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Neural Control of Prey-Catching and Predator Avoidance Behaviors in

Anuran and Urodele Amphibians: Evolving Concepts

J.-P. Ewert

Neuroethology and Biocybernetics Laboratories, FB 19
University of Kassel (GhK)
D-3500 Kassel, Federal Republic of Germany

During the last decade our working group has comparatively
investigated the control of prey-catching and predator avoidance
behaviors in anuran and urodele amphibians {e.g., Bufo bufo, Rana
temporaria, Salamandra salamandra) through an neuroethological
approach. In particular, we have analyzed the question of how neural
networks - or rather neuronal assemblies - participate in stimulus
recognition and localization and select the appropriate motor
response (for detailed reviews see Ewert 1983, Ewert et al, 1983a

and b).
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A Preliminary Basic Concept

Quantitative ethological experiments using visual moving dummies
have shown two things: (1) The prey-catching or predator avoidance
activity in amphibians is closely correlated with the stimulus
parameters; i.e., if a moving object has neither prey nor predator
features the animals do not respond. Hence, the releasing value of a
stimulus is expressed by the appropriate behavioral activity. (2)
Toads, frogs, and salamanders are able to distinguish
configurational features. Prey-selection by Bufo bufo, Rana
temporaria, and Salamandra salamandra shows some common basic
properties. For example, the investigated species exhibit the
“worm/antiworm phenomenon” which is invariant with regard to changes
of other stimulus parameters, such as the movement velocity. The
main genera- and species-specific differences are concerned with the
response to square dummies in comparison with the responsiveness to

worm-1ike and antiworm-1ike stimuli of comparable edge length.

These and other data lead to the concept that sensory decisions
precede motor decisions (for detailed discussions see Ewert et al.
1983a; cf. also Ewert and Inst. Wiss. Film, 1982). Therefore, we
postulate a sensory pattern recognition system (SPRS) and a motor
pattern generation system (MPGS). Both may be connected by a
sensorimotor interface consisting of an interneuronal network acting
as command system (CS). In amphibians, the feature extracting

characteristics of the SPRS with regard to prey and predator are not
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determined by the MPGS as claimed by Grisser and Griisser-Cornehls
(1976; for discussion see Ewert, 1983) - according to a principle:
"how can 1 know what I see, before I am responding”. As a result of
initial localization and recognition processes, toads (i) program a
turn, or (ii) plan a route before they start to move, to name just

two examples (Lock and Collett 1979).

In the following, concepts for neuronal correlates of prey/predator

recognition will be discussed on the basis of experimental data.

Concept A

The classical concept A (Fig.lA) of prey/predator recognition in
frogs has been introduced by Barloﬁ (1953) and Lettvin et al.
(1959). Due to the different sizes of excitatory receptive fields of
retinal ganglion cells, it is suggested that class R2 neurons
(ERF=4-6deg diam.) are specialized for the recognition of prey (“bug
detectors”) and class R4 neurons (ERF=12-16deg diam.) for the
identification of predators ("enemy-detectors”). Ingle (1982, 1983)
has adopted this concept and claims that both types of detector feed
in separate channels to orienting and avoidance turn command systems

which in turn are connected with the MPGS.

This concept is contradicted by quantitative ethological and

neurophysiological results obtained in toads and frogs: (1) The

Ewert

configurational prey and predator features are not coded by a single
class of retinal ganglion cell. {(2) In contrast to the prey-catching
behavior, R2 neurons are activated if both prey and a structured
background (Julesz-Pattern) are moving simultaneously. (3) Provided
that prey/predator recognition would be based on retinal functions
and mediated by specialized ganglion cells (Lettvin et al. 1959)
that feed in specific separate channels (Ingle, 1982) to the
appropriate MPGS, the spectrum of such a pattern recognition system
would be a priori extremely limited - which is actually not the case

(Ewert and Kehl, 1978).

Concept B

Another concept B (Fig.1B) based on single recordings from neurons
of the central visual system of toads, frogs, and salamanders in
relation to neuroanatomical studies, brain stimulation and brain
lesion experiments overcomes the simple “channel idea": (i) Visual
information, passing the retina, is further processed in feature
analyzing centr:i neurons; (11) prey/predator recognition is a
result of interactions between those neurons. Hence, retinal class
R2, R3, and R4 neurons can be regarded as lower-order neurons acting
as primary filters for visual input with respect to processing of
different stimulus parameters, such as visual angular size, angular
velocity, and stimulus background contrast. pifferent combinations

of outputs of retinal ganglion cell classes feed into higher-order

gl gt g 1_gt_gi_gd gt g gt 58 g0 5t 4t 5t i ' .




Ewert

-5-

neurons, whose properties are also influenced by intrinsic circuits.
Certain combinations of excitatory and inhibitory outputs of these
feature analyzing neurons determine the properties of spezialized
neurons. In other words, the latter express certain kinds of

interactions of neuronal networks.

In toads and frogs, we have didentified higher-order neurons as
tectal class T5(1), T5(3) and thalamic TH3 neurons, and spezialized
neurons, e.g., as tectal class T5(2) prey-selective neurons. Class
T5(2) neurons are characterized by the property that their activity
in response to a moving stimulus resembles the probability that the
stimulus fits the prey-category. In the fire salamander, class T5(2)
neurons have not been identified; here, the activity of T5(1)
neurons shows best correlation with the prey-catching activity in
response to configurational moving stimuli (Finkenstidt and Ewert
1983a).

Concept B has been verified by a variety of neurophysiological
tests, and the proposed neuronal connections were confirmed by
various neuroanatomical methods in Bufo, Rana, and Salamandra (Ewert
1983, cf. also Weerasuriya cit. in Ewert et al. 1983b)}. For example,
following transsection of the interconnections between thalamic and
tectal filters by knife cuts or after micro-injection of the
axon-sparing neurotoxin Kainic acid or Ibotenic acid into the caudal
dorsal thalamus toads, frogs, and salamanders show a special kind of

agnosia: They are unable to identify predators and respond to

Ewert

anything moving with prey-capture, irrespective of the size and
configuration of the stimulus. Recent lesion experiments in toads
with Ibotenic acid suggest a topography between the postero-lateral
nucleus - were the TH3 neurons are located - and corresponding parts
in the visual field were agnosia occurs (Schiirg-Pfeiffer, in prep.).
Interestingly, there is a correlation between (i) size of the
Tesion, (ii) field size of agnosia in the visual field, and (ii{)
repair of prey-recognition - as well as a rudimentary return of
escape behavior (Ewert et al. 1983a). With regard to (iii) it must
be emphasized that functional recovery of configurational
prey-selection resembles only a rough repair; the pre-operative

degree of selectivity will post-operatively never be reached.

There is evidence to show that inhibitory effects of neurons from
the caudal dorsal thalamic visual map on topographically
corresponding neurons of the tectal map provide the basis for at
Teast two important properties of the visual system: (1)
configurational stimulus selection, {2) extraction of a stimulus
from its background and, along with this, the distinction between
object motion and self-induced motion, due to inhibitory surround
effects (Burghagen and Ewert 1983). Furthermore, recent lesion
studies in toads and salamanders with Kainic acid or Ibotenic acid
show that the role of the "inhibitory thalamic network" is twofold
in this context: (i) certain networks of the caudal dorsolateral
thalamus determine the functions described for the entire visual

field of the contralateral eye; (ii) certain networks of the
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anterior dorsolateral thalamus, in addition, provide an emphasis of
these functions for the binocular visual field providing some kind
of “central fovea". These functions are subject to modulation
through learning which involves the telencephalon, e.g., by

combining visual and olfactory cues (Ewert 1983).

In Salamandra salamandra, neurons of the caudal dorsal thalamus
appear to determine the properties of prey-sensitive tectal 75(1)
neurons. In Bufo and Rana this structure is parcellated into a
postero-central (pc) and a postero-lateral (pl) nucleus, the latter
obviously determining the prey-selective T5(2) neurons. Genus- and
species-specific variations in prey-selection, too, may depend on
particular properties of feature detectors and their specific

subtractive interactions.

In a recent study by Finkenstddt et al. (in prep.) brain activity of
-o0ads was radioactively labelled with (14C)206 during the toad's
behavior in response to 2 worm-like, an antiworm-like stripe, or 2
large moving square object. Especially the central layers of the
optic tectum of an ipsilaterally enucleated monocular toad showed
strong radioactive labelling in response to the worm configuration;
but the antiworm configuration was effective too to some extent,
presumably as a result of activity in axon terminals from thalamic
cells that form inhibitory synapses with tectal neurons. The pl
nucleus of the caudal thalamus of an ipsilaterally enucleated

monocular toad showed relatively strong (14C)20G uptake in response

b gt gt gt gt gt gt gt gt 5t gt g
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to the antiworm configuration of a stripe or to a large square
stimulus, but less to the worm-configuration. Following unilateral
lesions of the pl nucleus of the thalamus, the tectum ipsilateral to
the lesion showed strong radioactive labelling in response to an
antiworm-like moving stripe, whereas labelling in the opposite

tectum was comparatively weak.

In concept B we suggest that an assembly of T5(2)} neurons is
involved both in visual pattern recognition and turn commanding. In
recent recording experiments from behaving toads it could be shown
that activity of T5(2) neurons in response to prey precedes and - so
to speak - predicts - the orienting turn, and these neurons are also
activated during the turning movement. More specifically, neuronal
burst activity is correlated with the movement pattern of the toad.
The neurons also discharge during the toad's behavior if the prey
stimulus has disappeared (Schirg-Pfeiffer in prep.; cf. also Megela
et al. 1983). These results suggest positive feedback from the motor
system to T5(2) neurons. Hence, class T5(2) neurons appear to be
involved in (i) prey-recognition, (ii) turn commanding, and (iii)

motor-pattern generation.

Concept C

According to the results of previous electrical brain stimulation

experiments, it seems unlikely that activity of just one T5(2)

i § t i
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neuron is sufficient to elicit an orienting turn toward prey (Ewert
1983). We assume that several adjacent T5{2) neurons feed into the
corresponding motor system suggesting that adjustment of turns is
due to the overlapping nature of their relatively large excitatory
receptive fields (ERF=27deg diam.). However, it may also be possible
that class T5(2) neurons are mainly involved in prey recognition,
whereas tectal class T7 neurons - with their very small receptive
fields (ERF=4deg diam.) - provide a substrate of stimulus
localization (Ewert et al. 1983a). In extension of concept B the
concept C (Fig.1C) suggests class T5(2) and T7 neurons as elements
of the command system for the turn toward prey. The motor system,
functioning like an AND-gate, may require simultaneous optimal input
of different classes of tectal neurons which are serving as command
elements according to the definition introduced by Kupfermann and
Weiss (1978). Presumably, also tectal class T4 wide-field neurons
belong to command elements and fulfill “arousal function® (Ewert et
al. 1983a). It is plausible to assume that other combinations of
outputs of tectal neuron classes provide command systems for other

behavioral components of the prey-catching sequence (Ewert 1983).

The property of class T7 neurons with regard to edge localization
has been described in a recent neuroethological study. In response
to a black stripe moving worm-like against a white background, toads
fixate and snap the leading edge of the stimulus (Ingle and McKinley
1978). If, however, the stimulus background contrast is reversed,

the animal clearly prefers the trailing edge and very often snaps
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behind the stimulus (Burghagen and Ewert 1982). Hence, for edge
localization, a change from white to black is the significant cue.
We have recorded class T7 neurons in response to worm-like stripes
traversing the center of their ERFs in horizontal direction and have
found that toward a black stripe moving against white background a
neuronal burst occurs at the leading edge of the stripe, whereas the
trailing edge remains unresponded. If the stimulus background
contrast is reversed, however, maximal neuronal activity is elicited
by the trailing edge of the stimulus; in many cases the leading edge
elicits no response at all {Tsai et al. 1983). From a psychophysical
point of view, toads may approach to some extent a similar
figure/ground problem as we do when we have to decide between a

"goblet" or "two silhouetted faces" in the drawing by Edgar Rubin.

The command system for the avoidance turn in response to a predator
may consist of combinations of outputs of class TH3 and T15(1), or
TH4 and T5(1), or TH4 and T7 neurons. In these cases TH3 (or TH4)
neurons would fulfill recognition functions and tectal T5(1) or T7
neurons {with their smaller receptive fields) localization
functions. Further combinations of outputs of thalamic and tectal
neuron classes may provide command systems for other motor

patterns.

Open Questions
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Where are the efferent targets of the proposed command elements? We
have injected HRP into the tongue muscles of toads - which are
specific effectors of the snapping response - and have labelled the
hypoglossal motor neurons. By injection of HRP in and arround this
nucleus, pyramidal cells, ganglionic cells, and pear-shaped cells
could be backfilled in layer 6 of the optic tectum; furthermore,
neurons in the caudal dorsal thalamus have been 1labelled
{Weerasuriya and Ewert 1981). The question of correlation between
physiologically described neuronal classes and anatomically
jdentified cells is still open and constitutes one of the main

research topics of our group.
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He-®., Zorchers: SINGLE UNIT RECORDING IN THE TOAD’S OFTIC TECTUM DURING

PREV-CATCHING

A

*z2 aptic tectum and the thalamic~pretectal (TF) regiaon f anurans
‘frogs and toads! are impcortant centers for neuronal processing of
“16ual stimuli that are behavicrally relevant for prey/predator
decisions (Ewert., 1983). Tectal neuronal cell types (class TS5(2)) show
cptimal responses to stimuli which sigmfy possible prey over those that
reprezent possible predators. Other tectal cell types (e.g.. class

TE
R

+:  show no such configurational selectivity, while same
thalamic-pretecta! cell types {@.g.. class TH3) exhibit sensitivity to
sredator~like stimuli. Results from recording, brain stimulation, and
wair  iesion experiments led Ewert (1974, 1983) to propose a medel of
zonfiguratinnal prey/predator recognition in tne toad’s visual system,
whereby  the response characteristic of tectal T5(2) neurcns is
determined by inhibitory i1nput from the thalamic-pretectal region. It is

assumad that TS(L) neurons are "command elements® within a system that

c2leases prey-capture (Ewert et al., 1983,

"ost  of  the neurophysiological werk on tectal response properties has
bean pecformcd on paralyzed animals., A precondition for measurements in
#ath case 15 a mood of the experimental animal which is adequate to that
i the zorrecponding situation in nature. An immobilized animal cannot
indiTete  its ool as a freely moving animal can. For a behavior program
tr ba actilated -egponge thresholds of rorresponding neurons must be

2rczeded.  Theitr  ievel mav be iafluenced by the mativation of the

E§=ﬂ~w E”_“’ﬂ E"”W Ef""ﬂ E"Eﬁ Ef-*"; E?——~;
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@zperimental animal., In an 1mmobiliceq animal neurcns for the release of
2 kehavior mode may have a level o+ response activity below the
threshold for triggering a behavioral response. Certain neurons might be
also partly or totally inhibited due to the process of paralysation

iEwert, 19901,

In the last years we developed techniques which allow the simultaneous
study of neuronal and behavicral response in freely moving toads, Thus,
it is possible to closely investigate the gquestion of caincidence
between prey catching behavior and neuraonal activity in the visual

system (Ewert and Borchers, 1974; Borchers, 1980, 1982).

Recently we recorded neuronal and behavioral responses to @oving
configurational stimuli in unrestrained behaving toads with lesions of
the TP-region (Megela et al., 1983). These animals show extremely short
prey-catching response latencies and stereotyped predictable responses
to moving visual stimuli. They behave like "iaput/output” automata
(Ewert, 1983}, Thus. they provide an excellent opportunity to examine

the correspondence between neuranal activity and prey-catching behaviors

without habituation effects.

In the experiments the toads were placed in a large cylinder and their
responses to moving contrasting behaviorally relevant stimuli of various

sizes and shapes were observed.

The responses of retinal neurons located in superficial tectal layers
were recorded. The respanse properties of these neurons were similar to

those previcusly described for both paralyred and normal freely-moving
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=sadz, There was no strict correlation between neuronal activity and
vigual guided behavior, that is, bursts of activity from these neurons

di4 not necessarily “predict” a subsequent behavioral response.

T2(1! neurons were recorded from deep periventricular tectal layers. As

in the intact animals these T2(1) neurons had frontal visual excitatory
~eceptive fields of about 70-90deg diameter, but could show in the
Tr-lesioned animal varying rates of ongoing spontanecus activity. T2(1)
neurons exhibited no configurational selectivity to any of the stimuli
presented. These neurcns did not respond during spontaneous
non-visual ly-guided movements of the animal. Moreover, there was no
relstionship between neuronal discharge and prey-catching movements of
the toad in response to a visual stimulus, i.e., high neuronal activity
did not necessarily coincide with a motor response of the toad (Fig.1).

The activity of these neurons seemed to resemble the alertness of the

tcad which was fluctuating over time.

The activity from tectal class 4 neurens located in the periventricular
‘eyers was recorded. The receptive fields of these neurons covered the
artira contralateral visual field. Some neurons were spontaneously
active., These neurcns fired during both active and passive movements of
the toad: however, higher rates of neuronal activity were seen when the
Load t:irned 1n response to a visual stimulus than during spontanecus
turning., !'n  either case, neurcnal activity did not necessarily precede

bt eares or 3napping movements.

TTenewrars wevsw sctivated both by moving visual stimuli and during the

subsequant movements of the animal, suggesting some kind of feedback
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which keeps the neuron active during the period of turning behavior.
when a stimulus was moved through the receptive field and the toad
responded with a prey-catching movement, the frequency of neurconal
activity was greater than that cbserved when the toad did not
behaviorally respond to the same stimulus (Fig.2). Thus, relatively
high neuronal activity coincided with behavioral responding (Fig.2). The
activity preceded and, so to speak, *predicted” a subsequent turning
movement. We suggest that these neurons fulfill properties of command

elements according to the concept proposed by Kupfermann and Weiss

{1978).

Tectal class T8 neurcns recorded in the deeper layers were spontanecusly
active. They showed no direct visual input, although their firing rates
seemed to be influenced by visual stimulation. The activity of these
neurons coincided with any movements by the toad (e.g., turning,
walking, snapping), whether the movement was elicited by a visual
stimulus or occured spontanacusly (Fig.3). But this kind of “pre-motor”
activity showed no specificity with regard to a motor pattern. In any
case the neuron continued discharging bursts during the toad’s

aoveaments, but after the movement the neurcons showed clear

pastexcitatory inhibition (Fig.3).

The basic results of this paper are in accordance with previous
investigations of visual neurons in the intact animal (Borchers, 1982;
Ewert, 1983). The "TP-preparaticns” used in this study allowed to more
closely study the question of coincidence between prey-catching behavior

and neuronal activity. In the activity of retinal ganglion cells there
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15 no correlation between neuronal activity and behavioral response. ln
tectal <class T2(1) and T4 newons strong neuronal activity not
necessarily precedes prey-catching. But their general activation seems
to be linked to some extent with the alertness of the toad. Tectal class
S reurons showed a clear correlation between the frequency of neuronal
activation released by a moving visual stimulus and a subsequent
orienting (turning) movement. Here, during the traverse of the receptive
field, increased activity preceded - and thus predicted - the subsequent
behavioral response. These results support the hypothesis that class T5
neurons play an important role in a command system for prey-capture
(Ewert et al., 1983). In this context it 1s interesting to note that
these neurons were also activated during the movement suggesting some
kind of feedback which keeps the neurons active during the time of
turning. This property is resembled by the spontaneously active class T8
neurons: They exhibit premotor activity, are activated during the phase
of a movement, and show a period of postexcitatory inhibition with

cessation of the movement.

ince the neuronal discharge monitors general motor activity, it may be,
that T8 neurons are part of a feedback system. They could receive the
information about each movement and then serve to converge the inputs
back to an appropriate locus. Since the discharge precedes and, so to
speak, predicts the behavioral activity, the question arises if these
neurons are related to elements in a feedforward branch of a system in
which certain motor patterns are controlled by fixed discharge
patterns. We can observe that T8 neurons fire with irregular

intervals. The frequency 1s fluctuating and seems to be modulated by an

SRR N I D T D R R B R A SR N AR B
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cverall exczitation level of the argmal. depending on the stimelus
s1tuation. The neurona)l dischérge passes a max)aum before any Linc of
movement; which points to a Lhreshold function. The enhanced discharge
before movements may be reiated to facilitation of subsequent behavioral

patterns (Wurtz and Goldberg, 1972).
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Fig.1. Activity of a class T2(1) neuron during traverse of the ERF with
a moving visual stimeius (s): high discharge frequency is not
necessarily correlated with a turning movement (m). The computer
print-out shows the pattern of action potentials and the corresponding
interspike frequency time histogram (Borchers, 1982). The horizontal
lines indicate stimulus (s) and behavior events (m) calculated from a
frame-by~-frame analysis.
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Fig.3. Spontanescusly active class T8 neuron; the burst precedes a
Fig.2. Activity of a class T5 neuron; increased activity during snapping response (m) taward a moving mealworm; note the subsequent
stimulation (s} precedes a turning response (m}. silent period.
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1. INTRODUCTION

Within the amphibian brain the optic tectum is usually regarded

as the main center for prey recognition. Electrophysiological
recordings from this part of the brain have revealed the existence
of groups of neurons which show different responses to different
types of visual prey dummies. The essential variables of prey
dummies are: size, shape, velocity, visual contrast, orientation,
direction of movement (See Griisser and Grilsser~Cornehls, 1976).

In many publications the characteristic differences between re-
sponses of tectal cells to rectangular visual stimuli of variable
configuration are presented. Fig.1 shows the example of the "T5.1"
and "T5.2" cell types in the tectum of Bufo bufo described by Ewert
and von Wietersheim (1974). Whereas in both types the rectangle
measuring 29« 8° and oriented perpendicular to the direction of
movement (V) elicits the weakest response, TS.1 prefers the square
(S) measuring 8°%8° to a rectangle measuring 8°x 2° and oriented
parallel to the direction of movement (H), and TS5.2 shows the op-
posite preference. It is important to notice that neither response
type is, by itself, capable to distinguish between, say, S and H

on the basis of the impulse frequency. Because, as can be seen in
the diagrams, to a given impulse frequency there exist more than
one specific stimulus configuration.

From the same laboratory are the data presented in Fig.2 concerning
response characteristics of tectum cells of Rana temporaria (Schilrg-
Pfeiffer and Ewert,1981). It is interisting to see that in the case
of Rana more "types" are found and that the variation of the re-
sponses within the same type is rather high. If these cells are
assumed to be able to distinguish between different stimuli, the
question arises whether this is done independent from the stimulus
velocity. Fig.3 shows that this is not always the case at least in
the TS5-tectum cells classified by Grilsser and Grilsser-Cornehls
(1976) . The neuron presented in Fig. 3b responds equally (with

2 imp./sec) to a 2°« Zo—square moving at velocities of v;0.4°/sec
and v=20°/sec and to a square measuring 7° x 7° ana moving at 0.18°/

sec.
Further investigations have revealed a still larger number of

response types both with respect to geometric properties and

1 ) i '
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velocity of the stimuli presented to the animal. Fig.4 contains
responses to three stimulus configurations (S: 8° x 8%, H: 8°%x 2°
v: 29« 8°) at three velocities (v=2, 6, 20°/sec) which yields at
least 5 different types.

’

Apart from the difficulty to determine the function of a network
responding in such a complex way the question arises

which neural processes and connections could produce such a re-
sponse complexity. Is it necessary to postulate as many mechanisms
as response types exist ? How complex should a mechanism be in
order to produce the observed behavior ? This question is impor-
tant because several authQrs expressed the opinion that - due to
the complicated behavior- no "simple" network of tectum cells
could exist.

In the following a theoretical neural network is developed in
which known neurophysiological properties of the amphibian
retina and tectum are incorporated and which generates the ob-
served response properties of tectal cells with a minimal amount
of additional assumptions.

The visual stimulation of the optic tectum is mediated by the
retinal ganglion-cells (rgc). Three ways of stimulation are con-
ceivable: (i) direct stimulation of a tectum cell {(t.c.) by a
r.g.c.; (ii) indirect stimulation of a t.c. by another t.c. (sti-
mulated directly or indirectly by a r.g.c.); (1ii) indirect sti-
mulation of t.c. by visual brain regions outside the tectum.

In the first step we try to use only the first way of retino-
tectal interaction within our model. It will become clear that
already under this condition a large number of phenomena can be
explained although not all of them. A largely satisfactory solution
can be achieved by additional use of the second way of interaction.
Extratectal influences are not necessary in order to explain the
observed types, though our model does not exclude them (see dis-
cussion in Sections 4 and S5).

3
§
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2. MATHEMATICAL NETWORK MODEL OF THE RETINA

Since visual stimuli never act directly upon tectal cells but
always only indirectly via retinal g.c., a model about tectal
processes presupposes a model about retinal activities. Within
the literature several mathematical models for the frog and toad
retina have been developed and analyzed (e.g. by Grilisser (1967),
Grilsser and Finkelstein (1967), Ewert and von Seelen (1974),
Butenandt and Giebel (1974), Butenandt (1975)).It is important
to have at hand a model simulating the output activities of r.g.c
of type 2 and 3 (classification following Griisser and Griisser-
Cornehls) as exactly as possible (as a function of the spatio-
temporal stimulus conditions in the visual field). Neurophysio-
logical experiments have shown that the optic tectum is mostly
activated by fibers from these two types of r.g.c., the large
majority (93 %) of them being of type 2.

In the first part of our modeling we present a mathematical model
of the retina generating the responses of r.g.c. types 2 and 3 to
rectangular stimuli of different size, configuration and velocity.
It contains some elements already used in previous models (cited
above) of the retina. In the present state of our model we did

not pay too much attention to represent the retinal network in all
of its detalls (e.g. in which way receptors, horizontal, bipolar
and amacrine cells really interact with each other), many of which
are still unknown, but we were mainly concerned with an exact re-
production of the axonal activity of r.g.c. trying to hold the
number of assumed interaction principles essential for the per-
formance as low as possible. This is in line with our purpose to
keep the model mathematically perspective.

Fig. 5 shows the assumed retinal connectivity. Accordingly the
retina is decomposed into three layers. The light emanating from
the external stimulus and its surround excites the receptors in the
upper layer. These have exclitatory connections to the interneurons
in the middle layer. The lower layer consisting of r.g.c. receives
both excitatory and inhibitory inputs from the interneuron91 layer.

This rough partition is well justified physiologically and morphologi-

cally. More speculative are the following details.

gl g b gt gt g gt gt by
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Since temporally constant light does not elicit a response of
real ganglion cells a high pass filter operation is assumed in
the network which is here put into the receptor layer (though
it may equivalently be represented in the interneuronal layer).
The time-dependent output y(t) of a high pass filter (of first
order) to a time-dependent input x(t) is described by

t - Cle=tty/Ty .
y(t) = ; ox(t’) ((s(t:-t‘)-'r1 e ) at (4}
with a time constant T1 > O and a gain factor a,.
In particular a (temporally) rectangular input
o] if t < t_ and t > t, (2a}
x(t) = °
1 if tg < £ <ty (2b)
results into
o if t < t, (3a)
-(t-to)/'r1
y(t) = e if te £ <ty (3b)
-t/T t./T -t /T
1 17 o’ 71
e (e -e ) if t > ty- (3¢)

(3b) describes the ON-reaction to the leading edge, (3c) the
OFF-reaction to the succeeding edge of the input. Investigation
of spike sequences suggests that the succeeding edge has both
excitatory and inhibitory effects to ganglion cells. Also from
observations in the fish retina (Levine and Shefner, 1977) it
appears possible that the ON- and OFF-components of the high
pass filter output are processed in separate channels. There-
fore we postulate two types of receptors. The ON-receptors (OFF-
receptors) react positively to an increase (decrease) of light
intensity. The ON-receptor produces the part (3b) of y, the OFF-
receptor the part (3c) (multiplied by a - sign). Generally the
operation of these receptors (which may also be conceived as inter-
neurons) consists in transducing the light intensity x(t) into
the output signal

zon(t) = a, max (0,y (t)), (4a)

ZOFF(t)= a, max {0,~y (t)), (4b)
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where y is given by equation (1) and a,, a, denote suitably
dimensioned positive gain factors. The function max describes
the operation of a rectifier

max(a,b) =

a ifazb
(5)

[ b if b > a.

Identifying points in the retinal surface with points in the

two-dimensional visual field by the geometry of light projection
a rectangular coordinate system may be introduced in the retinal
layers identical with that in the visual field (with °© as unity).
Let x(s,t) be the lightintensity at locdtion s in the visual field

and zON(s,t), zOFF(s,t) the activity of the receptors at location
s of the retina.

Two types of interneurons are distinguished. One of them acts ex-
citatory, the other one inhibitory onto the ganglion cells. Their
outputs are denoted by ve(s,t) and vi(s,t) respectively. The inter-
neurons receive local, weighted inputs from the receptors and they
operate as low pass filters with membrane time constant T2 (we
shall not consider a slichtly more complicated model with two
different time constants for the two cell types). Mathematically
this feature is described by

d v _(s,t)
e
T, —&e

= b1e zON(s,t) + bZe zOPF(s,t) - ve(s,t) (6a)

d vi(s,t)

T, —ac—

= b11 zON(s,t) + b2i zOFF(s,t) - vits,t) (6b)
with nonnegative coefficients bkj‘

A possible threshold or rectifier process in this level is neg-
lected.

Like previous authors we assume in the subsequent layer that
the r.g.c. have a farreaching domain of excitation and inhi-
bition by the interneurons. This is concluded from the size of
their receptive fields. Since these fields have an excitatory
center and an inhibitory periphery, at large distances the in-
fluence of the inhibitory interneurons exceeds that of the ex-
citatory interneurons.

An der Heiden/Roth

Let w(s,t) denote the generator potential of a ganglion cell
whose receptive field is centered at location s in the visual
field. By a shift of the coordinate system we may assume s=0
and write w(t)=w(O,t) in stead of w(s,t). The influence of an
interneuron upon a ganglion cell decays with its distance from
the center of the receptive field. As a decay function we choose
a bell shaped Gaussian. Then the total influence of the inter-

neurons onto the ganglion at time t amounts to

-k & -k &F
e(t) = /s (Eeve(§.t) e - Eivi(ﬁ,t) e ) as, (7)
where the integration extends over the whole of the visual field.
Because of the structure of the receptive field the constants

have to satisfy the inequalities

Ee > Ei

Supposing a low pass filter property with time constant ‘1’3 the
membrane potential w of the r.g.c obeys the differential equation

8
and ke > ki' (8)

T, d—g-éﬂ = e(t) - w(t). (9)

Finally the membrane potential has to be transformed into an
axonal impulse frequency. Most simple is the assumption that
the impulse frequency is given by

w, (t) = max(0,w(t)). (10)
This relation presupposes that the threshold of the cell is
normalized to O (say mV).

Equation (10) terminates the description of the retinal network
model. It is possible to choose the parameters in this model in

a way such that not only the time average of the activities of
r.g.c but also their temporal development may be simulated suf-
ficiently close to the experimental data. Fig. 6 shows the average
impulse frequencies computed (by a digital computer) on the basis
of this model as they are typically observed in r.g.c. of type 2
(Fig.6A) and of type 3 (Fig.6B), parameters being given in the
legend. Typical is meant in the sense that data in the literature
(Ewert and Hock, 1972, Grilsser-Cornehls, 1976 (rewiew)) and own
data have been taken into account. There are some differences
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between the laboratories. However, the following characteristics
were universally observed and are adequately reproduced by the
model (compare Fig.6): At a stimulus velocity of about 7%/sec

the retinal class-2 cells respond maximally to squares measuring
4%x 4° (all stimuli are dark rectangles moving at constant velocity
in front of a bright stationary background), class-3 cells respond
maximally to 8% x Bo-squares. Horizontal bars (i.e. rectangles
oriented in the direction of movement) in both types elicit a re-
sponse, which is nearly independent of their length. Among the
stimuli whose longer edge exceeds 6° the class-2 neurons prefer

the horizontal bars. In class-3 cells this holds only for stimuli
longer than about 16°.

Fig.6 only shows the temporal mean of the activity. However, the
relevant input to the tectum is only given by the actual temporal
development and duration of axonal activity. This information is
lost by forming the mean. Indeed our model, as will be demonstrated
in another publication, is able to produce these details sufficient-
ly precisely. This publication will also contain a discussion of
earlier retinal models and also of other not yet explained pheno-
mena in the retina.

t l
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3. MATHEMATICAL NETWORK MODEL FOR TECTUM NEURONS

In 1974 Ewert and von Seelen published a model for tectum activity
on the basis of which they indeed were able to produce the response
characteristics of the two cell types shown in Fig.1, which are clas-
sified after Grlisser and Griisser-Cornehls as T5(1) and T5(2) cells.
The first has the preference S> H> V, the second H> s> V. In fact
they explained the first type by a two-dimensional single layer
network receiving input directly from the external light distri-
bution (here called x(s,t), in their paper y(s,t)). Hence they con-
sidered a model, in which the operation of the retina and of the
tectum were lumped together. In contrast (not in contradiction 1)

we propose here a model, where the operations of these two tissues
are separated and where, consequently,the problem has to be solved,
how the tectum converts the class-2 and class-3 retinal characteristic
presented to it into its own characteristics which are many as

seen from figures 2-4. For the production of the TS (2)-characteristic
Ewert and von Seelen assumed interaction of tectum cells with cells
from the thalamus/pretectum region. It is an open question whether
such extra-tectal interactions are in fact essential to generate
this and other types of tectal response. Recent models by Lara,
Cervantes and Arbib also assume such interactions. As an alternative
we present here a model which only uses intra-tectal interactions,
but nevertheless produces the types shown in the figures. It will

be an experimental problem which of the two possibilities or another
one is adequate.

A rough draft of the model is contained in Fig.7. The input to the

tectal network consists in the axonal activity of the r.g.c. As in-

dicated by the figure :he main operations of the tectum cells are

spatio-temporal summation and recurrent inhibition. The summation

of a tectum cell concerns the output of those r.g.c. which

(1) share their excitatory receptive field with the receptive field
of this tectum cell and

(ii)are connected by their axon to this tectum cell.

As mentioned above, 93% of optic fibers projecting to the tectum

are estimated to originate from type 2-retinal cells and almost none

from types 1,4,5-retinal cells. These last cells may satisfy con-

dition (1), but not condition (ii). Actually in some of our calcu-
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lations (sea below) we assume that only type 2-r.g.c. project
to some tectum cells.
The number of r.g.c. (of a certain type) projecting to a single
tectum cell depends on the degree of overlap between the (excita-
tory) receptive fields of r.g.c. We define the degree of overlap
to be the inverse of the average distance (measured in spatial
units of the visual field, e.g. °) between the centers of neigh-
bouring receptive fields. Note that this definition is indepen-
dent of the size of the receptive fields, which is important since
this size varies with physiological conditions (in particular in
neurons with an excitatory-inhibitory structured receptive field).
The degree of overlap, called A, is an important parameter in our
model. In particular this feature possibly throws some light on
the phenomenon of striated receptive fields (see Griisser and Grlsser-
Cornehls 1976; details will be discussed elsewhere).
Given the number N of r.g.c. of a certain type, projecting to a
single tectum cell, and their degree of overlap A, the summation
process of this tectum cell isg defined precisely as following:
The centers of the receptive fields of the N cells are assumed
to be distributed in the visual field according to a uniform
random distribution such that the degree of overlap equals A. Then
the excitation e(t) of the tectum cell by the retina is given by
N, -ka? :

e(t) = aye t wo{t) e . (11)

i=1

Here a3is a proportionality factor, wi the output of the i-th
r.g.c, and di measures the distance (in units of the visual field)
of the center of the i-th I.g.c. to the center of the tectum cell.
The factor exp(-kdi) represents the assumption, that the synaptic
strength per unit area decays according to a Gaussian distribution
with rate k from the center to the periphery of the tectum cell's
receptive field. Underlying to equation (11) is the well established
hypothesis of a nearly topographic projection from retina to tectum.
Before discussing inhibition between tectum cells it is useful to
investigate the output of t.c. under the condition of no 1ﬁhib1tion,
i.e. in the limiting case of inhibitory coefficients equaling 0.
This gives also information on the case of weak 1nh1b1tory coupling.
Assuming simply the t.c. to act as a low pPass filter with a membrane

time constant Ty followed by a transformation of membrane potential
'
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(u) to impulse frequency (u+), the output u_ is computed from

7, 388 < oty - ue, (12)
u, (t) = a, max(0,u), (13)

© = threshold of t.c.

This completes the description of the model tectum cells, if
there is no inhibitory interaction between them.

As a thumb rule for the relation between the numbers N,A and
the diameter d of a t.c. receptive field the approximation

a,2

N & (EE (14)

may be used.

The output behavior of the model tectum cells is shown in Figs.

8A and 9A. In the case of Fig.8A it is assumed that only type2-
r.g.c. project to the t.c.(parameters as in the legends of Fig.6A
and 8A). It turns out that

(1) the maximal response is obtained to 8° x 8°—squares (in contrast
tofxfwmu%wuhwWZWJJL

(i1)in a broad range of edge lengths the squares are dominant,
followed by the horizontal bars, which are prefamed to vertical
bars.

Thus, in a broad range of angles, the preference type is S>H> V.
If, on the other hand, we assume only type 3-retina cells to con-
verge to a tectum cell (with parameters as in Fig.6B and Fig.9a),
then the tectal preference type S> V>H is realized, see Fig.9a.

At the moment we have no complete survey which other types may re-
sult if the parameters of the t.c. model are varied. It is also
not clear which types will be obtained if there is mixed input
from both types of retina cells. Here certainly the proportion of
the two degrees of overlap plays an important role. However it can
be concluded, since in both pure case (input either from type 2-
or type 3-r.g.c.) we always found the square to be dominant (for
angles not extremely large), the same will hold in the mixed cases.
Thus the problem remains how the type evolves where the horizontal
bar is dominant. The following section will show that inhibition
in the tectum is sufficient to produce this type.
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4. THE EFFECT OF RECURRENT INHIBITION WITHIN THE TECTUM OPTICUM

We now extend the previous model by adding inhibitory connections
between tectal cells. The inhibition is recurrent (feedback) since
the output of the t.c. is considered as inhibitory input to neigh-
bouring t.c. (see Fig.7). For modeling purposes it does not matter
very much whether the inhibitory influence is direct (defining
lateral inhibition) or mediated by interneurons. Possible can-
didates for inhibitory interneurons are the stellate neurons
(Székely and Lazar, 1976). For simplicity we assume the inhibition
to be direct and thus may be incorporated into equation (12) for
the generator potential u of a t.c. Precisely we assume

1 L
R N I M A H C PE LR PR 2 (12")
3=1

The indices i and j are used to distinguish between the L tectum
cells distributed in a two-dimensional retino-topic surface. The
parameter ag is a measure of the strength of inhibition. At this
stage of modeling we neglect distance-dependence in the summation
of inhibition.
The final output ui of the i-th tectal cell is given again by equa-
tion (13), index i suitably added.
In order to observe clearly the effect of inhibition we chose the
same parameters (for retina and tectum) that led to the output
shown in Fig. 8A, only increasing in small steps the inhibitory co-=
efficient ag from O (no inhibition, (12')<=>(12)) to positive val-
ues. In fact, for as=0.04 the response characteristics shown in
Fig. 8B came out showing the t.c. type T5(2) with preference
H >S >V, mentioned above. This result is important, since all
models investigated so far presupposed interaction with pretectal-
thalamic regions in order to produce this type of preference.
The model presented here confirms that this assumption is not neces-
sary, though it does not exclude it as a possibility. The model
predicts that the response type H >S >V is due to intratectal in-
teraction alone. ’
This view is supported by the following observation. Assuming a
model tectum cell integrating only inputs from type 3-r.g.c. as
shown in Fig.9A (all parameters conserved), increasing the inhi-
bitory coefficient ag leads first to the type S> H> V (at least

[
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for stimulus angles not too large , see Fig.9B ), and finally
for larger values of ag the type H> S> V appears again, as shown
in Fig.9C. No other types were obtained by further increasing ag.

5. CONCLUSION AND SUMMARY

We have first presented a mathematical model for the retinae of
frogs and toads, that satisfactorily reproduces the response types
of retinal ganglion cells to various rectangular stimuli with
dimensions of prey dummies. We demonstrated the particular case

of the toad, the somewhat different conditions in the frog will

be discussed elsewhere. The output of this model serves as input
to a model for the optic tectum developed subsequently. The essent-
ial features of this tectum model are spatio-temporal summation
of retinal ganglion cell activity and recurrent inhibition intrin-
g8ic to the tectum.

Several types of experimentally observed tectal cells could be sim—
ulated by varying a few of the model paramenters. Hence it is not
necessary to postulate different types of mechanisms for the dif-
ferent types of neurons.

TS(1) cells (S>H>V) are obtainable in two ways:

(1) by a summation process with regard to retinal type-2 neurons
without any or with little recurrent inhibition;

(ii) by a summation of retinal type-3 neurons with a medium degree
of recurrent inhibitio: in the tectum.

Evidently, T5(1) cells can also be produced by a weighted mixing
of the processes (i) and (ii).

T5(2) cells (H>S >V) also result in two ways:

(a) by summation of retinal type-2 output and a sufficiently strong
tectal inhibition;

(b) by summation of retinal type-2 output combined with strong re-
current inhibition.

Again, combinations of (a) and (b) also produce this type.

T5(3) cells (S >V >H) result from summation from retinal type-3

e te ole teote e te s e Ye s e e e Ye L e s e Ve T .
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cells together with no or little recurrent inhibition.

Our hypothesis, to be tested experimentally, is that the inhib-
itory coefficient and other parameters (like degree of overlap 4)
vary throughout different regions or columns of the tectum, thus
producing most of the cell types observed experimentally. This con-
cept is different from other concepts postulating interactions
between tectum and other brain regions (e.g. thalamus/pretectum)

as the origin of this variety. This specific role of this dience-
phalic region is not yet sufficiently confirmed by neurocanatomi-
cal studies. Furthermore, it is reasonable to assume an unspecific
effect of the pretectal nuclei onto the tectum, e.g. controlling
the receptive field size of tectal cells. The increase in recep~
tive field size of tectal cells observed after destruction of the
Pretectum, can easily be regarded as the basis of the loss of prey
recognition capacity of tectal cells.

Clearly, the present model has to be tested further. One aspect

not dealt with here is the velocity dependence, since in all
computer simulations only one velocity (v = 7.6°/sec) was assumed.
Another aspect concerns the discrepancy between the responses to
very extended stimuli (longer edges exceeding 16°) predicted by

the model and the actually observed values. In the model the res-
ponses to very long horizontal bars are mostly overestimated, those
to large squares and vertical bars underestimated. At the moment it
is not clear whether this ig due to suboptimal choice of parame-
ters or to a pitfall of the model or whether the model gives a

hint that large stimuli are in fact processed in a way different
from smaller, Preylike stimuli. With regard to the known proper-
ties of thalamic and Pretectal neurons (preference for large sti-
muli) one can assume an influence of the diencephalon onto the tec-
tum in the presence of large, non-prey objects. In contrast, small
prey-like objects would be processed exclusively in the optic
tectum.

An der Heiden/Roth
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Fig. 1: Responses of two cell types in the optic tectum of

the toad Bufo bufo (L.) to moving stimuli (v = 7.6°/sec) of
different size and orientation with respect to the direction

of movement. The curves a-c show responses of 20 cells to sti-
muli, in which a square measuring 2 x 2° was extended stepwise
either in horizontal direction (curve a) or in vertical direc-
tion (curve b) or in both directions (curve c). .A: T5.1 - cells;
B T§H.2 ~ cglls. The average receptive field (RF) size of both
types is 27-. (From: Ewert, J.-P., 19786).
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Fig. 2: Responses of four cell types in the optic tectum of the
frog Rana temporaria (L.) to moving stimuli. The stimulus pre-
sentation is the same as in fig. 1 except that curve a here re-
presents the responses to the squares, curve b that to the ver-
tical bars and curve c that_to the horizontal bars.

