THE BRIDGE FROM NON-PROGRAMMER
TO PROGRAMMER

Jeffrey Bonar¥*
Elliot Soloway¥#*

COINS Technical Report 83-18

¥Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts, 01003

¥¥%¥Department of Computer Science
Yale University
P.0. Box 2158

New Haven, Connecticut 06520

Appeared in Proceedings of the National Educational Computing Conference,
1984

This work was supported by the National Science Foundation under NSF Grant
SED-81-12403. Any opinions, findings, conclusions, or recommendations
expressed in this report are those of the author, and do not necessarily
reflect the views of the U.S. Govermment.



Bonar/Soloway Page 1

Abstract

Non-programmers bring to the learning of programming strategies that they have developed to
solve day-to-day problems. Interestingly, programming language constructs often require
strategies that conflict with these non-programming strategies. One can predict quite confidently
that in these situations, novice programmers will have difficulty — and bugs in their programs
will result. In this paper, we present evidence for the existence of natural language speci fication
strategics that novices bring to programming, in the form of abstracts from verbal protocols
taken from novice programmers as they are trying to program. These transcripts highlight the
types the bugs and misconceptions that result when there is a mismatch between the strategies
required by programming language constructs and the strategies that non-programmers bring to

programming.

1. Introduction

Any interesting computerized task soon involves programming. Experience with statistics
packages, word processing, and even microwave ovens shows that we always want our systems to
be able to follow a step-by-step specification involving decisions and repeated actions. Even with
a very intelligent computerized assistant, we would like to give it detailed instructions at an
appropriate level of abstraction.

This ubiquity of programming presents a problem, however. It is widely known that
programming, even at a simple level, is a difficult activity to learn. The seventies saw a
revolution in the way that programming was practiced and taught. The phrase “structured
programming” summarizes a whole new level of attention to the design, implementation, and
testing of computer programs; attention that changed much of the thinking about how
programming should be taught. We are now much clearer about how to teach powerful and
effective programming, but do we know how to make programming maximally available? Do we
really know how to make programmers ubiquitous? Apparently not:

Based on ezam grades and on our studies (e.g., Solowsy e al.1982), we estimate that more than
40% of the conscientious students never really understand the rudiments of programming,

What's missing -- what is the way to build a bridge between non-programmer and programmer!

We begin by noting that programming is a cognitive skill, much like understanding math
[Rissland, 1978] or solving physics problems [DiSessa, 1982]. Drawing from recent work in
Cognitive Science, we are using a new methodology for looking at the acquisition of cognitive
skills. There are two key parts to our methodology. First, we look in great detail at the errors
of novice programmers. As experienced. programmers, our tendency is to look at errorful novice
programs only seeking to eliminate bugs as soon as possible. In our work, we have tried to see
what was the specific (mis)information used by the novice to produce the bug. This is quite a



Bonar/Soloway Page 2

powerful view: novice programmers have deep and interesting misunderstandings, as you will see
below.

Second, in understanding the novice misunderstandings we try to view the situation in terms of
specific bundles of knowledge possessed by the expert but not by the novice. What we find is
that there is often a level of tacit knowledge [Collins, 1978] that is not explicitly taught, and
often not even explicitly acknowledged.

In this report we present evidence for one major source of difficulty: current programming
languages often do not accurately reflect the problem solving strategics that non-programmers
bring to programming. That is, non-programmers have developed natural language strategics in
order to cope with day to day problems. While experienced programmers have learned to modify
or replace these strategies with ones more appropriate to computer programming, novices are
often confused at this very basic level. Step-by-step natural language specification provides
powerful intuitions for novice programmers using a programming language. We hypothesize that
these intuitions take the form of bundles of knmowledge we call plans - regular but flexible
techniques for specifying how to accomplish a task. Programming knowledge also involves plans
[Soloway et al, 1982} [Waters, 1979]. While an individual programming language plan may have
many lexical and syntactic similarities to a corresponding natural language plan, the two plans
-often have incompatible semantics and pragmatics. Many novice programmer’s misconceptions
derive directly from these incompatibilities.

In this brief report we will show examples of natural language plans and programming
language plans. We will then analyze transcripts of! thinking aloud protocols taken with novice
programmers who use natural language plans while attempting to write a computer program.
We conclude with a brief discussion of the implications of this work for teaching programming.

