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CHAPTER 1
INTRODUCTION

1.1 Description and Intent

This report is intended to familiarize members of the Laboratory for Perceptual
Robotics (LPR) at the University of Massachusetts at Amherst with different robot
programming languages. It is meant to provide insight into desirable characteristics of
robot programming languages (RPL’s) in order to facilitate future development of our
own software environment. This report examines three of the more advanced
. languages, each designed for use with a particular system, and extracts the unusual
features, good qualities, and shortcomings of each.

Chapters II through IV are dedicated to AL, VAL and AML, respectively. A
discussion of robot programming languages without regard to the robots they control
would be futile, since anatomically distinct robots have different programming
requirements. Therefore, an overview of the corresponding robot systems is given. The
intended or most suitable applications of each are discussed. Syntactic characteristics
are discussed, including the data structures provided, the conditional and looping
constructs provided, and the ability to modularize a program into functional units. A
section on manipulation encompasses position feedback, the “teaching” of positions in
conjunction with manual control, actual motion control, and motion with sensing.

Chapter V encapsulates the similarities and differences of the three languages.
Since FORTH is the low-level language we are presently using, we will examine its
features. However, because it is not a robotics language per se, it has not been
included in the comparison of the other three languages. Chapter VI is an overview
of FORTH’s qualities as a general language. Chapter VII discusses the current state
of the Laboratory for Perceptual Robotics, the research being done in dynamic sensing
and control, the use of FORTH as a base language for our proposed Perceptual
Robotics Language, and the design philosophy of this language. Finally, this chapter
defines possible elements of our language.



The intention here is not to reproduce the robotics languages in full, and the
reader is assumed to have some familiarity with other high-level programming
languages.

12 Terminology

We distinguish programming “implicitly” from programming “explicitly.”
Programming implicitly entails expressing robot actions with respect to a known and
modelled environment, where the model is adjusted to any changes in the
environment. A specific position and orientation may be referenced by name.
Programming explicitly means specifying movement in terms of explicit locations in
space [Nevins and Whitney, 1979].

The world coordinate frame (for a non-mobile robot) is a fixed reference
cartesian coordinate frame. World coordinates indicate absolute position within a
workspace. Joint coordinates specify the position of the manipulator in terms of the
joint angles between successive links of an arm relative to the base of the robot. It is
difficult to use joint coordinates, which depend on the kinematics of the arm and end
effector.

A transformation is a mathematical quantity specifying a translation and a
rotation. A transformation can be interpreted as an alternative coordinate frame in
which to represent objects, including the manipulator. The position and orientation of
the end effector comprise a tool coordinate frame.

Paul [1981] presents a thorough discussion of the mathematical manipulation of

transformations and frames.



I1.1 AL System Overview

1111 The Scheinman Arm

AL, or Automation Language, was developed by a group at the Stanford
Artificial Intelligence Laboratory (SAIL) for use with two model Scheinman arms.
The Stanford Scheinman arm is a six degree of freedom manipulator, and has 5
revolute joints and one linear joint (Figure 1). The end-effector is a two-fingered,
parallel jaw gripper. To control the arm and run the AL system the power of a
minicomputer is needed. A PDP-KL10 is used for compilation and loading, and a
PDP-11/45 is used for execution.

Figure 1. Kinematic Structure of the Stanford Schelnman Arm
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I1.12 General Language Characteristics

The most developed version of AL is a compiled language. During compilation
AL uses planned values as a database on which trajectory calculations are made.
Trajectories are modified later when the actual execution deviates from the planned
execution. This design was chosen because the computational load involved in
calculating trajectories was too much for the AL system to handle at runtime.
However, now it is realized that with current improvements in hardware and with
arm-servo software developments trajectories can be computed in real time. Very
recently an interpreter has been built for the AL system.

AL is what is often called an implicit robot language (see Introduction). AL
movements are in terms of grasped objects specified by coordinate transformations,
and a world model is updated with each object location change.

All movements in AL are joint-interpolated. The joints are moved
simultaneously, the speed of each joint being controlled so that all reach their end
configuration at the same time. The time it takes for a movement is the maximum
time required by any joint, unless a greater duration is specified. Joint-interpolated
motion has the disadvantage that the path of the tool tip between points cannot be
explicitly controlled, and caution must be used.

