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Abstract

A well-known problem encountered in the design of operating
systems is deadlock. Generally, three strategies are used to deal
with it: prevention, avoidance, and detection/recovery. This
paper focuses on deadlock avoidance for nonpreemptable but
reusable resources. First, Habermann's algorithm is reviewed and
discussed. Then suggestions for improving concurrency and
efficiency are introduced. Finally, the relationship between
deadlock avoidance and process schedulers 1is analyzed as a

related and important aspect of deadlock avoidance.



1. Introduction

Because the problem of deadlock is a critical issue in
operating systems and data base systems, it is one of the most
researched areas in computer science. Various reseachers have
formalized and analysed it [Beauqqier 1980, Coffman 1971,
Habermann 1969, Havender 1968, Holt 1971, Sugiyama 19771.
Although some results of this research have been applied to
actual systems, a wholly satisfactory solution has yet to be
formulated. This paper intends to contribute towards resolving

this important problem.

A system becomes deadlocked if in the system there is a set

of processes unable to proceed since each process in the set is
waiting for another. Generally speaking, deadlocks are caused by
competition among processes for nonpreemptable resources. A
nonpreemptable resource is a resource which cannot be removed
from the process holding it until the resource 1is used to
completion. Resources may also be divided into another two
classes: nonreusable (or consumable) and reusable. This paper

will focus solely on nonpreemptable but reusable resources.

At the present time, three strategies to deal with deadlock

exist: prevention, avoidance, and detection/recovery.

In deadlock prevention, a system is designed to prevent the
occurrence of deadlock. One ¢trivial method of deadlock
prevention 1is called "maximum acquisition”. This method will
not allow a process to begin its run until all resources it

will request during its run time are available and have been



acquired. Since each process of this kind is guaranteed a
completed run, deadlock 1is prevented; however, this method
lowers the concurrency of the system. A second method of
deadlock prevention is called "ordered resources" [Havender
681. This method prevents deadlock in a system by allowing any
process to request resources in some pre-specified order,
thereby effectively eliminating the circular waiting
chains among processes and resources in the system. Concurrency

in this kind of system, however, still remains low.

Although the deadlock avoidance method allows deadlock

states to 1loom, whenever deadlock 1is approached, it 1is
carefully sidestepped. Habermann formulated an algorithm for
deadlock avoidance [Habermann 69], which is based on the banker's
algorithm [Dijkstra 651]. Since then some improvements have been
made on it [Holt 71, Habermann 72, Habermann 78, Minoura 82].
This paper intends to suggest further improvements. Through
either the strategy of deadlock prevention or deadlock avoidance,
a system can never fall into a deadlock state. In deadlock
prevention, a system need not test system states once it has
started; in deadlock avoidance testing 1is necessary. On the
other hand, a deadlock avoidance method may offer a higher degree

of concurrency than a deadlock prevention method.

In a system using the strategy of deadlock

detection/recovery, a deadlock may occur, but the system is able

to detect the deadlock occurrence and take action appropriate to

recover the system from deadlock. This kind of system offers the



highest degree of concurrency, but sometimes the recovery cost
may be very high, and even prohibitive. Holt set up a model ¢to
detect deadlock, and discussed 1its properties 1in detail

([Holt 711, [Holt 721).

From the system point of view, the following table
summarizes the three strategies referred to in the preceding

discussion:

{ Deadlock Test Required Concurrency
{ Occurrence At Run Time
------------ e e e e e e e = = = - = = - - = = - - = = - -
Prevention | never unnecessary low
Avoidance | never necessary moder ate
Detection |  possible necessary high
/Recovery i

Table 1 Three Strategies for Deadlock Avoidance

The remainder of this paper will deal primarily with
several aspects of deadlock avoidance. In section 2, Habermann's
algorithm for deadlock avoidance will be introduced, with slight
alterations from the original in order to provide a clearer
understanding of Habermann's intent. Introducing the concept of
"process graph", section 3 provides a method which improves the
concurrency realizable using Habermann's original algorithm.
Section 4 discusses improvements in efficiency. In section 5, the
issue of the relationship between deadlock avoidance and the
scheduler is introduced, which 1is easily ignored by system
designers. Finally, section 6 presents a summary and discussion

of what this study has accomplished.