Before proceeding, a methodological point is worth making. While the theoretical framework
in this paper‘— and its conclusions -~ are the same as those in other papers we have published
(e.g., Soloway et al. 1982, Soloway et al. 1981a), there is a key methodological difference between
this paper and the others: previously we used statistical arguments based on written tests with
large numbers of programmers as evidence for/against our hypotheses; however, in this paper we
use anecdotes from thinking aloud protocols taken from individual programmers as evidence for
our hypotheses. That is, in previous papers we have made claims about what we think our
subjects were thinking. Statistical evidence is an indirect test of these sorts of claims. Verbal
reports of subjects as they are programming provide a more direct window into the thought
processes of our subjects. Thus, this paper provides the needed closure for our hypotheses: we
have converging evidence from statistical-type group studies and from verbal reports with
individual programmers that support our theory of the role of programming plans and the role of
natural language plans (i.e., pre-programming plans) in programming.



Bonar/Soloway Page 3

é. Natural Language Plans and Programs
Consider the following problem:

Problem 1. Please write a set of explicit instructions to help a junior clerk collect payroll
information for a factory. At the end of the next payday, the clerk will be sitting in front of the
factory doors and has permission to look at employee pay checks. The clerk is to produce the
average salary for the workers who come out of the door. This average should include only those
workers who come out before the first supervisor comes out, and should not include the
supervisor’s salary.
The following natural language specification for this problem, written by one of our subjects, is
typical:
1. Identify worker, check name on list, check wages
2. Write it down
3. Wait for next worker, identify next, check name, and so on
4. When super comes out, stop
5. Add number of workers you've written down
6. Add all the wages
7. Divide the wages by the number of workers
There are several natural language specification plans used here. Note how steps 1 through 4
specify a loop: steps 1 to 3 describe the first iteration of the loop, indicating repetition with the
phrase “and so on”. Step 4 adds a stopping condition, assuming that this condition will act as a
demon, always watching the action of the loop for the exit condition to become true. The
specification also assumes canned procedures for counting inputs, step 5, and for summing a
series of numbers, step 6. Note however, that these two procedures are both denoted with the
word “add”.

Now focus on the two actions performed in steps 1 and 2. The plan to describe these actions is
get a value (step 1), and process that value (step 2). This plan is nearly universal in this sort of
description. Unfortunately, many programming languages support a far less natural plan:
process the last value, get the nezt value. Below, we discuss this problem in detail.

3. Examples of Novice Programming Difficulties
To show how the conflict in strategies effects novice programmers, consider a problem
analogous to problem 1, but simpler and explicitly of a programming nature:

Problem £ Write a program which repeatedly reads in integers until it reads they integer
99999. After seeing 99999, it should print out the correct average. That is, it should not count
the final 99999.

In Pascal, a popular novice programming language, the preferred correct solution to Problem 2 is:



Bonar/Soloway Page 4

PROGRAN Problem_2 Expert;
VAR Count, Total, New : INTEGER;
BEGIN
Count := 0; Total := 0;
Read (New);
WHILE New <> 99999
DO BEGIN
Count := Count + 1;
Total := Total + New:

Read (Now)
END;
IF Count > 0

THEN writein (’Average =',Total/Count)
ELSE writain (’No dsta.')
END.

Notice the peculiar WHILE loop construction. Because a ¥HILE loop tests only at the top of the
loop, it is necessary to have a Read both above the loop and at the bottom of the loop. Within
the loop we see the plan process the last value, read the next value. This plan is part of the
knowledge used by experienced Pascal programmers. Data we have gathered suggests that novice
programmers do not easily acquire such a plan (Soloway et al. 1982, Soloway et al. 1983).

_ First of all, novices often want the WHILE to have a demon like structure. Consider, for
example, the following transcript:

Subject: How do I get [the WHILE loop]! to do that over again? See, I guess I don't
know, I thought I had it. What happens now, how do I get it to go back? ...
I say to myself, why would it do [the WHILE test] after [the last line of the loop
body]? It seems to me that it would do it as soon as the [variable tested in the
WHILE condition] changes. ...

Interviewer: So how will the WHILE statement behave?

Subject: Again, total guess here, I'm saying the WHILE statement, here's a logical guess
: everytime [the variable tested in the WHILE condition] is assigned a new
value, the machine needs to check that value ...

The subject’s “logical guess” is that the condition in the WHILE loop is being continually tested,
and that the loop will be exited as soon as the condition is true. This is not an unreasonable
interpretation; it is is consistent with the meaning of “while” in English phrases such as “while
you are on the highway, watch for the Northfield sign”. In a group study with novice
programmers, we found that 34% had this type of misconception about the test in the WHILE loop
(Soloway et al [1981a]).

Text in square brackets (“[" and *J") describes items pointed to by the subject. Usually the subject’s actual words
were “this”, “here”, or something similar. The brackets and words were used to make the transcripts more readable.