The force and torque (or moment) of the arm can be monitored and controlled
in the AL system. One can also specify the duration and speed of motions.

AL permits the control of parallel processes by allowing the flow of control of
the program to be distributed, which allows certain operations to be performed
simultaneously (e.g., simultaneous movement of different manipulators), after which the

various processes merge back together. Synchronization primitives are also provided.

I1.1.3 Dynamic Model of the Robot Environment
11.13.1 Construction Using POINTY

The POINTY system may be used to aid in the construction of a world model
description for AL programs. Use of the POINTY language involves manual control
of the manipulator. A deformable pointer attached to the end effector is used to

coordinatize features of interest on objects in the environment. (Calibration
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techniques are used to acquire the displacement of the end of the tip from the
gripper. The pointer is sufficiently rigid so as not to deform under unwarranted
circumstances.) The positions and orientations are recorded as frames, and affixment
properties (described in the next section) are specified. For further discussion of the
POINTY system, see [Goldman and Mujtaba, 1979).

I1.132 Updating the World Model

An unusual feature of AL is its affixment capability. Affixment is a means to
define relationships between various features of an object and between separate objects
that are in contact. Due to the high emphasis the AL system places on the moving
and orientation of objects (since it is an implicit language), the AFFIX and UNFIX
statements comprise a very valuable programming construct. They provide a means by
which the world model can be updated independently of specific knowledge of each
object transformation involved.

One can affix either RIGIDLY or NONRIGIDLY. With rigid affixment, when
either frame changa,b the other is changed so that the same relationship exists
between them. In the nonrigid case, the relationship between them would be
redefined. This is easily understood if one considers a simple case. Nonrigid
affixment exists between a cup and a saucer. The cup moves with the saucer but not |

vice versa.

After an object has been affixed to the manipulator the user can concentrate
on where objects are in relation to one another, and can disregard the control 'of the
manipulator. The user can specify the desired position and orientation of the object,
‘and AL will work out what the arm has to do to achieve this goal.

12 AL Data Structures

I12.1 Data_Types

AL provides a large number of data types, most of which could be built in
other structured languages using their respective primitives, but whose preexistence is a

considerable convenience.
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The AL type SCALAR is a floating point number. However, one has the option
to give the scalar a dimension of time, distance, angle or force. A dimensioned scalar
must be explicitly associated with an appropriate dimensional unit (either seconds,
inches, degrees, centimeters, ounces, pounds, grams or radians). This concreteness is due
to the planning and location tracking design of AL, and dictates careful programming.

Dimensioned‘ variables are used in the same manner as scalar variables.
However, AL checks for conflicting units when pérforming addition, subtraction and
assignment. Multiplication and division operations do not (if there is no assignment)
require an exact match. 'In this way, intermediate results may be of a type not
declared. One can use a DIMENSION statement to define new dimensions, and use
macros to define new dimensional units (such as feet).

AL’s VECTORs, essentially triples of scalars, may be manipulated using firmware
cross product and dot product operations. The vectors xhatyhatzhat, and nilvect are
predefined as (1,0,0), (0,1,0), (0,0,1) and (0,0,0) respectively. A ROTATION is a
direction vector and an angle to indicate the amount of rotation about this vector, in

the form of a 3x3 matrix.

A FRAME describes the position and orientation of an object. It consists of a
vector specifying the location of the origin and a rotation specifying the orientation of
the axes. TRANSes are used to transform frames and vectors from one coordinate
system to another. Like frames they consist of a vector and a rotation.

Arrays of all algebraic data types (SCALAR, VECTOR, TRANS, ROT, FRAME)
may be defined, with the restriction that any one array must be homogeneous.

There are several predefined constants and variables in AL. In addition to the

vectors mentioned above, there are the following:

barm = location of the blue arm

yarm = location of the yellow arm

bhand = distance between fingers of blue arm
yhand = distance between fingers of yellow arm
bpark = rest position of blue arm

ypark = rest position of yellow arm

The first four are automatically updated variables, while bpark and ypark are

constants.
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122 Declaring and Modifying Variables

1122.1 Formats

There is no explicit limit to the length of AL variables. The type of a variable
in AL must be stated before it is used. The declaration statement used to define the
dimension and type of each variable has the syntax: <dimension> <data type>
<variable-list>. Array declarations are of the form: <dimension> <data type> ARRAY
<variable-list>.