A: T5.1 - cells, RF-size 21? n =9; B: T5.2 - cells, RF-size
170, n=38; C: T5.3 - cells, RF-size 240, n =6; D: T7 - cells,
RF-size 4, n = 12. (From: Schiirg-Pfeiffer, E., Ewert, J.-P.,
1981) - :
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Fig. 3: Velocity function of two class T5 - cells in the 6ptic
tectum of the frog Rana esculenta. A: Responses to a vertical
bar measuring 23 x 3“ moved horizontally, and to a small spot

of 3.4” diameter. B: Responses to two squ
size (2~ and 79). (From: Griisser, 0.-J., Grisser-Cornehls, U

1976).
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Fig. 4: Responses of five cell types in the optic tectum of the
toad Bufo bufo (L.) to stimuli of different configuration and
velocity. Stimuli were & square measuring 8 x 8° (s), a horizon-
tal bar measuring 8 x 2" (H} and a vertical bar measuring 2 x 8°(V)
which were moved at velocities of 2, 6 and 20°/sec.

A: Neurons (n = 34) with parallel/converging velocity functions
preferring S to H and to V. B: Neurons (n = 13) with parallel/
converging velocity functions showing a preference S>V>H.

C: Neurons (n = 25) with parallel/converging velocity functions
showing a preference H»>S>V. D: Neurons (n = 16) with preference
inversion between H and S. E: Neurons (n = 22) with a change in
preference with respect to H.

Squares Bl , horizontal bars @ , vertical bars & . (From Roth, G.,
Jordan, M., 1982)
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Fig. 5: Hypothetical network of the retina. In the left margin
the symbols are listed denoting the activities in the correspon-
ding layers of the network. The numbers in parentheses point to
the equations in the text modeling the activities..

Vs stimulus velocity, S: stimulus, L: light, R: receptors, IN:
interneurons, RGC: retinal ganglion cells, If OFF-receptors,

O ON-receptors, —p excitatory connections, —i inhibitory
connections, @ inhibitory cells, ® excitatory cells.
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to stimuli as in figs. 1 8nd 2 (squares | , horizontal @ and —
vertical bars A , Vv = 6 /sec). Parameters of the model: =
A: retinal type 2; a1—a —1, T1- 0.3 sec, = Smsec, b2e— b2i= 1,
b,,= 1/6, b, = o, E_.L 58, E;="14.7, k_=o. 33 k,= 0.067 _

T3= 5 msec. =

B: retinal type 3; same parameters as with A except Ei= 23.5,

ke= 0.07, ki= 0.023.
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Fig. 7: Hypothetical network for tectum cells. To the left the
symbols for the activities in the corresponding level are listed
together with the number of the model equations.

ONF: optic nerve fibers, TC: tectum cells.
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Fig. 8: output of the tectal cell model, if the input consists

only in the axonal activity of type-2 retinal ganglion cells.

A: The case, when no or little inhibition among tectal cells is
assumed (a.= o).

B: The casd, when inhibition among tectal cells is sufficiently
strong (here a.=o0.04). Other parameters in A and B are: a3=a4=1,
d = diameter of RF=27°,A= 1, T,= 5 msec.
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Fig. 9: Output of the tectal cell model, if the input consists
only in the activity of type-3 retinal ganglion cells.
A: no or little inhibition (ac=o0).
B: medium inhibition (a.=0.16).

C:
as

strong inhibition among tectal cells (a5=2). Other parameters
in fia. 8.
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Abstract

The model described analyzes bow the neural activity distributed accross entire brain
regions that interact with each otber might lcad the animal to yield the proper motor
behavior. Computer simulations were conducted to make an analysis of how the interactions
among retina, optic tectum and pretectum give the animal the ability to discriminate
between prey and predator stimuli. The results of the simulations of the model, which has
anatomical, physiological and behavioral grounds, allowed us to suggests new experiments,
as well as, to postulate what neura! mechanisms might be involved in some phesomena
related with the prey-catching orienting behavior, such as prey-predator discrimination, with
direction invariance of prey-predator recognition being a consequeace of tectal architecture,

and size preference and response latency depending on the motivational state of the animal.

Cervantes, Lara and Arbib -4 - Introduction

1. Introduction

We propose a two-dimensional model of the interactions among retina, optic tectum
and pretectum in the anuran amphibian brain. The model analyzes neural processes
subserving prey-predator discrimination, with direction invariance of prey-predator recognition
being a consequence of tectal architecture, and size selection and latency of respoase of the
animal depending on its motivational state. The model is an extension of the
onc-dimensional model of the optic tectum, described elsewhere®3233, and takes into
consideration anatomical, physiological and behavioral studies in anuran amphibians, as well
as earlier modelling cfHorts (Didday’, Ewert and Von Seelen 1%).

Neuroethological studies121628.39 pave shown that there are fixed action patterns in
frogs and toads released by relatively simple key-stimuli. Innate mechanisms recognize the
key-stimuli in the eavironment to elicit the proper response. It has been shown that both
the size of a moving stimulus and its geometry in relation to the direction of motion play
a prominent role in the prey-catching behavior of the animal: small objects whose longest

axis moves in the direction of motion (“worm-like™) arc treated as prey; if the same object

o

_is moved with its longitudinal axis  perpendicular to the direction of movement

(“antiworm-like™) the animal does not exhibit prey-catching orienting bebavior, or may
assume a freezing posture, or may exhibit avoidance behaviorl2 (sec Fig. 1Ba). It has also
been shown that, in frogs and toads, worm-antiworm and discrimination is invariant to
both the direction of motionl3 and to the velocity function of the stimulus!216, Lutharde
and Roth36 bave reported that in Salamandra Salamandra the worm-antiworm discrimination
varies with the velocity, the animal preferring “worm-like™ to “antiworm-like” stimuli at
low velocities, while at high velocitics the “antiworm-like" stimulus is more effective.
However, Himstedt?Z argues that this phenomenon is not observed in all salamenders, and

that it probably depends on the animal’s experience with certain types of prey (see
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Discussion), and Ewert (personal communication) has not found this change of preference.

lnglcz“»z"w' and Ewent316  pave shown that the releasing value of prey stimuli
can change depending on the motivational stato of the animal. They showed that animals
bighly motivated (i.c. with bunger or by smelling worms) had' low response thresholds and
increase the response rate to prey stimuli, even to those normally ineffective. Ingle showed
that in these conditions, when a pair of “worm-like” stimuli (cylindrical objects attached to
wire holders, moving with their longitudinal axis parailel to the direction of motion) are
present in the animal’s monocular receptive field, frogs prefer stimuli subtending a visual
angle of 16 degrees to the normally preferred stimulus subtending a visual aogle of 6
degrees, and present a lower lateacy in the response. Ingle postulates that the mechanisms
subserving response latency do not directly determine size prefercnce, though both processes
mmcoumomeolnmdxmimindnpmmlinhiﬁtwycﬁeaupontheopdcm
(heaceforth referred to as “tectum™ for short).

Moreover, Ewent!S  showed that preycatching activity is greaty increased in
motivated animals. He argues!S that the size selection phenomena (determination of the.
“optimal prey size™ to be preferred) remain almost the same for, within certain limits,
changes in' the motivational statc of the animal. In Fig. 13A We can see that highly
motivated animals preseat a smaller responsc latency than animals under normal conditions
or with low motivation.

A great deal of rescarch has been aimed at trying to find the neuronal: mechanisms
responsible for these processes. Ewert1216  has shown  that prey-<catching. orienting
bebavior is disrupted when the tectum is destroyed. Mogeover, as might be expected, since
the optic tectum receives information from the retina in a retinotopic way, he has shown:
thudeatkalaimnlaﬂmoiaspedﬁcmninmem,viamimplmted

microelectrode, elicits the prey-catching orienting sesponse to the corresponding  retinal
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projwtiqp. This suggests that the tectum plays a prominent rolo in this sort of behavior.
Ewent® has also shown that lesions of the domal pofpl region within the thalamic-pretectal
region (henceforth referrod to as. “pretectum™ for short) disrupts the ability of the animal
to discriminate different coafigurations of the stimulus (see Fig.1Bb). Furthermore, be
observed that toads with pretectum ablation snap indiscriminately to any object, they
switched their preference from white to black moving visual. stimuli, and they lost size
selectivity. This suggests that the interacticn among retina, tectum and pretectum may be
respoasible for processes like prey-predator discrimination, response latescy, size selection,
and size constancy. The bypothesis of Ewert that pretectal neurons modulate tectal activity
through an inhibitory effect bas boca confirmed by Ingle263141  He found that there is
some recovery after two woeks of the lesion, although the animal never completely recovers
its pormal discriminatory  ability’6, it suggests that there must be other mechanisms,
probably inside the tectum itsclf, which, in addition to the pretectum, exert an inhibitory
effect upon the tectum giving the animal the ability to discriminate between worm and
antiworm  stimuli. Fusrthermore, these mechanisms somebow increase their participation in
the absence of pretectal activity, and so might in this way be responsible for the recovery.
Ewert1216 reported  cells in the optic tectum (TS(3)) that are most sensitive to large
stimuli which, through interactions with other toctal cells, might be a good candidats for
being such a mechanism. This coll bas also been postulated to be involved in avoidance
behavior and will be fully discusted in a future report.

Trying to establish the role that each one of these brain regions may play in the
control. of these behaviors, Ewen®10:12.34.16 g gied. the neuronat response in the retina,
tectum and pretectum to  different configurations of the: stimulus. It has becn shown that
in toads and frogs retinal ganglion cclls of type R2, R3 and R4 each respond with almost
the same intensity to a “worm-like” stimulus (type: a. in Fig. 2); whereas when an
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“antiworm-like™ stimulus or a square stimulus (types b and c respectively in the same
ﬁgure)wuprewmed.themcofmponleofganglioncdlstypcRZandRSinitially
increased upwthcﬁcolthdlxupecﬁuncimorynmpﬁvcﬁdds(ERF)mdthm
progressively decreased for objects larger then the ERF612.06, The decreasing effect is
stronger in ganglion cells R2 than in R3. On the other hand class R4 ganglion cells
increase their frequency ofmpomwbentheiuofﬁimulitypeborcismended(u
Fig.ZC).givingtbemongeuwwuimulu:oftypcc. Ganglion cells of type R2,
R3 and R4 also increase their rate of response depending on the angular velocity of the
object. nmmdmmmmwmﬂsnﬁﬁﬁnxmguwfotn
particular movement direction 014, However, almost no cells bave beea recorded showing
wgull-directions”. Thus, directional sensitivity at this level may not significantly contribute to
the processing of visual signals.

From the above results, Ewert concluded that the observed behavioral responses
could mot be explained simply by the retinal responses. Ewert1216 continued studying the
respouse of tectal and pretectal cells to different configurations of the stimuli. He found
thatmeteﬂnlcelhthnhealledTS(Z).whichhaveahobomnponcdbyodaer
sescarchers182637, responded to moving configurational visual stimuli with an overall firing
level that resembied the probability that the stimulus uader investigation fitted the prey
category. Mh,miwusdﬁﬁnzmmme:ﬁmulmwdmpwdﬂongm
dhecﬁmofmoﬁm.adeae&wdﬁﬁnsnwwhmthesﬁmulmwasmdedperpendimhﬂy
tothedixecﬁonofmoﬁon,nndnnﬂo(eompﬂiﬁonbetweenlhaetwomsponmwhea
thesﬂmulmwapandedinbothdireaiM(weﬂgsc). Moreover, when pretectal
abtaﬁonocaus,theovmﬂwdthhuﬂalceﬂ(ﬁ@))almmbledlhcbehavioml
mponzeoflhcnnimaltotbediﬁmtnimuﬁ:thali:,itrespondsindlwimimtelytomy

moving object  crossing its receptive field. (see Fig. 3D and compare it with Fig 1B.b).
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I-:fm't13 also showed that tectal TS(2) celis could discriminate between prey and
pon-prey stimuli independently of the direction of motion while other tectal neurons,
which he classified as TS(1), were directionally sensitive. For the above reasons, Ewert
suggests that the tectal neuron type T5(2) may be responsible for the discrimination between
prey and pon-prey stimuli and indicating the position to which the animal should orient.
The tectal neurons perform this through combined activity with pretectal cells, both regions
receiving retinal input, possibly through an inhibitory effectll.  One of the pretectal cells,
which Ewert classified as TH3, responded mostly to non-prey stimuli (Fig. 3A); for this
reason, Ewert postulates that this cell inhibits the activity of tectal cells when a
“predator-like” stimulus is present, thus allowing the animal to orient to the proper prey
stimulus. In this way, Ewert suggesis that the combined activity of retina, tectum and
pretectum may control prey-predator recognition. With respect to the direction invariance
of recognition, Ewert argues that it must be a consequeace of the tectal architecture rather
than of a sophisticated “software-like™ processing of information.

Other authors claim to have found differeat types of neurons in the tectum which
process differeat aspects of the stimuli213637 (see below). These authors  thus suggest that
the properties of prey-orienting and preycatching  behaviors are the result of the joint
activity of several meurons, rather than the responsc of a single meuron. In later works,
however, Ewent163? postulates & theory of coordination of motor schemas where there are
recognition units for prey stimuli, but they need the activity of other oeuroas or neural
units Ga.mpo!nwmuomnizedumnedmﬂuﬂs)mewndmemmuhing
orienting behavior, such as binocularity or depth perception neurons. This is in agreement
withtheugumemthatthawﬂvityofmetalnwmsbneededwgnidcthcmotot
response.  Moreover, Ewent postulates that the other necurons found in the tectum may be

related to those processes (predator recognition, depth perception, binocularity, etc.), and %0
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might play a role in the control of different motor schemas, In our model we have "

!oumedmmebehnviora!mﬂamofudvityindnaleedk.bmhthemmnﬁmwc
proposc a preliminary bypothesis of how the activity of several neurons, including the
prey-recognition  units, could control prey-catching oricating bebavior. However, further
nudiﬁshwlddaﬂfymereelnnmmofthueprm.

Ingle?4 282930, folioning Ewert's bypothesis of pretectal inhibition upon tectal
activity, suggests that the changes in size preference and in latency of response could also
be modulated by the pretectum. He postulates that when small objects are present, tectal
cells are mostly guided by R2 ganglion neurons, and the effects of the ganglion cells type
Rsmdkdupouthewctumb‘notmanyeountcmaedbythepmecmmthmghnn
inhibitory effect. Ingle suggests that retinal R2 cefls can overcome the pretectal inhibition
through a facilitatory effect, a consequence of recurrent excitatory activity, but that the
response hes a long latency. In this way be explains why animals normally prefer small
size stimuli. Wbenevatbepmom!inhibiﬁmisdeaused,eithabynninmmd
modmﬂmﬂuaumbyaledm,theﬁm!wkmmmﬂedhyamgﬂmwﬂs
whichrupondtolargctobjem(dum:ndm),lz..cemwithbiggctreocpﬁvcﬂeld,
theninmgin,gthe"ruponsemdlneu‘ and reducing the latency of response.

2. Modelling Procedures

'l'hedeacxipﬁonollhcmodelwmbedividedimofmpam;abﬁcfcxplanaﬁonof
mepropomdarchiteaumfw!hemodlmenﬁmalmoddofthewamn.adxdpﬁonofm
“blackbox“modddthemﬁm,whicbhuedwamplythcndnalhpu:wrmdingto
different visual stimuli, the description of the different cells in the pretectal column, and,
finally, the proposed interaction among retina, tectum and pretectum  subserving
prey-predator recognition, size prefereace acd  response latency.

—3d —3F 3 —3F —3F —3 "@F "W ~@ —® ~F = —F W TH H H FJ
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21 'I'wo-d!mmdml Model of the Tectum

Proviously’2, we azalyzed the anatomical data of Seékely and Ldzdr®, which
empbasized the vertical organization of the tectum, with a local “vertical sample” of the
tectum being referred to  as & “tectal column™ — though with no suggestion of the sharp
transitions between properties of adjacent columns suggested by some studies of mammalian
cortex. We then offered atnmﬂyofmlhmaﬂcalmo&hotthetm!eolumn(ﬁg.ﬁ.
Bacheolnmnofthemoddeomprisumglomemlus(GL),onolarge(Ll’)mdmennall
(SP) pear shaped coll, one stcllate neuron (SN) and ooe pyramidal (PY) cell (the caly
effm!eellofthoeolumn).lnthcmodelwehypothm‘m!hatl’\feonemdstome
ncuron clamified as TS(2) by Ewen. The present two-dimensional model of the optic
tectum (sec Fig. 5), compoﬂofmnmyofswsmaleolummnedvingminalinpm
homganslioneeﬂldamkl,k?mdk&.hmupanﬁmdthcoﬂbdimcnﬂmﬂmodd
of § tectal columas described elsowhere’3. For the two-dimensional model the number of
cells and their interactions is greatly increased. We will give a brief description of the
most important considerations.

Themahmdnﬂhmtm&emhnmmwdbypnslbnedhk:ﬁm
excitatory reccptive field (ERF) ranges of 24 degrees (Grusser et ol 18 andEwcttm),w
we proposed that every column has a *focal” receptive field equal to the maximum ERF of
ganglioncelkkz@dcpea)andanon-fowl(sdegmu)ovcdapwithiuneighbon‘
receptive fields. Tho receptive field of each elemeat of the column is calculated according
to their lateral interaction with neurons of other columns (sce below). The interconnections
amongthedhdaw!umnmubmlnﬂg.hwﬂhdnhmﬂwnm&m:mongu&
of ncighboring columas are all indicated in Tabis A:
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Table A. Lateral interactions among tectal columns. Cells of
column (i,j) receive affereats from cells of neighbor columns.

Cells of neighboring columns to (i,)
that impinge upon its neurons.

Cells of columa (i) GL LPp SP SN
GL + +
Lp + -
sP +
SN +
PY +

a) The glomerulus (GL) is a synaptic complex comprising specific connections among axonal
terminals, from retinal ganglion cells, diencephatic regions and recurrent axons (from LP
and SP cells), and dendritic arborizations from tectal neurons, both from its own column as
well a3 from neighboring ones. Each glomerulus has a receptive field of 12 degrees, 4
“focal” degrees with 8 degrees of overlap with its neighbors. This assumption is based on
the fact that retinotectal axons project to 2 reccptive field no larger than 15 degrees
(tngle?).

b) Each small pearhaped cell (SP) is activated by retinal ganglion cclls type R2 through
the glomerulus and interglomerulas dendrites both from its own and from neighboring
columns; this cell is also inhibited by the steflate neuron (SN) from its own columa. Thus,
each SP cell has a receptive field of 16 degrees, which is in accordance with physiological
evideace that says that the receptive field of superficial tectal cells ranges between 15 and
20 degrees (Ingle™A1).

¢) Each large pearshaped cell (LP) receives afferents from retinal ganglion cells type R2,
both through the glomerulus and through its dendrites along the length between glomerulus
and cell body, from the SP cells of its own column as well es of neighboring columns, and

it is inhibited by the SN of its own and of neighboring columos. Its lateral connections
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makeiprwepdveﬁddotappmximauyudegms,whichkinamtﬁmtbe
obsctved receptive ficld of some cells in layer 6 of the tectum.

d) The stellate nevron (SN) receives afferents from the LP cell, both from its own column
and from neighboring columns. This cell is a candidate to produce inhibition (Székely and
u:tr‘o),sowepropoaeitastheonlylnhibitory cell in the model and its function is to
control tectal activity.

¢) The pyramidal cell (PY) is the only efferent of the model tectal column and  reccives
affercats from ganglion cells of type R2, R3 and R4, from the SP and LP cells of its own
column and from the LP cell of neighboring columns, expanding its receptive field to
approximately 28 degrees which agrees with physiological findings of Ewert1216  for the
T5(2) cells.

22 Black Box Moded of the Retina

As we have seen, retinal ganglion cells are sensitive to scveral stimulus characteristics,
such as the size, the geometry in relation to the direction of motion, the angular velocity
function, the contrast1216.18, and the chromatic composition of the moving stimulus!®20,
Until now we only consider black stimuli on a white background, so the last two were
treated as coastants during the simulations.

Our black box model of the different ganglion cells (types R2, R3, and R4) is based
on the curves obtained by Ewert for the respomse of these cells to “worm-like™ and
“antiworm-like” stimuli (see Fig. 2) and the angular velocity function obtained by Grusser
and Grumer-Corachis!®8 ard Bwertl2. That is, the model simply defines the rate of
deang!bnee&dwﬂ.ﬂmdk(dqmdinsmﬁeﬁmﬂmgmmyud
its velocity : the firt with Ewert’s graphs and the second with the equation
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where k and 8 are constants and v is the angular velocity function of the object. R is

the frequency respoasc of the retinal cell.

Ganglion cells project refinotopically to each tectal and pretectal column16,18,40 1,
the present model we have not considered the spatial representation of the different retinal
receptive fields; we have only considered that the axon of each type of retinal cell projects
to a specific column, and excites the surrounding neighbors with less intensity, cither in the
tectum or in the pretectum (see Fig. 5).

Each time a group of ganglion celhislﬁmula!ed.tbcywiugenmtearwponse
frequeacy R depending on the size, angular velocity, and direction of motion of the object.
The parameters of the stimulus are specified by the modeler at the beginning of the
simulation. We simulated the presence of a stimulus simply by a variable which defines
when the stimulus should be present in a given zone and for how loag it should rest there,
depending on the speed, size and
modelling will also require & more detailed model of the spatiotemporal pattern of retinal

geometry of the object. Clearly, more refined
activity, rather than the overall firing rates, and such modelling is a target of current
meamh(seealaonndctﬂeidenandkmhhfman‘im;medlm'moddofmdnal
activity).

23 Two-dimensional Model of the Pretectom

of neurons. The firt type of pretectal neuson represeats the TH3 cell of Ewerti2.16,
which is mostly sensitive to larger stimuli (square and “antiworm-like” stimuli) and which

has beea postulated to play a very important role for prey-predator  recognition through an

1
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inhibitory action on tectal neurons. This neuron integrates the information received from
ganglion cells type R3 and R416'w-4°. in such a way that it gives a SIrodger  response to
square stimuli, then to “antiworm-like” stimuli, and a weak response to “worm-like” stimuli
(see Fig. 3A). We postulate that this neuron is also responsible, and here we
hypmhesiu,fmmodulaﬁngmechmgahthcmcnqofmeofw tectal cells
through a mechanism which is the outcome of a tonic inhibitory effect that is a function
of the motivational state of the animal. That is, the bebavior of these cells is going to
depend on two different mechanisms, one, which remains contant during normal conditions
and varies according with the animal’s motivational state, that is respoasible for coatrolling
the response latency, and another ome, which depends only on retinal input, that gives the
tectal cells the capability of prey-predator recognition.  Another type of pretectal neuron
(PTN) is postulated to play a role in the prey-selection phenomenon33. For this neuroa,
we posit, as Didday7 and Lara and Arbibs3 did, a competitive role in the selection of the
strongest of several stimuli presented simultaneously in the animal’s receptive field. For this
competition function we are going to use the cooperation/competition scheme in neural
aetworks as proposed by Amari and Arbibl.

24 Interactions among Retins, Tectom and Pretectom

In Fig. 6A we show the two-dimensional neural model of the interactions among
mﬁnn,opﬁemmandwcmum.Fmab&amdemuﬂina;denwﬁm,inmh
figure we show only three rows of pretectal celis projecting: upon the tectal columns. Fig.
rq:menuadoscrlookoftheyrojmiomfmmwﬂecmlceﬂs(amnged also in a
columnar fashion) to the cells of their corresponding tectal: column. This figure shows that
the retina projects retinotopically to both tectum (ganglion. cells of class R2, R3 and Ré4)
and pretectum (class R3 and R4)16:1840. Byery TH3 pretectal cell inhibits the activity of

A

B
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the LP, SP and PY necurons of the tectal column corresponding to its projection. Finally,
we propose that the PY cell activity defines the stimulus spatial location, the direction of
the prey-catching orienting response and the prey-predator discriminative abilities of the
tectum.

The mathematical description of each of the ncurons considered in the
two-dimeansional model of the interactions among retina, optic tectum asd pretectum can be
seen in the Appendix.

It is important to notice that the final neural architecture proposed for the
interactions among these brain regions was built, taking into account the anatomical data
now available, with the purpose of obtaining the one that best reproduced the physiological
and bebavioral results. This model is the fourth stage of Rana compusarrix?, an evolving
model of neural circuitry subserving, through interactions of meural activity distributed over
several brain regions, visually guided behavior in anuran amphibia (sec Discussion). Now
with the expansion of the model to two dimeasions and by including the effect of
ganglion cells of class R3 and R4 in the interactions amoog retina, tectum and pretectum,
we want to show the behavior of tectal units that can discriminate among “worm-like”,
“antiworm-like” and square stimuli, and whose pattern of response is independeat of the
direction of motion of the stimulus, and for which changes in pretectal inhibition, due to
changes in the motivational state of the animal, increase the rate of response and reduce

the latency.

{
)
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For these reasons, we built a symmetric architecture”"”  for the tectum. We showed

elsewhere33 that the best configuration for the inhibitory projection from

p m to
tectum, in terms of hysteresis effects and latency of response, was that pretectal fibers
project to LP, SP, and PY cells.  Finally, in order to simulate the change in the latency
of response and the number of pulses discharged by the PY cells, we postulate that this
neuron is excited, directly and through LP and SP cells, by ganglion cells R2, R3, and
R4 and inhibited by the pretectum (TH3). Thus, our main problem was to adjust the
weights from these various neurons to the PY cell. The compromise was that without
pretectum the response of the PY cell should be controlled by the activity of ganglion
cells with larger receptive fields (classes R3 and R4) in such a way that it emulates the
preference for stimulus type c, then to type a and finally to type b (see Fig. 3D); whereas
in the preseace of pretectal inhibition the PY cell’s scnsitivity to a “worm-like” stimulus
was the outcome of a facilitation of fectal column response through recunentactiﬁty
which is completely driven by ganglion cells that respond best to small objects which might
represent potential prey (class R2). Furthermore, in this case, the choice bad also to
include the weight value selection for the inhibitory effect of TH3 upon tectal activity to
reproduce the overall bebavior preseated by PY cells, that is, a preference for a
“worm-like” stimulus (type a), then for those of type ¢, and a poor response to
“antiworm-likc” stimuti (type b) (see Fig. 3B).

***, This paper subsumes .n earlier ﬁudy“, in which we used asymmetric coanections.
We obtained similar results in both cases, but using symmetric connections simplified the
model’s architecture, and it made the invariance to the direction of motion of the stimulus
an immediate result of simpler lateral interactions among tectal columns. This avoids the
postulate of the more complex innate wiring process in the amphibian brain that asymmetric
connections presuposed. It secems to be morc plausible that asymmetric coanections among
tectal columns are used by other types of tectal cells to analyze other kinds of
information, perhaps by T5(1) to process directional sensitivity (EwertD3).
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3. Results

We will present the results of the computer simulation in two ways. First, in four
dimensional 'graphs, showing the response of the pyramidal cells of all 64 columans of the
model during a specific computer experiment, combined with two-dimeansional graphs that
offer a closer look of the response of the PY cell of the (ith,jth) tectal column to better
appreciate the response rate and latency; and, second, graphs with the same coordinates as
those used to express experimental data, that is, graphs that could be directly compared
with physiological and behavioral results. In the first case, the two-dimesional plane formed
by the x and y axes represents the spatial loentionoitheoolumm.'l‘bisplaneisdivided
in 64 sections, with each ome representing in the horizontal dimension the time scale of the
simulation while the z axis of the graph represents PY cell activity. This activity is shown
through the membrane potential of the PY cells and whenever the membrane potential
reaches the threshold value we indicate it with spikes. This can be better appreciated in the
two-dimensional graphs. We also show the description of the experiment (stimulus type,
direction of motion with respect to the stimulus geometry, angular velocity, etc.). We did
oot simulate the generation of the action potential in our ncurons but simply use a
“threshold rule” to provide results that could easlly be compared with experimental data.
Both ways of showing the actual behavior of the model allow us to make analogies and
comparisons with experimental observations.

For the different simulations we used three types of stimuli: rectangles whose longest
axis moves in the direction of motion, rectangles whose longest axis moves perpendicular to
thedireaionofmoﬁon,andlquaruofdiﬂmtdm.ddsnatedutypea.bnndc
respectively in the figures. We defined the speed of the stimulus as the time required to
go from one column to the next, and the velocity used in most of the experiments was 2

columns per unit of time of simulation, which is equivalent to 8 degrecs per unit of time
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(from above, each column represents 4 “focal”  degrees).

3.1 Behavior of Pretectal Cell TH3

Our purposc in simulating the response of TH3 to different stimuli is to show bow
the combined interaction of ganglion cells R3 and R4 could generate their properties.
Trying different weights (sec table 3 in the Appendix for the final values) the behavior of
this cell to the different types of stimuli is thown in Fig. 7A. Once the membrane potential
of this neuron reaches the threshold, its response is modeled to be proportional to its
input (sce Appendix), otherwisc it is equal to a tonic activity. The uaits of the vertical axis
of this figure (Amplitude of Response) represent the overall effect that this cell is going
to exert upon tectal activity. As can be scen in this figure, the response of this cell to
the differeat types of stimuli is very similar to that of the pretectal cell that was suggested
to be related to prey-predator recognition (see Fig. 3A for comparison). The response of
this neuron increases with size most strongly for square stimuli (type c), then for
“antiworm-like” (type b), while the response to “worm-like™ stimuli (type 2) does not

change very much.

32 Bebavior of PY Tectal Cells when we have Pretectal Ablation

It has been shown that tectal neurons without the inhibitory effect of pretectal cells
twpondbettertostimulioftypec.thmtostimulioftypea.whilelhcyﬁveawmk
response to stimuli of type b2 (sec Fig. 3D).

Itisnlsoknmvnthataxonsofgangﬁonmdnaledhkz,mmmpmjmtothe
tectum?638, It has been suggested  that the facilitation effect for prey-catching orieating
activity is mainly controlled by type R2 ganglion neurons!?28, but anatomical studies and
changes in the receptive field of the animal, Iatency of response etc., also suggest that
tectal cells (PY) controlling prey-catching orienting behavior are also stimulated by ganglion
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cells R3 and R4.

As we mentioned earlier, in the final architecture proposed for the tectal column, the
columa activity is mainly controlled by R2 ganglion afferents while the PY response is the
outcome of the combined effect of all three ganglion cell types.

nerspomeofthisncumtothediﬁmttypaofcﬁmuﬁisshawninl-‘xg.'lD
where it can be scen that it responds best to stimuli of type c, then to those of type 2,
and then to those of type b. This behavior reproduces in general the observed behavior of
tectal cells (T5(2)) in animals without pretectum (see Fig. 3D for comparison). In Figs. 8
and 9, which present the activity of the 64 tectal columns (Fig. 8) and the response of the
PY cell of one column of the tectum (Fig. 9), we can also see the stimulus .ptdctence
describedabove.'l‘hn!is.thercisabettexrapomcwatqmof&adegreu(l?ig.&c
and 9.C), then to a rectangle of 8x2 degrecs moved as 8 “worm-like” stimulus (Fig. 8.A
and 9.A) and finally to the same rectangle moved as an “antiworm-like” stimulus (Fig. 8B
and 9B). Here we would like to point out that in Fig. 8 it is clear that the overall
tectalrsponsebalmmmgawtypecsﬁmulm(Fxg.s.C)beauseitcwmamﬂam
in the animal’s receptive field, while in the the case of “worm-like” stimulus the tectal
response is lower and concentrated in a nasrower area. In these figures the maximal tectal
oeusmponscshifuinﬁmeutbcnimulmmmthcmma,anditcoindduwhh

the time in which the stimulus is on its receptive field.

33 PY Tectal Cells Bebavior with Pretectal Inhibition

As we mentioned above, there is a tectal neuron whose physiological response closely
matches the prey-catching orieating bebavior of the animati2, its response is greater the
longer the stimulus of type a, decreased by longer stimuli of type b, while a sort of

combination of these two responses is observed when we increase the dimensions of stimuli
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of type c.

The interaction amoog retinal cells, pretectum and tectum in our model are shown in
Fig. 6. Retinal ganglion cells project both to the pretectum and to the optic tectum. The
TH3 pretectal cells in turn inhibit LP, SP and PY neurons in the tectal columa.

In Fig7B and 7C we show tectal ectivity through the response of the pyramidal
cells to the three types of stimuli. We have presented stimuli of different sizes starting
with 2x2 degrees and expanding it in three diffcrent ways: expanding the dimeasion in the
axis along the direction of motion (type a), cxpanding the dimension in the axis
perpendicular to the direction of motioa (type b), and expanding both dimensions (type ©).
The speed we used was 2 columns per unit of time of simulation which will be equivalent
to 8 degroes per unit of time. To build these graphs we counted the number of pulses
of a given column (Fig. 7C) and the total activity in the tectum (Fig. 7B) to the
presentation of the stimulus. It can be scen that PY cells respond better to stimulus type
a.thentotypec.lnbothmnathcreisanini:ialincreascinthemwhmwe
increment the stimulus size followed by a decrease for larger stimuli, whereas they present
a very weak response to stimuli of type b. These results reproduce in a general way the
physiological and behavioral observations (see Fig. 3C and 1Ba for comparison). Fig 7B
shows a graph of the number of times the tectum is activated whea a stimulus is present,
and is thus a better measure of the possible control of the orieating response excrted by
the tectum. This figure is equivalent to Fig. 7C.

Fig. lOshommem.moftheﬂcdummofthewctumtothethmetypesof
stimuli, whereas Fig. 11 presents the sesponse of the PY cell of the (4th5th) tectal columa.
The stimulus is presented from left to right, starting in the column (4th,1th), with a speed
of 8 degrees per unit time, and the abscissa time scale represents five units of time, while

the vertical axis corresponds to the membranc potential of the 64 PY ncuroms. Fig. 10
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shows that there is a shift of the columnar maximal response as the stimulus moves across
the receptive field. The stimulus moves from left to right, so column (4th,1th) is active at
the beginning and column (4thSth) responds at the end of the time scale.  We have
used in this casc a stimulus of 8x2 degrees moved as a “worm-like® (type a) and as an
“antiworm-like™ (type b) stimulus, and a square of &8 degrees (type c). From Fig. 10 it is
clear that even though the response to a type c stimulus (Fig. 10.C) is wider spread, it is

weaker than that to a “worm-like” stimulus (Fig. 10.A), wh the k is to

L g

an “antiworm-like™ stimulus (Fig. 10.B), which also is wider spread than that to type a. At
a one cell level, it can be scen that the tectal activity is stronger for stimulus type a (Fig.
11.A) than for type ¢ (Fig. 11.C), and that the lowest activity is for stimulus type b (Fig.
11B).

34 Directional Invariance for Prey-predator Discrimination

It has been shown both behaviorally and physiologically that prey-predator recognition
and discrimination are independent of the direction of motion of the stimulusl3, As a
result, we used a symmetric connection scheme in our model. Thus direction invariance is
to be expected in the response of the model. We report a simple test of this invariance,
monitoring our model for the processes of discrimination and recognition of stimuli moved
in eight different directions. We used an 8 x 2 degrees stimulus which we know produces
a very weak response (almost mo sesponse in most tectal cells) as an “antiworm-like”
stimulus  (type b) and a strong response as a “worm-like” stimulus (type a). Fig. 12
presents the overall tectal response of the 64 columns to “worm-like” (Fig. 12A) and to
“antiworm-like™ stimuli (Fig. 12B) in three directions (the results are the same for the other

five). It can be seen that the recognition of these stimuli is also invariant to the direction

of motion of the stimulus, that is, the tectal activity remains the same regardless the .
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direction of motion.

35 Size Preference and Response Lateacy

It has been observed that prey-catching orienting behavior and latency of response can
be modulated depending on the motivational state of the animal?®®. It has been
suggested that these changes are the result of a reduced inhibitory effect from pretectal
neurcas to tectal acﬁvityuvm'u.

In order to test this hypothesis we used our model of the interactions between tectum
and pretectum, where changes in the motivational state are represented by modifying the
tonic activity of these cells. Whea the animal is greatly motivated for prey-catching
orieating behavior, the inhibitory effect of pretectal cells TH3 upon the tectum changes by
reducing their tonic activity.

Based on this we studied the behavior of PY cells, which are postulated to control
the prey-catching orienting behavior of the animal, under normal conditions as well as
under motivated states. This experiment has not been reported in the experimental
literature, but it would not be to bard to design a set-up in which the PY (T5(2) of
Ewert) response to “worm-like” stimuli of different sizes is recorded during different
motivational states of the animal, that is, bighly motivated (with hunger, smelling worms,
etc), or with low motivation (after preseating a threatening stimulus). We used
“worm-like” stimuli of different sizes moving from left to right with a visual angular

velocity of 8 degrees/ We coasidered the curve obtained in Fig. 7 to type a stimuli to
be the behavior of the PY cells under normal conditions, we then used the same stimuli
and studied how the response rate and lateacy behave when we change the level of
motivation in the model (through modifying the tonic inhibitory effect exerted by TH3 cells

upon the tectal activity). Fig. 13B shows that in mormal conditions PY cells response
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presents a lower response rate (number of spikes) to the stimuli than when it is motivated.
This reproduces the behavioral results found by Ewert12:6 (sce Fig. 13A for comparison).
To analyze the changes in response latency we chose a stimulus of 8x2 degrees. Fig. 14
displays the response of the PY cell of the (4th5th) column for different levels of
motivation, low (Fig. 14A), normal (Fig. 14B) and high (Fig. 14C). These results clearly
show that the latency of response is reduced whercas the number of spikes increases in
motivated states. These results are in accordance with the behavioral results reported by
Ingle24-30,

In the case of size preference, we can sce that if we preseat one stimulus at a time,
the optimal size preferred by the arimal remains the same. In Ingle’s case, the experiment
be describes is related with the phenomenon of prey-selection and will be completely
discussed in another report. It has been shown that when we present simultaneously two
prey stimuli in the animal's receptive field, it prefers the one that represents the better
prey’ 2533, What might be happening in this case is that, in cormal animals, a stimulus
subtending 6 degrees of visual angle induces a response in the tectal columns it excites
which is stronger than the combined response of the tectal columns excited by a stimulus
sustending a visual angle of 16 degrees. In this way the smaller stimulus represents a better
prey and so it is sclected. On the other band, in motivated animals, as we saw above,

tectal is enhanced. The enh

Y

emeat produced when we present a 6 degrees
simulus is lower than the overall enhancsmeat produced by a 16 degrees stimulus (it covers
more tectal columns at the time). Furthermore, this difference in the increment of the
response  might be big emough that it makes the larger stimulus become the better prey,

and thus be preferred.
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4. Discussion

With the present model we have been able to simulate a range of physiological,
anatomical and behavioral observations. The present study builds on three earlier papers;
32 we simulated a single tectal column to reproduce the behavioral and physiological

results obtained for prey-catching facilitation. We then? analyzed an armay of these tectal
columas to provide a one-dimensional model of the tectum which reproduced the facilitation
of tectal response when the stimulus is elongated along the direction of motion as well as
the facilitation to double stimuli moved along the direction of motion, with the preference
of the animal being to orient to the leading of the two objects. In33, we incorporated
some notions of Dldday7 to form a one-dimensional model of the interactions among
retina, optic tectum and pretectum for prey selection. With the expansion to two dimeasions
in the present paper we bave been able to reproduce prey-predator recognition and changes
in response latency depending oa the motivational state of the animal, all this being
independent of the direction of motion of the stimulus. This paper, then, offers the latest
stage in the “evolutionary development™ of a computational model of increased hierarchical
complexity about how different regions of the anuran amphibian brain may interact to
control the animal’s behavior?.

Our modelling studies in combination with the experimental evideace we bave used
suggest that the behavior of anuran amphibia is controlled by the cooperative activity
among different brain regions. Each region itsclf has functional units for the processing
of information of specific propertics of the stimulus. The retina evaluates different features
of the stimulus. Then the pretectal meurons (and no doubt other thalamic cells) process
features of the stimuli related to “antiworm-like” stimuli or static objactsw'zs. We koow
that in the tectum there are cells which seem to be very sensitive to “worm-like” stimuli

(T5(2) of Ewert); however, there is also evidence of cells which are mostly seasitive to
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“antiworm-like™  stimuli (T5(3) of Ewert) as well as to other variables such as distance of
the object (T1 and T2 of Ewert), its position in the visual field, etc.133%. This suggests that
each region has different functional groups of neurons processing different properties of - the
stimulus whose integrative activity gives the desired response.

These modelling studies present only a qualitative analysis of the functionality of the
interactions among several brain regions in prey-predator recognition. Although we know the
reality is much more complex, these studies allow us to suggest that some of the brain
regions of the visual system of anuran amphibians are organized in functional units
(columns) with specific retinotopic configurations where the interactions among several of
these regions yield the recognition of the stimulus and consequently the proper motor
response.  Each of these units, where the input is distributed among all of its clements
(neurons), extracts specific features of the stimulus which will then be combined with those
from other functional units to yield the motor response. The existence of functional columns
has been described in several regions in the brain of higher vertebrates. It has also been
shown that retinotopy is also present in the visual system of these animals and that there
are different functional columns processing specific features of the stimulus, such as
orientation, ocularity, etc. For this reason, the general principles of distributed
multifunctional cooperativity postulated in our model could be a general principle for the
processing of information for visuomotor behavior in vertebrates in general.

The present modelling has, however, neglected the existence of other functional units
which could be used by the animal to define the proper motor response.  Our simulation
has only considered a part of the integrative, more complex, activity of the tectum which
controls the location and recognition of prey-predator stimulus.  Further modelling should
integrate our tectal column medelling with our studies of other functional systems including

depth perceptionn, detour behavior), and global interactions of motor schemas?’, so that

-
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we may have a clearer idea of how these functional units interact with each other to give
the proper motor response. We have elsewhere3-2 adopted the simplistic hypothesis that
the activity of tectal PY cells (equivaleat to T5(2) of Ewer) directly controls prey-catching
orienting behavior; however, it is important to stress that motor behavior in the animal is
really the coordination of several, possibly linked, motor schemas which are activated by a
group of ncurons which define a specific sitvation in the world. Therefore we first have
to understand how the ammal has an internal representation of the world and how he uses
it to coordinate its actions. Ewert37? has specifically postulated that motor schemas are
activated by a group of cells and the action yields the activation of other meurons which in
their turn activate other motor schemas and so on until we get the adequate motor
response. This hypothesis, however, does not take into consideration how the firing of
neurons could control the animals® behavior nor how planning as a result of linked schemas
or competition between schemas may occur. Arbib?  has outlined how cooperation and
competition between schemas may occur, while Lara®® has specifically postulated how
different brain regions could coordinate the activation of motor schemas, in a primitive
three-dimensional world, to different situations.

The specific hypotheses of the present model can be listed as follows:

1)  The tectal columns controlling prey-catching orienting behavior receive afferents from
retinal ganglion cells of type R2, R3 and R4. The tectal column facilitates the response to
retinal type R2 afferents; while retinal ganglion cells of type R3 and R4 also influence
prey orienting behavior in several ways. In this paper we studied how the response of tectal
neurons, to retinal input, could be changed by pretectal modulation when the animal is in
a motivated state or for the regulation of the size constancy in the animal.

2) The inhibitory effect of pretectal cells gives tectal peurons the capability for

prey-predator discrimination. The inhibitory effect of pretectal cells is mainly directed to
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the PY ccﬂallhougha:maﬂetdfec!mnlsobewencitberonLPnndSPceus,wi!h
which it inhibits the overall tectal activity when a predator-like stimutus is present.

3) The directional invariance of prey-predator recognition is the result of the tectal
architecture, through symmetric interconnections among neighboring columns.
4) Changes in the latency of response are the result of a reduction in the tonic
inhibitory effect of pretectal cells TH3 upon the tectal LP, SP and PY cells. This effect
may be controlled by other brain regions (possibly by the telencephalon).
neprsentmoddcanbcmﬁdeteduawayoi“un!umping" the ideas of Ewert
and von Seelen for the relations among retina, tectum and pretectum for prey-predator
recognition. Ewert and von Seelenll proposed a model of prey-predator recognition in
which the retina, tectum and pretectum acted as  filters for specific configurations of the
stimulus, Theinhibimtydlc:toflbepntecmmmthewcmmmbledmehmrto
discriminate between “worm-like® and “antiworm-like” stimuli. As such, their model set
forth the basic structure of regional interactions used in our model, However, their model
bad a gumber of limitations: 1) they do mot show how the architecture of the differeat
bninngiomwillgiverisemthewopaﬁaof!hdxpoﬂuhtedﬁlwn;z)lhcydmulateonly
prey-predator recognition with neither the possibility to reproduce other phenomena mor the
capacity for expansion; 3) because of the linear nature of the model, it is only restricted to
a given range of valucs; and 4) because the mode! is lumped both in space and time, it
mnotbeteuedagainstlhedmcooumofrespmxofspedﬁc cell types with specific
retinotopic coordinates. an der Heiden and Roth!® have proposed a lateral inhibition
model of tectum which can reproduce important properties of worm-antiworm discrimination,
but does not address the issues of pretectal inhibition or of intrinsic tectal geometry. These
authors postulate that the response of tectal cells is only the outcome of the spatio-temporal

summation of retinal input (ganglion cells R2 and R3) combined with inhibitory interactions
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among the tectal neurons. Because of the linearity of the model, the response of T5(2) celis
to la:g; prey objects is not reproduced. The authors mention that an influence, from
thalamic or pretectal cells, upon the tectum can be assumed in the presence of non-prey
objects. Besides, with  this configuration, the model could not explain the disinhibitory
effoct in the tectum, observed by Ewert1216 and Ingle?6, after pretectal lesion.