Bonar/Soloway Page 5

-Novices also try to implement the get a value, process that value plan, even though they are
programming in Pascal. Consider, the following novice program fragment,

VAR Count, Total, I : INTEGER;

BEGIN

Count := 0

Total := 0

¥riteln (’Enter integer’)

Read (I)

WHILE I <> 99999 DO
BEGIN

Count := Count + 1

Tota! := Total + I

Read €3> the subject has crossed out this line out
END after writing it down

and a transcript of the subject discussing this program:

Subject: If 1 put a number in [at the top of the loop), it comes through [the loop body].
I don’t think I want [the inside Read] read again, I want it read up [at the top
of the loop] ... If I read it [at the bottom of the loop body], what's that going
to do for me? It's not going to do anything for me. OK, if I come out of the
‘loop, having entered [a value], finish all [the loop body], then if I read in
another one [points to Read above the YHILE, traces a flow from that outside
Read down through the loop]. I guess what I need to figure out is how do I get
back up here [points to the Read above the WHILE].

The subject wants to put the Read at the top of the loop, making the test in the middle of the
loop. This reflects the get a value, process that value plan. In a separate study Soloway, et al.
[1983] show that a mew Pascal looping comstruct supporting this plan significantly improved
novice and intermediate performance with Problem 2.

Conflicts and problems can occur even when the novice appears to fully understand a program
fragment. Consider, for example, the following novice. She is writing pseudo-code for the
following problem:

Problem 8. Write a program which reads in 10 integers and prints the average of those integers.

After working on the problem for a few minutes, she had written the following:

Repeat
(1) Read s nusmber (Num)
(1a) Count := Count + 1
{(2) Add the number to Sum
(2a) Sum := Sum + Num
(3) until Count.:= 10
(4) Average := Sua div Nua
(5) writein (‘average = °, Average)



Bonar/Soloway Page 6

Leaving aside some inconsistent pseudo-code motation, this is correct. At this point, the
interviewer asks whether the statement on line 1a is the “same kind of statement” as that on line
2a. The subject seems to understands the role these two lines play in the program. She also
recognizes the need for other associated statements to carry out those roles. Nonetheless, it
appears that she thinks the Pascal translator knows far more about these roles than it does:

Interviewer: Steps 1a and 2a: are those the same kinds of statements?
Subject: How’s that, are they the same kind. Ahhh, ummm, not exactly, because with

this {1a] you are adding - you initialize it at zero and you're adding one to it
[points to the right side of 1a], which is just a constant kind of thing.

Interviewer: Yes

Subject: [points to 2a] Sum, initialized to, uhh Sum to Sum plus Num, ahh - thats
[points to left side of 2a] storing two values in onme, two variables [points to
Sum and Num on the right side of 2a). Thats [now points to 1a} a counter,
thats what keeps the whole loop under control. Whereas this thing [points to
2a], this was probably the most interesting thing ... about Pascal when I hit it.
That you could have the same, you sorta have the same thing here [points to
la], it was interesting that you could have, you could save space by having the
Sum re-storing information on the left with two different things there [points
to right side of 2a], so I didn't need to have two. No, they’re different to me.

Interviewer: So -- in summary, how do you think of 1a ?

.Subject: I think of this [point to 1a] as just a constant, something that keeps the loop
under control. And this [points to 2a] has something to do with something
that you are gonna, that stores more kinds of information that you are going
to take out of the loop with you.

This interview explains a result we have from an earlier written study. We found 100% of
novices working on problems like 2 and 3 were able to correctly write the counter variable update
statement (“Count := Count + 1”), while only 83% could correctly write the running-total
variable update (“Sum := Sum + Nun®) [Soloway et al, 1982]. Why this difference with
statements syntactically and semantically so similar? With this transcript, we now have some
insight into the problem. Our subject seems to be keying on the role -- the pragmatics - of the
statements, noticing but not concentrating on the syntactic and semantic regularity. The
running-total variable update is more difficult because it “stores information that you are going
to take out of the loop with you”. That is, it has implications outside the loop body.

4. Conclusions

The implication of these results is not simply to make syntactic fixes to programming
languages. Instead, we are suggesting that the knowledge people bring from natural language has
a key effect on their early programming efforts. Shneiderman and Mayer [1979] have proposed a
model of programmer behavior based on language specific knowledge (which they call syntactic)
and more general programming knowledge (called semantic). Our results suggest that there is a



Bonar/Soloway Page 7

;.hird body of natural language step-by-step speci fication knowledge which strongly influences
novice programming behavior.