AL assignment is done by means of a left arrow, as in somevar <- someexp.
11222 Examples Using Vectors, Rotations, Frames and Transformations

To construct a vector in the reference coordinate frame which has the same
orientation as a vector in some frame, such as xhat in say frame-I, the with. respect to
operator WRT is used and one writes vect <- xhat WRT frame-1I.

The following few examples illustrate the use of vectors, rotations, frames and
transformations:

ROT rot-1, rot-2, rot-3;
VECTOR vect-I;

FRAME a-frame, b-frame;
TRANS trans-I, trans-2;

rot-1 <- ROT(zhat, 60 * deg);

rot-2 <- ROT(yhat, 90 * deg);

rot-3 <- rot2 * rot-I;

=> A rotation is made of 60 degrees around the z axis and then 90
degrees about the original y. A rotation of 90 degrees about y
and then 60 degrees about the new z axis will produce the same
result. Any number of rotations can be combined in this manner.

aframe <- FRAME( ROT(zhat, 90 * deg), 3 * yhat * inches);

=> a-frame is displaced 3 inches from the reference frame of the robot
in the Y direction. It’s coordinate system is rotated 90 degrees
around the Z axis of the reference frame, so that the new X axis
points in the direction of the reference Y axis.

vect-l <- a-frame * (zhat * inches);
=> this is equal to VECTOR(03,]).

trans-1 <- TRANS( ROT(xhat, 20 * deg), 2 * zhat * inches);
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vect-2 <- trans-I * yhat * inches;
=> trans-1 rotates yhat 20 degrees about the X axis, and then
translates it by 2 inches along Z.

trans-2 <- a-frame -> b-frame
=> aframe * trans-2 = b-frame This computes the
transformation which brings one from aframe to bframe.

Any number of transformations may be multiplied. The order of interpretation
is the same as for rotations — that is, ordering from right to left signifies performing
all operations (rotations and translations) with respect to the reference coordinate
frame, while ordering from left to right signifies performing all operations with respect

to the newly derived frames.

113 AL Program Structure and Non-Motion Control

AL uses ALGOL-like control and block structures. AL programs are organized
into BEGIN-END blocks (COBEGIN-COEND for parallel processing).

I1.3.1 Modules: Procedures and Macros

One feature of AL, which is made possible by its compilation phase, is that
macros with any number of parameters may be substituted for text. Macros can be
constructed to serve the same purpose as a function or a procedure, and save time at
execution. They provide the programmer with a good facility for developing coherent
English-like task specifications.

An AL macro is defined by DEFINE <macro-id> <parameters> =
<body-of -macro>. The body of the macro is the text to be substituted whenever
<macro-id> is used in the program.

AL programs may be modularized by procedures, which have the format:

type PROCEDURE name (opt-param-list);

BEGIN
body-of -procedure
END

Only if the procedure is to serve as a function and return a result as its value



-ls.

should a type precede the declaration, and in this case RETURN value would be
included in the body of the procedure.

Procedure calls may appear anywhere an expression might, and may also be
recursive. The implications of this are discussed in Chapter V.

I1.3.2 Conditional and. Looping Constructs

A critical programming technique is the implementation of conditional
expressions to make computational and executional decisions. AL uses IF.THEN
statements and also supports the IF.THEN.ELSE extension.

AL has the conventional WHILE.DO and DO.UNTIL (REPEAT.UNTIL)
expressions of other high level languages. A FOR loop in AL has the form FOR
svar <- s-expl STEP s-exp2 UNTIL s-exp3 DO statement, where svar is some SCALAR
variable and the s-exp’s are scalar expressions of the same dimension. The value of
the variable is initially s-expl. It is incremented after each execution by the step
s-exp2, and looping ends when it exceeds s-exp3.

Another convenient structure present in AL is the CASE statement. The AL
CASE statement has two forms :

CASE s-exp of
BEGIN
statement 0;
statement 1;
statement n;
END
and
CASE s-exp OF
BEGIN
c0 statement;
cl statement;
cn statement;

ELSE statement
7 END

In both versions the scalar expression is evaluated and depending on its integer part
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(truncation) one of the n statements is executed. In the first version the value is the
number of the statement executed, and if this value is not between 0 and n an error
results. Any statement may be null, and may be a series of statements enclosed by a
BEGIN-END pair. In the second version, the integer value is matched with one of
the scalar constant labels (there may be more than one scalar constant labelling each
statement) or with the ELSE statement if there is no match. When no ELSE is used
and the index value is not present an error results. While the AL CASE statement is
convenient (and VAL and AML have no such provision), it is limited in that the

indexing and labelling variables may be of type integer only.