2. Habermann's Algorithm

This section introduces Haberman's algorithm for deadlock
avoidance. The statements of some of the theorems are slightly
different from Habermann's original paper [Habermann 1969]. The
author believes that these are really Haberamnn's intent, as

represented in [Holt 71] and [Habermann 72].

2.1 System and its States

Systems discussed in this paper will always consist of a
set of processes: P1, P2, ..., Pn; and m types of resources:
R1, R2, ..., BRm; where n >= 0 and m >= 0. Each type of resource
has several identical  units. Each process Pk claims its
max imum requirements for each type of resource. Once this is
done, the system allows the process to take 1its claimed

resources concurrently.

The system state is described by two vectors AVAIL and

REM, and two matrices GOAL and ALLOC, where
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is the numbers of resources available in the system,

AVAIL[i] = ai
= number of resource Ri (i=1..m);
and MAXC = ( MAXC1 .... MAXCn )
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is the maximum resource claims made by processes,

MAXC[i,Jj] = MAXCj[il]
= maximum number of units of
Ri claimed by Pj;
and ALLOC = ( ALLOC1 ...... ALLOCn )
T oal1llt ..., alin |}
i al21 alz2n |
= | : : : i
1 . 1
1 . |
i alml ...... almn |
1 [}
| |

is the allocation matrix,

ALLOC [i,j] ALLOCjl[i] = alij]

the number of Ri allocated to process Pj.
Obviously, ALLOC varies with time so that ALLOC(t) is used to

denote the ALLOC at time t when necessary.
REM is not independent, which is defined by
REM = AVAIL - SIGMA ALLOCi
i=1..n
indicating the numbers of resources remaining in the system,
ready to be allocated to processes upon request. Here "SIGMA"
stands for the arithmetic sum of the arguments following it. This

notation will be used throughout this paper. When necessary,

REM(t) will be used to indicate the REM at time t.



- 10 =

To state the problems precisely, it is necessary to define

the following relations:

Definition

oul bovtl
w2 | Poov2 |
Let us=1_, _: | and V=1 _: |
o ! b i
| um | ioovm |

be two integer vectors, we say U <K= V if

Uli] = ui <= vi = V[i] for all i=1..m.

Definition Let F = (F1, F2, .., Fn) and G = (G1, G2, .., Gn)

be two (m rows and n columns) integer matrices, we say F <=
G if Fi <= Gi for all i=1..n, where Fi and Gi are m-dimension

integer vectors.

Similarly, we may define relations >= on vectors and
matrices. In the case where the context is clear 0 may be wused
as a 0 vector or 0 matrix, which means all the elements of the

vector or matrix are O.

The above relations may be used to represent the conditions

that must hold in the systems being proposed:

For all j=1..n,
R1: MAXCj <= AVAIL (Claims must not be more than AVAIL);

R2: ALLOCj <= MAXCj (No process can get more resources
than it claims);
R3: REM >= 0 (System never issues loans).
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Definition A system state (AVAIL, MAXC, ALLOC(t), REM(t))

is realizable if R1, R2, and R3 hold.

2.2 Safe State and Deadlock Avoidance

It is obvious that a realizable system state does not
guarantee that a deadlock cannot occur. A system state free from
the deadlock danger is called as a "safe" state. Within the
definition of deadlock, a state is considered "safe" when each
process is enabled to complete its run from this state 1in

some way.

In order to achieve such a situation, REM(t) must be
sufficient to serve at least one process, for example, say Pki1,
MAXCk1 - ALLOCk1(t) <= REM(t)
so that process Pk1 can be completed. When Pk1 is completed, it
will release all resources that it holds. In this way, more
resources are free to serve another process, say Pk2,
MAXCk2 - ALLOCk2(t) <= REM(t) + ALLOCk1(t)
If the system state is "safe", this action may be repeated

until all processes are completed.