It hes been suggested1837 that the motor response is the result oot of activity of a
single recognition unit but of the spatio-temporal patten of scveral neurons acting
simultaneously or serially (ie. when a stimulus is present onc or several groups of cells will
be activated, then this activity will produce a motor responsc of will induce the response of
other neurons which in their turn will control the motor behavior). This postulate is
based on the fact that some workers have described peurons in the tectum which have
different sensitivitics to the configuration of the stimulus, some of them changing their
preference depending on the speed of the stimulus213637, Grusser and Grusser-Comehls18
and Roth37 argue that because several peurons are activated in  different ways with the
same stimulus, prey catching oricating behavior could not be controlled by the activity of a
single peuron.  Morcover, these suthors claim that there is not a correlation between the
postulated  recognition upits and the animal’s behavior in the following points: 1) The
all-or-nothing character of the diffesent components of prey catching behavior; 2) The cells
should respond to the real size of the stimulus and not to its angular size; 3) They
should bave a long lateacy of response; 4) They should change their response according to
experience; 5) They should moaitor the presence of the stimulus and the stationary world in

detour behavior; and 6) They should respond to a specific location of space in avoidance

behavior.
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This criticism is only valid if we identify the response of these units with the actual
mofor response; but if we consider, as Ewert does (personal communication), that the
response of the recognition unit only indicates that a prey or a predator stimulus is present
and possibly its location in the visual field, so that the activation of a specific motor
schema is the outcome of the joint activity of several neurons, possibly placed in different
brain regions”, these  problems can be dealt with as properties of integration of the
motor schemas, as we propose befow. For example, we could think that the motor center is
receiving information from several neuroms, some sensitive to specific configurations of the
stimulus and others measuring distance to prey objects and their relation to the stationary
world. The motor respoase could then be elicited when the firing of these neurons reaches
a certain value as an all-or-nonc-response (argument 1) with a latency depending on the
frequency of response (argument 3), and at the same time, it could use this information in
such a way as to give the size constancy cffect (argument 2). According with this
bypothesis the recognition unit simulated in our mode! is only an element of a complex
interaction of groups of ncurons which serve to give the animal the ability to select the
next best motor behavior for a specific situation of its world.

Similarly, changes in bebavior could be related to the motor center rather than to
units in the tectum, although plastic changes have been observed in these npeurons
(argument 4). Finally, we think that detour behavior is not explained by Ewent’s
bypothesis nor by the bypothesis of Grusser and Grusser-Cornehls. In Eweit’s case, his
bypothesis does not show how schemas simultancously activated could yield the proper
sequential response, and Grusser and  Grusser-Cornehls postulate a continuous feedback for
the control of the bebavior which scems not to occur in these animals. In order to deal
with these problems we postulate that there should be a group of motor schemas linked

together, acting as a single schema, that are activated for a given situation to give the
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proper sequential motor msponses This will allow us to explain detour behavior.
However, for the final answer related to these topics, further experimental research is
needed.

We bave modelled the bebavior of cells that we postulate are equivalent to the
T5(2) cells of Ewent, which are mostly seasitive to “worm-like™ stimuli, then to squares
and then to “antiworm.-like” stimuli (Ewenurm). So, with respect to the issue of whether
the response of these cells is invariant to the stimulus velocity (Ewert’617) or not (Roth
and Jordann), we are oaly able to discuss the cells described by Roth and Jordan that
bebave as TS(2). These cells represent 39% of the total number of cells these authors
recorded (41 out of 115 mcurons). They reported 25 neurons that behave exactly as those
classified by Ewert as T5(2), preferring horizontal rectangles (“worm-like™), then squares
and then vertical rectangles (“antiworm-like”) (denoted as the H>S>V cells by Roth and
Jordan37), and 16 neurons that at low velocities prefer a “worm-like™ to a square stimulus,
while at high velocities they chaoge their preference between these two  types of stimuli
(the HxS>V group of cells). In both groups of cells, the “antiworm-like” stimulus is the
least cffective. It is clear that in toads these cells (T5(2)) do not present any
worm-antiworm change of prefereace as some salamanders do2236,  Himstedt22 postulates
that the “inversion phenomenon™ reported by Luthardt and Roth36 perhaps depends on the
animal’s expericuce with certain prey. Himstedt bases his argument oo the fact that when
he conducted the same experiments, with animals that were fed mainly with mealworms, be
did pot observe any change in the animals’ preferences, while in Luthardt and Roth’s
experiments the animals were fed mainly with crickets. This result is in aggreement with
what Ewert16 says about animal care in different laboratories. First, he says, animals do
not always exhibit their natural repertoire of behavior in captivity; second, gross differences

in animal maintenance (feeding among them) between different research groups using the

)
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same experimental animal may be ao unrecognized cause of the criticism that one and the

same experiment is not always reproducible in every hand.

As we saw above, Ewert!6 showed that when p 1 ablati the

animal’s (and T5(2) cells)) ability to discriminate among configurational visual patterns is
lost, and the pheanomenon of babituation of prey catching behavior to specific stimulus is
greatly disminished, so pretectal cells can be considered as being involved in some processes
that represent expericnce. Morcover, it can also be seen that TS(2) cells present a change in
the preference between “worm-like” and square stimuli, that is, in gormal animals a
“worm-like” stimulus is preferred to squares (Fig. 3B), whereas in lesioned animals the
square stimulus is more effective than the “worm-like” (sec Fig. 3D). Besides, Ewert16
and  Ingie® bave shown that this tectabpretoctal interaction is modulated by the
motivational state of the animat (eg. the kind and the amount of food the animal gets
before the experiment, the time the experiment lasts, etc). Based on these facts, we pose
that the mechanisms respoasible for the differences between the results obtained by Ewent!?
and Roth and Jorden® might be related with parameters that produce changes in the
pretectal inhibitory effect upoa the tectum.

In our model we followed Ewert’s hypothesis for the role played by the
retina-tectum-pretectum interactions in the prey catching orienting bebavior. We considered
two different mechanisms that might be modulating the pretectal inhibitory effect upon the
tectum; first, changes in the pretectal tonic activity, which are controlled by the animals”
motivational state; and second, modifying the response latency of the pretectal TH3 cells,

making it longer, possibly through changes in their membrane constants.
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Analyzing Roth’s experiment, we find that he presented small stimuli (horizontal
rectangles of 8x2 degrees and squares of 8x8 degrees), for which the response of ganglion
cells R2 (even at 7.6 degrees/sec) is almost equal to squares and to a “womm-like™ stimulus,
whereas in R3 and R4 the response is stronger to squares (sec Fig. 2). So, following our
previous reasoning, if at high velocities in‘some way (through experience or motivational
changes) we reduce or delay the inhibitory pretectal effect over the tectum when we
present the square stimulus, the retinal input, before the pretectum start its inhibitory
effect, will have the oportunity of building up a strong effect upon the PY cells which is
going to cause the change in preference reported by these authors.

In Ewent's case, he presents a rectangle of 32x2 degrees moved as a  “worm-like™
and as an “antiworm-like” configuration, that is he does not analyze the cells” response to
@ square. The R2 response is almost oull to square of this size, while it is strong to
“worm-like” stimulus. The R3 response to these stimuli is stronger to “worm-like™ than to
squares, whereas R4 is sill stronger to squares than to & “worm-like” stimulus (see Fig. 2).
We saw above that R2 is responsible for the tectal column activity, through recurrent
nctivity,witisgoingtobeverydifﬁadtfotaqumof!hisﬁzctoproducenpeaur
activity than the “worm-like” stimulus, even if its effect increases exponentially when we
increase its velocity, unless we delay the pretectal activity for a very long period of time or
we suppress it completely with a lesion.

To properly address these issues, our model will require a more refined retina
model, as well as more deteiled modelling of the temporal response of the different types
of tectal neurons. Based on the previous argument and on cardy simulations varying the
membrane constant of the TH3 pretectal cell, we conclude that changes in an animal’s
expericnce that modify the pretectal inhibitory effect upon the tectal activity could produce

changes of the tectal preference between ‘wormlike”  and square stimulus. Both
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experimental and simulstion research addressing this hypotbesis is necessary and will clasify

the real nature of these processes.
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Appendix

We provide the mathematical description of the elements (peurons) of the
two-dimensional model of the interactions among retina, optic tectum and pretectum which
updates and complements the description of the one-dimensional version provided in Lara
and Arbib,

In these models, we have used a simple neuron model, which receives n inputs xy,
X2, X and produces one output Y, to represent the behavior of tectal and pretectal
peurons. We use differcatial equations and threshold functions to model the dynamics of
such neurons” bebavior. According to these equations, the state of a neuron at time t is
defined by two quantities, one (shown in lower casc) represeating its membrane potential
and the second (shown in upper case) denoting its firing rate.

The fundamental equation describing the dynamics of each membrane potential m(t)
increases in proportion to the algebraic weighted sum S(t) of the excitatory and inhbibitory
inputs.

The membrane potential decays according to its membrane constant towards a
resting potential mg. Thus, its equation will be of the form

' @) = - o) + () - mg

In the weighting factors, the first subscripe represeats the cell that receives afferents

from the neuron represented by the second subscript. For example,
Wi

represents the cffect of a small pear (SP) shaped cell (second subscript) upon the

glomerulus (GL) (first subscript).
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'I?:e output firing rate FR(t) at time t will be determined as a function of the
membrane poteatial m(t) by the formula F(m(t)-8), where 8 is a suitable threshold value

and F may be of the form

1 U x=20
f(x) =
0 if oot
or
x i x=0
h(x) =
0 if pot
or

g(x,k) = max(x, k)
where k represeats a tonic activity.

The specific choices of the threshold functions, as well as the membrane constants,
and the weight factors arc showa in Tables 1, 2 and 3 respectively. For further discussion
about these values refer 1022733,

The (ith,jth) unit column in the optic tectum receives, symmetrically, affereats from
all of its meighbor columns and retiotopic projections from ganglion cells of types R2, R3
and R4. The pretectal cell TH3 receives retinotopic projections only from R3 and R4. We
are now going to describe the equations that define the behavior of the tectal and pretectal
cells considered in this model.

Glomerulus (GL)
The equation defining the behavior of the glomerulus of the (ith,jth) column of the

optic tectum is given as follc ws:

Qﬁg-l i j!) = k1%L .ftﬁsg'i }!)

where
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SO = UZi 0+ Wop LB 1) + 2 m‘ | ot jiml +

2 I Woyp LPigg jam(®
n=*] m=*]

where Uzi.j is the retinal input from ganglion cells type R2, and S(t) denotes the recurrent
axons (sec the text above) from LP and SP cells of its own unit as well as from
neighboring columns. The weight factor associated with the LP cell of the same column is
lasger than those of LP cells of the neighbor columns, ensuring, in this way, a mainly
vertical processing of the information which is in accordance with the experimental
dataZ8:40,

Stellate Neuron (SN)

The bebavior of the stellate neuron of the (ith, jth) tectal column can be defined as

follows:
B i) = K2 S (O
where
+1  +1
Sen; J(‘) = I T WgplPig il
n=] m=-1

where S(t) shows that these neurons receive afferents only from LP cells from its own

column as well as from neighboring ones.

Large Pear Shaped Cells (LP)
The behavior of the LP cell of the (ith, jth) unit column can be described as follows:

P i = B (4 O

where

slpi J(‘) = Blm .’(') = llpi .j(')

173731 73 T3 "3 731 "% "3 73 "3 "3 "3 "3 "3 73 "1 731 3
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where

Elpi,j(‘) = gl‘ _J(t)+U2i j‘)"’WlP.‘plsPi .ﬂt) + I z WlPsPSPi+n.j+m(l)
a=2] m=x*]
and

I]pi'j(l) = w[pm'[mtﬂ')‘*wlpﬂlmi jt) + ] f‘l mfﬂwll’ﬂs“i'*n.j*’m(‘)

where gli’j represeats the afferent from the glomerulus of its own column, Uzi.j is the
retina! input from ganglion cells type R2, and E(t) and I(t) show that these cells reccive
affercats from SN and SP cells from its own column as well as from neighbor ones and
from its corresponding projection in the pretectum through the m3i,j cell. Again, to ensure
a mainly vertical processing of information, the weight factor of the SP cell from its own

unit is larger than those from ncighbor columas.

Small Pear Shaped Cells (LP)
The behavior of the small pear shaped cell of the (ith, jth) column can be described

as follows:
) q, i J(t) = -5 J(t)-rs“li(t)
where
Sep; ,j(') = Egp .j(t)-lspi J(')
where
B 0 = VB0 Wapgth 0 + T T Wpghiajia®
and

Ty O = WepaaSN {0+ Wep g THS; 0

where U2; ¥ is the retinal input from ganglion cells type R2, and E(t) and I(t) show that
these cells receive afferents from the glomerulus of its own column as well as of its

neighbors, with a larger weight factor associated with the glomerulus of the same column,
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and from the pretectal neuron TH3; .

Pyramidal Cell (PY)

The membrane potential of the (ith,jth) Pyramidal cell (PY) is defined as follows:

Ty Y i = Py, )

where

Spyi® = Bpyy {0y O
where
E‘Wi,j(') = Wpyu2U% ,j(')“wpwa3i fOWpyuaU4 FORS
+ Wiy oS8 {0+ Wpy LB, (0 +
+ 2 z wpy-lpu’i‘tn.j*-m(‘)
n=*1 m=x]
and

lpyi,j(t) = me‘msi J(t)

whmUzi_j.UBiJnndU4iJmtherednnlinpmﬁmnganalionwlhtypekz,m:mdk4
respectively, and THSiJ is the inhibitory effect from ope cell of the corresponding
pretectal projection, and, again, the weight factor of the LP cell of the same column is

larger than those associated with the cells of the neighbor columns.

Pretectum (TH3)
The behavior of the TH3 neuron of the (ith,jth) pretectal column (there is a

retinotopic projection between tectum and pretectum) can be defined as follows:

Tehath3 _j(c) = ~th3; J(t)+S‘b3i’j(t)+ton

where

St O = Weni3uaU% 0+ Wen3.ueU4i )
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ton is the tonic inhibition that these neurons exert over the tectal activity (see text above),

and USiJ and U4Uare the input from retinal ganglion cells type R3 and R4 respectively.
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Table 1

Threshold Functions

LP =f(Ip,10 )
P =f(sH,20 )
SN =h(m,02 )
PY =b(py.23 )
TH3 = g (th3 , 38)

Table 2
Membrane Constants

- 03s k1l = 015
. Tp =03
T =065 k2 =04
H = 09
= 0.12

Th3= 002

Appendix”
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Table 3

Weighting Values

Woigpy = 12
Wipep1 = 08
WYipsm = 80
Wipgit = 10
Wpyipt = 07
Wslw = 0.1
WBHP =08
Wagp = 21
Wipsp = 06

Wlpm = 82

Wipans = 01

sp

GL

sp

to GL (5. c)

to LP (s. ¢)

to LP (5. c)

to SP (s. ¢.)

to PY (5. c)

to GL

to GL

to SN

TH3 to LP

W,

A,/

Ww =05 GL to SP

P = 200 SN 1o SP

wq,m3=o.1 TH3 to SP

pysp =20 SP 1o PY
Wpyip = 056 LP to PY
Woywz =35 U2 10 PY

Wpya3 =03 U3 1o PY

A,/

pyus =70 U4 to PY

Woyns = 09 TH3 to PY
W33 = 03 U3 to TH3

Wen3us = 50 U4 to TH3

note : 3. ¢. = from the same column

Appendix
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Fig. 1.

Prey-catching orienting behavior to different configurations of the stimulus. A) Turning
reaction to the stimulus presentation. D: effective angular displacement of the stimulus (p);
T: angle of turning movements. B) Orienting activity to three stimulus configurations,
horizontal (“worm™: type a) and perpendicular (“anti-worm™: type b) rectangles, and squares
(type c¢). B.a) Normal animal’s response becomes more frequent when we increase the
dimension (H) of a stimulus of type a, whereas response frequency rapidly drops to zero
when we increase the dimension (V) of a type b stimulus, and a sort of summation of
these two responses is obtained when we increase both dimensions of stimulus type c. B.b)

This discrimination is lost in toads with pretectal lesions (From Ewert12),
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Fig. 2.

Retinal ganglion cells response (classes R2, R3, and R4) to different configurations (type a,
b and c) of moving stimuli with a visual angular velocity of 7.6 degrees/sec. Left, they
present a receptive field formed by a central excitatory (ERF) and a peripheral inhibitory
(IRF) area. The three ganglion neurons respond almost with the same intensity to stimuli
type a of different sizes. For stimuli of types b and c, ganglion cells R2 and R3 increase
their rate of response up to their respective receptive field sizes and then it drops down,
whereas R4 increase their rate of response when the size of the stimulus increases, giving
the strongest response to stimuli of type ¢ (From Ewertlz).



Lara, Cervantes and Arbib - 48 - Figures

s> 2

4 «—u»
I -

S e
TH MUS ETECTA NEURON

TECTUM TYPE 2 NEURON
3of €

0 .\"\
r N9 b

JECTUM TYPE 1.2 NEURON

DISCHARGE FREQUENCY (IMPULSES PER SEC)

EDGCE LENGTH H,V,S, (LECREES)

Fig. 3.

Tectal and Pretectal cell response from common toads to different configurations of
moving stimuli (see Fig. 1 legend).  A) Response of a pretectal neuron TH3 which is
mostly sensitive to large (type c) and perpendicular (type b) stimuli. B) Response of a
tectal cell TS(1) which is most sensitive to stimuli type c, then type a, and then type b. C)
Response of tectal neuron T5(2) which prefers mostly stimuli type a, then type c, and gives
a very weak response to type b. This neuron’s response resembles the animal’s behavior
(see Fig. 1B). D) Response of both tectal cells (T5(1) and T5(2)) after thalamic pretectal

lesions. It shows how the discriminative abilities of these cells are lost (From Ewertlz).
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Fig. 4.

Interconnections among the cells of a tectal column. The pyramidal cell (PY) is activated
by .the large (LP) and the small (SP) pear shaped cells. The stellate neuron (SN) is
excited only by the LP cell. The SP cell receives excitatory afferents from the glomerulus
(GL), and it is inhibited by the SN neuron. The LP cell is excited by both the SP cell
and the GL, and it is also inhibited by the SN neuron. GL receives afferents from
recutrent axons of LP and SP cells (from Lara and Arbib>3). GL, LP and SP also receive

afferents from retinal ganglion cells R2, whereas PY receives from R2, R3 and R4 (see
Fig. 5 and Fig. 6B).
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Fig. 5.

Representation of the two-dimensional model of the optic tectum, constituted of an array of
8 by 8 columns that covers a receptive field of approximately 32 by 32 degrees (see text
for explanation), and receives “focal” as well as overlapping information from retinal
ganglion cells of classes R2, R3 and R4. For simplicity we only show the retinotopic
projection to one tectal column and its neighbors.
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Fig. 6.

Interactions among retina, optic tectum and pretectum. The retina sends fibres in a
retinotopical fashion to both optic tectum (class R2,R3 and R4 (see Fig. 5)), and pretectum
(class R3 and R4). A) TH3 neurons also project retinotopicaly to the optic tectum. For
simplicity we only show the projection of three rows of TH3 cells projecting upon the tectal
columns. B) A closer look of the interactions among retinal, tectal and pretectal cells.
The TH3 cell of the pretectal column inhibits LP, SP and PY of the tectal column
corresponding to its retinotopic projection. .
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. 7

Flg puter simulation of the response of pretectal and tectal cells to different configurations
(type ab and c) of moving stimuli (visual angular velocity of 8 degrees/sec). A) Pretectal
TH3 cell response: it is mostly sensitive to stimuli type ¢ and b. B) Overall response of
the tectum to the three types of stimulus (a, b and €): tectum response is mostly sensitive
to stimulus type a and it is weaker to stimulus type b. C) Response of a PY cell to
the three different stimuli : it respond better to stimulus type a, then to type ¢ and it
gives a very weak gesponse to a stimulus of type b. This curve is equivalent to B. D) PY
response when pretectum ablation occurs: these cells are mostly sensitive to stimuli of type
c or 3, and less to those of type b.

Fig. 8.

Figures 8 and 9 present a computer simulation of the PY cell response of the 64 columns
of the tectum to the different configurations of moving stimuli when pretectal ablation
occurs:  All stimuli are moved from left to right with a visual angular velocity of 8
degrees/sec. Fig. 8 shows four-dimensional graphs, where the x and y axes are used to
represent the spatial localization of the (ith,th) column. The y axis of this plane is also
used to show the time. scale for the response of every column’s PY cell, while the vertical
axis, (z axis) represeats. its local membrane potential. In the graph when the PY local
pofengial is; about the threshold, this is indicated by spikes.  Figure 9 offers a closer look
at the response of the PY cell of column. (4th,Sth) for the different configurations of the
stimuli.  In both graphs: A) response to a “worm-like” stimulus (type a) of 82 degrees;
B) to, the same stimylus moved as “antiworm-like™ (type b); and C) to a square stimulus
(type c) of 88 degrees. At the level of one PY cell, the tectal response is stronger for
stimulus type c, then to type a, and finally to those of type b. The overall response of the
tectum-isalsomongertotypecstimulus.Itisalsowiderspread,whilethelmponseto
“worm-like” stimulus, although it is strong too, is concentrated in a narrower area.




~T
Wy
N ~
N
1

~ .

A |

W S L

b= : ]

! i
“ = -~ T “

W el

¢ g - |
. |

ID J\ LT
Lo~ —

A Lt

a
~ [ M

o

. Cervantes, Lara and Arbib

-
i

|

F

«@J.leuﬂﬂ_m?zﬂ,mn.l.,ﬂlj%nj_mwlj
!

Figure 8

]



Coervantes,

Lara and Arbib

. (A
PYRANIOAL g
RETATEY 201 1R OF WOTION VEL - 8 DEGRECS/SEC COLUNN 14.9)
A
[ :
/\/ + 1‘/\\ /1
] ? 3 4 5
TIKE
: 9
PYRANIOAL : D —*
CTIVIT
VA DIR. OF WOTION VEL = § DEGREES/SEC COLUNY  14,5)
!
|
|
g
/_ ./‘_
¢ = =
] 2 3 4 9
TIHE
PYRANIDAL ¥ a5
ACTIVITY B
L 0In OF WoTION VEL = 8 DEGRFES/SEC COLUMN (4, 9)

=
[——- o o

Fig. 9.
See legend for Figure 8.
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Fig. 10.

Figures 10 and 11 present a computer simulation of the PY cell response of the 64 columns
of the model of the interactions among retina, optic tectum and pretectum. All stimuli are
moved from left to right with a speed of 8 degrees/sec. (See Fig. 8 legend for an
explanation of the graph characteristics). In both 10 and 11: A) Response to a
“worm-like” stimulus of 82 degrees (type a); B) Response to an “antiworm-like” stimulus
of 2x8 degrees (type b); and C) Response to a square stimulus of 8x8 degrees (type c).
The response of the PY cells is strongest to stimulus type a, then to type c, and finally to
type b. In Fig. 10 it can be seen that the response to type c stimulus, although wider
spread, is weaker than that to type a, whereas the weakest response is again to stimulus
type b. In Fig. 11 it is clear that PY cells are most sensitive to “worm-like” stimuli, rather
than to squares or to “antworm-like” stimuli.
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Fig. 12. 7
Computer simulation of the PY cells response of the 64 columns to a rectangle stimulus, )
of 8x2 degrees with a speed of 8 degrees/sec. (see Fig. 10 legend). I) The stimulus is -
moved as a “worm-like” in three different directions. II) The stimulus is moved as an |
“antiworm-like” in the same directions as in I). In both I) and II): A) moving from the )
upper left corner of the figure to the lower right; B) from left to right in the middle of ) -
the receptive field; and C) from the lower left to the upper right comer of the figure. The '
response is direction invariant, so the recognition of both stimuli does not depend on the
direction of motion. -
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Fig. 13.

Behavior of tectal cells to changes in the motivational state of the animal. A) Behavioral
response of common toads to prey dummies (disks) of different sizes with a visual angular
velocity of 20 degrees/sec. In the presence of prey odor (motivated animal) the stimulus
efficacy is greately enhanced (see arrows) (from Ewertm). B) Computer simulation of the
PY cells response to changes in the motivational statec level. The curves correspond to
normal (same as Fig. 7C) and motivated states, when we present “worm-like” stimuli of
different sizes with an angular velocity of 8 degrees/sec. The response (number of spikes)
increases if the motivated state is increased, although the size selection (selection of the
“optimally” preferred prey size) remains the same.
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Fig. 14.
Computer simulation of the PY cells latency of response to different motivational levels. We
used a “worm-like” stimulus of 8x2 degrees moved with a visual angular velocity of 8
degrees/sec. The curves show the response of the PY cell of the (4th,5th) tectal column
with: A) low; B) normal; and C) high motivation level. It is clear that the latency of
response  reduces and the number of spikes increases when the motivational  level
increases.
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Paul Grobstein

Working notes for talk at the Second Workshop on Visuomotor Coordination in Frog and
Toad

Universidad Nacional Autonoma de Mexico, November, 1982

Further thoughts on the linkage between tectum and prey capture motor output, on
that between stimulus and Prey capture motor output, and on the relation between the
two.

At the last meeting, I reviewed studies from this laboratory done over the previous
five years and concerned with understanding how the nervous system is organized so as
to yield the correspondence between stimulus Iocation and the direction of movement
which is seen in frog prey capture behavior. These studies led to a working model in
which each tectal lobe is linked bilaterally to several different sets of pattern generation
circuitry, including one each for leftward and rightward turns and a third for the
bilaterally symmetric components of the output, those which vary most obviously with
variations in stimulus elevation and distance. | also noted that the model included the
assumption of a particular form of relation between tectum and pattern-generating
circuitry, one in which each local tectal region was differently connected to the pattern
generating circuitry such as to yield a specific and appropriate motor output. At the
same time, 1 discussed both experimental observations and theoretical considerations
which were causing us to question the validity of this assumption. The results of lesion
studies suggested that the output associated with a given tectal region might be a
repertoire of movements rather than a single movement. For several reasons, including
a distance/direction ambiguity in the interpretation of the significance of activation of
a local tectal region, I suggested that this sort of organization might in fact be
expected. At this year's meeting I will discuss studies done in collaboration with Sandra
Kostyk, Lee Zwanzigger, and Alex Reyes over the past year and aimed at providing
new information about variations in motor output with stimulus distance, at testing
several specific aspects of our working model, and at evaluating the possible role of
the cerebellum in a spatial coordinate transform which I had suggested was probably
required between the tectal retinotopic maps and the output pattern-generating circuitry.

Distance-related variation

Our studies on variations of prey capture motor output with distance proceeded from
David Ingle's observation that as stimulus distance increases there is a fairly abrupt
switch between two qualitatively different motor output patterns. For nearer stirmulj
the triggered output involves a directed snap, including a tongue flip. For more distant
stimuli it involves a directed body mevement, without a tongue flip. The behavioral
repertoire suggests that in addition to a measure of absolute distance, some measure
corresponding to "within reach" is important in understanding the linkage between
stimuius location and motor output. The relationship between the edge of the “snap
zone” and the limits of the frog's ability to discriminate distances or to increase snap
amplitude has howevnar not been investigated. Nor Fas the prediction that shap zore
size should increase with body size. We have addressed these issues by observing the
responses of frogs of various sizes to live raealworms presented at varying distances
on the saggital plane. Many frogs snapped with low frequency but reasonable accuracy
for stimuli located beyond the point at which crienting moverents are the greatly
predominant response. This cbservation indicates that the snap zonc horder bears no
simple relationship either to motor output capability or to the limits of distance
discrimination ability. While the size of the snap zone varied significantly among frogs
of the same size, snap zone size was nonetheless oa the average about twice body size,
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a result confirming the importance of a "within reach" variable. Unilateral 'optic nerve
section in three of four of the larger frogs significantly reduced snap zone size, without
effect on distance discrimination as judged by the accuracy of snaps to st|.muh w1_th|n
the snap zone. These observations are of interest from tf}ree_pomts of view. First,
they raise questions about what kind of information processing is necessary to produce
a stable "within each" variable over frogs of different sizes. Secondly, they confirm
that an "in reach" variable exists in monocular frogs, that a distance analysis involved
in determining snap amplitude does as well, and that the value of the former can be
altered without influencing the calculation of the latter. Thirdly, they raise questions
about whether the simple assumption that some parts of the tectum project to snap
circuitry and others do not is an adequate explanation of the observed switching between
the two forms of motor output.

An _ipsilateral path for turning

Based on indirect evidence, our working model hypothesized the existence of a crossed
descending path linking the part of tectum recejving input from the contralater'al v1§ua!
hemifield with pattern generating circuitry producing turns in the contralateral.dnr.ectlon,
and of an uncrossed path linking the part of tectum receiving input from the fps!laxeral
visual hemifield to pattern generating circuitry producing turns in the ipsilateral
direction. To test directlly for the existeace of ipsilateral descending paths we have
observed the behavior of frogs subjected to hilatera] interruption of the crossed paths by
3 ventral midline incision at the level of their decussation. Consistent with previous
reports of Ingle, nearly all such frogs failed to turn toward stimuli in binocular field
during the first weeks after the lesion. This makes uncertain the element of our model
which identified the tectal regions representing the ipsilateral visual hemifield as the
source of the ipsilateral projection. The animals did however turn in the expected
directions for stimuli at more peripheral locations, most within two or' three days_ of
the lesion and all within one week. Stimuli at locations more peripheral in one hemifield
(the left for example) and hence activating the opposite tectal lobe, trlggere§ turns of
progessively greater amplitude toward the side of that tecta] lobe (to the nght),‘ thg
direction expected of turns triggered by an ipsilateral descending pa}th. For near stimuli
2 snap was included in the response. The results confirm the existence o{ ipsilateral
descending paths adequate to trigger prey capture turns. Perhap.s. more importantly
they indicate that tectal regions representing the contralateral _hemmeld are linked not
only to pattern generating circuitry for turns in that direction but to c:rc.ult.ry ‘for
ipsilateral turns as well. Finally they raise f.r:her doubts about whether the distinction
between stimulus locations eliciting snaps s opposed to orienting movements can be
accounted for on the basis of tectal regions v*ich do or do not product to snap circuitry,
In our experimental animals we observed snzoping for near stimuli at po_sitions so caudal
as to appear to be well outside the limits of the snap one in normal animals and her}ce
to be causing activity in tectal regions which would be presumed not to be projecting
to snap circuitry,

Direct links between tectum and pattern generators?

In our working model, the descending paths were hypothesized to be rather direct links
between the tectal lobes and the pattern g erating Ciruitry. As described last year,
hemisected frogs respond to stimuli locats~ ipsilateral to the lesion with forwardly
directed movements which do not vary v .:- stimulus angle on the horizontal but do
vary with distance. We interpreted this .« avior as a consequence of destruction.of
the paths to turn generating circuitry an® survival of paths to circuitry generating
distance related output patterns. If this we-a true, one would expect a normally sized
snap zone in the ipsilateral hemifield. We - z.e now tested this prediction and found it
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not to be the case. The distance to the edge of the snap zone at 90° into the
ipsilateral hemifield increased so that in hemisected frogs the snap zone size is the
same as that in front of the animal. The observation provides a clear demonstration
of snapping as a result of activation of retinal, and presumably tectal, loci which would
not be expected to project to snap generating circuitry. It also makes unlikely our
previous interpretation of the behavior of hemisected frogs. The outputs triggered by
laterally placed stimuli are not in fact equivilent to those expected if one takes the
normal outputs and substracts the turning component. They are instead apparently
those appropriate for frontally located stimuli. What appears to be disturbed in the
hemisected animals is not a direct link to pattern generating circuitry but rather a
process by which information about stimulus location coded retinotopically is transformed
into information about location in body centered space. This is in accord with our
previous suggestion that there may be intermediate circuitry between the tectum and
the pattern generators which performs such a transformation. What is cut in the
hemisections may be tectal projections to this circuitry.

Cerebellum °

The possible role of the cerebellum in prey capture behavior has not been evaluated
experimentally. There have been suggestions that it may be involved in pattern
generation and there are substantial reasons to believe it may be generally involved in
co-ordinate transformations. We have been studying the prey capture behavior of {rogs
following lesions intended to totally remove the cerebellum. The results are preliminary
and the conclusions depend on an histological analysis of the extent of the lesions which
is in progress; gross dissection however indicates massive if not total cerebellar removal.
All frogs displayed a transient dysmetria for a week or so following the lesion; by two
weeks they turned toward stimuli in our standard testing paradigm with the same
precision as do normal frogs. At this time they were also tested in ways designed to
accentuate the importance of a co-ordinate transform. These included observing turns
made from unusual starting postures as well as responses to stimuli at varying distances
on the saggital plane and on a line corresponding to 90 into the peripheral field. All
frogs displayed slight persistant dysmetrias in turning from abnormal postures to more
peripheral stimuli but not to more central ones. With the exception of one frog, there
were no gross abnormalities in snap accuracy or snap zone size for stimuli on the
saggital plane. Frogs also behaved normally for stimuli on the 90 line except for an
increased scatter in turn angle for the most distant stimuli. These observations indicate
that the capability to generate the motor programs involved in prey capture behavior
survives massive or complete cerebellar removal. They also suggest that the ability
to tran:form retinocentric information about stimulus location into appropriately directed
movement is not strongly dependent on the cerebellum. The abnormalities we have
obseved are small and do not fall into a pattern which corresponds in any obvious way
to what might be expected from the failure of some necessary coordinate transform
to occur. They involve principally small dysmetrias and increased variances in situations
‘calling for more substantial body movement. We suspect these result from small

disturbances in muscle co-ordination or in the processing of reafferent signals, perhaps

from the vestibular rystem, and are not irdicative of an involvement of cerebellum
the spatial co-ordinate transformation.

Summary

In sum, our observations over the last year have resulted in a continuing evolution of
our model of the neuronal organization underlying the coupling between input and output
in prey capture behavior. We have obtained new supporting evidence for the general
picture of bilateral paths from each tectal lobe to at least three distinct scts of
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pattern-generating circuitry, one each for turns to right and left and a third for distance
related movements. At the same time we have obtained further evidence suggesting
that the normal correspondence between input and output can probably not be accounted
for by discrete and different projections of various tectal regions. Regions which would
be expected to be linked to turn-generating only on the opposite side of the brain are
linked to such circuitry on the same side of the brain as well; regions which would be
expected to be linked only to circuitry for turns are linked to circuitry for snaps as
well, These observations are consistent with our earlier observations which also suggested
that there are not a single output but rather a repertoire of outputs associated with
individual tectal regions. This interpretation of observations following lesions is paralled
by theoretical considerations, as well as behavioral observations over the past year,
which suggest that retinal local sign probably provides insufficient information to
uniquely specify the location of a stimulus in the coordinate frame used for movement.
We suspect that the pattern of tectal activity provides necessary but not sufficient
information to account for the normal linkage between input and output. It defines a
range of possible outputs from which one is selected using additional information. This
we suspect occurs in an intermediate level of neuronal machinery between the tectum
and the pattern generating circuitry, machinery which accomplishes the transformation
from a retinal coordinate frame to a body coordinate frame which is necessary to
uniquely specify stimulus location. Our observations suggest that this circuitry is not
located in the cerebellum but probably is caudal to the isthmus region. Our current
efforts are directed at determining the origins and targets of fibers passing through
this region as well as at trying to characterize the logic of the information processing
involved in the transformation using both theoretical considerations and further
behavioral observations.
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SENSORIMOTOR TRANSFORMATIONS OF NATURAL COORDINATES VIA
NBURONAL NETWORKS: CONCEPTUAL AND FORMAL UNIFPICATION
OF CEREBBLLAR AND TECTAL MODEBLS

A. Pellionisz

Departaent of Physiology & Biophysics
New York University Medical Center
550 Pirst Ave, New York, N.Y.

I. INTRODUCTION

In comparing the development of models dealing with the anatomy and
physiology of the tectua and cerebellum, their similarities are more striking
than their differences. 1In fact, there is a parallelisn between the two lines
of research, which is evident at several levels of the analysis, Given their
coazon features and the fact that much more time and effort has been invested in
cerebellar than in tectal research, a crosg-fertilization initiated from
cerebellar modeling and perhaps a merging of these hitherto separate attempts at
understanding CNS subsystems may now be mutually beneficial.

In this paper, a brief outline of the parallelisa is given from the point
of view of a cerebellar modelist. This is followed by some ideas of how the two
flelds could be merged, if desired, by using both a common conceptual approach
and a unified formalism of analysis,

II. DRAWING A PARALLEL BETWEEN CEREBELLAR AND TECTAL MODELING

Pirst Level: Bstablishing the Structural Basis of Punction  from
Morphology. Pundamental features of the material basis of CNS function, the

basic neuronal networks of different subsystems, had been revealed gquite early
by Ramon y Cajal (1l911), However, the explicit goal of deducing a rudimentary
structuro-functional scheme, in order to serve as the anatomical basis for
modeling of the function of the cerebellum, organized in parallel, had not been
set until the so-called lateral inhibition scheme (Szentagothai 1963, 1968).
For the tectum, a conceptually and methodologically comparable attempt was made
by Scalia et al. (1968), Szekely (1973), Szekely et al, (1973, 1976) and Sprague
et al. (1973). Pig. 2. in ref. Szekely et al. (1976) now serves as a generally
accepted basic morphological scheme for the structuro-functional interpretation
of the tectum.

Second Level: Establishing the Functional FPeatures of the Neuronal

Elements. The most important functional properties of single neurons in the
cerebellum were revealed chiefly in the papers of Bccles, Llinas and Sasaki
(1966a,b,c,d) and Ito & Yoshida (1964). A corresponding set of investigations
of the tectum is comprised in the work of Injle (1973,1975,1976a,b), Ewert
(1970,1971, 1976), Ewert & Inglc (1971), Grusser & Grusser (1976). As a result,
bagic information is available to explain the function of both of these CNS
subsystems in teras of the propecties of neuronal elements.
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Third Level: Synthesis of the Knowledge on_ 3tructuzre and Punction:
Phenomenological Computer Modeliny. In the late sixties, a wealth of data was
amassed in gcerebellar rasearch and was consolidated into a single volume (Eccles,
Ito & Szentagothai 1967). The book challenged brain modelists & theorists to
synthesize this large array of dispacate data into a coherent body of knowledge
and then to transform this knowledge into a conceptual understanding of this part
of the CNS. Likewise, in the early seventies, a collection of oorphological and
physiological data from the tectum was also gathered (Ingle & Sprague 1972y,
posing a similar challenge to brain modelists & theorists.,

Pulfilling these goals required several steps. In the case of the
cerebellum, attempts were first directed towards developing single cell models,
capable of encompassing the dynamic temporal characteristics from
electrophysiological observations. Using a multicompartmental Hodgkin~Huxley
model of Purkinje cells, explanations were offered e.3g. for the dynamism of
generating simple and complex spikes (Pellionisz & Llinas 1977), and for the
plastic characteristics of such firings (Pellionisz 1976). A subsequent major
approach in phenomenological modeling was to provide a computer simulation of the
neuronal interconnections in a large network model. Such studies of the
cerebellum were carried out 2.9. by Pellionisz & Szentagothai (1373, 1974) and
Pellionisz, Llinas & perkel (1977). (Por the gjeneral philosophy of
phenomenological modeling of the cerebellum see e.g. Pellionisz (1979b).)

As for the tectunm, just as any work on morpholsgy can be traced back to
Cajal's studies, most godels of the superior colliculus have some roots i{n
McCulloch & Pitts' early attempts, Specifically, Pitts & McCulloch (1947)
envisioned a scheme of neuronal networks, including that of the collicalus, as
controlling eye movements. By tieing the workings of a neuronal network to a
physically measurable emergent function, they deviated rather sharply from their
previous model of neurons implementing Booslean algebra (“cCulloch & Pitts,
1943). Unfortunately, they 3id not continue to develop their later model into a
conceptually and formally explicit treatise of the internal representation of
external invariants. Instead of further clarifying the conceptology, Lettvin,
Maturana, McCulloch & Pitts (1959) turned this approach towards phenomenology,
trying to relate the model more closely to the slowly consolidating data-base,

Lettvin's line was resumed during the upswing of modern modeling (Didday
1970, 1976). At the meeting in 1972 (see Ingle & Sprague), it became clear,
however, that an orchestrated effort was needed to bring the experimental data,
turned out with increasing speed through the seventies, into harmony; in the form
of phenomenological and then, perhaps, of conceptual models. Dr. Arbib set up a
framework to encompass such essential team-effort by initiating these two
workshops on visuomotor coordination in frog and toai. Phenomenological models
of the tectum, contained in this frame, are a) single cell computer models
(Lara, Arbib & Cromarty 1982), capable of ceproducing the dynamism of firings
(cf. 1Ingle 1975); b) computer models of the retinal-pretectal-tectal
connectivities (Lara, Cervantes & Arbib 1982, Lara 1982, rara & Arbib 1982). Por
insights to the philosophy of these models, see Lara & Sandoval {1982) .

Pourth Level:
Conceptual Moiels.

Transformation of Knowledge into Understanding SNS Function:
The parallelism between cerebellar- and tectal modeliny can
This is the conceptual
identification of the Eunction of a specific subsystem of the CNS, and the
demonstration of now the observed structurofunctional Properties enable the
neuronal mechanism to perform its function.
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As_for the evolution of concepts of cersbellar function, motor coordination
has long been conzluded to be the role of the cerebellum (cf. reviews listed in

pow & Moruzzi 1958, Pellionisz 1979a or Llinas & Simpson 1981). Nevertheless,
some early models were restricted only to stating the problems (e.g. Arbib,
Pranklin & Nilsson 1968) or aimed only at ideas concerning specific subsystems of
the total circuitry (e.g. Szentagothai 1963, 1968, Pellionisz 1970). Other
models identified tne function as being limited only to a facet of what is known
as coordination; either in the form of ®timing" (Braitenberg & Onesto 1961), or
conttol of "synergies" (sets of parameters) in the Bernsteinian sense (Boylls
1974, 1981, Arbib, Boylls & Dev 1974). Eventually, the realization that the
function-identification of the cerebellum as a "learning machine® (Brindley 1964,
Grossberg 1964, Smolyaninov 1966, Eccles et al., 1967, Szentagothai 1968, Marr
1969) was both overly nacrow and mistaken, led Marr (1982, p.15.) to repudiate
his earlier theory that reduced the cerebellum to a pattern-recognizing
function. While Ito (1982) still stresses the posaibility of plasticity within
the cerebellum, it is often pointed out by him and others that the primary role
of the cerebellum appears to be coordination, secondacy is perhaps timing
(prediction) and a tertiary may invoke plasticity. It is emphasized here, that
while a degree of plasticity probably cannot be excluded from any subsystem of
the CNS (as a general means for the living or3anism of becominy able to
function), it may be a philosophical error to mistake the becoming for the
function. Por example, in "learning to read" the function is reading, whereas
the learning is just the development of the Cfunction. We suggest that the
cerebellum serves as a space-time coordinator (by acting as a predictive
space-time metric; Pellionisz & Llinas 1982b) and the genesis and modification of
this metric tensor-like circuitry entails phenomena associated with plasticity
(Pellionisz & Llinas 1981).