1133 Terminating Clauses

AL’s PAUSE statement, used in the form PAUSE time, results in a suspension of
execution for the time specified. Two other statements may be used to terminate an
executing motion. STOP dev stops the device specified, and ABORT list stops the
motion of all devices and prints out the elements of the (optional) list. This list may

contain any number of variables, expressions or character strings. ‘

These statements are useful when doing condition monitoring, which will be

discussed in the next section.

1.4 Manipulation

I1.4.1 Basic Motion Commands

The basic motion statement in AL has the following form : MOVE frame TO
endpos <modifying clauses>. frame can be one of the system’s two manipulators, or
a frame affixed to an arm. In the second case the relation between the frame and
the arm given by the affixment chain connecting them will be used so the motion
results in a move to endpos. Various clauses may be used to influence a motion.
Differential or relative motions may be specified by using a grinch sign ( x ), which
represents the current position of the manipulator, in a statement such as MOVE arm
TO x - 2 * zhat * inches;. The execution of this statement causes the specified arm to
be displaced two inches from its current position along the negative z axis.
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The addition of a duration clause to the basic MOVE statement, WITH
DURATION = 4 * seconds for example, will cause the motion to be performed over a
time interval of 4 seconds. When performing a multiple segment move the
intermediate frames may be specified by means of a VIA clause, such as VIA frame-1,
frame-2 .. frame-n. Velocity at an intermediate point and the duration from the
previous point to this point may also be specified - ie., VIA frame WHERE
VELOCITY = v, DURATION = n. Ia this instance only one frame may be specified,
and one of the modifying clauses may be absent and they may be in apy order. v
must be a velocity vector and n a time scalar.

One can also specify deproach and approach points in AL. These points are
associated with the trajectory for the departure of the arm from the current position
or its approach to a destination location. Unlike VIA, these points are in relation to
the initial or the destination coordinate frames. The clauses are WITH DEPARTURE =
exp and WITH APPROACH = exp. exp may be of type frame, vector or scalar. If of
type frame the deproach point is specified by fr*exp, where fr is the destination
frame if using an APPROACH clause and the current position if using a DEPARTURE
clause. Similarly, if exp is a vector the deproach point is specified by fr + exp WRT
Sfr, and if scalar it is given by fr + (exp*zhat) WRT fr, where zhat is the component
along the z axis. When a clause is replaced by the predeclared macro DIRECTLY, the
use of a deproach point is suppressed.

.42 Condition Monitoring and Compliance

In AL it is possible to control torques and forces. To avoid incompatible
requests the force components must be perpendicular. A force frame must be
specified, and the directions of the applied forces and moments must be aligned with
one of the axes of this current force coordinate system. One must specify whether the
force frame is defined relative to the tool or world coordinate system. Consider the

following clauses:

WITH FORCE = sval ALONG axis-vector OF frame IN coord-sys

WITH TORQUE = sval ABOUT axis-vector OF frame IN coord-sys
and

WITH FORCE-FRAME = frame IN coord-sys

WITH FORCE = sval ALONG axis-vector

WITH TORQUE = sval ABOUT axis-vector
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and
WITH FORCE-FRAME = frame IN coord-sys
WITH FORCE(axis-vector) = sval
WITH TORQUE(axis-vector) = sval

where:  axis-vector = xhat, yhat or 2?:at as defined previously
coord-sys = HAND or WORLD (WORLD is default)
sval = the magnitude of the force
frame = the orientation of the axes of the fcrce frame

In the first group the force frame in all of the clauses must be the same. Only one
force frame may be specified per move.

