
Conference of the Canadian Society for Computational Studies of
Intelligence, Victoria, B. C., May 1980.

» The Structure of Mathematical Knowledge. A.I. Tech Report
472, A. I. Laboratory, Massachusetts Institute of Technology,
1978.

, "Understanding Understanding Mathematics". Cognitive
Science, Vol. 2, No. 4, 1978.

Rissland, E. L., and E. M. Soloway, "Overview of an Example
Generation System". In Proc. First National Conference on
Artificial Intelligence. Stanford, August 1980a.

,» "Generating Examples in LISP". Proceedings International
Workshop on Program Construction. Bonas, France, 1980b.

Samuel, A. L., "Some Studies in Machine Learning Using the Game of
Checkers"., In Computers and Thought, Feigenbaum and Feldman
(Eds.), McGraw-Hill, 1963.

» "Some Studies in Machine Learning Using the Game of Checkers.
II--Recent Progress". 1In IBM J. Research and Development,
11:601-617, 1967.

Selfridge, 0. G., "Pandemonium -- A Paradigm for Learning". In
Symposium on the Mechanization of Thought Processes.
Teddington, England, 1958.

,» "An Adaptive Sorting Algorithm". 1In Proceedings Third
National Conference of the Canadian Society for Computational
Studies of Intelligence, Victoria, B.C., May 1980.

s "COUNT —- How a Computer Might Do It". Internal Report, Bolt
Beranek and Newman Inc, 1979.

Soloway, E. M., "Learning = Interpretation + Generalization: A
Case Study in Knowledge-Directed Learning”". COINS Technical
Report 78-13, University of Massachusetts, 1978.

Sussman, G. K., A Computational Model of Skill Acquisition. A.I.
Tech Report 297, A. I. Laboratory, Massachusetts Institute of
Technology, 1973. (Doctoral dissertation.)

Swartout, W. and R. Balzer, "On the Inevitable Intertwining of
Specification and Programming". CACM Vol. 25, No. 7, July
1982.

Winston, P. H., "Learning Structural Descriptions from Examples" in
The Psychology of Computer Vision, Winston (ed), MeGraw-Hill,
1975.