In addition, it 1is necessary for a safe state to be
realizable although not every realizable state may be safe.

Formally, a safe state is defined as follows:

Definition A system state is safe if it 1is realizable and

there is at least one sequence S of all processes such that:
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R4: MAXCs(i) - ALLOCs(i)(t) <= REM(t) + SIGMA ALLOCs(k) (t)
k <1

for all i=z=1..n; where i and k are indices in S, and s(i) or s(k)
indicates the original id number of the process which has

indices i or k in S.

We call such a sequence S, which 1leads all processes to
completion, as a safe sequence. The definition "safe state"
indicates the fact that starting from a safe state there is at

least one way to run the processes to completion. Therefore:

Theorem 1 The system will not become deadlocked if two

conditions holds:

1. the concurrent system state 1is safe; and
2. the scheduler will not reject at least one of the safe
sequences.
Proof: Because the state 1is safe, there is a safe sequence
satisfying RY4; and if the scheduler does not reject at least
one safe sequence, the processes may be completed in the

order of that sequence. []

The key to test the safety of a system state lies in finding
one safe sequence. However, there are n! sequences. In the worst
case, it is necessary to test as many as n! sequences. That

requires too much work! Fortunately Habermann proved:

Theorem 2 If a subsequence S fulfills condition R4 and S cannot

be extended into a safe sequence, then the state is not safe.



Proof: There may be many ways to try to extend S. Let S' be the

longest extension of S and

T = {all processes} - {those in S'}.

If S cannot be extended into a safe sequence, which must
contain all processes, then, S' cannot be extended either.
Therefore, if the state is safe, the existing safe sequence must

not begin with any process in S'.

By the definitions of S' and T,

MAXCt(i) - ALLOCt(i) > REM + SIGMA ALLOCs'(Jj)
~all j in S¢
>= REM-
Therefore, the safe sequence cannot begin with any process in T.
Because T unions S' = {all processes}, so that if a safe sequence
existed, no process could be the first process in the sequence.
It follows that there exists no safe sequence. Consequently, the

system state is not safe. []

Since an empty subsequence fulfills R4, verifying the
safety of a system state may necessitate starting from the
empty subsequence and trying to extend it. At any point if the
subsequence cannot be further extended, according to Theorem
2, rather than looking for another sequence, it is possible to
conclude that there is no safe sequence at all. Because Theorem
2 significantly reduces computation cost, it remains one of the

basic theorems used ¢to construct the deadlock avoidance
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algorithms..

2.3 State Transitions

In practice, a system wutilizing the deadlock avoidance
strategy may work in this way: whenever a process comes into the
system, the system will test whether it satisfies R1: no process
claims more resources than available in system. If it does not
fulfill the requirement, the process 1is rejected. When the
system starts, because no resource has yet been allocated, the
system state 1is safe. Each time a process requests some
resource(s) and sufficient unallocated resources exist to fulfill
the request, the system state resulting from the proposed
allocation will be checked. If the state after allocation is
safe, then the resource(s) is allocated to the process,
otherwise, this request has to be rejected until a later time
when the process may make another attempt. It 1is necessary to
check the state resulting from the proposed allocation because
decreasing REM may make the system state unsafe, even if the
original state is safe and there are enough resources to
allocate. The procedure becomes simpler, however, when a process
releases some resource(s). At this time REM will be increased,
therefore the state following the deallocation must be safe 1if

the original state is safe. In this way the system state always

moves from one safe state to another safe state,

guaranteeing that deadlock can never occur.
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From the above discussion, it can be concluded that the
test of safety for the sSystem state following an allocation
must be based on the fact that the original state is safe.
Computation cost for this kind of test can be reduced by

utilizing the following theorem:

Theorem 3  The system state resulting from an allocation will
be considered safe if the original state is safe and Pk, which
makes its request to cause this allocation, appears in one of
the subsequences S fulfilling R4.