- Force sensing, events, duration and various boolean expressions of variables can
be explicitly monitored by AL. The general statement for this is ON condition DO
action, where action is any statement or block. When a motion starts monitoring
begins, and ceases when the motion does. If triggered the monitor is disabled, and
remains disabled unless ENABLE monitor is added to the condition monitor clause.
Similarly, DISABLE monitor may be used. When a DEFER directly precedes a
condition monitor, the monitor is initially disabled. A sample of code in which a
condition monitor is initially disabled, and then after three seconds is enabled is:

MOVE barm TO end-loc
test: DEFER ON FORCE(zhat) > 10 * oz DO STOP
ON DURATION > 3 * sec DO ENABLE test
[Goldman and Mujtaba, p. 58]

11.43 Gripper Control

The gripper can be controlled in three ways. OPEN hand TO sval and CLOSE
hand TO sval moves the gripper to the opening sval. CENTER arm causes the
gripper sides to move in slowly until one of the touch sensors triggers, indicating
contact with the object has been made. At this point the arm will move till both
touch sensors are activated while maintaining the position of the side that is in
contact. Then the new position can be read to determine the location of the object.
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144 Simultaneous Motion in AL

The primary purpose of the COBEGIN-COEND block in AL is to enable
coordinated motion of more than one manipulator (two are used at Stanford). Also,
computations may be performed when moving an arm, to save time. Statements
enclosed by a COBEGIN-COEND share program control. The programmer must make
certain that the processes being executed in parallel do not conflict, the most obvious

case of this being when they access the same arm at the same time.

Parallel processes may be scheduled and coordinated using the SIGNAL and
WAIT statements as follows. A count is kept of how many times each process has
béen signalled. SIGNAL event increments the count for the event, and if the new
count is less than or equal to 0 a process waiting for the event to occur is freed for
execution. WAIT event decrements the count associated with the event, and if the
resulting count is negative the process issuing the wait is held until another process
signals “the event. If the count is 0 or positive there is no wait. Consider the
following simple example:

BEGIN

EVENT ready-receive, dropped; .
FRAME object, drop-position, mug, catch-position, dest;

COBEGIN

BEGIN
MOVE yarm TO object;
CENTER yarm; (yarm grasps object)
AFFIX object TO yarm;
MOVE object TO drop-position; (takes object to release position)
WAIT ready-receive; (waits until barm in catch position)
OPEN yhand TO 3.0%inches; (releases object)
SIGNAL dropped; A (signals object has been dropped)

END

BEGIN
MOVE barm TO mug;
CENTER barm; (barm grasps mug)
AFFIX mug TO barm; .
MOVE mug TO catch-position; (moves mug to catch position)
SIGNAL ready-receive; (signals ready)
WAIT dropped; (waits until object dropped)
MOVE barm TO dest;

END;

COEND;

END;
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5 Summary

The AL langvage has compiler-type versions and a fairly recent interpreter
version. AL is a robust language. We can look towards AL for its parallel
processing features, English language-like form, its abuondance of data types and
non-motion control constructs, and its monitoring capabilities. AL provides a large
number of data types, most of which could be built in other structured languages
using their respective primitives.

AL movements are in terms of grasped objects specificd by coordinate
transformations, and a world model is updated with each object location change. An
onusual feature of AL is its affixment capability. Affixment is a means to define
relationships between various features of an object and between separate objects that
are in contact. Due to the high emphasis the AL system places on the moving and
orientation of objects, the AFFIX and UNFIX statements comprise a very valuable
programming construct. They provide a means by which the world mode! can be
vpdated independent of specific knowledge of each object transformation involved.

AL is structured to enable coordinated motion of more than ene manipulator
(two are used at Stanford). Computations may be performed in parallel with
manipulation also to save time. Statements enclosed by a COBEGIN-CGEND share
program control. The programmer must make certain that the processes being
executed in parallel do not conflict, the most obvious case of this being when they
access the same arm at the same time. Parallel processes may be scheduled and
coordinated using general semaphore-type SIGNAL and WAIT commands.

AL is one of the few robot langusges in which one can specify compliant
moves. The force and torque (or moment) of the arm can be monitored and
controlled in the AL system. One can also specify the doration and speed of motions.

Bolles et al. [1974] present specifications for the initial design of the AL
language, together with the reasoning involved when making design choices. The AL
user’s manual should be consulted for a more complete syntactic description [Goldman
and Mujtaba, 1979).
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CHAPTER II
VAL

III.1 VAL System Overview

III.1.1 Unimation Puma Robot Series

The VAL language was designed for a revolute arm, the Unimation PUMA
robot series. The robots have 6 rotational axes. A prototype is shown in Figure 2.
VAL may be run on a microcomputer or small minicomputer.