Miller [1981], Green [1981), and others have previously looked at step-by-step natural language
specifications. They concentrated on looking at the suitability of natural language for directing
computers. Based on the ambiguities and complexity limitations of natural language, they
concluded it would be quite difficult to program in natural languages. Here, we are not
contradicting that result, but extending it. We are finding that novice programmers do use
natural language, even when they think they are using a programming language.

There are several implications of this work for programming education. First, we note that the
power of the notions from structured programming will only be useful to students who have
mastered the level of pragmatic and tacit programming knowledge highlighted in this paper. We
need to address the problems students have very early in their programming education. The
errors discussed here are barriers for many programming students. Only after a student has
mastered writing a simple loop, for example, is he or she ready to see the power of a top-down
design involving several loops.

We are beginning to explain many novice programming errors through the idea of natural
language step-by-step specification plans. The quality of these explanations has proved
.important in the development of a tutor to do intelligent computer assisted instruction of
. 'programming [Soloway et al., 1981b]. In the future, we hope to extend the tutor to understand a
stylized form of these natural language plans.

Though use of our plans cannot yet be fully automated, such plans can still play a part in a
programming curriculum. As we stated earlier, the knowledge contained in such plans is usually
tacit. Programming teachers, we feel, have much to gain by making that knowledge as explicit
as possible as early as possible. We are presently developing an introductory course where
students are taught both natural language step-by-step specification plans and programming
plans from the beginning. Not only is the information in plans made explicit, but the differences
between similar plans for different languages, in particular the natural language and the
programming language being studied, can be made explicit. (These ideas are developed fully in
Bonar [1983].)

Fipally, what is the key to cognitively appropriate novice computing systems! Our work
suggests that we need serious study of the knowledge novices bring to a computing system. For
most computerized tasks there is some model that a novice will use in his or her first attempts.
We need to understand when is it appropriate to appeal to this model, and how to move a novice
" to some more appropriate model.



Bonar/Soloway | Page 8

5. References

Bonar, J., K. Ehrlich, E. Soloway, and E. Rubin, (1982) Collecting and Analyzing On-Line
Protocols from Novice Programmers, in Behavioral Research Methods and Instrumentation,
May 1982.

Bonar, J. (1983) Natural Problem Solving Strat-égiw and Programming Language Constructs:
Conflicts and Bridges. Ph.D thesis in preparation.

Collins, A. (1978) Explicating the Tacit Knowledge in Teaching and Learning, presented at the
American Education Research Association (also Bolt Beranek and Newman Technical Report
3889).

DiSessa, A., (1982) Unlearning Aristotelian Physics: A Study of Knowledge-Based Learning,
Cognitive Science, 6:1 (January-March), pp. 37-75.

Du Boulay, B. and T. O’Shea (1981) Teaching Novices Programming, in Computing Skills and
the User Inter face edited by M.J. Coombs and J.L. Alty, Academic Press, New York.

Green, T.(1981) Programming As a Cognitive Activity, in Human Interaction With
Computers, edited by C. Smith and T. Green, Academic Press.

Miller, L. A. (1981) Natural language programming: Styles, strategies, and contrasts, JBM
Systems Journal, 20:2, pp. 184-215.

Rissland, E.(1978) The Structure of Mathematical Knowledge. Cognitive Science, 2:4
(October-December 1978). :

Shneiderman, B.and R. Mayer (1979) Syntactic/Semantic Interactions in Programmer
Behavior: A Model and Experimental Results, International Journal of Computer and
In formation Science, 8:3, pp. 219-238. '

. Soloway, E., J. Bonar, B. Woolf, P. Barth, E. Rubin, and K. Ehrlich (1981a) Cognition and
Programming: Why Your Students Write Those Crazy Programs, appeared in Proceedings of the
National Educational Computing Conference, pp. 206-219.

Soloway, E., B. Woolf, E. Rubin, J. Bonar, W.L. Johnson, (1983) MENO-II: An Intelligent
Programming Tutor, Journal of Computer-Based Instruction, in press.

Soloway, E., K. Ehrlich, J. Bonar, J. Greenspan, (1982) What Do Novices Know About
Programming?, in Directions in Human-Computer Interactions, edited by B. Shneiderman and
A. Badre, Ablex Publishing Company.

Soloway, E., J. Bonar, and K. Ehrlich (1983) Cognitive Factors in Looping Constructs,
Communscations of the ACM, to appear.

Waters, R. C., (1979) A Method for Analyzing 'Loop Programs, IEEE Transactions on
So ftware Engineering, SE-5:3, May.