Proof: See [Haberman 69]. []

Intuitively, if Pk appears in one of the subsequences
fulfilling RU4, Pk 1is able to complete. When Pk completes, it
Wwill release all the resources it holds, including the one
allocated this time. The resources available in the system will
at least the same as those prior to this allocation. Because the
system state prior to this allocation is safe, every other
process is able to complete. Therefore the system state after

this allocation is safe.

Using this theorem makes it unnecessary to construct a full
safe sequence to prove the state after allocation is safe. Only
a sub-safe-sequence need be constructed to check if process Pk,
which makes this state transition of the system, has been

included in the subsequence.
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Combining Theorem 2 and Theorem 3, the following
algorithm emerges to verify whether the system state is

safe after the resources are allocated to Pk:

Function SAFE (Pk : process) : boolean;

Var Safe-sub-seq,

T : set of process;
Begin

Safe-sub-seq := empty;

T = all processes;

While (Pk is not in Safe-sub-seq) and (T is not empty) do
Begin
if not EXTEND(Pk, T) then
EXTEND(another member in T, T);
End;

If Pk is in Safe-sub-seq then
SAFE := true
else
SAFE :

false;
End;
Where EXTEND is a subroutine:
Function EXTEND(Pi : process; T : set of processes) : Boolean;

Begin
Subtract Pi from T;

If Safe-sub-seq is extendable with Pi then

Begin
extend Safe-sub-seq with Pij;
T := {all processes} - {Those in Safe-sub-seq}
EXTEND := true;

End

el se

EXTEND := false;
End;
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3. Improvement in Concurrency

In this section, we first introduce the concept of process
graph and define process states. Based on the process graph and
process states, then we propose a system in which the concurrency
is improved. The results represented in this section are

formalized.

3.1 Process Graph and States

It should be noted that 1if some processes do not
acquire their maximum claims for resources concurrently, then
even in some "unsafe" state of the system, deadlock may not
occur. This fact suggests that more concurrency can be gained by
providing to the system more "dynamic" information about how
processes acquire resources. To explain how such "dynamic"
information can be given to the system, it is first necessary to
illustrate how a process acquires resources explicitly. As a
user of resources, a process may be represented as a set of
tracks recording relatively when the process needs and holds the
resources. This set of tracks is called as the "graph" of
the process. For example, the following figure is the graph
of a process that holds R1 from t1 to t6, R2 from t2 to t3 and t4
to t5, and also holds another R2 from t3 to t6, and so on.

R34=mmm $mmmmm e
R24=mm- PR

to t1 te t3 ty t5 t6 £7 t8 t9 t10 €11 ...=-=>¢

Figure 2 The graph of a process
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Notice that even between t6 and t8, no resource is held. For
purposes of this discussion, on the graph of process, the

following notations may be defined:

Definition The function "Number of Resource" is defined as

the number of units of Ri held

NR(Ri, Pj, t)
by Pj at time ¢t.
NR(*, Pj, t)

the sum of units of all types of resources

held by Pj at time t.

Where there 1is no ambiguity, process name Pj and/or time t
in the arguments in NR may be omitted. For example, in the

above graph, NR(R2, t4)=2 and NR(¥, t4)=3.

Definition A local block in a process graph is an area between

two points, tb and te, where NR(¥,tb) = NR(*¥,te) = 0 and there
exists at least one point tm such that tb < tm < te and NR(¥,tm)

<> 0.

Definition A 1local block 1is considered to be basic when it

cannot be further divided into local blocks.

Generally, an entire process graph is a 1local block, but
often it 1is not the basic one. In the Figure 1, the area from
t0 to t11 is a local block; however the areas from t0O to t7 and
from t7 to t11 are also local blocks, and are the basic local

blocks.

Definition The up point in a local block of a process graph 1is




that point from the beginning point up to which NR(¥)=0; and at
which NR(¥)<>0. That is, in the local block, the process makes

its first request at the up point.