There is a need for a gradually enlarging view of the function of CNS
subsystems. This is clearly pointed out by the evolution of the conceptology of
cerebellum, outlined above. Integrative cerebellar theories cannot exclude any
specific aspect of the function; in fact, Tensor Theory does consolidate e.g. the
elements of timiny, plasticity, control of a set of parameters or lateral
inhibition. On the other hand, subsystem-theories that are restricted to only
one or a couple of such aspects, brilliant as they may be (such as e.g. the
Braitenberg' ®"timing® notion), they serve as transient, too sharply focused
flashes on the details. Also, such narrow presentations usually have to be
rather considerably reinterpreted when eventually they are fitted into a model
with enough power to enlighten a much broader perspective.

A trend towards unification, starting with integrating different aspects of
the function of cerebellum into a coherent mod2l cannot stop at the boundaries of
the cerebellum. It has long been questioned, for example; "Can we make a real
systems approach to cerebellar function without modelling the whole motor
system?” (Arbib et al., 1368). The raal challenge to a brain theorist & modelist
is, therefore, whether one can integrate one's separate models of particular
subsystems of the brain. Por instance, can one mer3e models of the motor part of
the CNS (cerebel.um) with available models of a gensory pacrt (tectum) thereby
jenerating a model of how the sensory transforms into the motor (cf. Srobstein et
al., 1982)? The goal of developing entire sensorimotor models is explicit e.g.
in Arbib, Boylls & Dev (1974), whereas the disparate models of the cerebellum
(Boylls, 1974) and that of the tectum (Arbib, 1982) hava yet to be integrated
into> a meaningful whole.

The goal of theoretical brain ressarch, it seems, is not the modeling of any
specific part of the CNS per se. 1In the process of developing an integrated
brain theory, it may only be for techaical reasons that research is concentrated
first on the sjimpler, and then on the more complicated parts of the brain. It
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has already been stressed that, for instance, the cerebellar theory is aimed at
finding the unifying conceptual and formal means by which the brain as a whole
can be understood (cf. Pellionisz & Llinas 1979b, 1982ab), and this understanding
utilized (cf. Pellionisz 1983a).

The evolution of concepts on the function of the tectum, unfortunately, is
not as advanced at this time as that of the cerebellum. Indeed, the general
underlying theme appears to be the rather vague notion (cf. Ingle & Sprague 1972)
that the colliculus serves as a gort of sensory coordinator for visually (and
acoustically) guided behavior; examples are the eye-saccade in higher mammals or
the body saccade (snap) in 1lower vertebrates (amphibia). This general
description, not unlike the notion that the cerebellum is a motor coordinator, is
approached by experimentalists from different conceptual standpoints.

One school of experimentalists works at heuristic behavioral 1level (pray
catching and avoidance in frogs and toads) combined with single cell
electrophysiological studies (cf. Bwert & Ingle 1971, Bwert 1976, Ingle 1976).
Neuronal modeling & brain theory is already contributing to this approach by
filling the gap between the single cell and behavioral levels of phenomenology by
computer modeling (Lara & Arbib 1982, Lara, Arbib & Cromarty 1982, Lara,
Cervantes & Arbib 1982). Another expected contribution of brain theory would be
to fertilize such phenomendlogical models with concepts that the CNS aay utilize
to be able to play the role of sensory coordinator.

In another major approach, through the elegant studies of Sparks and
colleagues (Sparks 1975, Sparks & Pollack 1977, Sparks & Mays 1981, 1983, Sparks
& Porter 1983), the function of the tectum 1is not only experimentally
investigated but the data are also conceptually interpreted, albeit not quite
modeled, as representing (not in a retinccentrically but spatially coded form)
the saccade-vector of the eye movement. This approach centers neuronal firings
of the tectum and the well-measurable physical events (the movement of the eye)
around the powerful concept of vectorial representation. It is, indeed, unlikely
that coordination can be explained without using coordinates.

In this paper, by introducing a methodology capable of handling natural
coordinate systems in which such CWS vectors are expressed, an integration of
tectal experimental data and models is proposed, as well as formal-conceptual
unification of tectal and cerebellar models into a tensorial sensorimotor scheme
is offered. This cerebellar modelist & brain theorist has been asked to put
other parts of the brain, e.g. the tectum, into the focus of the conceptual and
formal approach already elaborated for other subsystems of the CNS. Thus, this
study serves as a precursor to Gur forthcoming full paper which applies Tensor
Network Theory to tectal systems. If what Beems conceptually and formally
applicable to one part of the brain appears to be applicable to other subsystens
as well, then one may c’.aim some general understanding of the brain in a more
profound sense than that inherent in phenomenology.

Tensor Network Theory of the Central Nervous System (Pellionisz & Llinas
1978, 1979a,b,c, 1980a,b 1981, 1982 a,b) has already implicated sensorimotor
transformations and has proposed a functional role of the tectum (cf. refs. 1982
a,b). The theory itself is not exposed in the scope of this work; the reader is
referred to the original papers and the explanations which put them into
perspective (cf. Llinas 1981, Llinas & Simpson 1981, Pellionisz 1983a,b). The
rest of this paper is limited solely to a further illumination (with the help of
the composite diagram of Fig. 10.) of how the conceptual arnd formal approash of
Tensor Network Theory may be applied to general integrated functions of the CNS,
as gensorimotor traansformations including tectal, cerebellar and other neuronal
natworks of the brain.
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IIX. APPLICABILITY OF TENSOR NETWORK THEORY TO SENSORIMOTOR MODELING
e ——ataes Tol VK THEORY TO SENSORIMOTOR MODELING

The fundamental thesis of Tensor Network Theory is that the function of the
CNS is to deal with invariants (physical objects) of the external world by means
of internal coordinates which are teansformed through neuronal networks. Por
example, the space-time event of a movement (a fly's path, the movement of the
frog's head, or of the whole body during a snap) is usually assigned extecnally
with x,y,z,t Cartesian coordinates in a Newtonian space-time reference-frame.
However, inside the CNS these movements are both detected and generated by
concerted activities of many neurons, which mathematically constitute internal
vectorial components assigned to the external invariant. Suzh sensory and motor
vector components are e.g. the firing frequencies of neuronal axons arfsing from
the usually non-orthogonal vestibular semicircular canals, and firing frequeacies
Of motoneurons that innervate a set of hindlimb muscles involved in a snap.

There are major differences, understandably, between CNS vectors (ordered
sets of quantitities) that express external invariants in natural coordinate-
systems and vectors expressed in the "regular® (man-made, X,Y,z Cartesian,
three-dimensional, orthogonal) Erame of reference. Two of the many differences
are self-evident. FPirst, the number of CNS vector-components is potentially much
higher than three (even for the quite compact vestibular system, the number of
semicircular canals is six, and the skeletal muscles involved e.g. in a snap are
obviously more numerous). Second, the coordinate-axes are usually not
perpendicular to one another, not even in the vestibulum (c.f. Curthoys et al.,
1975). Thus, an analysis of the CNS in terms of dealing with external invariants
by means of internal vectors presents both a possibility and a problem,

The promise is that CNS function can be conceptualized in a @athematically
precise manner as tepresenting an external invariant in different sensory and
motor frames of reference, where the operation is identified as tranformation
from one vectorial expression to another. In the composite Pig. 10. of this
paper, for example, a four-dimensional oblique optic~auditory frame of refecence
is shown. Here the axes at 60° may be thought of as reference for audition,
while the 120° directions as visual axes. 1In turn, the vestibular reference
frace is represented as a three-axis oblique system. In a much more abstract
manner, the motor frames of how a set of neck or forelimb muscles would yaw or
roll the head, or how a set of hindlimb muscles would move the whole body in a
snap, are symbolized in the figure only oy two dimensional non-or thogonal
frames. Since tensor operations can be described in a generalized reference-
frame without invoking any specific one, the restriction of the pictoral
symbolism into 2 and 3-dimensional graphs w#will in no way invalidate the
approach. However, such simple heuristic diagrams will keep the the tensorial
blueprint of an amphibian CNS at a not totally unreasonable level of complexity.

The problem that this approach raigses is twofold: a) How can vector-

invariant (e.g. detecting a target in optic-auditory Ecame, and then moving the
body, using another, motor frame of hindlimb muscles and thus achieve a spatio-
temporal coincidence of the target and the body). b)

bagic tenet that Tensor Network Theory invokes. According to a genmeral
conceptual definition, a tensor is a matematical device that expresses the
relation among {possibly an infinite number of) different vectorial expregsionsg

assijned to the same invariant (cf. Pellionisz & Llinas 1982a).

-5 -

|

3
3

BB

3

Bl

—3

-k

4 | 3 LI

Pellionisz

While tensors are abstract instruments, in a particular frame of ceference,
a tensor transforming one kind of vectorial expression of an invariant into
another may be implamented by a matrix with pacticular numerical components,
Given a network, connecting n input neurons to m output neurons, mathematically
representing an nxm matrix, the general function of such a neuronal network can
be identified as performing a_tensor transformation.

A_common problem, which leads to nmisunderstandings is that the general
mathematical tool of tensor analysis is now being used in a novel scientific
application. Thus, the usage is, by definition, unconventional. Tengsors have
been primarily used in engineering, describing tensions in elastic bodies (hence
tensors). In ordinary engineering applications, for reasons of convenience, the
selected reference-frames are nearly always three-dimensional orthogonal
Cartesian systems of coordinates. As a result, the meaning of the word *"tensor”
to many engineers, is identical to the narrowly defined "Cartesian tensor applied
to a2 linear system and implemented by a 3x3 matrix®. A subsequent major
application of tensor theory, relativity, stressed the importance of genecal,
unspecified coordinate-systems. Thus, tensors were no longer limited to linear
systems (relativity theory is a nonlinear tensor theory), and the referance
frames could be mnultidimensional and non-conventional (e.g. non-orthogonal)
systems of coordinates. However, preclasely because relativity theory is a highly
abstract construction, the tensorial description nearly always remained in the
realm of the abstract, using general refecence-frames without numerically
operating in any particular non-conventional frame of reference.

In Tensor Network Theory of the Central Nervous System it is necessary to
deal with both the abstract description (for conceptual understanding) and with
the particular expressions in the specific_coordinate systems dictated by natural
selection. These frames {nclude highly non-conventional, e.g. oblique,
overcomplete reference frames. 1If one desires to trace the actual aeuronal
implementation of transformations, one has to numerically deal witn such natural
frames of reference. Therefore, for a neuroscientist to use Tensor Theory it is
necessary first to familiarize oneself with peculiarities of vectorial
expressions in non-orthogonal frames of cteference. Indeed, in every novel
application of any mathematical approach, one must always overcome an initial
resistance to the non-conventional usage of an abstraction, necessitated by the
new sclientific application (cf. Dirac-delta, or the notion of imaginary
numbers). In the case of tensors expressed in Nature's general noa-orthogonal
coordinates, this may mean tensors implemented by non-sguare nxn matrices, where
the components may not be constants, and where non-linearities are often
implied. It is also quite likely that, as in any new scientific application, the
mathematical apparatus itself will need Ffurther development by perceptive, able
and willing mathematicians.

The single most important feature which reveals the non-conventional
character of Tensorial Brain Theory is the utilization of the mathematical
distinction between the two kinds of baslc forms of vectors in non-orthogonal
frames: covariant and contravariant vectors. This distinction is not always
necessacy in Cartesian frames, e.g. in the theory of elastic tensions. However,
relativity theory made profound use of their differences. This author introduced
this 3distinction into neuroscience with Pig. 3. in pellionisz & Llinas 1980a.
Since this distinction is of cardinal importance in Tensor Tneory of CNS, the
reader must clearly understand it before proceeding. The significance of
covariant and contravariant-type vectors in neurobiology lies in the fact that
there are two basic operations that the CNS must perforn regarding an invariant
of the external world. One operation, the covariant-type, starts from the
invariant (e.g. presenting a frog with a target), to whicn the CNS cesponids (e.g.
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by assigning to the target a set of sensations evoked in the form of different
sensory modalities of vision, hearing, etc). It is of fundamental importance,
that such components of optic-auditory reception are established separately,
independently of one another (e.g. vision is possible without hearing, or that
even aonocular or monochromatic vision is possible). It is also essential to
note that such covariant-type components, while they represent the invariant,
they do not physically add to generate it.

Another type of CNS operation ends with tne invariant, e.g. when the CNS
initiates an_action by triggecring the muscles to move the body to match the
invariant (location of the fEly). Such motor action is of contravariant type,
since, by definition, the components of mnuscle activities must physically
generate the invariant, the displacement. It is also notaworthy that in such
contravariant-type expression the components are interdependent. The above
features of covariants and contravariants acre discussed in more detall in
Pellionisz & Llinas (1979c, 1980a,b, 1982a).

Based on the above fundamental tenets of the Tensor Theory, the sensorimotor
action of a frog can be conceptualized as the transformation of a covariant
sensory reception vector, expressed in the sensory frame, into a contravariant
motor execution vector, expressed in a different motor frame of reference. Such
general sensorimotor transformations invoke several major problems, Pirst, how
can a covariant expreasion be changed into a contravariant type? Second, how can
a vector, expressed in one coordinate system, be transformed into another vector,
expressed in a frame in which the directions of the axes are different? Third,
how can such a transformation be performed when the number of axes in the sensory
and motor frames are diffecent, including the possiblity of an increase of
dimensionality from sensory to motor?

IV. TBNSORIAL SCH2ZME OF NEURONAL NETWORKS TRANSPORMING VECTORIAL INFORMATION
PROM A SINGLE SENSORY PRAME OP REFERENCE TO A SINGLE MOTOR FRAME

All of the above problams, inherent in sensorimotor transformations, have
already oeen dealt with in the case of a single sensory- and a single motor
system (Pellionisz & Llinas 1982 b). As it was shown there, the basic covariant-
contravariant transformation can be implemented by a network that performs the
role of a contravariant metric tensor. The covariant and contravariant metric
describes the relationsaip of these two kinds of vectors (cf. Pig. 3. in
Pe_lionisz & Llinas 1980a). The matrix of the covariant metric and its inverse
or genecalized inverse, in case of singularity, (Albert 1972) establish the
required transformations between covariant and contravariant type expressions.
The change of the direction and the number of axes from one cooriinate-system to
another can be iaplemented by a network tnat performs the 8so-called
covariant-embedding transformation (for details, see Pellionisz & Llinas 1980a,
1982b, and djetailed numerical explanation in Pellionisz 1983b).

A “tensorial olueprint® of the amphibian CNS was offered in Figs. 7. and 8.
of Pellionisz & Llinas (19820). 1In these schemes, the transformation of a
sengory covariant reception vector into contravariant sensory pecception vector
was sugjested to be the role of the superior colliculus. The telencephalon
("sensorimotor cortex®) was to pecform the covaciant embediing from sensory to
motor frame (independent of the number of axes). Pinally, the cerebellum was
picturel to serve as the motor metriz which transformed the covariant motor
intention into contravariant-type motor execution. Por detailed description of
the network-operations the ceader nust be referred to Pellionisz & Llinas 1982ap,
and to fucrther explanation in Pellionisz 1983p.
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Pig. 1. Symbolic depiction of natural frames of reference in which multi-
sensory-multimotor transformations are expressed by neuronal networks of CNS.

V. TENSORIAL SCHEME OF MULTISENSORY-MULTIMOTOR TRANSFPORMATIONS BY NEURON NETS

A more complex, multisensory-multimotor scheme of visucaditory and
vestibular coordination is outlined in the scheme (Pig.10.) provided in this
paper. This expands the previous model by one major new considecation: The
complexities of sensorimotor transformations in the CNS are better represented by
a model in which the CNS draws information from several sengsory modalities and
transforas the coordinated input into different optional motor responses.

In the particular example of a frog, motor opticns are such basic survival
skills as e.g. stabilizing the horizontal position of the head by forelimb
muscles, turning the head by "optokinetic" head nystagmus into central targeting
position by neck muscles, and snapping by a whole *body saccade® to a target by
hindlimb muscles (Pig.l.). A particularly significant problem is, that the frog
must use a coordinated input from different sensory modalitles to perform such a
delicate act as snapping to a fly from a rolling platform (e.g. a lillypad). The
space~time coincidence that s implied in a target interception obviously cannot
be achieved without yvisujaditory target reception. Howaver, since the gnap
involves moving the whole body against gravity, a successful implementation must
take into consideration the yestibular information about the reference; the
initial position, velocity and acceleration of the body. Thus, a sensory
coordination of visuoaditory and vestibular information is ianvolved here, as well
as the location of the target and a spatiotemporal prediction of its future
position. All such transformations from one frame to another are performed by
CNS neuronal networks (Pig.2). These functions are known to be executed with the
help of the superior colliculus. Visuoaditory-vestibular intecaction {cf. Henn,
Cohen & Young, 1980), and especially motor cooriination are Closely related to
cerebellar function (cf. Llinas & Simpson, 198l). Thus, a snapping action (oc
the less complicated head-nystagmus or horizontal head~stabilization) are all CNS
operations that most conspicuously involve both tectal and cerebellar actions.
Accordingly, such functions must be addressable by Tensor Theory if it is claimed
as an approach with a substantial integrative power.
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FPig. 2. Tensorial scheme of the CNS neuronal networks of amphibia, performing
sensorimotor transformations expressed in frames shown in Fig.l.

Superior Colliculus: Acting as a Sensory Metcic

In some sensory systems it is a self-evident physical fact that the primary
sensory reception takes the form of a covariant vector expressed in a
non-orthogonal frame of referance. This is the case in the semicircular canal
system of the vestibular apparatus, where each of the non-orthogonal set of
canals (Curthoys et. al., 1975) responds proportionately to the cosine-projection
of the acceleration onto the plane of each canal, The method of establishing the
separate componencs independently from one another can also be made obvious by
lesioning one canal; the function of the others will not change. The concept of
a covariant vestibular wvector has peen explicitly wutilized in developing
tensorial models of the vestibulo-ocular cteflex system (Pellionisz & Llinas
1980a, 1982b, Ostriker, Pellionisz & Llinas 1982, and Robinson 1982).

The separate and overcomplete covariant measures of invariants by different
sensory modalities, (e.g. vision, audition), all have been widely reported to
converge in the colliculus superior (cf. Jay & Sparks, 1982). This leads to the
concept, stating that the colliculus may serve as a sensory metric; not only in
the sense that it converts the covariant reception into contravariant sensory
perception (cf. Pallionisz & Llinas 1982p), but also that different sensory
modalities can be interpreted as representing different axes in a unified sensory
hyperspace. In this manner, just as binocular vision adds a new dimension to
target perception, or color reception adds still another, audition may be
interpreted as an independent but unifiable component of a multisensory vector.
This interpretation describes the colliculus not as an optic tectum, where
projections of from different sensory modalities may be separated according to
their spatial distribution, but rather, as a multisensory coordinator where the
different sensory modalities may be related to one another, yielding a unified
{contravariant) sensory percept. Thus, while at the primary sensory reception
level a target may be visually or acoustically detected, the perception of a
target location, for example, should not (and, in fact, cannot) be dissected to a
"seen" and a "heard" position. Tnls feature becames aven more evident when the
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reprasentation of space-time is considered in the CNS (Pellionisz & Llinas
1982a,b). It is well xnown that auditory, and especially visual reception, are
considerably slow types of neuronal information processing. A successful snap at
a fast-flying target would not be possible if a) a separate "seen" and a "heard"
target-positions would be established by the CNS, since the two would differ by
their delays, and b) 1if the unified tarjet-perception would not temporally
predict the would-be target position. Predictor-modules and a neuronal network
serving as a metric tensor were demonstrated to be feasible in the cerebellum.
Tne “temporal lookahead module® (Pellionisz & Llinas 1979b, 1982b) is a
functional redefinition of the role of stacks of Purkinje cells, albeit it is not
incompatible with the morphological lateral-inhibition scheme (Szentagothai 1963,
1963). The possibility is ralsed here that experimentation may find tectal
neurons with firing characteristics that correspond to first- and second-order
time-differential of the input. These may serve as the basis of lookahead modules
in the tectum similar to those in the cerebellum (c.f. Pellionisz & Llinas 1979b).

CS coLLicuLus: te=goot, D
sensory metric

convergence of sensory modalities

space-time prediction 2; 1° .

contravariants for : e fggg?v?rlant

geometrical decisions on invariants perception

coordinate-transformation

Fig. 3. Superior Colliculus: Transforms covariant target reception (t;) into
contravariant target perception vector (t%), expressed in orientation
(visuoaditory) frame of reference. The notation of vectors throughout this
paper is that the symbol stands for the type of information carried by the
vector (t: target), the sub- or superscript denotes the Frame in which the
invariant is expressed (o: optic-type frame), subscripts and superscripts are
used to denote covariant and contravariant expressions, respectively, Different
vectors are also assigned a number and a verbal expression throughout this
paper (e.g. 2; contravariant target perception; t°), for heuristic reasons
and to ease the tracking of the traffic of vectors in Fig. 10.

Two further, higher-level arguments support the wview tnat the tectum may
serve as a sensory metric. A technical reguirement in the NS is, arising Erom
the changing of coordinate systems (e3. fron sensory to motor), that a
contravariant expression of the sensory information, in addition to the covariant
Sensory reception, must also be available. Tnis enables a covariant embedding
procedure (see the explanation of this operation, in Pellionisz 19830). An even
stronger, functional requirement for tne contravariant expression is that
targeted movements necessitate certain decisions, made within the CHS, on
external physical invariants. Size, stereoscopic distance, wvalocity and
direction are all "physical objects", that are represented by covariant vectorial
expressions inside the CNS. As pointed out in Pellionisz & Llinas (1982b),
availability of both the covariant and contravariant expressions of an invariant,
expressed in the same frame of referance, yields a measure of the invariant by
the inner product of the two vectorial expressions. Summing the products of the
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two kinds of components 1s an operation easily implemented by neuronal networks
(see Pig. 7, in Pellionisz & Llinas 1982b).

"Sensory Cortex": Intention Selection on the Basis of Geometric Decisions on
Invariants

Given that the tectum makes a contravariant target perception vector t©
available, this vector together with the covariant target reception vector t,
enables jeometrical decisions based on properties of the external invarliant such
ag s8ize, distance, velocity, etc. A network, tentatively placed into the
telencephalon ®sensory cortex®, is pictured in Pigs. 2. and 10. as implementing
the inner product of the covariant optic-auditory target reception vector tg
with the tectum-supplied contravariant target perception vector t°. The
cesulting a? value, for example, can serve as a basis for sending an inhibitory
"block™ of a snap intention in the "sensorimotor® area of the cortex, whenever

SC SENSORY CORTEX dZ%t°t,
intention selection

neck: optokinetic head nystagmus

forelimb: horizont stabilization

hindlimb : snap (body saccade)

Pig. 4. Sensory Cortex: Geometrical 3ecisions in invariants by inner product
of covariant and contravariant sensory vectors,

this d distance of the target is larger than the range of snap. Thus, while all
motor intentions; an optokinetic head nystagmus (a coamp atory ¢ e to a
slow yaw of a large array of the sensory percept), a horizon-stabilization {(a
compensatory response to slow roll of a large array of the sensory percept) and a
snap (a matching response to a fast displacement of a target-size array of the
se' sory percept) are generated in a parallel manner in the "sensorimotor® area of
the CNS (in a manner described later in this paper), only the motor intention
unblocked by the sensory-cortex-induced iantention-selection, will prevail.

P

Accessory Optic System: Expressing Non-vestibular Information in Vestibular

Prame of Reference: Necessary for Visuoaditory and Vestibular Coordination

As mentioned earlier, especiaily those movements that involve rapid actions
of a significant proportion of the mass of the body, for obvious physical reasons
cannot oe properly executed while ignoring the position, velocity & acceleration
of the body in reference to gravity. On the other hand, target information is
primarily given in the visual (auditory) frame of raeference. This necessitates a
coordination of visuocaditory and vestibular sensory information. Por various
aspects of visuo-vestibular coordination, see Llinas & Precht (1969, 1976) and
the review by Henn, Cohen & Young (1980).

Por the above physizal reason, it is postulated that tarjet-oriented actions
(especially a snapping) are organized in *"vestibular* coordinates, which already
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carry covariant reception-information about the posture-reference. An important
series of experimental findings that corroborate this suggestion, in more ways
than one, were made by HMaekawa & Simpson (1973), Simpson et. al. (1981) and
Lazar (1972). Pirst, it has been found that visual information is grojected
(through the accessory optic system; AOS) to the vestibulocerebellum. Second, the

AOS ACCESSORY l>
OPTIC SYSTEM

non-vestibular

targel 3 t

orientation v

in vestibular covariant vestibular
coordinates target correception

Pig. 5. Accessory Optic System: Yielding information on target orientation,
expressed in vestibular coordinates: hence target and reference informations
acre pade compatible.

AOS represents this non-vestibular orientation-information vectorially, in a
natural non-orthogonal coordinate system inherent in the ONS. Third, this
internal frame of reference for visual orientation is strikingly similar to the
coordinate-axes of the vestibular system. While the nature of the vectorial
expression in the AOS is currently under investigation (cf. Simpson et, al,
1982), given the sensory character of this CNS subsystem here we tentatively
assume that the A0S provides a covariant, secondary reception of the target in
vestibular coordinates (hence the term vestibular correception is introduced).

Vestibulocerebellum: Vestibular and Visuoaditory Coordination

It 1is known that the vestibulocerebellum receives vestibular sgensory
information expressed covariantly in vestibular coordinates (cf. Llinas & Precht
1969, 1976). The reference signal r, and the covariant target correception
ty, (expressed also in vestibular coordinates) together present a possibility
for a new interpretation of the function of the vestibulocerebellum.

VCB VESTIBULO- =g (t,-r.
CERE 3ELLUM D Pg”tr)

* &
%

5 pY
contravariant
vestibular

posture correction
concept

Pig. 6. Vestibulocerebellum: Covariant-contravariant transformation of the
posture~-correction vector (target-reference).
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The present interpretation is both consistent with the earlier suggestion that
the cerebellum serves as a covarlant-contravariant metric transformer (Pellionisz
& Llinas 1980a), and also fits into the extended scheme of multisensory-
multimotor system. Purther, while it is a complicated digression, it may be
briefly outlined in this paper how the cerebellar climbing fiber system would
significantly interfere with the visuoaditory-vestibular coordination in cases
when there is a mismatch of these two vital subaystema (cf. Llinas & Walton 1979).

VCB

vestibular and
visuoaditory
coordination

mf.cfrt,
)

mfbpv

{
mossy cY
fibe;s : C n
= V-r “=:

Pv v ] f%—‘ S
target ALY pv
- 1 ™

Y =AY
"t ==
reference 1 climbing

— fibers
L\
\>Cv= tv +I,

inferior olive

Fig. 7. Vestibulo-cerebsllar circuitry: transforming p, (covariant posture
correction vector) into contravariant form pVY. Abbreviations: cn: deep
cerebellar nuclei, vn: vestibular nucleus.

Pundamentally, the function of vestibulocerebellum is envisioned as
receiving an input that is the difference of the covariant target and covariant
reference, and transforming tnis difference into a contravariant expression. The
resulting vector will represent how the posture needs to be corrected (either by
head-saccade, body-saccade, or forelimb-roll). While this wvector is a
contravariant expression (thus it is physizally executable to yleld the necessary
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invariant), the medium in which it is expressed is vestibular, different from the
actually usable motor frames of reference. Such ONS vectors that do represent
needed actions in an executable expression but in a non-exacutory medium, may be
called concaept-vectors (a concept being an igomorphic representation of the
reality, but one that needs to be carried out in executable media).

Pig. 7. features the mossy fibers as representing the diffarence of target
and reference coordinates (pysty-ry). The inferior olive is expected to
perform a complementary operation; firing according to the sum of thege gignals,
whenever the visuoaditory and vestibular systems conflict (Cy=tytry). IE
only the mossy fiber system acts, the cerebellar circuitry pecforms a
pY=g""'.p, metric transformation (nf to pY). Such  transformation is
explained in detailed, numerical fora in Pellionisz (1383b). However, the mossy
fibers together with the climbing fiber vector will override the vestibular
reference (yielding a posture correction vector that relies exclusively on the
visuoaditory system, ignoring the vaestibulum: af,cf -- ty). This interpretation
is in good agreement with the compensatory behavior of rats with vestibular
lesion (Llinas and walton 1979}.

An even further implication relates to the collision of the covariant
climbing fiber vector cy; in the cerebellar nuclei with its contravariant
counterpart cV (arciving via the Purkinje cells). As suggested in Pellionisz &
Llinas (198l1) such collision may be the basis of modification of metric
connections in the cerebellar nuclei.

"Sensorimotor Cortex®: Motor Intention Yialded by Covarjant Bmbedding

The contravariant posture correction vector pY, expressed in vestibular
coordinates, may be transformed into frames of motor execution; either of the
hindlimb muscles, of the neck muscles or the forelimb muscles, respectively. The
required transformation, called covariant eabedding procedure, is similar to such
operation elaborated in Pellionisz & Llinas 1982b, rigs. 7,8. Since fucther,
detailed explanation of such operation is given in Pellionisz 1983b, within this
paper this transformation is only symbolically represented.

SM SENSORIMOTOR  i,=8, p"
CORTEX

covariant embedding

D 6 Iy

7
8 i

5 pY

from posture correction concept
to motor intention

Fig. 8. *"Sensorimotor Cortex®: Covariant embedding of contravariant posture
correction vector (expressed in vestibular coordinates) into executable medium,
but not physically executable form (motor intention).
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Llinas 1982b, explained in Pellionisz 1983b), it is not discussed here in detail.

Pellionisz
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Pinally, the entire scheme of transformations of various vectors through the o
neuronal circuitries of the CNS is presented in the tableau of Pij. 10. There, Q

the flow and the transformations of the vectorial information can be traced
throughout the sch:nmatic representation of the CHS of Amphibia.

It is emphasized, that the attempt of this paper at putting forward a
coherent conceptual framework for devaloping a working model of sensorimotor
systems (summarized in Fig.1l0) does not, at all, have the character of a
conclusion of existing modeling efforts. Rather, it may be interpreted as an
ovtline for a just unfolding new way of looking at brain Ffunction. It might
result in a primary understanding of CNS, brousht into completion (in the not

immediately foreseable future) as a result of tremendous further investment in
effort and time.
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ADAPTIVE NETWORKS AND SENSORIMOTOR conTRoL !

Andrew Barto and Steven Epstein
Department of Computer and Information Science
University of Massachusetts

Amherst, Massachusetts 01003

1. INTRODUCTION

Over the past two decades most amphibian visuomotor research has been
devoted to one aspect or another of visual pattern diserimination. The
result has been considerable progress in ow understanding of visual
perception and behavioral choice, much of it led by the work of participants
in this symposium. It is only recently, however, that the motor processes by
which pattern discrimination finds expression in behavior have begun to
receive  comparable attention from experimenters (Grobstein, this volume;
Ingle, 1982]. The last few Years have also witnessed an upsurge of
theoretical interest in motor control, motivated in part by progress in robot
manipulation and locomotion and thus pursued by computer scientists and
mechanical engineers as well as neurobiologists [Hollerbach, 1982; Hogan,
19821. Though this work is not specifically concerned with amphibian
visuomotor mechanisms, we believe it has much to contribute to their study.
In what follows we discuss some basic issuves in lo;l level motor control from a

computational viewpoint and describe our approach to a kind of adaptive

1. Tis research was supported in part by the Air Force Office of
Scientific Research and the Avionics Laboratory (Air Force Wright Aeronautical
Laboratories) through contract F33615-80-C-1088 and in part by the National
Institutes of Health through grant RO1 NS14971-04.
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control that may play an essential role in many kinds of sensorimotor
performance.

We begin with an abstract characterization of control tasks, developing
the idea of a control surface determined Jjointly by the requirements of a
control task and the abilities of an effector apparatus. We then illustrate
same of the camputational problems that are posed by the mechanical complexity
of musculoskeletal systems, exanining the control surface associated with the
task of controlling an idealized two-dimensional "limb". In the context of
this example, we then discuss how the time and memory demands of a control
algorithm (the realization of a control surface as a computational procedure)
depend upon the way a control surface is represented. We shall see how a
choice of representation is governed both by the structure of the control
surface itself and by the repertoire of computational primitives available to
the mechanism that must execute the control algorithm. A comparison of
alternative representational schemes will lead us to consider in detail
control surfaces that are represented as patterns of interconnection in large
networks of relatively unsophisticated processing elements. We shall ask how
control surfaces represented in such networks could be acquired or modified by
experience. It will be shown that certain networks with modifiable
connections are capable of altering the control surfaces they represent so as
to improve their performance in tasks with wuncertain or variable parameters.
This is an important capability, as even very simple organisms must have some
means of compensating for developmental, pathological, or functional
alterations (such as fatigue) in their effector systems {Partridge, 1979]. We
shall illustrate how such adaptive networks can be used for acquiring

approximations to unknown, partially known, or time-varying control surfaces.
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2. CONTROL SURFACES

Aizerman et al. [1964] define tne general problem of automatic control
as "the problem of assigning the input situation to one or another class, and
{generating] the optimal response as a function of that class." The mapping
or function that associates with each possible input situation the (optimal)
action for that situation is often called by control theorists a control
surface [Mendel, 1970].

It is clear that part of the solution to a control problem involves
pattern classification. Input situations must be separated into classes
appropriate for the problem at hand. However, in addition to the
classification of input patterns, the control system must generate the action
or response appropriate to each class. Consequently, the solution to a
control problem requires not merely pattern classification, but also, the
association of actions (which may themselves be complex patterns of signals)
with input situations.

Moreover, the pattern classification aspects of a control problem
form a natural hierarchy. At the higher levels, coarse and slowly varying
control situations must be identified, whereas at lower levels the
appropriate discriminations must be made between more detailed variations of
the higher level situations, forming parameterized families of those
situations. At still lower levels, estimates of the instantaneous system state
must be made. Consider, for example, a pilot controlling a plane. He must
first recognize the overall controi situation C: the type of plane and the
cockpit configuration. This is a high level pattern classification problem.
Then he must determine the response characteristics of the plane (determined
in part by the mechanical properties of the plane, in part by the setup of the

cockpit control devices). This is a parameter identification problem. Finally,
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he must have a goal (e.g., the desired trajectory of the plane) and an
estimate of the state of the plane (e.g., its position and mamentum) to
determine the appropriate control action to take at that time.

In short, recognition of the overall control situation C gives the
pilot access to a parameterized family, fp, of control surfaces, such that

a-= fp(g, s)

is the appropriate action to take toward goal g when the system of the class C
is characterized by parameters p and is in state s. lote, then, that a
control surface f'p is more than just a stimulus/response map, since the input
situations (g,s) for fp need not consist solely of externally supplied
signals, but may contain information from within the controlling system
itself, providing, for example, state estimates for the controlled system and
(goal) states of higher command centers.

Some control systems implement control surfaces that are completely
specified from the start. A thermostat, for example, has a built-in control
surface which causes it to turn the furnace on if a room is too cold and off
if it is too hot. Here the goal g is the desired temperature, the state s is
the actual temperature, and the action f(g,s) determined by the control
surface is

furnace on  if g > s
£(g,s) =
furnace off  otherwise.

These control decisions are wired-ii "reflexes" of the thermostat.
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Other types of control systems begin with only partial specification of
the control surface. They may initially contain no information at all about
which control actions are appropriate and operate, at first, randamly; or they
may "know" exactly what to do in some situations but have no knowledge at all
sbout what actions are appropriate in others; or, they may initially implement
control surfaces which specify actions for every input situation but only in
an inaccurate or approximate way. If its performance is to improve, a control
system with a partially specified control surface must contain mechanisms for
filling in or refining its surface through its experience. Control systems
capable of doing this are called learning control Systems [Mendel and McLaren

1970]. We shall have more to say about such learning systems below, but let
us first look in some detail at the structure of a particular control surface.

3. CONTROLLING A SIMPLE LIMB

In order to execute almost any response ~-- for concreteness, say an
orientation turn -- a frog must coordinate the contraction of scores of
muscles throughout its body so as to exert Just that pattern of forces through
its trunk and limbs which will result in the appropriate rotation of the body
axis. The pattern of this coordination must be set up within a few hundred
milliseconds and executed in half a second or so. Though it looks practically
effortless and is over very quickly, this is in fact a prodigiously complex
behavior and presents formidable problems of planning and control; it would
seem to require that the frog maintain a highly accurate internal model of the
dynamics of its musculoskeletal system and use that model, in real time, to
compute the appropriate pattern of signals to the muscles. This is no easy

matter, as we shall try to illustrate below.
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To get a feeling for the computational difficulty of the problem, let us
ignore almost all of the frog's motor apparatus and consider just the tiny
subproblem of controlling one forelimb. Let it be (grossly) idealized as a
two-joint mechanical linkage restricted to movement in a plane. Let us
provide this idealized 1limb with idealized muscles, sidestepping the
complexities of the real muscular system by planting an ideal torque generator
at each joint. This schematic "1imb® is diagrammed in Fig. 1. It consists of
two links of equal length and mass, and two revolute joints, a "shoulder®
whose pivot is fixed at the origin of a cartesian "worldn coordinate system
and an "elbow” joining the proximal and distal links. The joint angles Q1 and
02 specify the position of the limb in "proprioceptive® coordinates. Its
motion is confined to a horizontal Plane and controlled by a torque vector N =
(N1, N2) whose components are applied at the shoulder and elbow, respectively.
Let us also idealize the task - which in reality involves both free movement
and the exertion of controlled forces against the substrate -- as the problem
of moving the unloaded free end of the distal link (call it the "tip") along a
Planar trajectory X(t) given in world coordinates.

This task defines a single control surface. A goal is specified by a
desired tip trajectory. The corresponding action is given by a vector-valued
function of time N(t) = (Nl(t), Nz(t)) comprising the pair of joint torque
functions which act together to move the limb along the given trajectory. In
vector notation,

N(t) = F(X),

where X represents the goal, the entire tip trajectory function in "world®
coordinates. Fortunately, Newton's laws allow us to characterize X locally,

given an initial X(0), by its value and first two derivatives at any instant
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Figure 1

A schematic planar limb with two equal links. The “shoulder™ is fixed at the
origin of a cartesian coordinate frame. Q1 is the angle of the proximal link,
measwred with respect to the x-axis; Q2 is the angle of the distal link
measured with respect to the proximal link. Nt and N2 are actuating torques
about the "shoulder™ and "Melbow" joints, respectively. X(t) represents a
trajectory to be followed by the tip of the distal link.

t. So we can rewrite the above control surface equation as
N(t) = G(X(t), X'(t), X''(t)).

The kinematic relations between the tip position X in world coordinates and
the vector Q = (01, 02) of joint angles allows us to rewrite this as the

"inverse dynamic equation®
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N(t) = H(Q(t), Q'(t), Q''(t)).

Here, then, is a prescription for solving the computational problem of
trajectory control for ow simple case. From the goal trajectory, specified
as instantaneous values of joint angles, angular velocities, and angular
accelerations we may compute a function H giving the appropriate instantaneous
action, the joint torque vector N.

But how is H to be computed? A tedious but straightforward expansion of
the inverse dynamic equation in either Lagrange or Newton-Euler form leads to
one, rather inefficient, way of camputing the camponents of N. (See [Whitney,
19721 or {Paul, 1981] for an exposition of the mathematical details.) By
manipulating the Lagrange or Newton-Euler equations of motion for the limb, it
is possible to write the inverse dynamic equations in many other ways. Each
formulation leads to a different algorithm for computing H. These algorithms
differ in a number of ways. One of the most important, because it bears
directly on the cost of the computation given a choice of computational
primitives, has to do with the number and nature of the intermediate steps
required for camputing H.

At one extreme, H is not "computed® at all. Instead the input space,
consisting of all possible values of (Q, Q', Q''), is partitioned into small
regions and an appropriate value of H is simply stored for each one. This is
the pure table-lookup approach discussed in the next section. The control
surface is represente ! by the values of the table entries. There are many
variants of this method that take advantage of redundancies in H to reduce the
enormous size of the tables required for accurate function representation.

Same of these are discussed below.
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At the other extreme are pure computational methods, which calculate H by
combining or composing the results of intermediate computational steps. Here,
the control surface is represented in the structure of the algorithm. For
systems, like owur idealized limb, that admit a straightforward analytic
formulation, highly efficient recwrsive algorithms of this type have recently
been developed and are now widely used in robotics [Hollerbach, 1980; Luh,
Walker and Paul, 1979}.

Between these extremes are various schemes that employ computation and
table lookup in combination. 4&n example is the so-called "state space methodh
of Raibert [1978), in which H is expressed as

H = J(QQ'" +K(Q, Q",

where J(Q) is a configuration-indexed table of inertial coefficients and K is
a table of configuration and velocity dependent terms. The only computation
required at each time step is to multiply Q''(t) by the tabulated value of
J(Q(t)) and add the result to the tabulated value of K(Q, Q'). Here, part of
the control surface is represented in the table and part in the structure of
the equation. Raibert [1977] discusses tradeoffs involved in designing
representation schemes that combine computation and table lookup in this
manner .

It should be emphasized that this trajectory control example was
Introduced only to illustrate the control surface concept and to show that
even a radical simplification of the sort of motor task animals perform
routinely can demand considerable computational effort. Though it is probably
safe to say that a control strategy that could not handle it easily is
unlikely to be useful in controlling more realistic motor Systems, the example

is seriously inadequate as a paradigm for the low level motor problems faced
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by animals. Our idealizations depart in at least two important respects

fram biological reality. In the first place, we have represented the goal of
a movement as a precise trajectory specification X(t) in "woridw coordinates.
But even the free movements of animal limbs are probably not planned in such
terms. Natural motor tasks do not usually require high precision
trajectory-following. Secondly, we have modelled muscles as pure torque
generators, partly to emphasize the analogy with robot manipulators, but
mostly to keep the equations manageable. This is a gross misrepresentation
of the real properties of muscle. Miscles behave much more 1like
spring-dashpot systems of controllable stiffness and damping than like IC
motors (see [Partridge and Denton, 1981] for a review). Thus it is likely
that nervous systems do not manipulate joint torgques directly, but instead
control variables more 1like stiffness and viscosity. This greatly alters the
problem of movement control, though whether it makes things harder or easier
Sseems to depend on the nature of the task. The implications of muscle
mechanical properties for motor control are the subject of much current
research, both experimental (e.g. (Bizzi and Abend, 1982), [Polit and Bizzi,
19791, [Morasso, 1981]) and theoretical (e.g. [Feldman, 1981], [Hogan, 19803,
[Delatizky, 1982)), but fall outside the scope of our discussion.

It is worth noting here, however, that the apparent difficulty of the
problem may or may not be reduced by invoking task-specific constraints or
"synergies" [Bernstein 1967] that 1link numerous muscle groups into a smaller
number of functional uwnits specialized for a given class of movements.
Although such synergies certainly exist, and do indeed reduce the number of
degrees of freedom to be controlled at the lowest level, the computational
difficulty can reappear in the problem of selecting and tuning appropriate
synergies to accomodate muscular output to the highly variable mechanical
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conditions of particular movements.

Before we go on to consider control surface representations in a more
general context, we wish to outline briefly how a wsynergy" approach to the
trajectory control problem might be expressed in terms of control surfaces.
Roughly, the idea is to replace the single and perhaps unnecessarily general
control surface H by an organized collection of smaller, more specialized
ones.

In our example, a complete trajectory specification (the vector of
joint positions in "world" coordinates as a function of time) is mapped into
the appropriate actuator control function by a control surface that calculates
the joint torque vector using a complete, accurate model -- tabular,
analytical, or both -- of the inverse kinematics and dynamics of the 1limb,
If the 1imb's mechanical properties can be represented precisely enough, such
a control surface will be able to form any trajectory of which the 1limb is
physically capable. However, it attains its generality at the cost of
considerable storage or camputational complexity.

An alternative strategy is possible when the task has a natural
decomposition into a parameterized family of subtasks, each of which
approximates the original task in some control situation, i.e., over some
region of the input space. (ne can then map each trajectory plan X in the
input space into a small subset of elements C(X) = {ci] drawn from a space K
of control situations, and replace the original control surface, say F, with a
battery of simpler control surfaces t‘c(pc(x)), one for each control situation
¢ in K, where pc(X) is a small parameter vector, dependent on X, representing
the information about X that is relevant in control situation ¢. 'This is a
slight generalization of the approach discussed in connection with the

airplane pilot example above, since it permits the map fram input space to the
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set of control situations to be one-to-many as well as many-to-one. Thus a
given control surface fc can be selected or "activated™ by any of a class of
ngimilar® trajectory plans, and several control surfaces fci can be activated
by the same plan X. The function pc(x) compiles attributes of the trajectory
plan X into the values of a few control parameters which comprise the input
space of fc. Thus each t‘c can be viewed as a parameterized "pattern
generator® specific to the control situation c. The combined output to the
1imb's actuators of all the control surfaces activated by a trajectory plan
generates the desired trajectory. In this approach, knowledge about 1limb
dynamics 1is partly spread out among the control surfaces fc and partly
embedded in the mappings C(X) and pc(X). In this respect it resembles Arbib's
[1972, 1981] "schema” approach, but is less general, since there is no
explicit provision for interaction among simultaneously active control
surfaces.