Figure 2. Kinematic Structure of the Unimaticn FPema 663 Robot



II1.12 General Language Characteristics

VAL is an interpretive language and allows for much user interaction during
program execution. One can write to or read from the disk, edit user programs, and
display, define and modify variables while an application is running.

The VAL system has two schemes for controlling a path between two points.
In addition to the joint-interpolated motion provided by the AL system, VAL also
allows for straight line paths. VAL enables multiple segment trajectories in the same
manner as the AL system. Unlike the AL system, VAL does not allow a user to
specify the parameters of a trajectory such as speed or time, except in the case of a
single joint move. VAL offers no means of performing compliant motion.

I1.2 Data Structures

2.1 Data Types

In addition to an integer variable, VAL supports three types of location
variables — transformations, compound transformations and precision points. A
precision point is a composite of all of the robot’s joint variables. A transformation
is a composite of the location and orientation in space of the robot with respect to a
zero location, in the form X, ¥, Z, 0, A, T. X, Y and Z specify the position of a
point centrally located between the fingers of the gripper in world coordinates, and O,
A and T specify the orientation of the hand (in degrees).

Compound transformations allow one to specify the location and orientation of
the end effector relative to the location and orientation specified by other
transformations. For instance, if CUP is the name of a transformation specifying the
location of a cup relative to the reference frame of the robot, and OBJECT is the
relative transformation for the location of the object relative to the cup, then
CUP:OBJECT defines the location of the object relative to the reference frame of the
robot. It is possible to string together several relative transformations in this manner.
Hence, in the above instance, if the object were to be grasped at a point GRASP
(defined relative to the location of OBJECT), the statement MOVE
CUP:OBJECT :GRASP moves the gripper to the grasp position.
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IMI.22 Declaring and Modifying Variables

VAL location variables and integer variables are declared upon their first
assignment within the program body, and are limited to 6 characters. An integer
assignment is performed by the instruction SETI imtvar-I = intvar-2 op intvar-3, where
the last two terms are optional.

There are several ways to define locations in VAL. SET ftrans-I = trans-2
[trans-3).[trans-n] and SET prec-poimt-1 = prec-point-2 are two basic methods. The
command POINT locvar] = locvar2 sets location variable 1 to the value of location
variable 2, where, as discussed above, a location variable can be a precision point, a
transformation, or a compound transformation. If the second argument is not
included the value is not changed unless it has not been defined, in which case it
gets set to a default value. DPOINT locvar-1, locvar-2 .. locvar-n deletes some number
of location variables, though not compound transformations. HERE locvar defines the

value of a location variable to be equal to the current robot location.

The VAL instruction SHIFT trans BY dxdyd:z modifies the x, y and z
components (all need not be specified) of the indicated transformation. TOOL
transformation sets the value of the tool transformation to transformation. INVERSE |
trans-1 = trans-2[arans-3 ... trans-n] sets the value of frans-I to the matrix inverse of
the right hand side. FRAME trans-1 = trans-2, trans-3, trans<4 assigns the value to
trans-I which describes the relationship of the second frame to that of the robot.
This instruction is most often used to define a ‘base” transformation for relative
locations.

13 VAL Program Structure and Non-Motion Control

I11.3.1 Modules

In VAL, a program is merely a sequence of instructions stored in a file.
There is no program header and the name of the program is the file name. A
VAL “subroutine” is such a program. VAL allows for up to ten mested program
calls but no passing of parameters. The RETURN statement returns control to the
calling program.
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A VAL subroutine program is called using the statement GOSUB program.
Within the subroutine a RETURN skip-count instruction must be executed to return
control to the calling program. The skip-count signifies that execution is to be
continued at (skipcount + 1) program steps following the expression which invoked

the subroutine,

11132 Conditional and Looping Constructs

VAL supports the IF.THEN conditional. VAL programs branch solely by way
of the (primitive) GOTO statement, whose existence enhances the probability of
unstructured, hard to follow code, but when used properly is sufficient.

I1.3.3 Terminating Clauses

The execution of a VAL program is terminated by any one of three
instructions. PAUSE message terminates a program, displays the message (optional)
and allows execution to be continued if the user enters PROCEED.