Definition The down point in a local block of a process

graph is that point after which NR(¥) is decreasing; and before
which it may not. In other words, in the local block, the down
point 1is the first point beyond which no more allocations are

made.

Definition The completed point in a local block of a process

graph 1is that point after which, NR(¥)=0; and at which,
NR(*)<>0. Stated simply, in the local block, the process makes

its last release at the completed point.

For example, in Figure 2, in the 1local block form tO0 to
t7, t1 is the up point; t4 is the down point; and ©6 is the
completed point. As pointed out in the definitions, the up
point, down point and completed point in a given local block are
the first request point, the last request point, and the last

release point of resources, respectively. Therefore,

Corollary The up point, down point and completed point in a

given 1local block are unique.

Based on the above notations defined on process graphs,

the states of a process may be defined as follows:

Definition Given a local block partition of its process graph,

a process has three states in a system: (1) the up state, when it
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runs from the wup point to the down point in a local block;

(2) the down state, when it runs from the down point to the

completed point in a 1local block; (3) the free state, when it

is neither in an up state nor in a down state.

3.2 Concurrency-improved System
This subsection proposes an improved system, which may use
information on process graphs in order to achieve more

concurrency than the system described in section 2.

In this concurrency-improved system, a process must report
to the system the transitions of its states and the maximum
requirements for resources in the current local block when the
process state transits from "free™ to "up". The 1latter
requirement 1is called "local maximum claims". Now the "global
maximum claims" may not be provided. Such a procedure implies
that the graph of a process must be dynamically partitioned in
some way. It is the responsibility of the process itself to
decide how to partition its own process graph; however, the
smaller the local blocks are, the more concurrency the system
can acquire and the more efficiency the process itself can
have. If the result of partition were only a whole local block,
this system would degenerate to, rather than serve as an

improved version of, the original one.



The system then requires a new matrix LMAXC to record

information about the Local MAXimum Claims.

Definition Matrix LMAXC,(m rows and n columns) consists of n
m-dimension integer vectors LMAXC1 ...... LMAXCn,

LMAXC

(LMAXC1 ...... LMAXCn)

where LMAXCj, j=1..n, is defined by

- 0 if Pj is in free state;
!
|
LMAXCj = -1 the local maximum claims, if Pj 1is in
i the up state;
- ALLOCj, if Pj is in down state.
Obviously,
R2': ALLOCJj <= LMAXCjJ for all j=1..n

should be always true. R2' 1is more restricted than R2, but

reasonable.

Definition A system state (AVAIL, LMAXC, ALLOC(t), REM(t))

is quasi-realizable if R1, R2' and R3 hold.

Definition A system state 1is quasi-safe if it is

quasi-realizable and there is at least one sequence S' of all

processes such that

R4t: LMAXCs(i) - ALLOCs(i) <= REM(t) + SIGMA ALLOCs(k) (t)
k < 1

for all i=1..n, where R4' is the condition parallel to RY4; i and

k are indices in S.
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With these notations, the theorem about deadlock avoidance
parallel to theorem 1 in section 1 can be proved. Such a proof,

first, requires:

Lemma 1 If in a system, all processes are in a free state, then
the system is in a safe state.
Proof: At this time, P1, P2, ..., Pn is a sequence leading all

processes to completion, hence, the system state is safe. []

Lemma 2 If the system is in a quasi-safe state, then there is a
full sequence Q, following which each process is able to attain
a free state.

Proof: Sequence Q is nothing more than the one found 1in the

definition of quasi-safe state. []

Theorem 4 The system will not become deadlocked if two

conditions hold:

1. the system is in a quasi-safe state; and

2. the scheduler will keep at 1least one of the sequences
which 1leads every process to a free state; and keep at
least one of the sequences which leads processes running
from their free state to completion.

Proof: By means of Lemma 2 and the condition regarding the

scheduler in this theorem, every process can be free. Then the

result follows from Lemma 1 and Theorem 1. L1
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This improved system retains the essential framework of
the original one, although it differs in some respects from it.