Is such an approach really feasible? We don't know, because it has not
yet received adequate study. The answer depends in part on how many little
control surfaces t‘c are necéssary for generating all the movements potentially
required by the tasks the limb is called upon to perform. This number need
not be astronomical; a trajectory formation algorithm is not obliged to be
able to form all possible trajectories because no practical repertoire of
motor tasks calls for rore than a limited set of them. And this subset may
itself be well enough approximated by "piecewise” ‘combinations of an even more
limited subset. Moreover, because each fc uses no more than a small amount of
special~-purpose dynamic knowledge, trajectory formation algorithms based on
this approach would not need to maintain an explicit, global model of 1imb
mechanics. It therefore seems possible that this shallow, distributed

approach to trajectory control could offer significant advantages of
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modularity and speed over single-control-surface approaches.

4. REPRESENTING CONTROL SURFACES

4.1 Computation and Table-Lookup

As we indicated above, there are many methods which can be used to
represent the control surface F, ranging from pure computational schemes, in
which F is described in terms of equations which can be evaluated by some
calculating machinery, to pure table-lookup schemes in which the values of F
for a large number of arguments are pre-computed and stored in a table. In
the first case, a coded input situation acts as the data for a calculation,
i.e., a computational procedure, whereas in the second case, the coded input
situation acts as a pointer, or address, to the appropriate entry in a table
that contains the specification of an appropriate action. Since table access
mechanisms themselves can require varying degrees of computation, the
computation/table-lookup distinction is not sharp. It is clearest when one
restricts attention to conventional computing devices in which both
mathematical computation and table addressing schemes are well-defined, but
becomes less clear when one considers the wnlmown forms of computation and
addressing which might occur in nervous systems. We therefore refrain from
attempting precise definitions and instead contrast these methods in a general
way.

A major distinction between pure computation and pure table-lookup can be
understood in terms of the way the controller's input situations are coded.
In a pure computational scheme, the input situation is coded as some pattern,
each component of which provides one of the arguments for the computation

procedure. For a pure table-lookup scheme, on the other hand, an input
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situation appears as activity on a single pathway leading to the storage
location which contains the appropriate action specification. Fig. 2 shows
this in terms of a "decoder" which accepts a pattern-encoding of an input
situation and transforms it into activity on one of a large number of
pathways. We use the term “decoder" by analogy with the device used in
camputer memory circuits to transform each memory address into a signal on the
wire connected to the physical storage cell having that address. Although the

output of the decoder is clearly a pattern of activation, it is of a very
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restricted form. An input situation is coded in terms of which pathway, or
which storage site, is activated and not in terms of a pattern distributed
over all of the pathways. While the decoding process is clearly a kind of
camputation which accepts patterned input, it has a simple, general structure
and takes little time to complete. By a computational method we mean a
process that has a complex, specialized structure and requires a sequence of
computational steps.

In the case of a pure table-lookup scheme, the control surface becomes a
surface in the 1literal, spatial sense. It has been tempting to view
topographically organized neural layers as such explicit representations of
control surfaces [Arbib, 1972], particularly the optic tectum [Didday, 1976].
However, one must remember that in general a control surface is a surface only
in an abstract sense and that the structure and dimensionality of a control
surface for motor control need have no direct relationship to the spatially
organized structure of neural arrays (see [Grobstein, this volumel).

Viewed from the perspective of engineering design, pure computational and
pure table lookup methods have obvious advantages and disadvantages. Table
lookup methods generally yield faster response times than computational
methods for equivalent tasks. Response times for tabular methods can be low
irrespective of the details of the control surface, whereas the speed of a
camputation depends on the algorithm used, and hence on the details of the
control surface. (n the other hand, computational methods generally require
less storage space than comparable tabular methods. The amount of space
required by a computational method depends on the algorithm used, and hence on
the details of the control surface, whereas the storage requirements for table

lookup are wniformly large being exponentially related to the dimensionality

of the control surface.
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Computational and table lookup methods also differ in terms of how well
they allow control surface information to be altered or "re-mapped". In the
course of an animal's life, various characteristics of its motor control
surfaces must change. Some changes are required because of the alteration of
the mass of body parts and the lengths of 1imb links that occurs during
growth. Other changes may be called for by the nature of specific actions,
such as transporting objects of differing masses. In other words, various
parameters of the control task must change. For a given control surface
representation, we distinguish two types of parameters: explicit and implicit.
Explicit parameters are those for which provision has already been made in the
computational or storage structure. They can be viewed as input components
that are distinguished only because they change infrequently or slowly. For
example, symbols representing the 1link 1lengths and masses may appear
explicitly in the system of equations specifying the control surface for the
limb movement task described above, and a corresponding computational
mechanism may have explicit inputs for altering these values when "re-mapping"
is required. Explicit parameters in a table-lookup metnod greatly enlarge the
number of table entries. For example, to make link length explicit one would
need to have a separate table for each admissable length. Since computational
methods for representing control surface knowledge generally do not require
undue added compiexity for explicit parameters, re-mapping for altered values
of explicit parameters is generally easier for computational methods than it
is for tabular schemes.

Implicit parameters, on the other hand, are those which determine the
form of the control surface but do not appear as input components or as
explicit parameters, for example, the fact that a limb has three links rather

than two. Re-mapping for altered implicit parameters requires changing the
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algorithm used by a computational structure or changing the table entries in a
tabular scheme. In either case, re-mapping involves adapting control surface
specification, a topic we take up in later sections.

As mentioned above, computational and table-lookup methods for
representing control surface lnowledge can be combined in various ways to
obtain some of the advantages of each. For example, an indexed family of
computational procedures may be used in which each procedure is suitable for a
given region of the space of input situations. Each table entry specifies a
computational procedure, or provides parameter values to a procedure, rather
than a single action (e.g. [Raibert 1977, 1978]).

Pure table-lookup becomes more camputational when one considers

hierarchical and interpolating tables. Hlerarchical structures consist of

tables that store parts of the addresses into othenv tables. Samuel [1959]
proposed such hierarchical "signature tables" and Albus [1981) has presented a
structure in which the output from high-level - tables together with
envirormental feedback determine the entry point into a lower-level table.
These methods can be helpful for reducing the exponential growth of storage
requirements with increasing control surface dimension. However , memory
demands may still be large, and there may not be a natural decomposition of
the control surface.

Interpolating methods average neighboring table entries. A continuous
space of input situations must be divided into regions that are mapped to
table locations. These regions may overlap so that extraction of information
corresponding to an input situation requires some process of combining the
information stored- for each of the regions into which the input situation
falls. If the control surface is reasonably smooth, this technique can help

reduce storage requirements by permitting a coarse quantization of the control
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surface while retaining some dégree of accuracy. Marr [1969] and Albus [1971])
proposed that the granular layer of the cerebellum implements a "decoder” that
is not restricted to activating a single address pathway (parallel fiber), and
thus that the cerebellum, through the integrative action of the Purkinje
cells, implements just this kind of interpolating table lookup representation

of motor control knowledge.

4,2 Associative Memory Networks

Finally, we discuss associative memory networks as mechanisms for storing

control information that combine aspects of computational and table-lookup
methods. An associative memory network consists of a large number of
processing elements that implement relatively simple primitive computations.
They are therefore computational, but they compute in parallel rather than
sequentially. They are also similar to tabular methods except that
information can be coded in terms of distributed patterns of activity rather
than in terms of specific loci, and storage "locations" may exist only in an
abstract sense. ' Assoclative memory networks have been discussed by many .
researchers (e.g. [Amari, 1977a,b), [Anderson et al., 1977], [Kohonen, 19771,
[Nakano, 1972), [Cooper, 1974], [Wigstrom, 1973), (Willshaw, Buneman, and
Longuet-Higgins, 1969]) and a good overview of these structures, their
applications, and their relation to neuroscience can be found in (Hinton and
Anderson, 1981].

To make the nature of associative memory network storage concrete, we
briefly describe one of the simplest examples known as a "correlation matrix
associative memory" (Kohonen, 1977]. Suppose X = (X1, XZ,..., xk) is a set of
input situations, or "keys", where each XJ' is a vector of, say, real numbers.

If we wish to associate each key Xi with some scalar control action ay, this
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can be accomplished by forming a vector
n
AR S

Retrieval of the control action associated with a key, say Xj, is accomplished
by taking the inner product of A and xd:

n

Jy - iy
<A, ¥h = pa o, ¥

Perfect retrieval of information stored in the vector A requires only that the

set of vectors X is an orthonormal set. MNote that one may regard the decoder

used for pure table lookup ( Fig. 2) as a generator of the orthonormal set of
Xeys consisting of the standard wnit basis vectors. (ne might therefore view
the usual form of table lookup as a special case of this kind of associative
memory. The unit vectors produced by the standard address decoder are
orthonormal because there is no overlap of their localized nonzero values.
However, vectors whose nonzero values substantially overlap can also be
orthonormal such as, for example, the vectors (.5, .5, -.5, -.5) and (.5, -.5,
.5, =.5).

Using such distributed but still orthonormal patterns as ‘'keys" for
storage and recall, a memory system has properties not shared by conventional
lookup tables. Each entry is distributed over many physical storage
locations, and each location contains the superposition of many entries. This
leads to a form of generalization not possible in conventional memory systems.
If a pattern were presented to the system that had not been one of the
orthonormal keys used for storage, then information would be retrieved
according to how similar (in the sense of the inner product) that pattern were
to the keys that were used for storage. If the pattern were similar (but not

necessarily identical) to a particular key, and dissimilar from all the
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others, then the information asociated with the similar key would tend to be
retrieved. For a conventional memory system, on the other hand, providing an
address that is similar to, but distinct fram, the desired address can yield a
completely unrelated output.

The term %associative memory" is used to describe memory systems using
this superposition principle and distributed patterns as keys. Interpreting
this summation as neural spatial sumation leads to the view that neural
networks can implement this kind of information storage, with ‘“synaptic
weights" storing information and afferent patterns acting as keys. Fig. 3
shows an associative memory network, with key X, which implements a
distributed lookup *table" that stores patterns Y instead of single numbers.
The input lines labelled Z are used to instruct the network during the storage

phase. Extensive discussion of associative memory systems and their neural

LTSRS 22, 2a
X z
Figure 3

An associative memory network. The vector X is the input pattern cr key; the
vector Y is the output pattern. The lines labelled Z are used to instruct the
network during the storage phase.
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interpretations is provided in [Hinton and Anderson, 1981] and (Kohonen,
19771].

Associative memory networks play a dual role in the context of our
present comparison of computational and tabular methods for implementing
control surfaces. They are clearly computational since they require weighted
sums to be formed, but they are also tabular schemes, although in a somewhat
abstract sense. As pure computational schemes they can provide high reaction
speed by virtue of parallel camputation, but they would seem (wrongly, as we
shall see) to be inadequate for even the Simplest motor control tasks since
they usually implement nothing more than 1linear transformations (possible
followed by thresholding). That is, if the role of key were to be played by
the "raw” input situation specification, e.g. the pattern xX(), x«(v),
X''(t)) for our trajectory control example, then an associative memory network
Such as that shown in Fig. 3 could not associate the appropriate control
signals with the keys because the control surface contains essential
nonlinearities when expressed in terms of these control situation variables.
However, there is no reason to insist upon coordinates that arise from our own
analysis of the problem. Partridge [1979] vividly makes this point: "(On
single nerve fibers at either the sensory or motor end, the firing rate can
represent only one dimension, but that dimension involves a transformation and
cambination of the single dimensions usually used to describe the experimental
data. If neither the input nor output operates with signals separated into the
single dimensions of physics, . . . there is no obvious reason why the central
processing need ever deal with the information isolated in the coordinates of
ouwr technology." (p. 221) Further, the principle of associative memory
networks may be extended to include nonlinear operation [Poggio, 1975] and may

be combined with more conventional computation and in hierarchical structures
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in the same manner as discussed above for pure tabular representations.

Viewed as abstract versions of tabular methods, associative memory
networks provide automatic interpolation, or automatic generalization, by
virtue of utilizing a numerical measure of pattern similarity in retrieval.
If information can be coded in such a way that this form of interpolation
provides correct generalization, then storage requirements can be much less
than for explicit tabular methods.

The general principle illustrated by associative memory networks is that
of relying on structures consisting of uniform computational modules instead
of special purpose computational hardware. Lack of computational generality
of such structures is compensated for by the coding of control situations in
terms of coordinates which lend themselves to the automatic interpolation
afforded by the camputational modules.

5. ACQUISITION AND MODIFICATION OF CONTROL SURFACE KNOWLEDGE

5.1 Generality vs. Generalization

The various methods discussed above for representing control surface
knowledge have implications affecting methods for acquiring and modifying that
knowledge. Here too, there is an important tradeoff that can be most clearly
understood by contrasting pure computation and pure table-lookup. This
tradeoff is between the generality of the range of information that can be
acquired, or of the degree of modification that can be accommodated, and the
type of generalization that can be employed to reduce the amount of
experience, and hence the amownt of time, required for lnowledge acquisition
or medification. A pure tabular method has the potential for storing very

detailed and complex control surfaces since an arbitrary action specification
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can be stored at each table entry. It is limited only by the "grain" of the
quantization used to divide the control surface into regions. The generality
of a pure computational method, on the other hand, is limited by the form of
the computational algorithm and its degree of parameterization. For example,
if a learning process is restricted to adjusting the coefficients of a linear
function of the control situation variables, then obviously only control
surfaces which are linear in these variables can be formed.

The degree of constraint imposed on the set of potentially representable
control surfaces by a given representational convention is directly related to
the degree of generalization the convention provides. Since arbitrary entries
can be stored in each location of a table, acquiring the correct contents of
one table location (by means we shall discuss below) does not constrain the
contents of other locations. Therefore, a learning mechanism capable of
utilizing the generality of a tabular storage medium must fill in each table
location separately based on knowledge acquired for the corresponding region
of the control surface. Any generalization of such experience to other regions
of the control swrface is justified only on the basis of a priori restrictions
on control surface form. For example, an interpolating tabular scheme which
involves the averaging of neighboring table entries restricts the class of
representable control surfaces to those which are smooth to a degree
determined by the spread of the averaging function. Thus, the increase in
learning speed obtained by removing the necessity to "visit" each control
situation requires a priori constraints on control surface form. By virtue of
imposing considerable constraint on representable control surface form, and
thus considerable generalization, computational methods coupled with suitable
learning algorithms can reduce the time required to acquire or "re-map" a

control surface.
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Any method that provides generalization can cause difficulties when that
form of generalization is not correct in all circumstances. Instabilities may
arise when experience in a given region A is incorrectly generalized to
another region B, and subsequent experience in B leads to correction of the
erroneous generalization and consequent incorrect generalization back to
region A. This can occur both in computational schemes and in tablular
schemes that are based on too coarse a quantization of the control space.
Solutions require alterations of the form of generalization through altering
the intrinsic form of the computational algorithm or altering the control
situation representation (e.g. adaptively refining the grain of quantization
of the input space). These problems are quite difficult and have not yielded
to any uniform solution method.

5.2 Quality of Environmental Feedback

One. of the most important factors affecting the design of a learning
system is the quality of the information supplied to it by its enviromment.
This information may range fram explicit specification of the actions that the
system is required to perform to wnreliable and infrequent assessments of
certain distant consequences of the system's actions. In the first case, the
learning system need only remember what it is told, whereas in the second
case, the system must somehow discover what actions have consequences that
lead to improving assessment of per formance.

Clearly, if there is a "teacher" in the environment that can tell the
control system exactly what action it should take for each input situation,
then "learning" is easy. For a pure table-lookup, this merely amounts to the
rote storage of information, something that conventional computer memory

systems accomplish very efficiently. For lookup tables implemented more
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abstractly as associative memory networks, the "learning" process under this
high quality information is similarly rote storage. For camputational
schemes, this type of rote storage is generally accamplished by means of some
form of regression procedure designed to adjust the parameters of a
computational algorithm in order to best produce the specified actions. Some
of the more sophisticated schemes for the storage of information in
associative memory networks can be viewed as iterative linear regression
algorithms [Sutton and Barto, 1981].

However, it is highly doubtful that this kind of teacher exists for the
motor learning problems with which we are concerned here. Such a teacher would
need to know, for example, how each motorneuron involved in the task should
respond to each afferent volley and be able somehow to provide these
motorneurons with this information. For typical motor skills, even if
learning were to take place only at higher motor levels, leaving lower-level
Synergies fixed, it is hard to imagine where such detailed information would
came from. (There are, of course, many motor tasks for which error signals
are readily available. Reflexes provide a number of such examples, the best
studied of which is the adaptation of the 8ain of the vestibulo-ocular reflex
in response to manipulations of visual or vestibular feedback {Ito, 19821.)

A less lnowledgeable teacher may know the correct control actions for
Just Some of the control situations.  Uhder these eircumstances, a rote
storage method that provides some form of generalization may permit correct
extrapolation of the teacher's lnowledge to a broader class of control
situations. This type of learning problem has been extensively studied as
"supervised learning pattern classification" (see, for example, [Duda and
Hart, 1974]). The teacher provides the learning system with a set of input

patterns together with their correct classifications (e.g., a selection of
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“examples” and Ycounterexamples" of each class), and the learning system must
correctly classify these samples while extending, via its generalization
capability, the classification of the samples to the set of all possible input
patterns. In the context of a control problem, the input patterns correspond
to patterns specifying control situations and the correct classifications
correspond to the correct control action. Most of these methods are
essentially iterative regression procedures that operate in real-time as
classified training samples arrive, Algorithms such as that used by the
ADALINE (ADaptive LINear Element [Widrow and Hoff, 1960]) are examples of
these methods. They can be regarded as "error-correction” methods that adjust
parameters so as to reduce the discrepancy between how they respond and how
their teachers instruet them to respond. Some of these methods are also
effective if the teacher's classification of even the sample patterns is
unreliable. Artificial Intelligence researchers study higher-level versions

-of this same type of problem as "earning fram examples,” "concept formation,"”

or "inductive inference" [Cohen and Feigenbaum, 1982]. Although the capacity

‘to generalize is important for both efficient learning and storage, we do not

believe that al) aspects of motor learning can be acounted for by mechanisms
which require such explicit information, even if it is required for only a
subset of the possible input situations.

More powerful learning capabilities result from the combination of
information storage methods, akin to those discussed above, with some form of
problem-solving or "discovery? process. The problem-solving process
determines what information nee&s to be stored in order to solve a given
problem and provides this information to the storage medium. The role of the
“teacher,” then, is played by the system's own problem-solving experience.
What is needed for implementing this problem-solving component is a strategy
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variously called "blind variation and selective survival" [Campbell, 1960],
"trial-and-error search", or more recently by artificial intelligence
researchers, "generate and test". This type of process generates trials whose
consequences are unforseesble at the time they are generated. These trials
are then evaluated and selected according to their consequences in furthering
a given problem's solution. This process need only be "blind” in the sense of
not lnowing for sure the outcome of a trial before it is generated. Any
amount of knowledge, present initially or acquired during the problem-solving
process, may be used to generate trials with high likelihood of improving
problem-solving performance, but true discovery requires at least same initial
doubt.

A classical difficulty arises when the problem-solving process requires
multiple steps for completion, as is usually the case. If success is achieved
after a sequence of control decisions are made, to which individual decisions
should the success be attributed (or blame, in the case of eventual failure)?
Minsky [1961] called this difficulty the "ecredit assignment problem", and it
is still a very real problem for learning systems. FPerhaps the best known
method for reducing the severity of this problem was implemented by Samuel in
his checkers playing program [Samuel, 1959]. This method, which involves the
adaptive development of a step-by-step evaluation function, is related to
secondary reinforcement pehnomena in animal conditioning experiments. In
Section 6.1 below a similar method is described for aiding the acquisition of
a lookup table.

Learning mechanisms combining information storage with problem-solving
search are probably required for solving a large class of motor learning and
adaptation problems. Consider, for example, what would be required of a

mechanism which is to learn the control surface for the trajectory control
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task discussed above while receiving only instructive information that can be
determined by visually inspecting performance trials, such as the instanteous
spatial error in "world" coordinates. What cannot be supplied is an
instruction such as "extend the duration of activation of motoneurons in group
A and diminish the duration of activity of motoneurons in group B" (where A
and B are specified subsets of the motoneurons involved). The controller must
use a search process to discover, via a generate-and-test process, which of
its actions have as consequences the reduction of the spatial error of the
movement. As these actions are discovered, they can be stored in association
with a representation of the state of the limb and the task cummand so that
eventually search will not be required in order to execute the command. A
system composed only of error-correction camponents such as perceptrons,
cannot learn to correct the spatial error unless some agency can supply
individual error signals to each component. In crder to do this, that agency
must already know what patterns of component activity reduce the error, that
is, it must already know a great deal about the operation of the conu;oller
and of the task faced.

Although it has been convenient to separate the information storage and
problem-solving aspects of this type of learning in order to emphasize these
roles, it does not follow that these processes need to be carried out by
separate components or at separate times. In the examples which follow,
neuron-like elements perform both storage and problem-solving search.
Although space does not‘permit a thorough argument in favor of this approach,
we wish to suggest that the intimate combination of these capabilities at a
low ievel in the functional hierarchy of a learning system is importent for
effective learning of difficult tasks.
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6. EXAMPLES CF CONTROL SURFACE ACQUISITION

In this section we provide a series of examples that illustrate many of
the issues raised in the above discussion concerning both control surface
representation and acquisition. The learning systems in these examples are
networks of neuron-like adaptive elements which have been developed in order
to explore issues in learning rather than as explicit neural models, These
examples are based on a theory of associative search networks introduced by
[Barto, Sutton, and Brouwer, 1981] and further developed in [Barto and Sutton,
1981], [Barto, Anderson, and Sutton, 19821, and (Barto, Sutton, and Anderson
1982). We postpone discussion of the relevance of these examples for the

acquisition and alteration of motor control surfaces until a later section.

6.1 Acquisition of a Lookup Table

This first example illustrates a control surface represented as a lookup
table and its acquisition wder the influence of low-quality environmental
feedback (see (Barto, Sutton, and Anderson, 1982] for a complete discussion).
The control task is that of balancing a pole hinged to a moveable cart
(Fig. 4), the cart is free to move within the bounds of a one-dimensional
track, and the pole is free to move only in the vertical plane of the cart and
track, The controller can apply a “left% or "right" force F of fixed
magnitude to the cart at discrete time intervals. The controller has no a
priori lnowledge of the cart-pole dynamics, and there is no pre-existing
controller that can act as a "teacher", The controller receives a vector at
each time step giving the cart-pole system's state at that instant, and if the
pole falls or the cart hits the track boundary, the controller receives a
failure signal, which is the only evaluative feedback provided by the

enviromment. The controller must attempt to generate controlling forces in
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Figure 4

The cart-and-pole control problem. See text for explanation.

order to avoid the failure signal for as long as possible. It does this by
constructing a control surface that assigns ‘'left' or ‘right' to each
controller input situation (x, X, 6, 8), where x is the position of the cart
on the track, x is the cart velocity, 8 is the angle of the pole, and 8 is the
angular velocity of the pole. Motice that the failure signal does not directly
provide the controller with an indication of what it should have done, and
when it should have done it. This task is quite difficult due to the lack of a
priori Inowledge of the control surface and the infrequent and non-specific

enviromental feedback.
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Much of the motivation for our solution to this problem came from a
system, called 'Boxes', developed by Michie and Chambers [1968a, bl. They
divided the four-dimensional space of input situations into disjoint regions
('boxes') by quantizing the four state variables. They distinguished 3 grades
of position, 3 of cart velocity, 6 of pole angle, and 3 of angle velocity.
This ylelded 3x3x6x3=162 regions corresponding to all of the combinations of
these grades. For example, one region corresponded to the cart's position
being between 17 and 50 meters and the cart's velocity being between -2 and 2
meters/second and the pole angle being between O and 1 degrees and the angular
velocity being between 10 and 30 degrees/second. The problem, then, is one of
filling-in this lookup table of 162 entries with the appropriate control
actions.

Our solution requires two adaptive elements, an Associative Search

Element (ASE) and an Adaptive Critic element (ACE), each having a

wreinforcement™ input for evaluative feedback and 162 other input pathways for
providing state information about the cart-pole system (Fig. 5). We assume
the existence of a decoder that implements the quantization of the
controller's input space. It has 162 output pathways, only one of which is
active at a time, that act as afferents to the adaptive elements. Each
adaptive element will develop a 'synaptic weight' associated with each of its
input pathways.

the control surface table, with positive weights causing a positive output

In the case of the ASE, these weights will be the entries in

(control action 'right') and negative weights causing negative output (control
action 'left'). In the case of the ACE, these weights will form another table
that specifies an internal evaluation function that greatly increases the
speed of learning. The ACE receives the reinforcement feedback r from the

external envirorment and uses it to construch a table of internal or
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An adaptive network that learns to solve the cart-and-pole control problem.
ASE is an Associative Search Element. ACE is an Adaptive Critic Element. See
text for explanation of other symbols.

ngecondary™ reinforcement r vhich it supplies to the ASE. For the
pole-balancing problem, we maintain the external reinforcement r at zero until
failure occurs when we momentarily set it to -1.

The ASE operates as follows.
{th

let x,(t), 1<1< 162, denote the
real-valued signal on the non-reinforcement input pathway at time t, let
y(t) denote the output at time t, and let r(t) denote the reinforcement value
at time t. Reinforcement r will be provided by the ACE in such a way that

positive values indicate improvement in performance and negative values

3



Barto/Epstein

- 33 -

indicate decrement in performance. Let "i(t) denote the value at time t of
the weight associated with the {th non-reinforcement input pathway. The ASE's
output is determined from its input vector X(t) = (x,(t),...,xn(t)) as

follows:

n
y(t) = f[ ¢ wi(t)xi(t) + noise(t)],
i=1

(1)

where noise(t) is a nrormally distributed random variable with a mean 0, and £

is the following threshold function:

+1if x>0 (control action 'right')
o = { -l ifx<o (control action tleft').
According to (1), actions are emitted even in the absence of nonzero input
signals. The element's output is determined by chance, with a probability
biased by the weighted sum of the input signals. If that sum is zero, the
control actions 'left' and 'right' are equally probable.

The weights Wi 1 <1 <162, change over (discrete) time as follows:

H(ET) = W (8) 4 a R(tdey (L),
&

where a is a positive constant determining the rate of change of w, , F(t) is
the real-valued internal reinforcement at time t, and ei(t) is the eligibility
at time t of input pathway i. The eligibility of a pathway reflects the
extent to which input activity on that pathwey was paired in the past with
element output activity. The eligibility of pathway 1 at time t is therefore
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a trace of the product y(t)xi(t) for times <t preceding t. For computational
simplicity, we generate exponentially decaying eligibility traces €, using the
following linear difference equation:

eg(te) = Bey(t) + (1-B)y(e)x(t),
3)

where 8, 0 < B< 1, determines the trace decay rate. Mote that each *synapse'
has {ts own local eligibility trace.

The basic idea expressed by (2) and (3) is that a pathway's weight
changes depending on the reinforcement received during periods of that
pathway's eligibility., If the reinforcement indicates improved performance
(F(t) > 0), then the weights of the eligible pathways are changed so as to
make the element more likely to 'do whatever it did' that made those ‘pathways
eligible and, perhaps, caused the improvement. If reinforcement indicates
decreased performance (r(t) < 0), then the weights of the eligible pathways
are changed to make the element more likely to do something else. The term
'eligibility' and this weight update scheme are derived from the theory of
Klopf (1972, 19821, and have precursors in the work of Farley and Clark
(19541, Minsky (1954), and others. The ASE implements the view of
instrumental learning represented by Thorndike's "Law of Effectn [1911).

ne reason this task is difficult is that since the external evaluative
feedback occurs only after a long Sequence of actions, there is difficulty in
assigning credit to individual actions. The ACE reduces the severity of this
credit-assigrment problem by adaptively developing a more informative
evaluation function than the one directly available from the learning system's

enviroment. The ACE acts as an adaptive 'internal critie! of the learning
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system. It implements a method closely related to the method used by Samuel
[1959] in his learning checkers playing program, and its behavior captures
important aspects of animal behavior in classical conditioning experiments.
Sutton and Barto [1981] extensively discuss a closely related adaptive
element, and further discussion of the ACE can be found in [Barto, Sutton, and
Anderson, 1982].

The ACE constructs a table of ‘'predictions' or ‘'expectations' of
reinforcement whose entries are the weights associated with the ACE's input
pathways. The ACE uses these predictions to determine an internal
reinforcement signal as a function of cart-pole state which it delivers to the
ASE, thus permitting learning to occw throughout a pole-balancing trial
rather than solely upon failure. The system effectively learns how ‘safe' or
how 'dangerous’ are the cart-pole states. It punishes itself for moving from
a2 state to a more dangerous state, and it rewards itself for moving from a
state to a more safe state. The cart-pole states act in a manner similar to
secondary reinforcement of animal learning studies [Gormezano and Kehoe, in
press]). The learning process automatically stops when all externally supplied
reinforcement is fully predicted by the ACE.

We implemented the ASE/ACE system shown in Fig. 5, and to provide a
reference point for learning performance, we implemented the Boxes system
described in (Michie and Chambers 1968a, b]. The cart-pole system was
simulated by digital computer using a very detailed mathematical model of the
physical system. We simulated a series of runs of each learning system
attempting to balance the pole. Each run consisted of a sequence of trials
where each trial began with the cart-pole state x=0, i:o, 8=0, and é:o, and
ended with a failure signal.

The learning systems were naive at the start of

each run, and different seeds were supplied to the pseudo random number
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generator for each run. Rns consisted of 100 trials unless the run's
duration exceeded 500,000 time steps (approximately 14 hours of simulated real
time), in which case the run was terminated.

Fig. 6 shows the results of these simulations. The graphs of Fig. 6 are
averages of performance over 10 runs. A single point is plotted for each bin
of 5 trials giving average time-untii-failure over the bin. It is clear that
both the Boxes system and the ASE/ACE system were able to improve their

performance with experience, with the ASE/ACE system showing dramatic
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Figure 6

Network performance on the cart-and-pole task, averaged over 10 runs, campared
with performance of the BOXES algorithm. Each point represents a bin of 5
trials, giving averag: time-until-failure over the bin, averaged over 10 runs.
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improvement after about 50 trials. This improvement comes about as the ACE
acquires the ability to provide internal evaluation in the absence of failure.
Further details of these results are provided in [Barto, Sutton, and Anderson,
1982].

These results show how a lookup table can be acquired from experience
even when no lnowledgeable 'teacher' is available to specify its entries. It
should be clear that such a learning system would be able to modify its
existing tabular entries if various implicit parameters of the control tasks
were changed, for example, if the cart mass, pole length, etc. were changed.
Such an alteration would cause the system to receive reinforcement that
differed from the expected level for certain cart-pole states, thercby
automatically reactivating the learning process for those states.

6.2 Acquiring a Computational Control Surface

The control surface acquired in the following example may be thought of
as represented either by a simple computation or by an associative memory
network, depending on what aspects of the representational scheme one
emphasizes. In this exaaple, a learning system faces a simple spatial
learning task which was devised by Barto and Sutton ([1981] as a simple
illustration of the learning capabilities of an associative search network.

Fig. 7A shows the spatial envirorment of a simple "organism® which is
represented by the asterisk. The tree in the center of the figure is the
organism's target and emits an "attractant odor" whose strength decays with
distance from the tree. Each of the landmarks at the cardinal points also
emits a distinct “odor®, decaying with distance, which does not act as an
attractant (i.e. is neutral) but can serve as a cue to location in space. The

organism's task in this environment is to approach the tree as efficiently as
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. tial environment of a simple "organism," shown as an asterisk. The
:re:hemsp;\e center 1s source of an "attractant odor” and the four disks
represent landmarks which emit their own "odor® distributions, serving as c\i\es
to spatial location. B. The "organism's" "brain", a network of four adapt.ive
elements controlling motions in the four cardinal directions. Conmiectlon
weights between landmark inputs and action outputs are shown as clrc e:
centered on the intersections of input lines with adaptive e ?n;mt
"dendrites". Positive weights appear as hollow circles, and negative weights

appear as shaded circles.

possible and remain in its vicinity. In order to do this, it acquires a
control surface that tells the organism which way to go from every place in
its enviromment. The inputs to this controller are the patterns of "odors"
from the neutral landmarks, and actions determine movement in space. (nce in
possession of an adequate control surface, the organism can use it to move
directly to the place where the attractant peak usually appeared even in the
camplete absence of the attractant distribution. The organism is then able to
"control" its spatial enviromment in the sense of being able to drive it to a

desired state.
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The organism's "nervous system” is shown in Fig. 7B. The four adaptive
elements control motions in the respective cardinal directions. GConnection
weights between input and output elements are shown as circles centered on the
intersections of the input pathways with the element "dendrites". FPositive
weights appear as hollow circles, and negative weights appear as shaded
circles. The size of a circle codes the weight's magnitude. The action
camanded by the network is to move North if element 1 fires, South if
element 2 fires, ete. We implemented a kind of crossed inhibition to ensure
that if, for example, the South and North elements were both active, the
organism would take a step north if the north element were more activated
than the south element and vice versa. In case two non-opposing elements fire
simultaneously, then the appropriate compound move is made, e.g., Northwest.
We assume that each move is a fixed distance and is always completed in one
time step. The control surface is to be stored as a matrix of weights
connecting the neutral landmark inputs with the action-generating elements.

The problem of acquiring this control surface is similar to that of
acquiring the pole-balancing control surface, and we used adaptive elements
that are very similar to the ASE discussed above. Unlike that problem,
rowever, evaluative feedback is available directly from the environment
immediately after every action in the form of an indication as to whether the
chosen direction of movement was up the attractant gradient or down. We
therefore do not reed to use proionged eligibility traces or an ACE. In
particular, F(t) in (2) is eqal to 2(t) -~ z(t-1), where 2z(t) is the
attractant level sensed by the organism at time t, and ei(t) = y(b—1)xi(t-1)

(which is the result of setting 8=0 in Eq. 3).
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The four adaptive elements form associations between places in space
(signaled by vectors of landmark "odors®) and actions leading up the
attractant gradient. The weight associated with an input pathway from a given
landmark to an element controlling movement in a  particular direction
increases if a step in that direction is taken in the presence of that
landmark's signal and the resulting movement is up the attractant gradient.
With sufficient experience, the organism learns to respond to the olfactory
cues at each place with the action that is optimal for that place.

Fig. 8 illustrates the performance of this network. In this case, noise
has been added to the attractant level in order to make the hill-climbing task
more difficult. Fig. 88 shows the trail of an inexperienced organism that
starts near the northern neutral landmark. It eventually remains in the
vicinity of the tree. Fig. 8 shows the trail produced by replacing the

ﬁ%&;{g.

Figure 8

Example of network performance. A. The trail of an inexperienced "organism" in
the presence of a noisy attractant distribution. B. The trail of the same
"organism", replaced at its starting point after having undergone the
exzri'ie:ce shown in A. The network has learned how to climb the attractant
gradient.
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organism at its original starting point after it has undergone the experience
shown in Fig. 8A. It now proceeds directly to the tree, clearly benefiting
from its earlier experiences. Fig. 9A shows the network after learning.
Nonzero weights have appeared so that, for example, proximity to the northern
lendmark causes a high probability of movement south since the "odor" of the
northern landmark excites the element that causes movement south and inhibits
the one that causes movement north. Fig. 9B shows the results of learning as
a vector field in which each vector shows the average direction that the
organism will take on its first step from any place. The vector field is the
organism's map of its enviromment (it is never literally present in the
environment). Moreover, it should be clear that the organism will follow this
map even if the tree and its attractant distribution were to be removed (so
long as the neutral landmarks remained). The organism has formed a control
surface so that on future encowunters with a similar environment, it need not

perform trial-and-error search but can use its control surface to directly
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A. The network of Figure 7B after learning, corresponding to the behavior
shows in Figure 8B. B. The results of learning shown as a vector field of the
average directions that the “organism" would take on its first step from each
position in the enviromment.
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find out in which direction it is best to move. The generalization capability
of the present storsge method is illustrated by the fact that the control
surface is defined for places never before visited by the organisn. of
course, the problem faced by the orgenism is simple enough that this linear
extrapolation turns out to be correct, but this clearly need not always be
true.

Although this control surface specifies a direction of movement for each
point in space, it is represented by just 16 "synaptic® weights. It is not
stored as a real physical surface; the vector field shown in Fig. 9 does not
literally exist as a spatial map in the network. We may regard this netutu-k
as an example of an associative memory network where the role of "key" ig
Played by the afferent patterns of "odors" and the associated "recollections"
are the actions which lead up the attractant distribution, although the
learning process differs from the one usually studied for associative memory
networks (see Section 5.2 above).

A table lookup approach to this problem would correspond to there there
being a separate landmark, with a corresponding input pathway to the network,
located in each small region of space. If each landmark's "odor" could only
be sensed in its own region, then the landmark "odors" would correspond to
table addresses. An interpolating tabular scheme would correspond to having a
landmark for each small region but letting it have an "odor" distribution
broader than its own region (the storage scheme of the present example could
be considered an interpolating lookup-table with 4 entries).

Let us look at an example which shows how re-mapping can ocewr in
response to the alteration of an implicit parameter of the control problem.
After the organism acquired the control surface shown in Fig. 9, we
interchanged the East and West landmarks. Fig. 10A shows the vector field
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resulting from evaluating the old control surface in this new enviromment.
Starting from a place near the tree, the organism is "misled" by its sensory
information and follows the vector field away from the tree (Fig. 10B1).
Since the movement is down the attractant gradient, the learning rule alters
the weights to the East and West output elements from the input labelled East
(which now responds to the landmark to the West). This relearning results in
the network of Fig. 10B2 and the vector field of Fig. 10B3. A similar
excursion to the east modifies the weights to the East and West output
elements from the input labelled West (which now responds to the landmark to
the East) as shown in Figs. 10C1, C2, and C3. The system "rewrites" its
control surface, thus erasing traces of previous learning. lMote, however,
that the associations from the Morth and South landmarks remain correct for
the new enviromment and constrain movement to a band that is narrow in the
north-south direction, thereby permitting the relearning of the new map to
occwr faster than the acquisition of the original map. Comparison of the
incorrect vector field of Fig. 10A with the correct one of Fig. 10C3 shows
that re-mapping has occurred in regions of the space that were not visited in
the east-west excursions. It is clear that re-mapping is made easy because
the generalization produced by the storage method is suitable. If the control
surface had been represented by a lookup table, then each address would have
to be visited for complete re-mapping. Finally, note that transferring the
re-mapped organism back to the original enviromment will result in the
relearning of the original control surface after sufficient experience.

In the landmark-learning examples just described, we did not attempt to
model the actual spatial behavior of any particular organism. It is
interesting, however, to compare the behavior of owr fictitious organism with

that of actual organisms, and it may be an interesting topic for future
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Figure 10

A. Vector field showing the behavior of the control surface of Fig. 9 in an
enviroment in which the East and West landmarks have been exchanged.
B1. Path of an organism "misled" in this altered envirorment. B2. The network
after the experience shown in B1. B3 The corresponding vector field after the
experience shown in B1. C1, Continuation of the path of B1, giving experience
with the new East landmark. C2, C3. The network and vector fields,
respectively, showing the control surface after the experience shown in Ci;
the organism has relearned its map of the enviromment.
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research to attempt to develop realistic models of spatial learning behavior
based upon similar principles. Of particular relevance is the model presented
by Cartwright and Collett [1982] for how honey bees use landmarks to quide
their return to a food sowce. These authors also present vector field

representations of their models' behavior.

6.3 From Landmark Learning to Motor Control

Although the control problems of the preceding examples are far less
complicated than most motor control problems routinely solved by animals,
these examples can help us address, in a simple and concrete way, some of the
issves that arise 1n realistic cases. In particular, the landmark learning
example provides an easily visualized setting for some concepts that may be
useful in more difficult control tasks. Recognizing that there is a wide gap
between the capabilities of the landmark learning network and the capabilities
required of an adaptive motor controller, let us nevertheless consider some
correspondences.

If one views the spatial position of the organism in the landmark
learning example as corresponding to the spatial position of a limb-tip, then
the attractant level sensed by the organism might correspond to an evaluation
of positioning accuracy provided by a visual system overseeing the workspace.
The "odors® of the fowr cardinal landmarks sensed by the organism might then
correspond to proprioceptive signals glving the current position of the limb
in some internal coordinate system. Viewed in this way, the system has to
learn for each limb position what control actions reduce spatial error. Once
this is learned, the system can position the limb accurately without the aid
of vision (cf. the ability of our simulated organism to approach the tree's
location in the absence of the attractant distribution). Gne might further
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regard the re-mapping in response to interchanged East and West landmarks as
being analogous to the adaptation that takes place after the introduction of
inverting prisms or other types of perceptual distortions.

Thus, although we have presented the landmark learning problem in terms
that suggest an actual spatial enviromment (e.g., "odors", landmarks, etc.),
many of the ideas illustrated carry directly over to more abstract "spaces"
such as the state spaces of dynamical systems. Viewed in this more abstract
light, a "landmark", more specifically, the "edor® distribution of a landmark,
corresponds to response characteristics of a receptor. (he could regard a
Joint receptor, for example, as an instance of a "proprioceptive landmark" in
that approach to a certain joint angle would increase the receptor's firing
rate. Mre generally, such receptors are responsive to combinations of many
dimensions, as are the landmarks in the landmark learning task, and not just
one. A specific combination of east-west and north-south positions defines
the peak signal fram one of these landmarks.

We have found the image of landmarks in state-space having "odor®
distributions of a variety of shapes to be useful for thinking about the
character of information that may be required for learning control tasks
involving dynamic 1imbs. A higher density of landmarks is required in regions
of complex dynamic flow; their spread functions can be arranged in order to
support a variety of forms of generalization; and one can consider mechanisms
for the creation of landmarks having appropriate characteristics by a system
during its development and learning.

The landmark learning example also illustrates an important point about
what types of strategies may be necessary for learning to perform certain
types of motor tasks. Unfortunately, however, the landmark learning task is
not sufficiently difficult to provide a vivid demonstration since the
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coordinate system represented by the configuration of landmarks is not
essentially different from the coordinate system in which the system's actions
are defined. Thus, by simply watching the movement of the organism one would
obtain enough information to provide an explicit error signal to each of the
network's adaptive elements - for example, if it moved northeast but should
have moved southeast, then the North and South elements were wrong and the
East and West elements were correct. Given this high-quality feedback, that
is, a vector of individual element errors, simpler error-correction learning
methods would suffice. However, although such an error vector could have been
provided to the network for this task, we provided instead only a scalar
evaluation of overall network performance (the attractant %odor"), and the
network had to discover, via generate-and-test, which of its actions increased
this evaluation.

In more difficult problems involving more complex coordinate systems, the
observation of spatial movement may not yield enough information to provide
the action-generating mechanism with this't:ype of error vector. This would be
true in a trajectory control task since it would not be obvious what component
actions lead to reduced error. A learning mechanism having properties similar
to the one illustrated by the landmark learning problem would be necessary in
order to discover what actions increase accuracy.

(bviously this discussion omits many important aspects of limb control —
higher level planning, proprioceptive feedback, and compliant motion, to
mention only a few — but it illustrates why the most widely studied learning
methods are probably inadequate, by themselves, for many of the learning tasks

that occur in the motor control domain.