It functions in this way:

1. Processes need to report to the system their
state transitions; in addition, when they get to up
state, they must report their 1local maximum claims,

which will be updated in LMAXC;

2. Each time when a process requests some resource(s), and
sufficient resources exist in the system, the system state
resulting from the proposed allocation must be tested to
determine whether or not it is quasi-safe. If it is not,
then this request 1is rejected and the process may try
at a later time;

3. If a process Pj transits into a down state, the LMAXCj
will be updated to be equal to ALLOCj. During the down
state, when it releases some resource(s) then LMAXCJ
will be decreased correspondingly. A check of the system
state is, however, unnecessary;

4, When a process gets into a free state, LMAXCi will
decrease to 0 immediately;

5. Starting with all ALLOCj = 0, the system is in a
quasi-safe state. It remains in a quasi-safe state, always
avoiding the non-quasi-safe state.

The theorems, parallel to Theorem 2 and Theorem 3 in section

2, are stated below, and because the proofs are similar, they are

omitted here.

Theorem 5 If a subsequence T fulfills condition RA' and it
cannot be extended into a full quasi-safe sequence, then the

system state is not quasi-safe.

Theorem g The system state after an allocation is quasi-safe if
the original state is quasi-safe and Pk, which makes its request

to cause this allocation, appears in one of
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the sub-quasi-safe-sequences.

Thereby the computation cost of the test for the safety of
the system following an allocation is similarly reduced as in

section 2.

We conclude this section with the proof of our claim at
the beginning of this section: This improved system offers a

higher degree of concurrency than does the original one.

Lemma 3 If the system is in a safe state, then it is

in a quasi-safe state also.

Proof: Because LMAXCi <= MAXCi for all i=1..n,
LMAXCi-ALLOCi <= MAXCi-ALLOCi for all i=1..n.
Since the system state is safe, there is a safe
sequence S such that
MAXCs(i) - ALLOCs(i) <= REM + SIGMA ALLOCs (k)
for all i = 1..n. Then S

LMAXCs(i) - ALLOCs(i) <= MAXCs(i) - ALLOCs(i)

<= REM + SIGMA ALLOCs(k)
k < i

for all i = 1..n, therefore S is the sequence fulfilling R4'. It

follows that the system state is quasi-safe. []

Theorem 7 In our new system, the concurrency is more than that
in the original one.

Proof: When a process requests some resource(s), if after
an allocation the system state is safe, then by the above Lemma,

the system state is quasi-safe also. Therefore, the new system
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has at 1least equal concurrency with that of the original.
Nevertheless, it is possible for the system to be in a quasi-safe
state, and not in a safe state; therefore, we conclude that of

the new system has more concurrency than the original one. []

In the following section, when some aspects of system
states are discussed without an explicit connection with
concurrency, the term "safe" may be understood as '"quasi-safe" as
well as "safe", unless it becomes necessary to make a

distinction.
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4, Improvement on the Efficiency

To improve the efficiency, it is necessary to find a more
effective way to prove the safety of a system state, that Iis,
whether a safe sequence exists. An existence proof may be
constructive or non-constructive. The original algorithm given in
section 2 is constructive. In the case of one type of
resources only, a non-constructive algorithm was given by
[Habermann 781. Habermann al so concluded that his
non-constructive method for one type of resources could not be
extended to the case of multiple types of resources. However,
He also presented an improved constructive algorithm for
multiple types of resources [Habermann 78]. Based on this
improved algorithm and wusing the property of this particular
problem, this section intends to provide a partial constructive
algorithm for multiple-types of resources. Needless to say, our
new algorithm must have a higher degree of efficiency than any of

its predecessors.

The object of a constructive algorithm is to construct a
safe sequence, that is, to arrange the processes in some sorted
order. In computer science, sorting is used to arrange a group of
unordered elements into order. Therefore this method is nothing
more than sorting! The key of sorting in this case is the amount
of resources that a process may need in the (near) future.
Hence, the efficiency of the algorithm seems to depend on the
efficiency of the sorting algorithm chosen. In fact, Habermann

has chosen "heap sort", one of the quickest sort algorithms
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available, to be used when attempting to improve the efficiency

of the algorithm of multiple-types of resources.

On the other hand, it should be noted that, the Dbasic
requirement of the safety of the system state is the existence of
the safe sequence. It may not be necessary, however, to find
such a full safe sequence to prove the existence of the safe
sequence. In the meantime, it is important to observe that to
insure that the system state always remains safe, the system
state must be checked at and only at the time when a process
makes a request. Therefore Theorems 2 and 5 and Theorems 3 and 6
are always applicable no matter what sort algorithm is chosen.
Combining these facts with the techniques of "heapsort" produces
the intended efficiency-improved algorithm for verifying the

safety of a system state.

Data Structures:

In addition to the data structures already in the original
system, m n-dimension arrays, H1, ...,Hm, and one m-dimension
array SUM are needed to do the sort. Each Hi corresponds to a
type of resources, Ri. The elements of Hi are processes. The
processes will be partially ordered in "Hi"s. Processes will try
to pass, in turn, H1, ...,Hm. A process, Pj, passing Hi means
that there will be sufficient resource, Ri, to serve Pj at some
point in the future. When a process, Pj, passes Hm, how Pj
releases resources being acquired is simulated by adding ALLOCj
to SUM, (SUM is initialized with REM); that is,

SUM = SUM + ALLOCj.
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Consequently, the formal condition by which a process can pass Hi
is:

R4n MAXCj[il - ALLOCj[il] <= REM[il] + SUM[il.
This is a coordinate form of RU4. The algorithm will try to let

all process pass each Hi, i=1..m; and will terminate if either

1. no more process can pass Hm, or

2. Pk, the process making this request, has passed Hm.

The former condition indicates that system state is not safe; and

the latter indicates a safe state.

One m-dimension vector, REQk, will be used, which is issued
by process Pk when it requests some resource(s). REQk indicates
the amount of each resource which Pk is requesting:

REQk[i] = the amount of resource Ri which Pk

is requesting.
In formal terms:

Algorithm:
Procedure STATE_CHECKER(State: System state, Pk: process);

Begin
Put all processes in H1;

Heapsort H1;

Checked := false;
SUM := REM;
While not Checked do
Begin
For i := 1 to n-1 do
Begin

Transfer those processes satisfying R4"
from Hi to Hi+1;
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Heapsort Hi and Hi+1;
End;

Transfer those processes in Hm satisfying R4"
out of Hm,
and when each of them, Pj, leaves Hm, do

SUM := SUM + ALLOCj;

If Pk passed Hm then
Beg in
State := Safe;
Checked := True;
End;

If No process can pass Hm then
Begin
State := Deadlock;
Checked := True;
End;
End(¥while¥);

End(*state_check¥);

Procedure ALLOCATOR;

Begin
If REM >= REQk then
Begin
Update ALLOCk as if the resource had been
allocated to Pk upon its request;

STATE_CHECKER (State, Pk);

If State = Safe then

Allocation

else

Reupdate ALLOCk to the original one;
End
else

take some proper action such as blocking Pk;
End(*Allocator¥*);

As a subprocedure of ALLOCATOR, STATE CHECKER checks the
system state. ALLOCATOR will be called when a process, Pk, makes
a request for some resource(s). ALLOCATOR will decide whether

the resources are allocated to Pk; if the decision is positive,
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the allocation will be carried on.

For detail about the heap sort procedure, refer to [Aho

19741 and [Habermann 19781.
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5. Relation between Deadlock Avoidance and the Scheduler

The system will not become deadlocked if the conditions of
Theorem 1 hold. This section discusses the issue of the second
condition: The scheduler must not reject at 1least one of the
safe sequences. If the scheduler uses an improper priority
policy, it may mistakingly reject all of the safe sequences. The
following discussion will serve as an example of such a situation

and provide an opportunity to explore the possible solutions.