Barto/Epstein

- 48 -

7. CONCLUSION

We have shown in the context of a simple trajectory control example how a
control surface is determined by the nature of a task and the abilities of an
effector system. We have compared alternative representations for control
surfaces, emphasizing the trade-off between table lookup and computation and
considering in some detail an associative network representation that lends
itself to the acquisition and adaptive modification of control surfaces by
trial-and-error learning. We have discussed several potential advantages of
associative search networks in representing sensorimotor control surfaces,
including (1) a generalization capability that reduces memory requirements and
facilitates acquisition and re-mapping of control surfaces; (2) a search or
problem-solving capability that permits learning even when envirommental
feedback is of poor quality; and (3) a simple, uniform computational structure
that seems a natural candidate for neural implementation. Whether nature

herself appreciates these advantages is, of course, a matter for future

research.
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The Role of the Toad's Nucleus Isthmi in Prey-catching Behavior
T.S. Collett and S.B. Udin

INTRODUCTION

Frogs and toads are renowned for their well-developed ability to catch
small moving objects such as flies and worms. The most prominent of the
brain structures which mediate this behavior is the optic tectum (Ingle,
1970). The tectum receives visual input and transforms it in ways which are
ill-understood, to produce output which is ultimately used to direct the
animal to orient toward and/or snap at a prey object. Successful prey-

capture requires that the animal be able to gauge the distance of targets and

be able to orient accurately to gpe object even when several are in view. He\

have examined how well the toad, Bufo marinus, performs these tasks when the
tectum is deprived of one set of its inputs, the projections from the nucleus
isthmi (NI).

The nucleus isthmi relays visual information between the two tecta
(Gruberg and Udin, 1978; Grobstein et al., 1978). (See Fig. 1.) This link
provides the major source of input from each eye to its ipsilateral tectum.
The projection onto each tectum of the ipsilateral eye's visual field through
the isthmic nucleus is in register with the direct retinal projection of the
visual field of the contralateral eye. The two projections could, in
principle, provide tectal cells with information for calculating binoecular
disparities. Therefore, we tested whether toads with lesions of the nucleus
isthmi still use binocular cues to assess the distance of their prey. As we
describe below, we found that this aspect of behavior was not disrupted by
bilateral NI lesions. Our second set of experiments investigated a possible
role of the NI as providing a link between the two tecta, to help ensure

that both tecta "focus" on the same single object in the visual field, even
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when two or more potential targets are visible. We will show that bilateral
lesions of the NI can impair the ability of toads to snap successfully when

two targets are present simultaneously.

METHODS
Lesions.

Bufo maripus, 10-13 cm snout-to-vent, were selected on the basis of
their willingness to snap at artificial lures. Animals were anesthetized by
immersion in 200 ml of 0.25% tricaine methanesulfonate (Ayerst); optimum
reSult,s were achieved by immersing an animal for 15 minutes, removing it for
10 minutes, reimmersing for 15 minutes, and so forth until the corneal blink
reflex was abolished. The tectum was exposed and the animal was positioned
with the upper jaw horizontal. The nucleus isthmi was located by inserting a
metal-filled pipette, plated with gold and platinum, through the caudal
tectum to a depth of 1.5-2.0 mm, where visually evoked activity
characteristic of the NI was recorded. NI units respond to light on-set and
off-get =1 | e el TTTttann L.e.lall) “abituate after 2-3 stimulus
repevitions (Gruberg and Lettvin, 1980). Between b anu 4+, lesions were made
in the vicinity of each NI by passing 10 mA of current for 60-90 seconds with
the electrode tip negative.

Histology.

At the conclusion of behavioral testing, brains of most experimental
animals were examined histologically to assess the completeness of the
lesions. Some brains were fixed, paraffin-embedded, sectioned at 10 um, and
stained with cresyl violet. In later experiments, horseradish peroxidase was
applied in solid form to one or both tecta. Three days later, the toads were
perfused with saline followed by 2.5% glutaraldehyde in 0.1 M phosphate

buffer. The brains post-fixed for 2 hours, rinsed in buffer, and sectioned
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in the horizontal plane. Mounted sections were reacted using benzidine
dihydrochloride (Riley and Marchand, 1979).
Behavioral methods

A perspex holder was permanently mounted on the top of each toad's head
and various spectacles screwed to it during testing. Toads were tested in a
black painted 3 ft square arena with a video camera and floodlight mounted
above, facing directly downwards. Toads snapped at yellow cylinders fixed to
lengths of black-painted wire. These were hand-held and moved in a frontal
plane close to the toad's midline. Animals were sometimes reluctant to
respond to dummy prey and were coaxed for several days with meal worms fixed
to the cylinder. It usually took several weeks to complete a series of tests
on each toad,

The animals' responses to the dummy were recorded on videotape at 50
frames-sec=! and later analysed frame by frame. Most measurements were taken
directly off the screen of the video monitor, though sometimes responses were

traced on to acetate sheeting.

Somputer model

A highly simplified model of tectal-isthmic interactions was simulated
in Basic on a Digital Vax computer, using a series of one dimensional
isotropic arrays of 280 elements to represent each retina, tectum and isthmic
nucleus. To minimize boundary effects, visual inputs were restricted to the
40 elements in the center of the array. Visual inputs were punctate, i.e.,
they were restricted to one element. They were specified in terms of their
amplitude and position on the array. Excitation spread laterally through the
array, decaying linearly with distance from the input position. Recurrent
lateral inhibition was introduced in the tectal array. The level of

inhibition caused by a given element was proportional to the level of
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excitation in that element and spread laterally decaying with distance., Thus
the level of inhibition in any given tectal element depended both on the
level in that and surrounding elements. The level of excitation in each
tectal element was not allowed to drop below zero. The input to each isthmic
array reflected the level of excitation in the tectal array on the same side.
The output of the isthmic array had an inhibitory effect on the level of
inhibition in the opposite tectum. Each element of the isthmic array
distributed its activity maximally to the corresponding element of the
opposite tectum and less strongly to other elements, by an amount which
decayed linearly with distance. When the model was given a particular
pattern of inputs, it ran through several iterations and we simply watched

the visual display to see how activity was distributed over the tectal array.

RESULTS
Single targets

Anurans have two cues at their disposal for judging depth: the
monocular cue of accommodation (Ingle, 1972) and a form of stereopsis
(Collett, 1977). Our first question was: does the nucleus isthmi play a
role in measuring binocular disparities? Lesioned animals both oriented
normally towards distant targets and snapped correctly at close ones. Their
accurate estimation of dista~ce could be the result either of monocular or of
binocular information. In order to find out whether binocular cues persist
after NI lesions, it is necessary to dissociate them from monocular ones.
The prey catching behavior of lesioned toads was therefore tested when the
animals viewed their prey either through prism spectacles, which change
binocular disparities, or through concave lenses, which alter the
accommodative state of the lens. In both cases there is a conflict between

the information available from accommodative and disparity measurements.
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Lesioned toads resembled unoperated controls in that their depth judgements
reflected the binocular rather than the monocular information they received.
Thus they undershot their prey when wearing base-out prisms (Fig. 2 and 3).
And, though they underestimated distances when viewing prey monocularly
through a concave lens, they did not misjudge prey distance, or did so to a
much smaller degree, when vision was binocular (Fig. 4), We conclude that
lesioned toads like normals exploit binocular depth cues when those cues are
available.

If we neglect for the moment other binocular inputs which might
contribute to disparity measurements, we are led to a model of binocular
depth vision which owes more to the mantid (Rossel, 1980, 1983) than to the
mammal. The tacit assumption has been that anuran binocular vision resembles
that of mammals: the output of local disparity detectors is used to
construct a depth map. In the mantid, binocular cues are used to measure
prey distance over a range of a few cm, even though there is not a rich
network of binocular connections to mediate local disparity measurements.
The problem then had to be faced: what alternative methods might there be of
exploiting binocular disparities? One technique is to compare the output
signals from the two eyes (Fig. 5).

Suppose, reverting now to toads, that the left eye sees a target along a
line of sight 10° to the right of some retinal reference point and that the
right tectum generates an output signal corresponding to that retinal image.
Suppose also that the same target falls upon a line of sight in the right eye
10° to the left of its retinal reference point and that the left tectum
produces an output signal appropriate for that line of sight. Then, the mean
of the two tectal output signals will give an orientation command related to

the position of the target with respect to the animal's body axis, in this
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case straight ahead. On the other hand, the difference between these two
signals will be proportional to the distance of the target from the animal.

If we restrict our discussion to prey capture, then the behavior of
lesioned toads lends support to a scheme of this general kind, as does the
behavior of normal Bufo marinus wearing prisms which alter the apparent
vertical as well as the horizontal position of their prey. Figure 6 shows
the snapping response of two toads viewing dummy prey through prisms which
are base-out but which are also rotated, so that the left eye looks 6.5°
upwards and the right eye downwards by about the same amount. It is clear
from the results displayed in Fig. 6 that this large vertical disparity does
not interfere with binocular depth judgements. However, it is hard to
believe that conventional small-field disparity detectors would function
properly under such conditions, for the receptive fields plotted through the
two eyes have roughly the same vertical positions (von der Heydt et al.,
1978), However, this manipulation should not disrupt the working of a system
which compares the output signals of the two tecta.
Double targets

Such a system will be fine when there is only one target in the visual
field. But, as with all steroscopic mechanisms (e.g. Marr, 1982), there will
be problems when the visual field is more cluttered. With two targets, for
instance, some trick is needed to ensure that the two tecta agree to attend
to the same target in the outside world. Figure 7 illustrates what has come
to be known as the "correspondence problem®™, The toad might respond to one
of the two targets by combining appropriately the signals to the two eyes
coming from the same real target. Alternatively, if it matches the left
target image through the right eye with the right target image through the
left eye, the motor command will be appropriate to neither. It will lead the

toad to catch a "ghost™ situated between the two real targets and much closer
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than either. The apparent distance of the ghost is given by the expression:

" 0.5 eye separation x target distance
apparent distance = (1)
0.5 eye separation + 0.5 target separation

To investigate whether the nucleus isthmi might play a role in
exorcising ghosts, we tested normal and lesioned toads with two identical
targets which were moved synchronously in a frontal plane and which were
positioned so that one target was to the left, the other to the right of the
animal's midline. Target separations were 7.5, 11.3 and 16.5 cm.

Lesioned toads often snapped at one target or the other, but they would
also snap at a ghost in the middle. When they aimed at one of the real
targets, the distance at which they snapped was appropriate for that target,
and when they aimed midway between the two they undershot the distance of the
real target (Fig. 8A). In the latter case the slope of the relationship
between snapping and target distance roughly conformed to that predicted by
expression (1), though the intercept was greater (Table 1). One conclusion
we wish to draw from this result is that with several potential targets (real
and ghost) in the toad's visual field the toad picks just one of them, and
that both its orientation and distance commands are appropriate for that
target. It need not have been that way. The toad might, for instance, have
oriented towards a real target but extendea its tongue by an amount
appropriate to a ghost image. In terms of the tectal output hypothesis this
means that with several potential targets imaged on one retina, just one of
them is selected to generate a tectal output signal which contributes to both
distance and orientation commands.

Lesioned toads were also tested when they viewed double targets through
concave lenses. Ghosts were seen at the same distance as they were without

spectaéles (Fig. 8), indicating that the response to ghosts does not depend

7
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on the accommodative state of the eyes. However, when wearing such
spectacles, toads also underestimated, but to a smaller degree, the distance
of real targets, a fact which at present we do not understand,

Normal toads behaved differently. When tested with double targets, but
without spectacles, they always aimed at real targets and snapped at the
correct distance. Rana pipiens and Bufo viridis were also tested with the
same double targets and were never seen to snap at anything but real targets.
Bufo marinus usually aimed at real targets when wearing spectacles, and again
snapped at the correct distance (Fig. 9). This result is interesting in
itself, for it shows that anurans can use binocular cues, not only to measure
the distance of targets on the midline, but also of targets positioned at
least 20° either side of it.

However, normal animals in spectacles sometimes aimed at ghosts, in
which case (Fig. 10), they undershot a little less than the lesioned animals.
The slope of the line relating smapping distance to target distance was
greater than that predicted by the apparent position of the ghosts (Table 1).
We will come back to this finding in the Discussion. We should emphasize that
normal animals wearing concave lenses do not readily snap at ghosts, Some
animals never did, and those that did became less and less willing to do so
as testing continued. Although it is difficult to give a reliable,

quantitative estimate, normal animals snapped at ghosts less frequently than

lesioned ones.

Completeness of lesions was judged by several criteria. The normal NI
has a distinctive structure, with & cell-dense outer cortex and a cell-sparse
medullary region containing. tecto-isthmic terminals and isthmic dendrites
(Fig. 114). In the best cases, this structure was completely obliterated,

leaving only a glia-filled region. Most of the right NI of Bl6 was destroyed
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in this way (Fig., 11B). In some cases, the NI was still identifiable, but
was shrunken, with a greatly reduced neuropil,and contained many glia. Most
of the left NI of B16 had this appearance (Fig. 11C). In other cases, the NI
was predominantly intact, but lesions lateral to the structure had severed
many of the fibers running between the tectum and the NI. This disconnection
was obvious in cases where HRP was injected in the tectum; transport was
blocked at the lesion (Fig, 11D),

Using these criteria, the lesions in B7 and Bl6 were Jjudged to have
destroyed, damaged, or disconnected most of both NI's. Histological
preservation of B8 was inadequate for assessment of lesions. In B19, only
minor damage was visible in either NI; lesions were observed primarily in
caudal tectum. However, in Bl9, as in the other toads, the functional
disruption produced by the lesions was probably significantly greater than

the morphology would suggest.,

DISQUSSION

Our results suggest that the nucleus isthmi is not essential for the
binocular assessment of distance, but that it may play a role in a toad's
ability to select a single target when several are present in its visual
field. We present here a speculative model of what the nucleus isthmi does.
If we assume that each of a set of targets produces a peak of activity in
each tectum, then the problem of selecting a single target can be
reformulated as follows. First, when there are multiple peaks in each
tectum, the position of only one of these should influence the amplitude of
the toad's snapping or orienting response. Secondly, to avoid being fooled
by ghosts, the peaks selected in the two tecta should match, that is they
should represent the same real target.

As has been suggested before (Didday, 1976), a plausible mechanism for
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sSuppressing all but one peak of activity is to use a lateral inhibitory
network. With this idea, we devised a model which simulated a one
dimensional tectal array. Excitatory activity at any point on the array was
associated with a level of inhibition within the array which spread outward
from that point, decaying linearly with distance. This inhibition caused the
largest peak to suppress the rest. The level of activity in one tectum was
also influenced by the level of excitation in the other by way of the nucleus
isthmi. This nucleus links regions of the two tecta which look at the same
relatively distant point in Space, and in analogy to mammalian usage we call
the surface in space containing these points the horopter. The intertectal
pathway inhibited the lateral inhibitory network in such a way that
excitation at a point in one tectum had a disinhibitory effect which was
greatest at the corresponding point of the other and decayed outwards from
it. The structure of the model is shown in simplified form in Fig. 12,

When the model was twned, it behaved roughly as we had hoped. With two
targets at the same distance, the model selected the one which generated the
higher level of tectal activity. With two targets at different distances
from the toad, the model selected the one closer to the horopter. This
happens because the target closer to the horopter produced peaks in each
tectum which reinforced each other via the intertectal pathway and so
suppressed the smaller peaks corresponding to the other one.

The network will not always succeed in picking out real targets. With
some pairs of targets it will tend to respond to ghosts, emphasizing peaks in
the two tecta which correspond to different targets. The form of the
intertectal comnections means that such mistakes will occur when the ghost
target is close to the horopter. Figure 13 illustrates this by showing two
targets and two potential horopters. When distance "g" is less than “rv, the

model will choose ghosts, and when "r" is the shorter it will pick real

10
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target separation was less than 5 ecm. Figure 13C plots the ratio of real
targets. For the particular targets shown in Fig. 13 a model with the
targets to ghosts against the position of the horopter for such small
horopter near to the toad would see ghosts, whereas one with the more distant
separations. It is clear that this mechanism is then not a reliable method
horopter would aim at one of the real targets. It is intriguing to ask where
of discriminating real targets from ghosts.
the horopter should be located in order to minimize the probability of
In one respect this model behaves very differently from real toads.
responding to ghosts.
Animals with a choice between a near and a distant target typically select
To answer this question, we computed how often toads would aim at real
the near one; the model on the other hand will always pick the target nearest
targets and how often at ghosts by measuring "g" and "r" with the horopter .
to the horopter. However, the model can be brought closer to reality by
located at different distances from the animal. The "toad” was assigned a 3
including effects generated by lens accommodation. The lens moves back and
cm eye separation and viewed a pair of targets in a frontal plane. The
forth in the eye to focus the image of a target on to the retina. Only one
distance between the targets was varied between 5 and 70 cm in steps of 5 cm.
depth plane at a time can be in focus, and if we suppose that accommodative
The position of the targets was shifted systematically through the binocular
scanning in the two eyes is yoked, then both eyes will tend to focus on the
field and the separation between them grew from 1 cm in 1 cm steps until the
same object in space. If we also suppose, as is certainly true for some
boundary of the binocular field was reached. This procedure yielded a total
tectal cells, that cells respond more vigorously to focussed than to
of some 50,000 different target positions and separations distributed evenly
wnfocussed images, then peaks of activity in the two tecta representing the
within the frontal binocular field. The performance of the model was
same focussed image will be larger. These peaks will suppress the rest, and
assessed in terms of how often real targets were chosen in preference to
because they represent the same target, will automatically lead to the
ghost ones (number of real targets chosen/number of host targets chosen).
elimination of ghost images. Furthermore, if the toad scans with its lens
Fig. 13 plots this ratio versus the distance of the horopter for all 50,000
from close to far distances and locks on to the first target which it
choices and shows that the horopter should be positioned some 60 cm from the
detects, or if it scans near distances more often than far distances, or
animal to yield the greatest number of real targets. The optimal placing of
spends more time accommodating near distances, it will tend to snap at near
the horopter depends on the range of distances in which the toad is

targets in preference to distant targets. This mechanism would work best
interested, If the range is somewhat smaller, from 5 to 50 cm, the horopter

over the relatively short range of distances within which accommodative
should be shifted to a position 45 cm from the toad.

effects are powerful. On the other hand, the selective action of the isthmic

Few ghosts were selected with wide target separations, Indeed with a 60
pathway works best for more distant targets closer to the horopter. Between

cm horopter and with separations of 5 cm or more only 5 ghost images were
them these two mechanisms should be able to dispose of ghost images over a

selected out of more than 40,000 choices (with the horopter at 25 cm, the

) wide range of distances. However, the accommodative mechanism will not
number of ghosts is 2.3 thousand). Many more ghosts were picked when the

eliminate ghosts when two real stimuli are presented at the same distance
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from the toad, as we have done in our experiments. _

The elimination of ghosts and the preference for close targets depends
solely on the way accommodative scanning is performed and no explicit
distance signal related to accommodation is required. This is not, of
course, to suggest that accommodative distance signals are not available for
other purposes. This model is very different from that of House (1982). He
described how a combination of accommodative information and local disparity
measurements could be used to construct an upambiguous 3-d representation of
the animal's environment. In his model, accommodation provided a coarse map
of depth which interacted with a second depth map based on disparity cues.,
The scheme we have suggested is far more limited in scope and is concerned
with how a toad might select one out of several targets in order to respond
to it. Information about the other targets is discarded.

Lastly, our model suggests why it should be that the ghosts of normal
animals are further away than those of lesioned ones. Lateral inhibition
within the tectum means that the largest peak in the tectum suppresses the
rest. There is, however, a threshold difference in amplitude, such that if
peaks are initially almost the same size, several of them can survive. The
crossed tectal disinhibition weakens t';he lateral inhibition and in doing so
increases the amplitude difference which is needed for one peak to be
suppressed. Consequently, starting with two peaks of approximately equal
. size in each tectum, there is 'a greater chance in normal than in lesioned
toads that both will survive the action of the lateral inhibitory network.
In primates, an analogous situation leads to a tectal output signal which is
2 compromise between the two inputs (Robinson, 1972). If toads also produce
an output signal which reflects the positions of both peaks, and if the

compromise is biased towards the more nasal of the two targets, then the
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position of the ghost would be as we find it (Fig, 14).

In conclusion, we suggest that the lesions of the NI destroy a major
pathway for information flow between the two tecta. Thus, it seems more
appropriate to consider the NI primarily as a tecto-tectal link rather than
as a link from the eye to the ipsilateral tectum, even though both of these
descriptions are consistent with the anatomy. We have seen that our first
approach to the role of the nucleus isthmi focused mistakenly on the possible
part it might play in detection of disparities. This job could be more
economically and rapidly performed by a direct ipsilateral retino-tectal
projection. In fact, some salamanders which catch very rapidly moving prey
do have substantial direct ipsilateral retino-tectal projections (Rettig and
Roth, 1982); perhaps this extra projection (which is absent or very sparse in
most amphibians) aids the salamanders' depth judgements, In mammals, too,
the tectum receives direct input from both eyes and also participates in a
tecto-parabigemino-tectal relay which is homologous to the amphibian tecto-
isthmo-tectal relay (Graybiel, 1978). We suggest that the direct ipsilateral
projection from the retina and the indirect ipsilateral projection from the

parabigeminal do not perform the same functions, Rather, the parabigeminal

.in the mammal may help to coordinate the activities of the two tecta, a task

for which the direct ipsilateral retino-tectal fibers are less well suited.

14
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REGRESS10N COEFFICIENTS OF RELATION BETWEEN TARGET AND SNAPPING DISTANCE

Double Targets.

Scparation:

Single Target

11.3¢cm 16.5cm

7.5cm

0.154 1

0.209

0.286

Slope assuming response aimed at ghost

0.258

0.520

0.562

Toad 1 ( -136 specs)

Controls

0.766

0.324

0.532

0.676

All (5)

0.137

0.152

0.274

0.433

Toad B7 ( -136 specs)

Lesioned

0.248

0.167

0.244

0.283

B8 ( -136 specs)

0.713

0.119

0.284

0.540

Bl16 ( -136 specs)

0.765

0.285

B19 ( -136 specs)

0.152 [

0.301

Bl9 ( no specs)

1.00

1.00

1.00

Slope assuming response aimed at target

0.759

Toad BS (Specs)

Control

0.746

Toad B3 (Specs)

0.163

0.214

0.679

B16 (Specs)

Lesioned

0.788

B19 (No Specs)
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Figure 1. Schematic diagram of the neural pathways underlying ipsilateral
oculotectal projections. A locus in the binocular visual field is viewed by
position 1L in the jeft retina. Retinal ganglion cells at position 1 project
directly to position 2 on the right optic tectum. This tectal site projects
in turn to position 3 in the right nucleus jsthmi. (The NI is actually
ventral to the tectum but here is shown caudally for clarity.) Cells at
position 3 in the right NI project back to position 2 on the right tectum,
where they terminate in the same superficial layers where the retinal axons
terminate. Other fibers leave NI position 3, run along the optic tract,
decussate in the postoptic commissure, and reach position 4 in the opposite
tectum. They terminate in 2 laminae near the inner and outer edges of the

20 retinal terminal zone (Gruberg and Udin, 1978). Retinal fibers from position
) 1R in the right eye also project to position 4.
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Eigure 2. Base-out prisms alter binocular cues.

apparent line of sight of the target.
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Eigure 3. Snapping response of two normal toads (a) and two toads with
lesions to the nucleus isthmi(b) when viewing single dummy prey binocularly
through a pair of base-out prisms. Each prism displaced the target by 7.5°,
Target distance is defined as the distance between the toad's eyes and the
target just before it snaps, and snapping distance is defined as the distance
between the toad's eyes before it snaps and the furthest point the tongue

reaches.
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signals from the two tecta. Animals with one tectum can also orient to
fixate prey and may use monocular depth cues to transform a retinally related
signal to one specified in head-centered coordinates, h: depth from local
disparities. Since -oads do not converge their eyes, horizontal disparities

can be turned directly into absolute measurements of distance.
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Depth and Detours: Towards Neural Models!
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ABSTRACT

Motivatedbyda!aonthewayinwhichnnogoxtoadvdﬂﬁd&epamundabmicr
to get to prey, we offer a pumber of alternative models for the peural networks underlying
such phenomena. First, we introduce a one-dimensional model, and then compare it to
cxpeﬁmeuuwhlch&bawthattheanimnlmuamakemofthedcpthofobjecuin
determining its course of action. Onthkbaﬁs.wcnvieweaﬂiﬂwotkondepthvempﬁon
in frog and toad, We!henmmtotwomodd;!ortheuseofthisinfommmindetout
behavior. The first builds oa the one-dimensional model to indicate how the animal might
‘choose” to turn to the ead of a barrier or directly towards a worm. The second model
indicates how the animal might come to represent in its head trajectories or a series of
landmarks which can determine an overall path of action, rather than a single initial target.

L Them:chreponedinlhispapermmyponedinpanbythe National Institutes of
Health under grant no. NS14971.04.
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1. Introduction
Mpapuhmedamhwhkhwehﬂﬂnehmlmoddsolﬁmmm
coordination in frog and toad to exemplify the style of neural processing which involves
dynamic parallel interaction between layers  of reurcns, rather than a simple
stimulus-response chain or a control action which can be adequately represented in terms of
lumped models. Amongst the earlier studies are those of pattemn recognition, which

predator (Lara, Cervantes & Arbib, 1982), and a model of prey selection in which we
explain possible mechanisms for how an animal, confronted with a spatially structured
eavironment containing several prey objects, will come to sap at only one of them
(Didday, 1976; Lara & Arbib, 1982). In the preseat paper we move beyond models of
adequate releasers for stereotyped, though appropriately spatially directed, responses to
situations in which the animal exhibits bebavior which takes account of a complex spatial
context.  Specifically, we shall start from data oa a toad viewing a vertical paling fence
bebind which there is a worm. It bas been shown that the animai may cither saap
directly at the worm, or may detour around the barrjer. However, it will not 80 around
thebmﬁerif(hmlsnowombehindit. 'lhux,wemnystiﬂtee!bewormastrigg:ﬁng
the animal’s response, but we 0o loager see only the stereotyped snap directly at the worm,
but rather a complex trajectory depeadent upon the relative spatial position of worm and
barrier. v

A first view of these data is given in Figure 1, from Collett (1982a) - more data
will be reviewed in Section 3. The row of dots indicates a paling fence. The two circles
indicate two alternative placements of worms which are to attract a toad’s attention, while
the T indicates an opaque barrier which prevents the toad from seeing the worms after it
hils moved from the start posifion. Thepoddono!thewadisrqnacnudbyadotfﬂ

‘l
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its head and a line for its orientation. The sequence of such "arrows’ oa the right-hand
side of the figure indicates successive positions taken by the toad in a single approach to
the prey. Here we note that the animal sidesteps around the barrier, pauses for several
seconds, and then continues to a position at which it stops, pointing in approximately the
direction of the worm -~ but mote that, due to the opaque barrier, the worm is no longer
visible. On the left-hand side of the figure, we indicate the position of the toad on a
number of different occasions, at the pause. The dashed arrows correspond to the necarer
position for the worm, the solid arrows correspond to the position of the pause for the
further position. What is of interest is that even though the worms are no longer visible
to the toad at the time of the pause, the orientation of the animal correlates well with the
position of the target. Thus, we must oot only explain bow it is that the animal chooses
whether to proceed directly toward the prey or to sidestep around the barrier, but also
come to understand bow the position of the target can be encoded in such a way as to be
available to guide the animal’s behavior even if the target does not continue to be visible.
We may note, with Ingle and Coilett, that the full detour behavior exhibited here is
quite complex: the animal does not simply orient towards the prey or the end of the
barrier; rather, if it dis not proceed directly toward the prey, it sidesteps around the
barrier orienting in a way that depends upon the position of the target and the length of
the sidestep. We thus have an example of the coordination of motor schemas (Arbid,
1981) and we see thut the sidestepping wiodulates the orienting behavior. The full analysis
of such motor schema coordination is beyond the scope of the present paper, but it is
worth noting that Ingle (1982a) has offered us some clues as to the possible neural
correlates of the various schemas: he finds that a lesion of the crossed-tectofugal pathway
will remove orienting; lesion of the crossed-pretectofugal pathway will block sidestepping;

while lesion of the uncrossed-tectofugal pathway will block snapping.

Arbib & House -4- Depth and Detours

The strategy of modelling in this paper will be to first develop a simple
ote-dimensional model of detour behavior in terms of determining the initial target for the
animal: namely,direaly(othcprcy,ortooneendottheotherofthebarrier. This
preliminary model will be developed in Section 2. Thea, after reviewing further data and
waysofmodellingdcpthdisaimimtioninSecdonS.weshallmminSecﬁoadton
somewhat more sophisticated model where the choosing of the direction in which to turn is
augmented by the formation of an appropriate depth map to represent how far away the
first target is in the given direction. Then, in Section 5, we look at a first model for
generating the full spectrum of information that should be available for a variety of motor
schemas to aot simply determine orientation and distance but to actually determine the
target for an initial sidestepping, the direction for the orienting at the end of this sidestep,
and the approach to the prey. It is our intention that, by considering a variety of models,
wemnmteaspaceofnltnnaﬁvuinwbkhtheddsnofnrichmofncuto-ethologiml
and meurophysiological experiments will be possible.  Thus, Section 6 is devoted to a
discusionolcxpeﬁmenuwggeaedbythemodelsandwmeoltheqxaquwiomwbe

addressed by modellers.

2. The One-Dimensional Mode

In the one-dimeasional model, we represent the retinal input in terms of a map of
neural firing rates indexed by the possible directions that the animal could turn in a
horizontal plane. One of the first models of this kind (Didday, 1970, 1976) addressed the
problem of the animal confronted with two or more fly-like stimuli, and offered a
distributed neural network model of how the apimal could come, in gencral, to snap at just

one of these targets. This model was given mathematical form by Amari and Arbib
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(1977), and their primitive competition mode} is shown ig Figure 2. Here, the ‘tectum”
represented by an array of o cells, whose membrane potential at any time is u;, with
corresponding firing rate f(w;) ~ with the coaversion of potential to firing rate shown by
tbe graph of f at the bottom left hand of the figure. Each of these cells is driven by an
input s which indicates the output of a preprocessing element corresponding to  the

likelihood that a prey is preseat in the comespooding portion of the visual field. The cells’

are re-cxcited as shown, and also drive an inhibitory cell whose membrane potential v is

converted into a firing rate g(v) which provides inhibition distributed to all the cells.
Basically, with appropriately adjusted synaptic weights, we have that a cell will be able to
continue its firing, thanks to ifs recurrent self-excitation, 3o long as its initial stimulation is
bigh enough to allow it to win cut over the pooled inhibition of the other cells. ~Typical
fesults of the mathematical apalysis are that at most ome element can be excited in an
equilibrium, and that if all the ;s are initially the same, and an element remains excited
in the equilibrium, it is the oge receiving the maximum stimulus. However, once the
model has responded to cge pattern of stimulation, the build-up of inhibition will be such
that the system exhibits hysteresis - it will not oecessarily respond to the new maximal
stimulus. However, a temporary change of threshold of all the units can be used to
‘release” a ‘blocked” response to a new maximal stimulus. It has been posited that this
function is carried out in tectum by the newness cells.

Our first detour model (Epstein, 1979), then, is simply the Amari-Arbib model with a
different input for prey and barrier stimuli. In Figure 3a (Epstein used a gerbil responding
to sunflower sceds rather than a frog responding to flies or a toad responding to worms in
his computer graphics) we see that each prey-like stimulus is represented as a tectal input
with a sharp peak at the tectal location corresponding to the position of the stimulus in
the visual field, and with an exponeatial decay away from the peak. Note also that the
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size of the peak decreases with eccentricity. Outhcothcrhmd.aslbownlnﬁgure?»b.
each segment of feace is represented by one trough of inhibition whose extent on tectum is
just slightly greater than corresponds to the extent of the fence in the visual field. The
net effect of this excitation and inhibition when the three prey stimuli and the two barriers
are combined is shown in Figure 3c. Here we have simply added together the excitation
shown in Figure 3a and the inhibition shown in Figure 3b to yield the curve in which we
sec that the combined excitation of the two central stimuli is heavily lowered by the trough
of the left barrier, but is still able to yield positive contributions at spatial locations just
beyond the ead of cither barrier. Given the nature of the Amari-Arbib model of Figure
2, it then comes as no surprise that when we run a computer simulation of the effect of
mbminwtweeomeupwitbtheimaﬁonshmhﬁgm%hwhkhixh!heoeus
corresponding to the right-most end of that left-most barrier which first attain a sufficiently
high levdo{ﬁringtoeommandmeovenneponn oftheanimaluamovetowardstha:
end of the barrier. Whﬂeourmkmmenmmiomwiﬂbetomﬁnethhmoddin
terms of the depth dimension, it seems worth exhibiting this sample run here because the
logicofthhmoddwiﬂconnimteanmdalmb!yncmofthemodel:bowninSecﬁond.
Before closing this discussion we aote one important feature of the data which we
shall review in the next section ~ namely, that Ingle and Collett, in looking at the
behavior of the animal confronted with prey and barrier, do not find a single unequivocal
direction, but rather plot a histogram of directicas of response over a number of trials,
Collett (1983) reports that, except for very few animals which exhibit a strong directional
preference, the qualitative nature of these bistograms does not appear to differ significantly
for multiple trials with single animals from that obtained with a population. Thus, it is
important that a model yield oot a dngle uzequivocal response, but rather that it be
capable of yielding a histogram of preferred directions. The first strategy that suggests
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itself is to replace deterministic neurons by stochastic peuroas whose output is driven by a
noise term as well as by the other inputs. A second strategy, and an important one for
many classes of noan-linear models, is to vary initial conditions while keeping the elements
of the models deterministic. However, a third strategy will be followed here, and that is
to identify an explicit mode! parameter which is lixely to be subject to significant variation
due to motivational state and immediate experience of the animal, and whose variation will
readily affect the model’s coovergence characteristics. For example, in Section 4 we show
howmchavaﬁaﬁoninthemdofc:dmﬁonduetopmy-likeﬁimulimhave

significant effects on the behavior of a model of orientation behavior.

3. Introducing the Depth Dimension

lnthisnecﬁonwewﬂlbﬁcﬂyvicwdauindintinsmeneodtotanthedqnh
dimension into account in any model of detour behavior in the toad. After that, we will
skewch Lhegencralw(tingforou:moddsofSecﬁom4uds,anddosemewcﬁonby
briefly comparing two recent models of depth discrimination.

Figure 4 (Coilett, 1982a) shows a number of experiments on detour behavior. In
eachu!etbelolid:qumwithuﬂindiamtbeiniddpositionofthetoad,themwof
douindim:stbepodﬁmofbarﬁm.mdthemmglewithsquiggjareprmnthe
position of the worm. Axmmthmhhdhdwimmtagaw:bowthedimﬁom
chosen by the animal over a large bumber of trials, 42 shows that the animal will prefer
todzlournmundanunintcmptedbania,whﬂedbshomtbaltbemimalwiﬂpmfer!ogo
through 2 gap rather than detour. It is interesting 10 contrast 4c with 4a. In 4c we still
have the uninterrupted fence at the Bme position relative to toad and worm, but oow

thenblhelmoevithuppuinlbin&mg' In this case, the animal discounts the
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rear feace by choosing to go through the gap, more than half the time, evea though it
would have detoured arcund the rear fence 34 of the time in the situation shown in 4a.
Thus, it would seem that, to a first approximation, the response of the animal is a
weighted sum of its responses to the individual fences, with the effectiveness of a feace in
the sum declining with distance. In 4d, we seec that the animal’s teadency to detour is
strong when both the near and far fences are uninterrupted, while in 4e we see that with
a large gap in the front fence, the toad overwhelmingly chooses to go through the 8ap
evenwhen.uinthism,theremﬁde(cnoujoininglhehonlandmxfeneswthal
the animal's behavior is in fact to emter a cage. Such results lead weight to the search
for a model which does take the depth dimension into account, but which is not highly
cognitive in the sense that the animal would be posited to use representations of such
high-level constructs as one fence vs. two, or a gap vs. a cage.

In Figure 5 we have superimposed two possible coordinate systems for representing
!hexxmmdplancinﬁonlofahogottoad. lnth.isﬁxumwcnhoinn‘oducethemphiml
notation to be used to describe the visual scenes which form the input to the models of
Secticas 4 and §. 'I‘heTlhapedob'pc:althebonomoflheﬁxuretcpmlsxhe animal,
with the disks at the ends of the cross-bar indicating its eye positions. The small disks
wiminthepidam:eprmt’ancepommdtheaoﬁdmanglenpmyobba. The 40 cm.
bywun.grmndphncisdividedintoamnedmgﬁdwithanintcrvalxizeoflﬂcm.
The radial coordinate system overlaid upon this grid is ceatered on the midpoint between
the two eyes. Themdiallinaoflhissynemmplacedatintervahot?Sdegrea. The
mwedﬁnesmﬁnuofeonﬂantvinmldirpaﬁty,spacedapanbyamntdispaﬁty

increment.
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We posit that rather than the rectangular coordinates, neurons may be more
appropriately indexed by the radial system. Theuseofa.nang\darmmreisclmly
motivated by the way in which an-image is projected onto the retinal surface, Algo, since
disparity cues, like other depth cues, are more acute closer to the animal, the curves are
lmgnmdfunhnapanwhhinaeadngndhldiaancefmmmemimal. Thus, they have
ageneralappealuasyuem(oxthampimtadonoldepm.mdwewqﬂdpom, represent
regions which have approximately the same density of peural fepresentatives.  Note,
bowever, that we are bere simply represcating the ground plane of the apimal, rather than
the full visual field. Onemuuumwhkheuﬂdmpponthbmpmtaﬁonisamappingot
thewholegmnndplmeontoalinearsuipoloelhin!hebuin,with each small region in
that strip corresponding to a single angular direction, but a full range of depth, with the
proportion of cells representing nearer depths much greater than the proportion of cells
representing fusther depths. In summary, we represent the ground plane by neurons indexed
by an orientation coordinate 0, and a discrete depth zome coordinate d, but do not posit
that @ and d also function as the coordinates for a two-dimensional array of aeurons.

Thegencnlschcolthedetourmoddis!henasuhminﬂgurc'& The visual
input to the retinas provides two maps based on the O coordinate which can be further
pfomedtoyielddepzhmppinp.Wchavemadetheammpﬁonthatthebarﬁmam
mcognizedbymemhﬁmoleemmdmedfoxdepthtepamntyﬁomwom-me
stimuli which are represented by a separate depth mapping. This assumption is supported
by the work of Ingle (1977) and of Ewert (1976) who demonstrated the likelihood that
processing of prey stimuli is localized to the tectum whereas contraindicative stimuli are
ptopessed in the pretectal region. By this assumption it is possible for these two mappings,
inﬁaed by the (0,d) coordinates, to be scparately convolved — the barrier depth mapping B
being convoived with a kernel I which assigns inhibitory weight to barriers, and the worm
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depth mapping W being convolved wlthakemdawhichwgma.nudtamyweigmto
‘the prey. The mﬂdngmmB‘I+W‘Ethenpmvidatheinpm!orthemge:'deaot
andtheoulputolmkmgaulectormbeeombinedwimtbebarﬁermdwomdepm
‘maps to provide the necessary input to coordinated motor schemas for the motor output for
saapping, sidestepping, orienting, jumping, etc. We shafl provide two differeat instantiations
ofthisgeuem!modelnhemein&cdom4md5. lnmemofthiswc&on.webﬁcﬂy

describe recent work on modelling depth perception.

Recent Models of Depth Perception

As is well known (Julee, 1971), the input to a single eye at a given time does not
in and of itself coavey depth information. Among possible mechanisms for extracting depth
information are lens accommodation, binocular disparity matching, and optic flow from the
dmngeininputtoasinglecyeovetdme.

Ingle (1976) bas shown that g monocular frog will snap accurately within its
monocular field and in the ipsilateral portica of it oormal binocular field. However,
estimates are systematically distorted within the contralateral binocular field in a way which
mishtbemediaedbymedeuuﬁngmolvhgpowadwelenswithhmdng
eccentricity. On the other hand, Coflett (1977) bas shown by experiments with toads fitted
with prisms that in the binocular toad and with stimuli within the binocular field, stereopsis

This evideace for multiple depth cues led us (House, 1982) to develop a model which
extended earlier depth perception models by Dey (1975) aod Amari and Arbib (1977). This
mode! utilized both accommodative and disparity-matching cues, through a process of
competition and cooperation in neural Bets, t0 segment a visual scene into depth regions.
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The model attempted to address the problem of collecting the kind of depth information
pecessary for the general barrier navigation problem explored in the next two sections.
However, Collett and Udin (1983) have found evidence through lesion experiments that, at
leat for the more limited problem of unobstructed prey-catching, toads may use a
ocurally-implemented triangulation process (probably assisted by lens accommodation) to
localize prey, rather than a process of disparity matching.

Since the depth perception model of Collett and Udin does pot address as broad a
range of visual data as docs that of House, it does not necessarily refute the conceptual
framework of the latter model. It may well be that herc again we have a case of various
eural strategies functioning cither cooperatively or alternatively to cope with the vast array
of visuo-motor tasks requited of the freely functioning animal. Further modelling and
experimental work is cleasly needed to explore the open questions left by these two models,
and to capitalize upon their strengths.

An important assumption which will be made in the models of barrier negotiation is
that perception of the depth of both prey and barrier objects is simultaneously available.
Bebavioral evidence, already presented, clearly supports this assumption. A further
assymption that this inforration is cither determined by different neural substrates or is at
least separable by object category will also be made. This assumption is implicit in the
depth model of House and is not addressed in that by Collett and Udin.

Arbib & House -12 - Depth and Detours

4. A Model for Choosing Orientations

In this section we offer our firt model of detour behavior which takes depth into
account. We specialize the general scheme of Figure 6 in the manner shown in Figure 7a.
Here, the depth map for prey is convolved with the excitatory mask shown in Figure 7b
and the depth map for the barrier is convolved with the inhibitory mask shown in 7c to
yield two two-dimensional arrays whose sum is thown as array E in Figure 7a. The shapes
of the two masks were chosen to take into account the way in which toads, when
confronted with a “prey behind barrier” configuration, make the choice between tumning
around the barrier or proceeding directly towards the prey. Collett (1982b) reported that
what governed the path selection was (1) the distance of the worm from the feace, and (2)
the absolute length of the fence. Within a 20 to 30 cm. distance from the toad, neither
the distance of the toad from the feace nor the visual angle subteaded by the fence
seemed to be important. Thus, the mask for barrier edges (femce-posts) was chosen to
project bebind the edge at a constant maximum beight after an initial rise to that
maximum, ie. there is a short distance behind the edge in which there is lLittle inhibition,
after which inhibition is equally strong at all distances. The mask for prey objects projects
very broadly in a lateral direction and somewhat less broadly in the forward direction.
The net result is that with a ;.ey object significantly far behind a barmvier the barrier
projection substantially reduces the prey projection except beyond the barrier eads. For
prey close to the barrier the prey projction is not significantly reduced and is thus
strongest directly in froat of the prey. To approximate the ‘size-constancy” exhibited by
actual animals the effects of the non-cartetian coordinate system are partially counteracted
by decreasing the spread effect of the masks by a linear factor with increasing distance
from the toad.

[ ] [ ]
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'l‘helnputdepthomapuDbandemmmedxobedemlyugmentedutodepm,
wthatthmisonepmferreddepthlorbarﬂerandanepretemddepthtorpreyinead\
visual direction. mknumemha,whichmpmcnuthemmpodﬂmofthe
convolutions applied to these two arrays. We thus subject E to two independent processes
in the present model. In the left-hand path of Figure 7a, we integrate the total excitation
alongeachvimaldkecﬁon.topmvidenone-dimeuﬂoualmapwhicbistbenfedtoun
orieatation selector model which will extract the orientation 0 of maximal total excitation.
Ihm.thisponimof!hemoddhanamﬁono(them&dimom]moddahibitedh
Section 2. However, the preseat model also postulates the simultaneous subjection of the
map E to a further process of depth segmentation. Thus, when the orieatation selector
Feturns an angle through which the animal is to turn, the motor schemas can also consult
the depth segmentation model to provide the depth at which the target at orieatation 0 is
to be found. Note lhallhemgabeingeonddgrednowmaynoteomspondtotheinitial
prey stimulus. Instead, it represents the point in space to which motor activity will be
directed. If this point corresponds to the prey location the object is achieved. Otherwise,
we suggest that further processing will ensue upon reaching this target.