Assume that a system contains two types of one-unit
resources, R1 and R2, and three processes, P1, P2, P3. The

process graphs of the processes are as follows:

Rl4eecceeae : : Rl+mcemma
R24~=aeeaa : R24~=- ! R24==veaeae
t0 t1 t2 t3 : t0 ti1 : t0 t1 t2 t3
P1's Graph ; P2's Graph ; P3's Graph

Figure 2 Graphs of Processes P1, P2 and P3

The time domains of processes are independent, so that the same
time notations used in the above different process graphs do not

necessarily mean those events must happen simultaneously.

Assume the system will let the processes run according to
the following sequence: P1, P2, P3, P1,..., if possible. If
three units of the time have passed since the system started,

the current system state is:
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im0
REM = | \
I 0 _|
"1 0 0 |
ALLOC = | i
i 01 0_1
1710 17
GOAL = ! '
] 1
[} ]

Ready: P1, P2
Block: P3;

Then P1 takes its turn to run. Because of the lack of R2, P1
becomes blocked. Now P2 runs, releasing R2 and completing 1its
run. When R2 is released, some process blocked on R2 may be
awakened. If the system takes the FIFO awakening policy, P3 will
naturally be chosen to wake up. When P3 runs, and requests R2,
a problem presents itself. Since the allocation R2 to P3 would
cause deadlock, this request is rejected. However, at present,
P3 is the only process eligible to run, it runs again, and is, of
course, rejected again. This will continue indefinitely, unless
some special action is taken. The system is thrashing! Neither
P1 nor P3 can complete themselves and the system is deadlocked!!
Notice that now a safe sequence, P1-P2, ‘does exist, but the
scheduler 1is wunable to follow the only safe sequence because of

its FIFO awakening policy.
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To solve this problem, the scheduler has at least two

alternatives:
1. wake up all processes blocked by the resource when that

resource is available;

2. sort the processes, and select the relatively first
blocked process in the safe sequence to wake up when the
resource becomes available;

Each of these methods eliminates the possibility of causing all
safe sequences to be rejected by improper block/awaken priority
policy. This is accomplished, however, at the expense of

efficiency because more work has to be done by the scheduler.
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6. Conclusions and Suggestions
This final section concludes the discussion of Habermann's

algorithm for deadlock avoidance and suggestions for possible

improvements on it.

Improvement in concurrency, made in section 3, 1is based on
the fact that processes are able to provide more information,
that 1is, more approximate information, about their requirements
for resources at run time. If the processes cannot do so, and are
only able to provide the "global maximum claims"™ then our
improved system would degenerate to the original one. In this
sense, the new system is compatible with the original one. It 1is
interesting, however, +that in modular programming, processes may
more easily provide the local maximum claims than the "global"
maximum claims. It appears impossible to avoid deadlock
dynamically if processes are unable to provide any information

about their resource requirements before making requests.

One suggestion for the practical implementation of the
concurrency-improved system is to weaken the <criteria of
process's up state and down state in a 1local block. In other
words, allow a process running in a local block to declare its
"local maximum claim" at any point between the beginning point
and the wup point of the local block, where it makes its first
request. Further, allow a process running in a local block to
report "entering down state" at any point between the down point
and the completed point, where it makes the last release in the

local block. Obviously, the overhead of this proposal lowers the
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concurrency of the system, but it seems far easier to implement

than does the theoretical method.

The principle of improving the efficiency does not depend
upon any specific sorting algorithm. For +this reason, this
principle may be applied to any sort algorithm that may be
developed in the future. Essentially, this study, in fact,
suggests only a "partial" constructive algorithm for the proof of
the existence of a safe sequence. Until a better
non-constructive algorithm is developed, it is hoped that what

this study proposes will prove useful.

Either the improvement in concurrency or efficiency
implicitly suggests that +the further work in this area will
involve the specification of process, that is, a proper
specification of process in some form may effectively direct
processes to provide the information about resource claims needed
by system, and consequently, reduce the difficulty in deadlock

avoidance.
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