Figureﬂshcwstheopemtionofthhmodelmlheu’ng!cwom behind a single
baniereonﬁgumdonolﬁsum&. Theammstthebaseof&beonapondtolhexmal
excitation G(6) which is provided as input to the orientation selector model for cach angle
0. nemyolquarumdwahrepmumtnm!Etothedzpthlegmenmﬁon
wodel, with ovals corresponding to inhibition and tquares corresponding to excitation.
Intensity of excitation or inhibition is encoded by the size of the corresponding symbol. As
we see in 8, the direction chosen by the orientation selector model in this case is that of
the left-hand end of the barrier, and the squares indicate that the depth returned by the
depth segmentation mode! does indeed correspond to the end of the barrier.

Eﬁ_—'"ét““g’—vg"ﬁgﬂ_’pﬁg‘—' e e
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Figure 9 shows the ability of the model to replicate some of Collett’s behavioral data.
Flgurehdepimnlmeeandwomeon.ﬁgumtionideodealtothnofﬁsumauceptfora
g3p in the ceater of the fence. Totbelcﬂisthemodeli.nwtmdtolhetightislhe
converged state of the model. Here we see that the preferred direction is now straight
ahead.a.mllhatdepthin!ormaﬁonbpmv!dedfortheedguofthegnpmdlotthcwotm.
F:gum%thomdsnfmthemofawﬁdtencemovedbacktoapan‘lionnmtothe
worm. Here the preferred direction is also straight ahead. In Figure % we have the pet
result of placing a feace with a gap in front of a fence mear to the worm. Again, the
directional preference is straight ahead towards the worm. Finally, the cage of Figure 9d
gives similar results.

In order to address the variable orientation preference indicated by Collete’s
bistograms (Figure 4) we present the set of experiments with this model shown in Figure
10. These 9 runs were made with three different distances of a solid fence from n single
worm. For each fence distance three choices of the prey spread function were made, The
minimum spread necessary to cause selection of a feace end for the farthest fence distance
was chosen as tho base tpread. ’I‘heﬁgumlhowmodelinput,withthelargccimle
indicating the spatial region selected by the model when run against this input. The
left-hand column of figures was made with a spread 33 percent greater than this amount,
lhecentmlcolumnwithlhcbasemd.andthoﬁght-hmdcolumnwithaspmdn
percent -less than the bass value. We see here that the model shifts preference between
the fence ends and the feace middle depending upon the extent of spread. In no case
does the model coaverge upon an orieatation other than towards a fence end or directly
towards the worm. The variation in the seasitivity of orientation preference as a function
of the distance of the feace from the prey is eonﬂgen( with behavioral results previously
demonstrated by Collett (1982b).
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The final set of experiments with the orieatation model is depicted in Figure 1.
Here we show the sensitivity of the model to the position of the prey behind the fence.
Figure 1la shows the converged state of the model with the fence-worm configuration
carefully chosea to present a nearly balanced preference between the two fence ends. In
this case the model has failed to make a clean choice between the right and left fence
cads although it has clearly rejected the choice to head straight for the worm. In Figure
11b we show corresponding runs for the situation where the worm is shifted dightly to the
left of the balanced position of 11a. With this gmal) shift of position the mode] makes an
unequivocal choice of the left fence ead.

5. A Model for Planning Pashs
BoththeptdinﬂnuymodelclSecdonz.andthedepth-basedmoddotSeaion4
melimply!ocbooaexhedimaionand,inlhehnumodd,thedcpthofthetarg&for
the animal’s firt move. It is not clear from such a model how the apimal would
determinewhethcrlbalta:getisthetargetfota:ideaepuindetmringarou.ndabarrier,
orforamap.mindimctappmad:tothcmy,norhitdmbowwchamode!wmud
explain bow the rnimal has in its brain the Decessary information to determine the
subsequent orientation following a sidestep if that is what firsr occurs. In the present
mﬁm,lhen.wemmﬁmmoddsbasedmtheidecﬁondnﬁnglemrget!omodeu
which suggest how the brain might go about Planning overall paths of action which would
require the coordination of several motor schemas. We preseat the two models of Sections
4mdsddebyu‘debenusewebe!icvethatat!hi:preliminarystageof!hemrchforthc
oeural substrates of detour behavior, it is premature to focus on a single model. [t is

hoped that the very contrast between these models will serve to stimulate the design of

!
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gew behavioral and physiological experiments. We also stress that the models are ot
tighﬂycomined.inthattheydonotampttotpeci!ywhatpazﬁcu!uneumnsm
doing in the posited behaviors. Rather, they represent processing schemes which could
plausibly be carried ocut in neural Structures, and thus represent postulates that there are
populations of neurons which carry out the indicated operations. We pose it as an
important challenge to lesion studier in collaboration with Beuro-cthology, neurophysiology
and neuroanatomy to determine whether indeed there are peural structures  which do
perform these operations, and then to determine whether the posited functional interactions
do indeed take place between the layers thus identified. We expect that the refinement of
mumodcbwiﬂgohandinhandwiththedcvdopmentolﬁmherdamofthhkind,md
that both theory and experimeat will each provide an important stimulus to the other.
mdepthnlwtionporﬁonofmoddofﬁgure7hadm¢xdmoryﬁddwbose
nmmwmspedﬁedbytwocomdinam.oncformgulmdimaion,mdone for depth or
disparity. We then postulated that the activity of the neuron with coordinates (0,d) was to
bemnuammofconﬁdmthatthmwmindeednleamminmememal world
attheconeq:ondingpoddonhlbevimalﬁdd. nefnncﬁoaoftbemodelwasto
mmgeumamﬂgumﬁmhwﬂ:hoﬂymdqxhwugimahighmﬁdencelevd
for each visual direction. lnthepmentmodel.wemodatewithacheoonﬁm!enota
ﬁng!enumberbutaveaor,nndthhvec&xiltoindicatetheprﬁenedditwﬁoa of motion
of the animal were it to follow a path through the cotmq)onding'poinl. For coaceptual
simplicity, and not because of any change in thinking about what internal representation is

.most likely, the coordinate fystem used in this model is the Cartesian (x,y) system. Our

task with this model will be twofold: to specify how the vector field is generated; and to

lpedfyhowthevoaoxﬁddispmmedtodeterminelhenpmopﬁntepamme:enforlhc
coordinated activation of motor schemas. In the technical jargon of differential geometry,
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then, the neural surface corresponds to a manifold representing space in some intemnal
wmum,wmmeﬁﬁngdamdwmmwdwimapmﬂcum
coordinate is to represent the vectors of a tangent field, or flow. The question is how
mo:clocalveaonmtobelntegraledlodaetmincuovemunajectorytorthemlmal.
Ald:ecunenlmgectommmh.wewoﬂdwishtosuggmthatthemodelthat
(oﬂmhmmtmindimaayle.mha!hmtobemunfullyutiwlatedhypothea‘s
about the nature of the vector fields that could be represented in the visuomotor system of
the frog or toad - or the gerbil. Our fint choice is shown in Figure 12. 12a suggests””
that a single prey. will set'up an atmactxnt field, in which from every point in the animalc-
representation of space there is an amrow suggesting a choice of movement toward the prey,
with the length of the vector (the sreagth of choice for a movement in the  given
dhecﬁon)beingthemm,thedauhtbepoimtothem. 12b shows that we have
usociatedaupellamﬁddwithndnﬂcfm.withthemgthof!heﬁeld
wnuibuﬂnsmoalywdﬂerminznhtemlmwmtulaﬁvewthepaidonofthe
fencepost from the viewpoint of the animal. Finally, in 12c we have the animal‘s
representation of itself within this field. This represeatation simply consists of a set of
vectonradiaﬁngoutinaﬂdﬁecdonsﬁomtheanknal'seumntpodﬁmwithademy
similar to that for the prey field. Figure 13 shows the various effects obtained by summing
theveuo;iforeachpointo{themmifo!d. In Figure 13a we have the bug attractant field
in interacticn with the animal’s self-representation. In 13b we see the summed effect of
lhelenoepomoonespondingtoaﬁeldwhichrepeu(mmmcfmasawho!ebmwim
apeciallymonglatcralﬂawattheedguo!!bebarﬁer.Fmany,inBcwehavelheovemu

ndﬁddmupbyameconniningaﬁnglewormbchindafence.
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Thetotalﬁeldmaybeinterpmedurepmﬂngthe‘mmomdfm‘o“hem
upoatheaﬂmﬂ.whe&erthenﬂmﬂhmmﬁaﬂybaﬂinicmmukea&ogora
toad, or a more ‘tracking’ creature like a gerbil. In the case of the gesbil (Ingle, 3982b)
we would postulate that the vector field is integrated to yield a variety of trajectories, with
a weight factor for each trajectory. We would then see that this field bas two “buadles’
of trajectories receiving high weight, that bundle which goes round the left end of the
barrierlonpproad:tbewmm.andthatwhlchgoesmundtheﬁghtmdofthebarricrto
approach the worm. Thus, if we change ‘worm” to ‘sunflower seed’, we would posit that
the gerbil actually builds within its brain a representation of the eatire path, one of the
paths is selected, and this path regulates the pattern of footfalls that will move the animal
along this trajectory. In yet more sophisticated models, we could see the path oot as being
generated once and for all, but rather as being dynamically updated on the basis of optic
ﬂowastheanimn.lpmceedsalongachonndﬁnuion.

In frog or toad, however, we would postulate that the vector field is processed not to
yield a continucus trajectory ~ or a bundle of continuous trajectories of which one is to
be chosen — but rather serves to geaerate a map of motor targets, appropriately labelled as
o type. The divergence operator is a likely candidate for this form of processing. Once a
suitably constructed representation of a vector field is set up, the computation of divergence
knﬂmp!elomlmwhlchmaybeeaniedmlinthepanﬂeldimibutedtashion
associated with neural mechanisms, Further, the divergence of a vector field is a scalar
field. The negative of the divergence will contain peaks where the flow lines in the field
tend to converge and valleys where they tend to diverge. Figure 14 is a display of the
negative of the divergence of the net field of Figure 13c. This contour indicates a trough
of high divergence in front of the fence, peaks of convergence corresponding to the two
edges of the fence, and a third peak corresponding to the worm. We would postulate that
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a scalar field of this sort could be played down upon motor schemas so that one of the
feneeendsiscbomasthemotortargetfornﬁdeswp,buttbeﬁmultanmavaﬂnbﬂityof
the relative position of the worm is available to determine the coordinates for the orienting
schema, and for the subsequent second leg of the motor sequence that we saw to follow
the pause in the trajectory shown in the right-hand side of Figure 1.

In Figure ls,weoﬂaeonapondinsanalymforthemofafmmthepodtion
ofthetcnceinFlgureBcbutwithaemualgap(ﬁa),awﬁdfmnwtothepmy
(15b), a solid feace behind a feace with a gap (15), and a cage (15d). Our research has
oot yet resulted in isolating the most suitable algorithm for extracting a path from data of
this sort. However, these preliminary results are suggestive of a strong agreement with the
behavioral data. In particular, the powerfully attractive quality of fence gaps noted by
Collett (1982a, 1982b) is cspecially apparent.

6. Discussion
ncdﬂourmodelofSecﬁMAisawcedulinmaalwaysinmpﬁaﬁngdata
obtained ‘from behavioral studies. Fint, in the prey-barrier configurations tested it always
coaverged upon an orieatation to cither a fenceend or the prey. Since actual animals
rarely choose any other orientation, this test is critical, Second, the selection made between
ammtoafeneeendo:amovanenttowudsthepmyeanbemodulatedforavmietyof
feace distances by a simple modification of a single model parameter - the extent of the
lateral spread of prey information. This is also critical since it suggests a mecharism to
cxplain the appareat discrepancy between the deterministic character of the computer model

and the stochastic (or at least variable) character of the actual animal's fesponse to a

particular coafiguration.
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The fact that the histogram results of the behavioral trials can be explained simply in
terms of the prey stimulus spread effect suggests the need for physiological studies of the
susceptibility of tectal cell receptive field sizes to modulation based upon motivational state
and expericace. If receptive field sizes are prone to significant variation then the difference
between the behavior of animals and this style of model will have at least one plausible
source.

The extreme sensitivity of the orientation model to the position of the prey behind
the barrier (ie. the balance of the visual stimulus) suggests the need for a series of
behavioral experimeats to see whether or not animals also exhibit this quality. What needs
to be determined is whether histograms of tum prefercnce show a marked shift in peak
orientation preference or whether there is a smooth shift in preference when the visual
scene is gradually shifted from a central bias to (for instance) a left bias. An example of
this sort of behavior is the ‘snap zonc” of frogs as reported by Ingle (1982b). Here the
animal snaps at prey within the zone, orients to or hops towards prey outside the zone,
and exhibits ambiguous behavior within a narrow band between the zones.

The vector model presented in Section S differs significantly from the simple
orientation model of Section 4. The primary source of the difference is that bere visual
stimuli are not seen as settitg up a simple decision surface which can be processed to
sclect among several optional actions. Rather, what is sct up is a spatially encoded map of
potential motor activity which in some tease is the net result of the interaction of all of
the pertinent visual stimuli. Although in the simple Cartesian representation used in this
paper the vectors are described in terms of components of forward asd lateral motion,
there is 0o reason to expect that the nervous system would encode vector quantities in this
way. What is more likely is that they would be encoded in terms of the various types of
schematized motor patterns available to the animal. . For instance, a particular vector could
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be eavisioned as having componeats governing side-gtepping, turning, and snapping. The
coordinate system for such a vector field would, most appropriately, be body-centered rather
than eye-centered.

Ingle (1982b) also suggests a model for detour behavior based upon principles similar
to those employed in our simple orientation model. In this mode! he eavisions wide-field
tectalnwmsdﬁvenbywﬁnﬂpny-damnaspmﬁdm;thekindormd-cﬁeawe
bypothesised in our model. He proposes thet if inhibition from pretectal cells driven by
barrier detectors is sufficient to suppress excitation in narrow-field tectal neurons, the effect
of the wide-field neurons will be to provide a lateral shift of the locus of tectal excitation.
This shift in locus would then be transiated into a corresponding shift in orientation turning
angle. However, his model is of a quite different character from either of the ones
which we propose. He has shown that pretectum goveras side-stepping and tectum governs
orientation turning and sapping. ’I‘hishuledhlmlomggwthalthe:igmktothe
motcfamhomtectummdpmeuummoimeummolmmandswhichminmded
to be executed in a coordinated way by the motor area. In our models, however, we see
mmﬁanakndacﬁ&ngaﬂddofpumﬁalmacﬁvitywhicbmtaimwiminhn
spatial model of the animal’s visual world. We would agree with Ingles placement of the
baﬁamhudﬁddhmmmmwdwimmmm. Fynber, we
agmethnlﬁnﬂprow:dngnnddedﬁmmakingbaeduponthhkindo!whemomustmke
place in the motor area. Howm,wediﬂahthatwedomwethemmofthis
process being to select among and coordinate independent motor commands. Rather, we
leeitmbeingnm‘ofdeﬁvingappropﬁawmotmmbawduponasgof
spatially distributed motor é,'“ which already contain within themselves the results of an

interaction among the various visual cues.

r— e e e e e e e e e o R
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hamtwmmamemamcmmm@m,wy,
inourveaormoddistbcreponolﬁmbsteinaal.(lm). Their findings indicate that
tectal locus cannot be the unique determiner of orieatation prefereace. For instance, lesions
to the tectum abolith visually guided orietation turning but leave orientation to tactile
stimuli intact. Conversely, lesions to the lateral torus semicirculus abolish tactile orientation
but do oot affect visual orientation. More dramatically, they have shown that small lesions
of the neuraxis do not produce orientation scotomas but, rather, result in inaccurate turning
and undershooting throughout the disturbed hemifield. Their conclusion is that these small
ldmdonmdmayﬁnkngabﬁwmmrﬁuﬂa:waﬂ!odmdmm-gmmﬁngdrminwl
wodueeamomglobaldinurbancefornumﬂmgimipﬁlatcm to the lesion.

If the vector model is to adequately represent spatially directed activity, the vector
field set up by the fence-posts should probably be represented by a field which survives
translation of the toad‘s position within the field. The present mode! does not account for
thisdmelhelenco—mﬁe!dthapedepmdsupou!hepodﬁonol!hetoad-thisisin
contrast to‘ the prey ficld which is radially symmetric about the prey’s position. Further
studies with the model are needed to correct this,
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FIGURE LEGENDS

Fig. I = Toad Trajectories
Reprinted by permission from Collett (1982b).  Feace, opaque barrier, prey
configuration. Solid lines to right indicate orieatation of the body axis of a toad and
lnnou!poddon(dou)ulnmnhalongtupathwwmm. For this case, prey
objects arc those shown enclosed within the solid circle. After it begins its
movement, the T shaped opaque barrier preveats the toad from secing the prey.
Soﬁdﬁnutothcleftahowthcoﬁmnﬂonofthe(oad':bodyaxis,loraevemltn'als,
during its pause at the feace end. Dashed lines are similar but for prey positioned
within the dashed circle. These data make clear the toad’s ability to 1) extract depth
information from its visual world, 2) maintain a short-term memory of this depth
informadon,andS)integm!c(hismemotywithwmewﬁonofiumbody

movement.

Fig. 2 = Amari-Arbib Primitive Competition Model
mwmmcmnimnmsﬂmmm&ommhputmotlbyanm-ﬁnm.

distributed, competitive process. Whmmcmoddeonverga.tbedememwi

eonuyondingwiththomuimalinpmdemmqwmbaabweiuﬂﬁngmahold.

All other clements will be below threshold.
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Fig. 3 ~ Epstein’s Prey Selection Model

a) The presence of three prey objects (diamonds) results in the overlapping pattern of
excitation shown in the plot at the bottom of the figure, whereas b) barriers result in
a trough of inbibition extending a small distance beyond each barrier end. c¢) The
excitatory/inhibitory input obtained by summing the effects of the prey and barrier
objects is shown here. The prescace of inhibition due to barriers leaves the
maximally excited position to the right of the left fence. d) This run of the model
shows that it converges with all orientations suppressed except for the one

corresponding with the initial maximal input.

Fig. 4 = Orientation, Behavioral Results

Reprinted by permission from Collett (1982b). Histograms of the initial orientation
response of a toad presented with various prey/barrier configurations. In all cases the
animal elects to go cither straight ahcad towards the prey or aims towards cae of
the fence cods. Percentages shown for oricntations to the fence end are combined

totals for turns to cither end.

T
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Fig. § = Coordinate Systems Used for Orientation Models

Cartesian and radial coordinate systems used in the models. The area shown
represents a 40 cm. by 40 cm. square. In the radial system the radial lines are at
equal angular increments from the toad’s midline. Arcs are lines of constant
disparity spaced at equal increments of disparity. The spacing of the equi-disparity
arcs illustrates the decrease of depth acuity with increasing distance from the animal.
Object below the grid area is a schematic representation of a frog or toad with eye
positions indicated by the large disks. Within the grid the small disks represeat fence

posts and the solid rectangle represents a prey object.

Fig. 6 - Conceptual Schematic of VisualiMotor Pathway

Assumptions made in this diagram are 1) that separate depth maps arc maintained
furprcymdbaniﬂsﬁmnﬁ.l)dimﬁonformorkamﬁonmmisobtainedby
combining information from these two depth maps, and 3) informaticn on preferred
oricntation and depth of prey and bamriers is available simultaneously to motor
schemas. These schemas arc capable of integrating this information to produce a

coordinated motor-cutput.

e e Kk W b
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Fig. 7 ~ Qrientarion Model, Implementasion Schemasic
megnzralmoddofﬂg.ﬁ'hshownbminaspedﬁcimplmcmation. a) shows
the information flow and indicates the operations performed.  b) and c) show the
shapes of the spreadfunetions whickr -are coavolved with the prey and barrier <R
deptb-maps to produce selection surface E, E is rescgmented in depth via a Ful @
Amark-Arbib Mode! ia erdor o provide a dngle depth tasget at each visual directicy”

The orieatation targes is provided by a Primitive Amari-Arbib Model drive by aa
i

input vector obtained by -integrating - total excitation along each visual direction ‘7o
surface E.

Fig. 8 ~ Orientation Model, TestCase -
a) The sceae-used as input to- the- model, showing-a- single prey - behind ﬂ%w
feace: b) The selection suifice- B is shown superimposed upon the orisina.l*;me.
Sqmﬂmhbﬁmmnmdedﬂﬂmducwmdf'&cmmulu Ovals
indicate - inhibition froer fence-posts. Strength of excitation or inhibition is indicated
bymeﬁuo:ma»cmmm-ymufmmnmdwmmevimldmum
and strength of the- elements of the’ inpur-vector G. €) After rearing equilibrium the

.
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Fig. 9 ~ Oriensation Model, Comparison with Behvioral Esperiments
The sclection surface and equilibriom “state for scveral configurations used in
behavioral studies. a)meixhgap.b)Soudfmdmtopmy. ¢) Fence with
g2p in fromt of solid fence. d) Cags: mmoddmdumeondnemwith
behavioral results (compare with Figure=q):

Fig. 10 - Model Performance for Various Fence Distances and Spread Parameters
mnincuiaklhownhmwmmadcwithﬂ:mdlmcao!the!mtmmme
ptcyand.(meachdimu.mmmdﬁasoithcpmyamuunlmdmmem.
The images shown are the model-fnput for cach configuration, with the approximate
wﬂxlurguaeleacdbrm«maddiudﬁ:ﬁbyahrgedxde. The “base spread™
medinthewutrallmapwumr:‘whicbjmamedthemodcltodeaa
fencoend for the farthest fence distance. The model’s choice of feacoend vs. direct
apptoachtopreybhighlywnﬂﬁvctothhpamm,thmmgsaﬁngamyinwhich
the vaﬂaﬂoninanualanimalbchavlormlsbtbeap!ained.

Fig. 11 - Visual Balance vs. Selected Orientation »
a)Aeanfulbalandngolthcpreyfbarﬂctconﬁguraﬁmmnuinmedezourmodd
being unable to make a c!ean choice between the two feace ends, although it clearly
has rejected the “direct approach™ choice. b) A small displacement of the prey from
mebalnnwdposiﬂmofa)mdninthemoddbeingab!etorapidly:eleameIm

feace end.
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Fig. 12 - Vector Field Model, Primitive Fields Fig. 13 ~ Interaction of Primitive Vector Fields

The vector field model envisions objects in the animal’s visual world as determining a The three types of primitive field of Figure 12 are shown here in interaction. a)
space of potential motor activities. The fields depicted here represent a first The prey attractant field in interaction with the animal’s self-representation produces a
exploratory attempt at defining a set of primitive ficlds which will interact in field suggesting various curved paths terminating at the position of the prey. b) The
interpreting a more complex scene. a) A single prey object sets up a symmetric effect of the interaction of the ficlds from several barrier objects arranged to form a
attractant field with attractive strength decaying gradually with distance from the fence is to provide a strong lateral thrust at the fence ends. The lateral components
prey. b) A single barrier object sets up a repellant field which decays morc rapidly produced by the interior posts is effectively cancelled by neighboring posts. ¢) The
with distance than docs the prey field. Here, the field is oot symmetrical but has a net field produced by the interaction of all of the elements of the configuration has
lateral component much stronger but decaying more rapidly than its opposing a set of paths most of which are diverted around the fence ends.

component. ¢) The vector ficld model also contains a representation of the animal

Fig. 14 ~ Divergence of the Net Vector Field
itself. This representation is simply the converse of the prey representation, ie. it is

The negative of the divergence of the net field of Figure 13c is shown here as a

symmetric but repelling from the position of the animal.
‘ 3-Dimeasional plot. Peaks on this plot represent regions of strong path coavergence

or bundling of paths, whereas valleys represent a stroog divergence. The two
fence-ends and the prey are associated with the three peaks. There is a trough of

divergence in front of the fence.

IJIJlJlJlJlJ'J‘JIJlJ[J“JIJI Hl ;]l: B[_J[JIJ
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Fig. I5 = Vector Model, Comparison with Behavioral Experimenss
Almoughanmalytishmnotyabwncomp!aedtoidmﬁfyalpedﬁcmeamfm
daivingmmrwﬁvitylmmthemﬁd&,thaeﬂgumhdimwdmthen!mt
in!omaﬁoui:dﬂdenﬂyencodedbylhcveammodd. 2) Fence with gap. b) Fence
near to prey. c) Fence with gap in fromt of a solid fence, d) Cage. The mode!
results are consistent with behavioral results (compare with Figure 4).




Fig. 1. Toad Trajectories
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a) Prey/Barrier configuration

b) Model input
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INPUT NEAR EQUILIBRIUM

a) Balanced scene
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b) Barrier repellant field

a) Prey attractant field
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a) Fence with gap
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b) Fence near to prey
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c) Fence with gap in front of solid fence
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Mcxico Workshop on Visuomaotor Coordimation in Frogs and Toads: Theory and Experiments

VISUAL NUCLEI AS A SOCIETY INVOLVED IN VISUOMOTOR
COORDINATION IN TOADS

José Negrete M. and Rolando Lara Z.
instituto de Investigaciones Biomédicas
& Centro de Investigaciones en Fisiologia
Celular. C.U. México,D.F. 04510

INTRODUCTION

One of the main goals in the studies of artificial intelligence and robotics is the
design and implementation of intelligent systems that can interact adaptatively

with their surroundings.

Since the beginning of artificial intelligence, the way in which the nervous system
processes information has been a source of inspiration for the design of more
versatile and intelligent machines. 1lowever, this inspiration has been limited

by the boundaries imposed by even the most simple processing of information.

Several disciplines, such as cognitive psychology (Bartlett, 1964; Piaget, 1947),
brain theory (Arbib, 1978, 1980) and artificial intelligence (Newel and Simmon,
1972; Winston, 1979; Minsky, 1976, 1977) have proposed theories of the possible
mechanisms of intelligence that allow an animal to interact adaptatively with the
external world. These theories, however, do not contain enough detail to under-
stand how the nervous systems performs these operations, or how these ideas may

be implemented in the computer.

On the other hand, present neurocthological studies, done mostly in invertebrates
(Kandel, 1976) and in lower vertebrates (Ewert, 1980). have allowed us a more
informed guess as to the manner in which the nervous system processes infor-
mation in order to control sensori-motor behavior. Based on these studies, several
theoretical models proposing global theories of sensori-motor coordination have

appeared (Ewert, 1982; Lara, this volume). These models, however, do not yet



reach the prerequisite generality

that give origin to the symbolic, more intelligen

in the present paper. we propose a theory which integrates some gener

on the processing of info

necded for the complex processing of information

t operations of higher vertebrates.

al concepts

rmation by the ncrvous system. steming from studies on

artificial intelligence, brain theory, cognitive psychology. and neuroethology that

allow us to understand. in simple conceptual termis, ho

may

w visuomotor coordination

be performed in toads (with the motivation of finding the fore-mentioned pre-

requisites), through its ease of implemention in the computer. This theory may be

used either for the design of intelligent machines or for the visuomotor coordina-

tion of robots.

THE THEORY

The main postulates of our theory for the processing of information by the nervous

system are the following:

)]

2)

3)

Visuomotor coordination is the result of the interaction, in a Socicty of task-
oriented hierarchy, of non-intelligent agents that process the visual informa-
tion in a parallel, distributive way (Pitts and McCulloch, 1947; Kilmer, Mc-
Culloch and Blum, 1969; Piaget, 1947: Arbib, 1981; Minsky, 1977).

The same task can be performed by different communities of agents (Luria,

1973; Piaget, 1947).

The agents can have two functions: first, to recognize specific features of the
stimulus in a symbolic scene version, thus acting as perceptual schemas. such as
the “wormness™ or *‘predatorness” of a given stimulus; and second, to perform
specific motor actions (or ‘methods’). thus acting as motor schemas that can be

taken as preprogramed simple motor actions (Piaget. 1947; Arbib, 1931; Lara,

this volume).

One should keep in mind that agents are constituted, after all, by a matrix of

units, each unit is constituted by a group (net) of neurons with a specific
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function. thus constituting entities such as neural columns (Hubel and Wiesel,

1962; Lara and Arbib, 1982).

4) There is no common language among the communicating agents, but each
agent can generate a data source (DS), from which other agents can pick-up
needed information. The DS can be available to several agents (community).
but not to all of them. (Minsky. 1977). The DS can store one of two types
of information: features of the visual stimulus for selection by the motor
schema (command system), or information for the performance of the selected

motor schema (performance system) (Lara, this volume).

S) The processing of information of the interacting agents for a specific task give
origin to what we may call (following Minsky, 1977) the short term memory
(STM) of the nervous system, while long-term memory (LTM) is constituted

by all the DS which potential agents, present for the control of a specific

task, can eventually carry.

.

6) Potential conflicts between agents becoriie problems to be solved by other
agents which are in a higher hicrarchy (Kilmer, McCulloch and Blum, 1969;

Didday. 1976; Lara and Arbib, 1982; Lesser, Fennel, Erman and Reddy,
1975; Minsky, 1977).

7) In a nearby hierarchy, the agents have different functions: the highest agents
designate the competitive-nuclei participants; depending on “couiext”, the
middle ones solve conflicts among nuclei by giving priority to competitors;
and the lowest, generate data specific for the task. Agents with their DS used

above their inputs are useful in analytic recognition; agents with outputs

below their hierarchy level are *method™ or «effector-like” (Minsky, 1977).

COMPUTER PROGRAMMING IMPLEMENTATION

We chose a functional programming language, LISP, for the implementation of our

theory because we find a close matching between this language and the theory.



NOTATION:

Figure 1 show

s the notation we are going to follow in order to discuss the program-

ming.

1)

3)

4)

3)

The most general idea was to represent a function as a machine denoted by
boxes, each carrying its corresponding name with its input and output spe-

cified. Since we used NILADIC functions, no input was present in the no-

tation.

The DS variables are represented in the notation with their names encircled.

When encircled inside a function, the variable was LOCAL: when encircled

outside, GLOBAL.

Functions not considered as nuclei are represented as rectangles in the same
plane as their master function. Satellite nuclei of a function are represented

as if outside the plane of the master function, thus denoting independent

anatomical location (chips ?).

A nucleus can call itself in a recursive sense and this recursiveness is repre-
sented in the same way as a satellite nucleus may be called, by loopingback to
the same plane. (A shortened notation for this is a small circle surrounded by

four arrows: cach circle contains a letter indicating which box-corners the

arrows are pointing to).

PROGram (sequential) {unctions were represented as a staircase-like contour
and CONDitional (logic) function as a ‘pine tree’. the trunk of which was
formed by the premises and the branches by the conclusions (represented by

PROGram functions).

GENERAL IMPLEMENTATION

a)

Nuclei were represented as functions.

b) Only NILADIC functions (without arguments) were used for the CNS pro-
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g)

h)

gramming. The side cffects of this functions. not their values, were uscd

as DS generators.

CNS lesions were simulated by NOT-ALLOWING the information from the

lesioned nuclei to become part of a DS.
CNS stimulation was simulated by USER information introduced in a DS.

Microelectrode information was considered as machine-languag~ expression of
a member of a DS or as a machine-language argument of a generating function

of a DS member. This proposition was not implemented.

The work-space of the functional language in a micro-computer was used as

the STM residence and diskette memory as the long-term-memory.

Nucleus functions were not LISP DEFINed functions, but LAMBDA expres-

sions to be APPLYed. This was done in order to simulate their vanishing from

STM when not called.

Figure 2 represents the typical module of our programming, in which we can
define three main functions. The first, denominated MASTER, defines the
nuclei that will be activated (COMPETITORS), and the threshold levels for
each of the competitor function; it also activates the second function DECI-
SOR. The second function uses the DS (of COMPETITOR names) to bring
them in to play. First, COMPETITORI which gives a scene version and is then
compared with its respective threshold level to define if it will or will not give a
response (command system). If no response is obtained, then COMPETITOR2
is called into action (not shown in the figure). COMPETITOR2 also gives
a scene version which is then compared with its threshold level to give a res-
ponse. If the threshold is not reached, then DECISOR calls a function deno-
minated SOLVE, which changes the threshold values of the competitors and
again call DECISOR. If none of the nuclei gives a scene version which reaches

the threshold value. then no motor response is obtained and the function

Negrete
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MASTER is again called to restart a new visuomotor processing.

PREY-PREDATOR RECOGNITION IN TOAD'S BRAIN AS AN EXAMPLE OF
THE IMPLEMENTATION OF OUR THEORY

Figure 3 respresents a detail of the third level of the model of prey-predator recog-
nition in toads when the MASTER function has chosen TII-3 cells and TECTAL-
COLUMNS as the competitors nuclei. In order to have jts scene. TH-3 calls GAN-
GLION-III cells. If the scene value does not reach the TH-3 possible-action thres-
hold, no action is taken; it passes the AVOID threshold, an AVOID action is
taken. If the scene value lies between the afore mentioned thresholds, then TEC-.
TAL-COLUMNS is called. If TECTAL-COLUMNS decides to act, but the scene
value is below ORIENT threshold, then a T value results in the calling of the
SOLVE function. This function will redefine the threshold values in order to get a

response, either ORIENT or AVOID.

When no action is generated by TH-3, then a NO-ACTION function calls TECTAL-
COLUMNS in which the process is repeated.

Please note that the serial calling of COMPETITORS is a programming simulation

of a parallel, simultaneous competition.

SUMMARY AND CONCLUSIONS

I) An Al CNS function theory was proposed and assayed in an amphibian
model: neuroanatomical, neurophysiological, and ethological phenomeno-

logy associated with visuomotor-coordination in toads.

i) Amphibia CNS programming can be simulated within the theory with a
modular structure of three hierarchical levels of nuclei: the nuclei in the
highest position designate the potential conflicting nuclei; the middle ones
solve the possible conflict; and the lowest are the conflicting agents them-

selves (i.e., TH3-CELLS and TECTAL-COLUMNS).

Negrete
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1))

V)

V)

V1)

VII)

VIII)

In every case, it was possible to consider a module as recursive.

The visual world of Amphibia was considered as being distributed by CNS in
several symbolical versions (scenc-versions or perceptual-schemas), resident
in data sources (DS) of nuclei specialists. These versions were used for
nuclei decisions (command system), thus resulting in prey-predator behavior

through a performance system.

A given scene-version was resident in the common DS of the interacting nuclei

in the STM.

The competence level of this proto-model extends to lesions, visual-stimu-

lation, electrical-stimulation, and behavior.

From the Al point of view this CNS programming simulation is a deep-first
ACTION-OR-METIHIOD scarch with the provision of a lower OR-exclusive
situation in which an upper mechanism sets the potential lower OR situa-
tions. OR situations are decided first by exclusive competition and, then on

“draw” conditions by an upper level.

The present theory does not yet deal with the problem of the creation or
transformation of nuclei due to experience. Clues may be found by attem-
pts to incorporate habituation and learning within the second postulate of

the theory.
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TOAD’S BRAIN MODEL

A GLOBAL MODEL OF THE NEURAL MECHANISMS RESPONSIBLE
FOR VISUOMOTOR COORDINATION IN TOADS

Rotando Lara, Manuel Carmona, Federico Daza v Armando Cruz
Centro de Investivaciones en Fisiolosia
Celular., Universidad Nacional Autonoma
de Mexico.

( Second draft, January, 1983 )
ABSTRACT

A model of how the nervous system of toads process the
visual information to control the motor resronse is pro-
posed. The model tries to intesrate the anatomical, phy-
siological, and behavioral studies done in these animals
to rpostulate specific hyrothesis that could be tested ex-
perimentally. The model Postulates that the visual informa-
tion is processed in a pParallel, distributive way by & mul~
tirle 9rour of Lavers whose interaction g9ive origin to a
command and an information channel which choose and control
the proper motor action, respectively. The sroup of lavers
can be divided int perceprtual, command, information, and
mator Lavers. The motor outeut is the result of the coordij-
nation of simrle motor actions that we call motor schemas.
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INTRODUCT 10N

It has been of interest for shilosorhy and science to
understand the means by which animals, includine human
beines, are able to cope intelisently and adartatively
with the external world. from the sensori-motor intelli-~
sence of invertebrates and Lower vertebrates to the
symbolic attitude of the most develored vertebrates.
Problems initially considered as part of philosorhy, as
the wary we perceive the universe, understanding, inte-
Lligence, Planning, etc., are now arproached from a scien-
tific point of view by several discierlines, such as co9ni-
tive psycholosy, etholosy, brain theory and artificial
intelligence.

All these discirlines coincide that the brain is basica-
Lly a center of sensori-motor coordination where stimuli
both external and internal release a motor response to
solve the situation in such a war as to preserve the Li-
fe of the animal. In animals with a simple nervous sys-
tem, the motor response is observed as & srecific actions
but in animals with a more complex nervous system the
action can be symbolically rerresented and compared with
other rossible acts to give the animal a more versatile
system of adaptation. Furthermore, these discirlines have
Postulated that the brain contains structures of informa-
tion with the carpacity to relate A 9rour of sensory stimu-
lation with a motor resronse, which have been denominated
schemas, frames, etc. These structures are able to inter-
act with each other and to build super-structures as well
as to create new ones, derending on the caracity of the
nervous system of the animal. However, nothing is known
of how the nervous system could 9ive origin to this com-
plicated processing of information.

For this reason, some of these discirlines have concen-
trated on animals with a comparatively simple nervous
system where some of these processes could be studied
4t a neural level and could give us some information of
the nature of the mechanisms that the nervous system
uses to control the motor resronse of the animal. A 9re-
at number of studies have been done in invertebrates
where it has been possible to tdentifr how the sensory
information produces a motor response’ these studies,
however, can only sar a few things on how more compl i-
cated nervous systems could perform the arrroriate sen-
sorimotor coordination, because the number aof neurons
and the comelexity of interaction is sreatly ausmented
and Possibly they do not use the same mechanisms as those
animals do. A compromise is needed, then, where one should
choose an animal with a comparatively simple nervous sys-
tem» but with enoush complexity as to sive us an idea
how the brain erocesses the sensory information to 9ive
4 motor response with a minimum level of sophistication,
that witl allow us te rostulate how the nervous svstem of
these animals process the visual information to 9ive a mo-
tor resronse.
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This preraration is, we think, that of froes and toads.
Behavioral studies on these amimals have shownt

1.~ Thesy orient to animals whose longest axis is in

the direction of motion, and the orientinsg response is
inhibited to stimuli whose lonsest axis moves rerrendi-
cular to the direction of motion(1).

2.~ Ther avoid animals that cover an area areater than
20 desrees(1,2).

3.~ They show size constancy within 30 cm of their posi~
tion(3-4).

4.- They habrtuate to stimuli which is reretitivelr pre~
sented (S,4).

S.- Thery can see and interact with fixed obiects (7).
&.- They plan their route to the rrey stimuli without
feedback information. If the stimulus is moved outside
the visual field of the animal. he does not search for
1t which indicates that ther do not have & rermanent
representation of the obiect (7-9).
7.- In a comrlex environment, in which there are barri-
ers and chasms, ther plan their route to the Prey deren—
dine on the seecific situation in terms of the relation
of rprev and obstacles and on the dimensions of the ob-
stacle. This susgests that the motor resronse is chosen
in terms of the three dimensional rerresentation of the
wortd (2-11).

AlLL these studies su3vests that different seauences of

motor responses are chosen by the animal., derending on

the seecific sensory stimuli that is receiving, in terms

of fixed and movini objects.

Aratomical studies in the toad and fro9(12,13) have also shown
that the retinas sends in a retinotoric way fibres to

several brain resions. such as the tectum, the posterior
thalamus, the nucleus of Bellonci, the pretectum, and the
uncinate nucleus. The tectum forms close loor interactions
with the posterior thalamus and the pretectum and several
brain resions in the thalamus establish close Loor interac-
tionas with the telencerhalon, either directly or throush

the tectum. This sugsest that the retinal information is
processed by several Lavers that interact amons each other

to define the prorer motor response of the animat (Fla., 1),
Phrsiolovical studies in the tectum tave shown (1) that

this region have cells that may pPlay a role in prevy-

predator recoonition (TS-2), predator recodnition (TS-3),
derth rercertion (TZ,T1): while rhysiological studies

in the pretectum—thalamus (14) have shown that there are cells
that mar play a role in predator recognition (TH-3J),

in sensiny fixed objects [TH-10), and in the habituation of
the orientine response (TH-97) (1,14).

Theoretical models have arereared which try to explain

how the arimal could recosnize a rFrev from a predator (15,16),
the recoanition of predators (17), habituation of the orien-
ting resronse(12), prey selection(19), derth
rercertion(20), and motor control 21y,

These studies. however. sav vers few thin3s on how the
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sensory information is rrocessed in the nervous system
of these animals to choose, for every sepecific situation:
the prorer motor action.

In the present parer, we pProrose a 9lobal modet aof the
possible neural mechanisms resronsible for the visuomo-
tor coordiantion in toads and the processing of informa-—
tion needed so that these animals choose a sepecific motor
response or a seauence of motor resrponses derending on
the rresent sensory stimulation. The model is based on
our models of prev-predator reco9nition, predator recooni-
tion, habituation of prevy orientine behavior. and prey
selection. We have added new parts includine a model of
derth percertion, fixed obiects detectors, and gsar de-
tectors.

THE MODEL
The main postulates of the model are the followings:

1.- The retinal ganslion cells initiate the visual
processing of information definine the speed, contrast
and size of the movins stimulus and the size of fixed
obiects.

2.~ The retinal gangtion cells sive origin to a matrix,
planar representation of the world.

3.- The scene matrix of the retina is sent to several
brain resions where new matrices are computed both throush
internal processes and as a result of the interaction with
other Llavers.

4.- The tectum has a multitask grour of columns with
the following functions:
a) prev-epredator reco9nition.
b) predator reco9nition.
c) derth percertion for rrey and predators.
d) size constancr.
S.- The thalamus-eretectum has a multitask group of
columns with the following functions:
a) predator recognition.
b) fixed obiects recodnition, either obstacles
or chasms.
c) 3sap detector.
d) depth rercertion of predators and fixed
obiects.
e) prev-obiject dJistance.
f) size constancy.
6.- The telecerhalon has the followins functions.
a) motivational state of the animal.
b) habituation of the grienting and avoidance
response,

7.- The information comind from both tectum and rFretec-
tum can activate different motor actions, which we have
considered, followins Gaernstein and Arbib(21). rrerroaramed
and we denominate motor schemas. Mator schemas to be
active need two sources of information: the command sig-
nal, depending on the cells activated: and the informa-
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tion sisnal. where the motor schema sets the prorer para-
meters that controls its action, such as distance for
arproach, rosition for orient, etc. We have considered
the followine motor schemas:?

1.- Approach.

2,- Orient.

3.- Snar.

4.~ Avoid.

S.- Lear.

b.- Ster.

7.- Climb.

8.- Go awav,

GENERAL ARCHITECTURE AND BEHAVIOR OF THE MODEL

The model is constituted by a 9rour of Lavers, i.e. ma-
trices. where the retinotoric information from the retina

is maintained (Fig 2). Each laver process a srecific feature of
the stimulus, and several lavers could coexist in the sa-
me redion. In the tectum we have lavers that process

the reco9nition of rre» with its position ( TS=2 neuron
of Ewert (1)) in combination with pretectal Lavers: Lavers
that process rpredator sensitivity and rosition. also in
combination with sretectal Lavers ( T5-3 of Ewert (22)): ard
lavers that process both rrey and predator derths ( Ti

and T2 of Ewert (1). The interaction of the prey position ond
the derth of erey lavers in the tectum with the pretectal
predator sensitive Lavers and fixed obiects sensors

lavers sive origin to three command lavers: a Laver

that controls the orient reseponse if the stimulus is in

the visual field and it is not in the binocular position
(b-)3 a Llaver thet controls the snarpine resronse if

the object is in the binocular field and within snaprine
distonce ( b+, d-)5 and a Laver that controls the approach
schems if the obiect is in the binocular field but it

is farther than the snarping distance (b+, d+). Finally

the avoidance command in the tectum is controlled by the
ioint activity of predator tectal( TS-3) and pretectal
neurons (TH-3).

The thatamus has a grour of Lavers that process the fo-
Llowing rrorerties of the visual imaget eredators and

their position ( TH-3 of Ewert (1), fixed objects and their

Position( TH-10 (14), eredator and fixed obiect derths (?).The Laver

that measures fixed-obiect derths is further frocessed
to 3ive oriain to a 9rour of Lavers that recoanize if
the fixed object is a barrier -~ measuring its height
and prev-barrier distance—~ s chasm -- measurinsg width
and derth -~ a distance, and 3ars -- measuring the most
attractove 99r mith respect to its size, derth and Prey
Fosition. The combination of these lLarers 9ive origin
to three command lavers both for barriers and chasms:
for barriers, when the rrevy-obiect distance is within
snapring Jistance ( dro~), the arproach-barrier schema
ts activateds when the frev-obiect distance is Long (dro+)
there are two options: if the height of the barrier is
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small (h=), then the jumr schema is activateds while if

the height is big (h+), then the detour schema reseonds.
For chasms we have that if the width is small (w=), the
Lear schema is activated:; while if the width is Ltarge
(w+), we have two options depending if the chasm is
shallow (d-) or deer (d+), the cross or the 90~-away
schemas are activated, respectively (9-11).

Finally, the motor schemas are shown as subroutines where
& command signal activates it and an information sional
(fisure 3 and 4 ) defines the prorer parameters for the prorer
motor performance. A motor schema can be a relatively sim-
#le motor action, such as approach or lear: but it can be
a structure that coordinates the action of several simeple
schemas. For example, in figure 2 we show that the cross
schema is activated, but this schema is constituted ( Fig
4) by the coordination fo the aperoach, step, end climb
schemas. A similar case haprens with the lear, sume, and
detour schemas, shown in figure 2 and figure 4, in the
Latter fivure are shown the schemas that are part of the
surerschema and how thevy are coordinated. We have postula-
ted that the coordination of motor schemas is a local fun-
ction of each schema when aspecific situation is Present,
and they act as part of the command svstem for the activa-
tion of the next schema, but it can also be controlled by
a sinele resions such as the cerebellum as has been dJescri-
bed etsewhere (23), as it is shown in figure S. Notice, then,
that a simele motor schema can be activated by different
command and information Lavers. derendins on the sepecific
visual scene of the animal, as it Is shown in figures 3
and 4. In these fisures we show that the command laver
enables an information Later that the motor schema witl
use for its prorer performance. In this war, the aeeproach
schema, for example, some times is controlled by the prey
command and the prev-distance information Larers, if there
is not a fixed obiect between the animal and the preys whi-
le the approach schema will be controlled by the 7ap barri-
er command and the gap-detector information Larers if a
barrier is between the animal and its prer and the frevy-
barrier distance is farther than the snaerpine distance.
Each time each of these schemas is activated, the visual
imase takes a9ain control of the system and the new motor
schema is then chosen derending on the rresent visual
scene.

SUBPARTS OF THE MODEL

In this section, we will define in detail each of the
sters of the rFrorosed fFrocessing of information of the
nervous system of toads to control its behavior in terms
of neural networks. Some of these networks do not have
ans anatomical or physiolosical bases, but we prorose
them as a srecific hrrothesis that could be tested exreri-
mentally.,
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PREY-PREDATOR RECOGNITION

We have described elsewhere(l6) how the interactions between
retina-tecztum—-thalamus pretectum could account for the
arour of celts that are sensitive to rrer—predator reco-
anition. Briefls. we propose that the tectum is constitu—
ted by cotumns where the visual input from the retinal 3an-
3lion cells arrives at the 3lomerulo--constituted by the
dendrites of Large pear shared and small rpear-shared cells.
and axons of both retinal fibres and recurrent axons from
Larse end small rear neurons--, the large and small rear-
shared cetls and the pyramidal neuron. which is the effe-
rent cell of the tectal column. The recurrent axons of the
Lar3e pear neuron, besides its recurrent effect over the
3lomerulus, excites the stellate neuron which exerts an
inhibkitors effect over the Larse and small pear cells, con-
troltin3y in this war the state of excitation of the column.
The rrramidal neuron Jives a response whenever the 9anslion
cells. the lLarse and small pear neurons are simul taneous-
tr activated., We hove simutated the fact that the interac-
tion amons diferent tectl columns rields the tectum to be
mostly sensitive to the elonsation of the situmulus alon?
the direction of motion. Followiny Ewert's hrrothesis, we
then postutated that the pretecztal neurons which receive
3an3lion cell trpe 3 and 4 as inputs and are mostly sen-—
sitive to predator Like stimulus, inhibit the activity of
the lar3e and small rpear shared cells and the eyramidal
neuyron. thus the resronse of the pryramidal neuron is inhi-
bited when the stimulus elongates perpendicularly to de
direction of mation which simulates the resronse of tectal
TS9-2 neurons and the orientin3 reseponse of toads towards
this tyrpe of stimuli (Fig 64),

MODEL OF PREDATOR AVOIDANCE

Followin3. s9ain. Ewert’s hyrothesis. we postulated that
there are another 9rours of neurons in the tectum that

are sensitive to predator-like stimulus and that tha joint
ectivit, of these cells with the rretectal neurons sives
ori31n to the avoidance resranse. Both cells are mostly
driven by san9lion cells trre 3 and 4 (Fig 6) (17).

MODEL OF DEPTH FERCEPTION
Ewert has also found that there are cells in the tectum

that are sensitive to the Jarth of the rres stimulus (1). In-
3le and Coltet have shown that derth rercertion in fross

ts controlled bs monocular and binocular mechanisms(24.2%). House (2(

has rostuiated that these mechanisms mav be binocular dis-—
earity ond accomodation. We have followed House rpostulates
tut we have changed the 9general architecture of the srsstem
that is able to compute ocutar disparity and
accomadationiFiy 7).,

For ocutar Jisearity we have Frorosed that each tectal
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neurons which rerresents a Point in space of the contrata—
teral field, receives afferents from the iepsilateral eve
which could rerresent a roint in srpace (see Fig 7), and this
neuron code the sepatial distance of synartic action as a
measure of derth of the object. measured as the freauency

of reronse in the following war:

fr=f(ci-rij)

which is a measure of the disparity between cell i, ci»
and the irpsilateral affernt i, pj. Naturally there could
be several points of disparity, generating the shost ab-
jects. We rostulate that the accomodation system is used
as a cue for the prorer diserarity of the real obiect and
the convergence is obtained throush synartic comretitive
interactions between the different synapse arriving at
the same neuron., This is expressed mathematically as fo-
Llows:

dwi= TRLi*TRLJi- TRLk-abs (fd-fac)
dt

where wji is the weisht of the ith. irsilateral synarses?
TRL is the transmiter liberated by the ith contralateral,
kth and jth, both irsilateral, synapse resrectively:

and fd and fac is the frecuency of response of the dispa—~
rity and the accommodation neurons, reseectively.

This eauation svmply shows that the wei9dht of a srnarse

is increased derendins on its own activity (TRLi*TRLj).,

but s comretitive interaction exist with other svynarpses
simul tneously activated ( TRLk). Moreover, the conver-
sence to a given srynarse is biased by the similarity of

the outrut response of the cell controtled by a s9iven
disparity and that siven by the accomodation svstem (fd-facl.
In this way the resronse of the outeput neuron is controlled
by that iepsilateral proiection which sives a closer resepon-
se to the accomodation srystem outeut.

The accomodation system is simulated in the following way:

dAc= E
dt

where Ac is the accommodation system and the error. E,'is
defined as follows:

E= frit)-fr(t-1)
or
E= f(d)-fr(t)

where fr is the freauenzy of response of the neuron that
codes the derth of the accommodation srstems and f(d) is

a function that defines the freauency of reseponse when the
immase at a given distance, d> is in focus. The freauencr
of response of the accomndation neuron is siven bry the fo-
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Llowing function:
~-(f(d)—~Acl
frit)=f(dle

where fr(t)=f(d) when teh imadge is in focus, f(d)=Ac.
This derth percetion model is also arrlved for sensing
fixed obiects.

MODEL OF DISCRIMINATION OF FIXED DBJECTS

Our previous models dive us a 9rour of larers, i.e. ma-
trices, where the position and derth of fixed and moving
objects are coded; from these matrices we stitl need to
define if a fixed obiect is in the trajectory from toad

to prev and the nature and prorerties of these obijects.
For this reason, we postulate that the depth-rpercertion
matrix of fixed obiects is further processed to define

if the derth measure corresrponds to a distance, a barrier
or a chasm.

We postulate that this discrimination may be rerformed

b. o meural structure similar to that shown in figure 8.
This 3voupr of cells rerresents the arour of neurons that
are codin9g the trajectory between toad and prery, and is

a mesure of derth. When a border is detected in the visu-
al field of the animal, it is coded as a derth measure

in the matrix in the rlanar rerresentation of space in the
toad’s brain. which as was shown above, 9ives a seecifin
freauency of resronse that codes distance. The 9rour of
neurons in the lower Larvers can be of three tvpes, which
corresronds to distances, barriers and chasms detectors,
resepectively: These neurons compute the difference between
two subseauent depth-measure of borders: if the distance
of the second border is eaual to that of the first one,
then the body is reco9nized as a barrier: if the second
border is 3Ireater than the first, than it is a distance:
but if the intermediate neurons between the two borders
have a derth value bigser than that corresponding to a
plane then the distance between these borders is a chasm.
These cells act as disparity neurons but instead of measu-
ring the difference between right and Left-eve, ther me-
asure the difference between two representations of visual
space in the following wav:

fesfipi=-ri)

which means that the rate of reseronse of these cells is
Pprorortional to the spatial distance between neurons

i and j that corresraond to a sepecific Location in srace.
In the case of barrier detection the resronse of this

cell codes the rosition of the border, by the position

of the cell in the matrix, and the height of the barrier
ty the froauencr of resronse of this neuron. In the case
of the distence matrix, it codes the distance of the se-
cond border with resrect to the first. that could actually
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be the rosition of the toad. Finally for the case of a chasm

we need three measures: the position, Jiven by the Posi;ion
of the cell, the width, siven br the frequencr of resronse
of this neuron, and the derth, siven by another 9rours of

:eurqns, similar to those that measure the heisht of the
arrier,

MODEL OF GAF DETECTOR

We still need to process 9sap detection and 9ar selection
measured as the relation between obiects and rrev rosition
To simulate how neurons could rerform these functions., )
we propose a circuit as shown in figure 9, where the
first Laver of cells correseonds to a row of the planar
rerresentation of sepace but where depth is coded as the
r§te of response of neurons. The second row are neurons
with the function of subtraction the i+l to the i input,
?hus they sense anv difference of depth between column
I and column i+1. If the difference is rositive, then
the neuron codes the width, asgain troudh a space-disrari-
?r function, to the next-to-rioht activated neuront while
if the difference is negative, the neuron codes the width
throush the next-to-left activated neuron. Thus the output
of these cells will be rrorortional to the derth and width
of the gar in the following war:

fr=asd+bww
where 4 is derth? w is width: and a and b are constants.
MODEL OF GAP DISCRIMINATION

For the 2ap discrimination srstem we Propose a circuit
as shown in figure 10, where it can be seen that the selecti-
on of the 3ar derends on three factors: width and derth o; the gae.
siven by the frequency of resrponse of the 9ap detector,
and the position of the rrey with resrect to the differ-
ent 3aps, thus the above eauation is defined as follows:

fr=asd+brwscwf (p)

where f(P) is a gaussian function where the reak is in the

Prev rosition and ¢ is a constant.

The.selec'ion is obtained throush o system

similar to the one that Didday (26) and Later Lara and Arbib(19)
froposed_for eprey selection. In this case the competitive
interaction between gar detectors is siven by a gaussian
distribution of the prey inPut which bias the final conver-
sence to the most atractive sar. i

MODEL OF PREY-OBJECT DISTANCE

The final oreration we are Prorossing is a matrix that



TOAD’S BRAIN MODEL Lara 11

measures rrev-object distance, as shown in fisure 11. The
outrut neuron is asain a srace-diseparity cell which res-

Fonds to the sratial difference between obiect and prev.

in the followiny way:?

fr=f(foi-pi)
where fai is the position of the fixed obiect in row
i and pi is the rosition of prev in row j. If the diffe-
rence is positive it means that the fixed obiect is awayr

from the rrev; while for a nesative differences it means
that the prev is behind the fixed obiect.

SIZE CONSTANCY

It has been shown that toads canm show size constancr for

moving and fixed objects within a siven distance (3,4). We proro-

se. followins Vurpillot (27),that this function can
be computed by a simeple function
rerformed by a ltarer of neurons in the following way?

sc=fr.dim

where sc is the outrut reseronse of the size constancy
neurons fr is the response of the derth neuron and

dim is the ares covered by the stimulus in the retina. In this wav,

for stimuli far awav, fr is bis while dim is smat s
white for close stimuli, fr is small and dim is big.
For a 3iven distance this product has to be constant.

THE COMMAND SYSTEM

The command system is constituted by an exclusive or fun-
ction of the different command matrices and it is simeply
implemented so that only one command srstem could be acti-
at the same time. This is obtained throush the interaction
of the different matrices, as described above, and throush
the specif.c rrocessine of information that allow the sys—
tem to discriminate different situations, as we described
above,

The command svstem, besides the activation of the diffe-—
rent motor schemss or 9vour of motor schemas, enables
the rrorer infrmation matrices that will control the diffe-
ren schemas: as shown in fisures 3 and 4.

MOTOR SCHEMAS

As we mentioned above, motor schemas are considered as
Frerrodramed circuits that vield to simele motor behavior
that can be activated by different matrices derendins ..
the srecific situation of the three dimensional space.
Zome of these schemas are closelv associated with other

12 lara TOAD’ S BRAIN MODEL

ones constitutins super-schemas, that have been linked
FOssibly as & result of evolution for‘a more adeauate
adartation to the external world of the animal. This coor-
dination mary be a function of the prorer schema or may be
is Linked bv an external system,» such as the cerebelum,

s has been described elsewhere. In the present model

we did not touch how the mator schemas are organized in
terms of the anatomical and rhvsiolosical studies on
toads.

COMPUTER SIMULATION

We have simulated the above model in a disital computer
Bourroushs 7800,

We have assumed some simplifications in order to show the
behavior of the stobal model. We have considered that the
simutated toad has a recertive field of 170 desrees, S5

to the Left and 85 to the right, and 32 desrees in the ver
tical direction. Thus the retinal and other brain lLavers
in the model are of 170x32 units, represented by neurons.
We also considered that the eprey is in a fixed position,
thus the prev-rredator recosnition matrix is simFls a roint
in srace; when we introduce rrey movement. the comelete
prev—predator recodnition model should be intesrated. For
depth rercertion, we used a simplified version of the des—
cribed model where we calculated the derth of each object
by a disparity function and the chosen synarses was simely
done throush a comparisson between the measure 9iven by
the accomodation system and the disparity function. We did
not simulate the fact that objects chanie the area covered
in the retina dependin9e on their derth, but we simely repre-
sent the real size in the retinal Laver, not considering
the needed transformation for size constancy, as postul a-
ted above.

The way to study the behavior of the global model was to
define a space where prey position. toad Positions obstac-
les position and .imensions are seecified. The toad first
orients toward the prey, then the derth matrix is Jenera-
ted both for fixed obiects, with their dimensions, and for
the prev. After this, the sar matrix is 9enereated and the
most attractive one is selected, derending on depth width
and eprey position. At the same time the definition of the
barrier and chasm is done. With this internal rerresenta-
tion of the world, then the prorer motor schema is selected
according to the specific situation, as we will show with
several examples.

Collet (8-10) has studied that toads rlan their routes
derending on the specific situation of its three dimensi-
onal world. He has found that if a barrier Is between toad
and its erev, and the prey is far away from the barrvier,
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the taod makes o detour 7S% of the times. Fia 12 A shows

the results of the computer simulation of the toad behavior
in this situation. where it can be seen that the toad (R) de-
tours the barrier (B) to set the rrey (P).

The numbers in the urper eart of the figure are the

weidhts of the two 9ars that the toad sees before him before
the besinning of his action. Because they have the same
weight, he choses either of them. In order to obtoin a con~-
verjence in the var comepetition model we simely introduced
some random noise, thus biasing the chosen sar. Fis 12 B
shows that. in the rresence of two borrviers one of them

with a 3af in the middle Line of the toad. the animal
Frefers to watk first throush the 9ar and then detour. The
numbers show the strons preference for the middle 9afF but
the behavior is also biased by the conflict between two
different motor schemas: arrroach and detour, which exrlain
why the animal detours 43% of the trials. Figure 13 A shows that
the toad has a strons preference to arrroach the eprev throush the
3ar of the barrier rather than for deotouring it while
fisure 13 B shows that, in the erresence of two barriers,
detour behaviar is preferred. Figure 14 A shows

that the toad cannot deal rrorerly with a closed barrier,
because he most of the time (35%) J0es inside rather than
detours. In the model the middle g9ap is stronser (82%) than
the two other 3aPs, thus the animal approaches directly

to the pres. Fisure 14 B shows that, in the presence of

tiwo barriers. one of them with a sar away from the middle
lLine of the toad. the toad has a stron9 preference for the
closer 3ap in the barrier. Figure 15 A and B show how the
3aF’s depth mer define the trajectorr followed br the

toad. When two 3a4ps are present in a barrier with
ApfPraoximately the same weisht, the toad alwars prefers the
closer 9ar; however, if the farther gap is deerper (Fig 15
B), then the toad chooses either of them with

the same probability. Figure 16 A and B show the behavior

of the toad with chasms. where he crosses (Fisg 16 A) or
lears (fig. 16B) deerending on the depth and width of the
chasm: as Collet has shown.

DISCUSSION

In the rresent parer we have prorosed a slobal model of
the visuomator coordination in toads derending on the
specific external circumstances of the world. The 9eneral
features of the present model are that the visual informa-
tion is rrocessed by multirle Lavers in a distributive
was and that these Larers perform different functions
within the same revion and communicate with other Lavers
to define which is the prorer action for that srecific
situation. The final outcome of these Processing of infor-
mation is a command and an informations system which sel -
ect and inform the motor schema for adeauate function. In
this war. each mator schema con be activoted by different
command sytems and with different information derendinsg
on the sepecific situation of the external world. The
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command system can activate a single motor schema or a
arour .of coordinated motor schemas which only release

the srystem commend when the last of the schema has

ended its function. For example the detour behavior is the
coordination of the orient 3a2p response, approach 3ap. and
reorient to prev, pPossibly this Las ster is the result of
the Liberation of the command srvstem that now can freely
orint to the rrey stimuti,

Bergson (28) and lLater Piaget (29) have postulated that the brain
is organized in specific sensorimotor structures uhich
are activated by a specifc 9rour of sensory stimuli, which
they called schemas. The sensorimotor schema has basically
two fuctions: assimilation and accomodation. the first
meaning the carpacity of the schema to be activated by si-
milar stimuli. that is how the animal rerresents the exter-
nal world according to the infrmation structures loacated
in the brain of the animal. Accomodation, on the other hand.
is how the external world can modify the sensori motor
schemas to adart them to the srecific situation that the
animal is perceiving. These operations. however, can act
not only to the external world but within other sensori-
motor schemas thus orginizing a more comeplex structures
of information,

Later, Arbib (21) has rostulated that the brain is constituted
by percertual and motor schemas, and that these schemas
can interact amons each other throush cooperative and
competitive interactions to choose which one of them will
be the activated. This author also postulated that the
animal can generate onm internal rerresentation of the
wortd and that there is a prosram of coordination of the
motor response, which basically follows a serial order
where the result of the action is the stimulation of
the next schema.

Minsky (30), on the other
hand. eprorosed that the brain is constituted by strucures
of information that he called frames, and the 9rours of
frames can interact amon9s each other performing simele
functions and without transmission of irnformations as
4 community of nuclei. The final response is obtained as

consensus of the 9rour of nuctei epresentl> activated.

Ewert (22) has also proposed that toad’s behavior is contro-
lled by a 9rour of and command functions, where derending
on the cell activated, the response of the animal.

Grusser (31) and Later Roth (32) have, on the contrary: rrorosed
that toad’s behavior is 9iven as a result of a 9roupr of
neurons. rather than a single unit controlling the whole
response. and that the termination of the motor reseponse
is g9iven by new activation of other cells.

We consider that our model 9ive specific rostulates of
the nature of all these rrocesses in the toad’s brain.

We think that the eauivalent of a perceptual schema. of
Arbib, is eaudivalent to the rrorosed prer, predator.
barrier. chasm, distance, rrev-object distance, and

sap detector and selector. The command system constitu-
ted by these matrices is the eauivalent to the assimila~
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tion Frocess of Piavet, where » srour of sensory Sstimuli
jives a srecifc resronse, and to the and command system
of Ewert. The information srstem,» on the ather hand.
could be considered as a short term Frocess of accomoda-—
tion where the motor schema has to resrpond to a specific
Situation of the environment. The command and the infor-—
mation srstem. on the other hand, constitute the inter-
nal rerresentation of the world, rrorosed br Arbib, but,
as Luris (33) rostulaotes. it is not a sinsle region where a
very comklex rrocessing of information is occurring, but
it is the joint activity of various resions and subresions
in the resvion with verv simrle aoperations, that Jive ori-
9in to this interral rerresentation of the wortd. This
refFresentation, as Piaget: Arbib and Minsky have potul a-
ted: 1s the result of the coordiantion and communication
of different schemas. lavers, or nuclei. The command
system. however:. can activate 2 3rous of schemas rather
than o sinale schema for srecific situations of the world,
which simulates the coordination aof motor schemas rroro-
sed br Piragset as a result of accomodation and assimila~-
tion between schemas. This Point has not been illustrated
in the rresent parer. but could be considered as an acco-
modatian function at a Lons-term manner derending on the
mistakes, or trial and ervor of the animal throush evolu-
tion. The ides of Arbib of a eroaram of coordination of
motor behavior, in terms of our model . could be interpre-
ted a5 2 resion that is actually functioning as a serial
commend srstem: as Borlls (23) has rrorosed for the cerebetllum.
or simrly throusk simrle orperations betweern the same mo-
tor schemas. The ideas of Grusser and Roth, in spite
of the fact that thevy do not consider the presence of
Fercertual schemas. is also in asreements with the fact
that motor behaviar is the conjoint activity of different
cells and resrons, rather than a sinste neuron.

The model. i1n seneral, has a lot of ad-hoc functions for
the different rostulates of the rrocessing of infrmation
rerformoed b7/ the toad’s brsin, but thev can be conside-
red ¢s one of & family of models that should be rostulated
that could be tested experimentlly
and that could also be the bases of a more anatomically
any Phrssilodically tied model for the future,
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Figure 1l.- General or3anization of the visuomotor srstem
of toads, The retina sends their fibtres in a retinotoric
war to the tectum, pretectum and anterior thalamus. The
tectum establishes closed-loor interactions with the erre~
tectum and the anterior thalamus. The epretectum. at its
turn, establishes closed-loor interactions with the tele-
encephalic structure the striatum., The tectums throush the
anterior thalamus, the medial and the anterior ralium, and
the hvpothalomus, establishes a closed-loor interaction
with the telencerhalon. The tectum and the pretectum. po-
ssibly in combination with the tesmentum, mar control the

motor resronse of the animal throuwoh their rrojections to
the srinal chord.

Figure Z.- General architecture of the command system of
the global model of visuomotor coordination in toads. The
retinal larer. which rerpresents the retinal mar of the
different sanstion cells, is eprojected in a retinotaric
war to both tectum and to several brain regions in the
thalamus. In the tectum we postulate the existence of
three rerceptual trypes of lavers: rrey—recosnition Laver
(grev), prey—-derth Laver (prevy—der), and predator recoani-
tiorn laver (pred): four command lavers: one controlling
presr orientiny if the prey is not in the binocutar field
(b+). the second controllins erer sanrring if the rrer

's within the snappind distance (d-). prev—-aprproach

if 1heAﬁre: is farther than the snapping distance (d+) and
there is not s fixed obiect between the prer and the animal,
and the avoidance command which is activated by the ioint
activity of tectum and pretectum. The thalamus has two la-
vers which are sensitive to predators and to fixed objects
(F.0.). The F.Q. lLaver is further processed by other Lavers
Qp define if the obiect is a barrier (barr)—— with height,
distance, and prev-barrier distance (eprev—obi dist)—- a
chesm-- with width (w). derth (d), and distance-— or a
3or. These larers 3ive origin to two command Larers which,
for the case of the barrier, activate the approach schema
if the prev-obiect distance (dro) is within snapping dis—-
.ance (deo-)! if dpo is farther than the snapping distance
(dra+) and the barrier heisht is big (h+), then the detour
schema is activateds while the jump schema is activated

lf the height is Law (h-). For the case of a chasm,» if the
width 15 smatl (w-), the lear schema is activated: but if
the chasm is Large (w+) and shallow (d-), then the cross
scheme is activateds but if the chasm is lLarge (w+) and
drer (d+), then the 90-awar schema is activated. Notice
that the command svstem is an “exclusive or" function of
"and" trrpe of commands.

Fisure 3.- Information fiux in the slobal model of visuo-
motor coordination in toads. This fisure shows that the
same motor schema moy be activated by different command
arnd information lLarvers, The information Laser sends a
Farameter to the motor schema to define srecifically how
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it should orerate. The command Lines, shown in Fig 2,
enable (dot) the information Laver to control erorerly ?he
serformance of the motor schema. The snap schema is acti-
vated by the rrev command that enables the prevy—distance
and position information tarvers so that the sanarFing be
divrected with the prorer depth. The orient schema <an be
used to erev-orient or to gar-orient, the rosition 3iven
by the prev-rosition or qap-position respectivelys gnd
the arproach schema can be controlled by prey, barrier.
9ap, or chasm lLaver, dependine on the nature of the fixed
object. .

Figure 4.- Information, command flux and cnordination.of )
motor schemas in the 9lobal model of visuomotor coordination
in toads. The command svstem enables. through switches,

the information larers to contro the perfarmance of the
motor schema. Notice that the detour, Jjump, leaps and

cross scemas of fisure 2 are now represented as a 9rour

of coordinated schemas: detour= orient-gap, approach-3ars
jump= approach-barrier, jump—barviers Leapr= approach-chasm,
Leap—-chasm: cross= approach—chasm, ster,» arproach-border,
climb. The command lavers activate the schema and select
the information Laver that the motor schema will use.

Fisure S.— An alternative interpretation of the coordination
of motor schemas in the 9lobal model of visuomotor coordi-
natin in toads. The coordination of motor schemas is con-—
trolted by a specific resion derending on the specific cir-
cunstances diven by the command lLavers.

Figure &.- Neural model of erev—-predator recognition,
predator avoidance, and habituation. The tectum is consti-—
tuted by the tectal columns which are inhibited by the rre-
dator sensitive cells in the pretectum. The joint activity
of the rredator sensitive cells in both tectum and pre-—
tectum activate the avoidance neuron. The habituation
columns are constituted br a modeller neuron, which genera-
tes a model of the sepatio-temeoral pattern, either in the
tectum or in the pretectum, eroduced by the stimulus, which
is then compared with the actual stimulus patterns if ther
are eaual, the habitaation cell start te build-ue an inhi-
bitory effect over either tectum or pretectum to habituate
the motor vespons-$ but if model and stimulus are different
then dishabituation occurs, throush a desinhibition of the
habituation neuron and the activation of the comearisson
cell.

Figure 7.- Neural mnodel of der—th percertion., The risht
and the Left retina project retinotopically to the left

and the right tectum, respectively, shoun in the figure

in the same side for clarity. Each tectal cell of the

teft tectum receives afferent from the iprsilateral eve
which mary correspond to a seecific point in space. This
neuron resronds derending on the srpatiral disparity between
the contralateral and the irsitateral projection., The final
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response, however. is biased by the accommodation srstem
which inderendently has a depth estimation of the stimulus.
Figure 8.~ Neural model of fixed obiect detectors. The 3sroup
of neurons in the urrer larer represents a column in the
fixed-obiect Jerth Laver, which mar account for the trajec-
tory between the animal and the prev once the animal has
oriented. The Lower Llaver rereresents the tree tyres of
detectors which measure the disparity between two subsequent
activated distances. i.e. borders. If the two derth measures
are the same. the object is defined as a barrier in the
barrier-laver. and the reseponse of this cell is s measure

af the heisht of the barrier. If the two distances are di-
fferent, then the obiect is recodnized as 2 distance. but

1f the intermediate neurons show a value that is Lower than
that correseording to a plane, then the distance is classi~-
fied as a chasm.

Figure 7.- Neural model of 3ar detector. The first row of
rneurans rerresents a row in the retinal mar that is PIrO~-
jected to other brain regions that measure fixed obiect
depth., The second row measures the difference in derth be-
tween two ne'shbouring neurons. The third row computes the
33P size. a3zain bs o disrarits fuction between two differen-
tral neurons activated and as a function of the difference
in depth, The 3aP size can be measured in both wars: if

the differential neuron 3ives a Postive value, meaning that
the 1+ column s farther than the i+l column, the left-dispa-
rity function 1s computed: while the inverse occurs if the
difference is nesdative.

Fioure 10.- Neural model of gar selection. The first row
represents the incomin9y input from a row of the prev-rosition
Larer where the rrer is located. The second row is the out-
Put of the 3ar detector described in figure 9. The third

row represents the discriminatory cells which inhibit all
cells excert the one that activates them from the 9ar—detec-
tor lLarer. The sar detector Larver receives an excitatory
effect from the prev-postion lLaver, thus biasing the selection
of the most attractive sar derendinsg on the freauency of
resronse of the sar detector laver, which measures size

and derth of 9ar. and the prey position.

Frsure 11,.- Neural modet of prer—-obiect distance Larer.
The prer—obiect distance neurons are activated by the
fixed object Larvers, either a chasm or a barrier, and
the rrev rostition laver, The resronse of this cell

i's & measure of the spatial disparity between the fixed
object and the erev position (dotted tines).

Figure 12.- Computer simulation of the 3lobal model of
visuomotor coordination in toads (R) in a erimitive srace
with barriers (B) and eprevy (P). When the prev is away fro
the barvier. the toad detours (A). The numbers indicate the
weidht of attraction of sach 3ap in the visual field of

the animal. On the risht it is shown the probability of
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response in the toad obtained exeperimentally by Collet
). In the presence of tuwo barriers, one of them with a
3aF in teh middle, the toad eprefers to walk througeh the
33p and then detour the second barrier. The exeerimental
results show that there is a stight prefernce for walking
throush the 9ap than detourine ( ).

Figure 13.- Comruter simulation of the slobal model of the
behavior of the toad in the presence of barriers. When a
barrier has a 3ar in the middle tine between toad and rrev.
the animal has a stronsg preference to walk throuah the 93P
(R). In the rresence of two barriers, the animal has a
strone preference to detour. These results reeroduce the
experimental observations as shown on the right.

Figure 14.- Computer simulation of viusomotor behavior in
the toad in the eresence of barriers. In the eresence of

o <aje barrier, the toad has a strons preference to walk
inside (A). While the toad Frefers to walk throush the
zloser of two daps (B). These results can be compared with
the exrerimental studies, shown on the risht (),

Figure 15.- Computer simulation of taod’s behaviar in the
presence of barriers and the change in the trasectorr
derending on the s9ar’s derth. In A the toad alwars rrefer
the closer 9afr: but if the farther 9ap is deerer (B), then
the choice is almost the same for both 33rs. In the riaht
part of the fisure we show the exrerimental results
obtained by Collet ¢ ).

Figure 1&.- Comruter simulation of taod’s behavior in the
presence of chasms (Z) and barriers (B). For wide and sha-
tlow chesms (A), the animal crosses its while for narrow
ones, either deer or narrow, the animal Lears. This is in
asreement with wxrerimental observations ¢ ).
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Chapter 7: Neurochemical Studies

M.E. Sandoval, L. Massieu and S. Canizal: POSSIBLE NEUROTRANSMITTERS IN THE
FROG OPTIC TECTUM

POSSIBLE NEUROTRANSMITTERS IN THE FROG
OPTIC TECTUM

Sandoval, M.E., Massieu, L., and Canizal, S.
Centro de Investigaciones en Fisiologfa Celular,
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1 Sandoval

The study of synaptic functions may be an useful tool for understanding
the control of interneuronal communication. Qur present knowledge of the
synapses arises basically from anatomical and physiological studies; only
recently the biochemical approach has been incorporated to the study of
synaptic events.

In the vertebrate's nervous system the transfer of information in
most of the synapses is given by chemical signals called neurotransmitters.
It is known that at the nerve endings exists the biochemical machinery for
the synthesis, storage and release of neurotransmitters. Studies on neuro-
transmitters have showed that they may be of different chemical nature. There
is increasing evidence that amino acids as glutamic acid, aspartic acid, }amino-
butyric acid (GABA) as well as norepinephrine (NE), dopamine (DA), serotonin
(5-HT) and acetylcholine may be neurotransmitters in the central nervous

system of vertebrates.

- SYNAPTIC TRANSMISSION

When an action potential arrives at the nerve terminal specific calcium
ctannels, that are voltage-sensitive, are opened; the calcium ions enter
to the nerve ending increasing the internal calcium concentration, which
then triggers neurotransmitter release through an unknown mechanism
(1, 6, 15). In the synaptic cleft the neurotransmitter molecules diffuse
towards the postsynaptic membrane where they bind to a specific receptor.
The interaction of the neurotransmitter with its receptor leads to a
change in the membrane permeability to either sodium, potassium or chloride

ions changing the polarity of the membrane. The neurotransmitter inactivation
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can take place in two ways: 1) an enzymatic modification of the molecule

“in the synaptic cleft or 2) transmitter uptake by the nerve ending. (Fig. 1).

IDENTIFICATION OF NEUROTRANSMITTERS.
Two approaches have been clasically applied to the study of neuro-
transmitter substances: the physiological point of view and the neurochemical
one. From these studies arise the criteria for identification of neuro-

transmitters. (17, 18, 24).

1. Physiological Criteria.
1.1 Changes in the neuronal excitability.

A putative neurotransmitter must modify the neuronal excitability.
This change in excitability may be due to an increase or an decrease in the
neuronal firing or in the membrane potential. (18, 24).

1.2 ldentity of Action.

When a putative neurotransmitter is applied to a neuronal
membrane it must mimic the response of the neurone to the stimulation of the
respective pathway. That is, it should lead to a specific postsynaptic
response similar to that elicited by the release of the natural neuro-
transmitter. (18, 24).

1.3 Specificity of the postsynaptic receptor.

The action of the putative neurotransmitter on the postsynaptic
membrane must be enhanced by agonists of the natural transmitter or
inhibited by the antagonists agents. (18, 24).

2. Neurochemical Criteria

2.1 Localization at the nerve ending.

t L
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The postulated neurotransmitter must be naturally present at
the nerve ending.

2.2 Synthesis and storage at the nerve endings

The synaptic terminal must have the biochemical machinery
to synthesize and store the neurotransmitter. It is known for well established
neurotransmitters that they can be synthesized either in the nerve ending or
in the cell body and then transported to the nerve terminal through the
axoplasmic flow, At the nerve ending the neurotransmitter may be stored in
the synaptic vesicles or in a soluble pool. (13, 21).

2.3 Calcium-dependent release from the nerve ending,

The postulated neurotransmitter must be released in a calcium-
dependent manner fror nerve endings when a stimulus that mimic the action
potential is given. This criteria is perhaps one of the most critical to
postulate a substance as a neurotransmitter. (8, 17).

2.4 Specific postsynaptic receptor

The interaction of the neurotransmitter with its postsynaptic
receptor must be specific. The agonist and antagonist agents of the
natural transmitter must displace or inhibit the binding of the putative
neurotransmitter to its receptor, respectively. (7, 22).

2.5 Neurotransmitter inactivation.

A specific mechanism to terminate the action of the neuro-
transmitter must exist at the synapse. Two systems for neurotransmitter
inactivation have been described. The first is related with an enzymatic
system in the synaptic cleft that changes the chemical nature of the
neurotransmitter to make it ineffective. The second and more common system

for neurotransmitter remotion is a specific high affinity transport system
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in the membrane of the nerve ending that is able to accumulate neurotransmitter
from the environment. This transport system requires sodium ions and it

has also been demonstrated in glial cells. (8,11,14,17).

IDENTIFICATION OF NEUROTRANSMITTERS AT SPECIFIC SYNAPSES

Regarding the criteria mentioned above a large number of molecules can
be listed as neurotransmitters in the vertebrate's nervous system. However,
there are little information on the identification of neurotransmitters
at specific nerve endings. Glutamic acid has been proposed as the
neurotrar-mitter of the granule cells in the cerebellum, (4,9,20), in
the lateral olfactory tract of the olfactory bulb (10,27) and at
synapses between the enthorinal cortex and the pyramidal cells of the
hippocampus (16,19); GABA has been described as the inhibitory transmitter
for some interneurones and the Purkinje cells of the cerebellar cortex
(23,26). However, no attempt has been made for relating the control of
synaptic transmission with specific functions of the nervous system.

Since the optic tectum of Amphibia has been studied from anatomical
and physiological points of view and its role on the control of the
visuo-motor coordination is well known, it offers an excellent mode]
to study the participation of neurotransmitters on the control of specific
functions of the nervous system. However, little is known regarding the
transmitters of the optic tectum. The aim of the present work is to apply
the most critical neurochemical criteria mentioned above in order to
identify the neurotransmitters in the optic tectum of Amphibia.

We use the criteria of the presence of a high affinity transport
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system and the calcium dependent release from nerve endings. The putative
neurotransmitters that we Tooked for in the tectal tissue were: glutamic
acid, aspartic acid, GABA, glycine, among the amino acids, and dopamine,
norepinephrine and serotonin for amines.

In the study we used partially isolated nerve endings from optic
tectum. It has been demonstrated that isolated nerve endings maintain the
basic physiological features of the nerve terminals “in situ" such as
glucose utilization, respiration, ATP synthesis, as well as those related
to the synaptic transmission: synthesis and storage of neurotransmitters,
membrane potential, neurotransmitter accumulation and calcium-dependent
release under depolarizing conditions (2,25).

Procedures for isolating crude preparations of nerve endings from
specific areas and whole brain have been described (5,25). For the uptake
and release experiments we applied the methodology that has been
described in similar studies in hippocampus and cerebellum (19,20). A

general scheme of these procedures is shown in Fig. 2.

RESULTS
1.1 Amino Acid Neurotransmitters.
Regarding the amino acid neurotransmitters we fourd that
GABA and glycine both inhibitory transmitters in the central nervous system
of vertebrates, are rapidly accumulated by tectal nerve endings; however
it was observed that GABA was mostly taken up through a sodium-dependent
transport system whereas glycine was accumulated by two different mechanisms,

one of which is sodium-dependent and that may resemble that related to
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neurotransmitter remotion, and a second one that showed to be sodium-
independent. (Table I).

In contrast to GABA and glycine, aspartic and glutamic acids, amino
acids postulated as excitatory transmitters in the vertebrate's central
nervous system, were less accumulated by tectal nerve endings. However,
it is important to note that glutamic acid uptake was mostly due to a
sodium-dependent mechanism. The sodium dependency for aspartic acid
accumulation was unclear (Table I).

1.2 Anine neurotransmitters
We looked for a high affinity transport system for dopamine
norepinephrine and serotonin, known inhibitory amines in the nervous system
of vertebrates. In contrast to amino acid transmitters, the uptake of
dopamine and norepinephrine was rather small, about two orders of
magnitud lower than that observed for GABA and glutamic acid. In the case of
serotonin, however, its accumulation by isolated nerve endings from tectal
tissue was rather similar to that described for amino acids. (Table II).
Regarding the sodium dependency of the amines transport, it was lesser
than that of glutamic acid or GABA and in the case of dopamine it was
rather small (Table II).
2. Release studi-s
2.1 Glutamic acid release
Glutamic acid was released from isolated nerve endings of the
tectal tissue in a calcium-dependent manner. Under unstimulated conditions
the transmitter substances are released spontaneously from the nerve
ending. In Fig. 1 it is shown the spontaneous or baseline efflux of

[14C]g1utamic acid from tectal nerve endings. When nerve endings were
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Table I

Uptake of Amino Acid Neurotransmitters by Tectal Nerve Endings

nmoles/mg protein/5 min

Total Activity

GABA 5.98 * 0.57
(9)

Glycine 5.35 * 0.61
(7)

Glutamic acid 0.94 * 0.07
(9)

Aspartic acid 1.26 * 0.15
(3)

Uptake of Amine Neurotransmitters by

Activity in
Nat*-free medium

0.78 ¢ 0.07
(9)

2.02 ¥ 0.33
(7)

0.15 * 0.00
(9)

0.58 ¥ 0.08
(3)

Table I

pmoles/mg protein/5 min

Total Activity

Norepinephrine 21.5 ¥ 4.8
(5)

Dopamine 2.61 *0.32
(8)

Serotonin 2580 * 460
(5)

Activity in
Na*-free medium

9.48 + 1,34
(5)

1.55 1 0.26
(7)

1200 + 330
{5)

Na*-dependent
uptake (% total)

87.0

62.3

84.0

54.0

Tectal Nerve Endings

Na+-dependent
uptake (% total)

56

40.7

53.5

LeAopueg

99

LeAOpUeS

-

S S
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stimulated with depolarizing agents that mimic the action potential
(56 mM KC1 or veratrine) in the presence of calcium ions,a two fold
increase in efflux was obtained. In addition, when calcium ions were
removed from the incubation medium, glutamic acid efflux decreased about
50%. (Fig. 3).
2.2 GABA Release

In contrast to glutamic acid, GABA was released from tectal
nerve endings in a calcium-independent manner. The efflux of GABA was
increased two folds in relation to the baseline efflux after stimulation
with 56 mM KC1, however, this efflux was unchanged after the removal

of calcium ions from the incubation medium. (Fig. 4).

DISCUSSION

The rate of amino acid neurotransmitters efflux observed in the
isolated nerve endings from frog tectal tissue are similar to those
reported for these amino acids in other areas from the nervous system in
similar preparations and to those observed in the pigeon tectum. (3,12,
19-21). Thus it seems that the high affinity transport system for
glutamic acid, GABA and glycine observed in the frog's optic tectum
has the same characteristics than those reported for well established
reurotransmitters: the requirement of sodium ions and the high transport
activity at very low amino acid concentration. (3,8,12,20,21) Thus, it
can be suggested that this transport system for glutamic acid, GABA and
glycine may be related to the removal of neurotransmitter from the

synaptic cleft in the tectum (14).
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The role of amines in the synaptic transmission of the pigeon optic
tectum has been poorly studied. Both dopamine and serotonin are accumulated
by isolated nerve endings from the pigeon tectum; serotonin is taken up
by an high affinity system whereas dopamine is accumulated by a low affinity
transport mechanism. A transport system for norepinephrine has not been
observed in the pigeon optic tectum (3,12). Regarding the results mentioned
in this paper we may suggest that only serotonin may have an important
role on the synaptic transmission of the tectum tissue. However, it is
necessary to study other paramaters in order to confirm this possibility.

We used the calcium-dependent test as a second criteria to study
the possible role of different substances as neurotransmitters in the
frog optic tectum. Qur results showed that glutamic acid is released
in a calcium-dependent manner, while GABA release is calcium-independent.
These results strongly suggest that glutamic acid may play a role as
a neurotransmitter in the frog optic tectum, while the role of GABA

is still unclear.
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vesicles

Xa enzymatic modification

» Change in membrane permeability
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Postsynaptic membrane

Fig. 1. Events during chemical synaptic transmission

1) An action potential arrives at the nerve ending; 2) the voltage-
sensitive calcium channels are opened and calcium ions enter to
the nerve ending; 3) the increased calcium concentration triggers
transmitter release; 4) transmitter molecules diffuse across the synaptic
cleft towards the postsynaptic membrane; 5) transmitter molecules bind
to the postsynaptic receptor; 6) the membrane permeability to Na, C1
or K ions changes; 7) th: neurotransmitter molecules are removed from the
synaptic cleft either by an enzymatic system “in situ" or accumulation by

the nerve ending.
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Methodology

Isolated Nerve endings from tectum.

Uptake experiments.

Determine :

Amount of Neurotransmitter
token up in a Nat-

(o]
- Ky @ dependent manner.
(¢} NTO
0 o o0

(Radiolabeled aminoacids or amines)

Release experiments.

a) Uptake of Putative Neurotransmitter.

b) Determine .

% of Total Neurotransmitter

in the preparation that is released

under conditions that mimic

physiological transmission .

Fig. 2. General procedure for the uptake and release experiments. Methods
have been described earlier (see refs. 19 and 20).
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% [ 3H ] GABA Effiux / 30 sec.

GABA Efflux from tectal
nerve endings
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Fig. 4. [3H]GABA efflux from tectal nerve endings.
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