The VAL HALT message unconditionally terminates program execution, and
displays any specified message, while STOP message will terminate execution unless the
program is set up for more than one run (as determined by the EXECUTE command)
in which case the program starts again at the beginning.

II1.4 Manipulation

1M1.4.1 Position Feedback

The WHERE command in VAL displays the current robot location in Cartesian
base or world coordinates, in joint variables, and also displays the current hand
location. HERE locvar defines the value of the location variable to be equal to the
current robot location, in joint variables if the location variable is a precision point,
and in world coordinates if it is a transformation.
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A series of positions may be recorded with a manual control unit by use of the
TEACH command. Then each time the RECORD button on the unit is pressed, the
value of a location variable is set to the position of the robot at that instant. The
location variable names created have consecutive subscripts. For instance, the
command TEACH POS! would cause the first recorded position to be stored in POSI,
the second in POS2, and so on until the RETURN button on the manual control unit
was pressed, terminating the session.

II14.3 Motion Control: VAL Motion Commands

MOVE location moves the robot to the location and orientation specified by
location. 1f the location name is followed by an exclamation point its value is set
(while the instruction is being entered) to the robot position and orientation at the
instant the MOVE instruction is completed by a <CR>. This calls for a
joint-interpolated motion, as does MOVET location, hand-opening. With the MOVET
instruction the hand opening is changed during the motion to hand-opening millimeters.
The two instructions for straight-line motion are MOVES location and MOVEST
location, hand-opening. In each instance the end effector -is moved along a straight
path and smoothly rotated to its final orientation. The MOVET instruction, like the
MOVE command, has a set option indicated by an exclamation point.

DRAW dxdydz moves the end effector along a straight line the specified offsets
from the current position.

APPRO location, distance moves the end effector to a displacement distance along
the tool z axis from the specified point. This instruction uses joint-interpolated
motion and has the location set option described for the MOVE command.

DEPAR distance moves the end effector the distance specifed along the current z
axis by joint-interpolation. =~ DEPARTS distance performs the same function using
straight-line motion.

The VAL command DRIVE ji, change, speed operates a single joint, changing
the joint variable by change units.
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VAL uses other motion commands to control its hand position. OPEN
hand-opening and CLOSE hand-opening open or close the hand during the next motion
sequence. The commands OPENI hand-opening and CLOSE! hand-opening open or
close the hand immediately. GRASP hand-opening, label checks to see if the final
opening is less than the specified amount. If so, the program branches to label.

1.5 Summary

VAL is typical of the earlier robotics languages, which tend to concentrate on
manipulation and ignore the problems of data processing. VAL is very uastructured
and hence it is difficolt to write programs of any size in it.

VAL is an interpretive language, and thus statements are execnted line by line.
There are several advantages to this. A menitor command may be used to execute a
single instruction. Thus, single moves can be made without kaving to execute a
one-step program. While a VAL program is running the user can display, defice and
modify variables.

VAL has only one non-metion program control statement other then its GOTO
and various terminating clauses. This in itseif severely undermines VAL If we
consider the several constructs offered by AL, AML 2and other structured

programming languages.

A thorough syntactic description of the VAL language is given in the VAL
user’s guide [Unimation, 1980].
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CHAPTER IV

IV.1 AML System Overview

IV.1.1 The IBM Robot System

A Manipulator Language (AML) is used to operate the IBM Robot System 7565
manipulators. The robots have three linear joints, three revolute joints, and a gripper.
The general configuration is sketched in Figure 3. The names of the joints on the
IBM robots are JX (x motion), JY (y motion), JZ (z motion), JR (roll joint), JP
(pitch joint), JW (yaw joint) and JG (gripper). The aggregate ARM is a conveniently
predefined composite of the six joints.

Figure 3. Kinematic Structore of the IBM 7565 Manipulator



IV.12 General Language Characteristics

AML is an interpretive language, and thus statements are executed line by line.
There are several advantages to this. A monitor command may be used to execute a
single instruction. Thus, single moves can be made without having to execute a
one-step program. An executing AML program must be interrupted to enter

commands interactively.

AML movements are specified in terms of explicit locations in space, and as yet
very little has been attempted with world modelling.

To move the arm one specifies the joints to be moved and the displacements in
inches or degrees, respectively. When a multiple joint move is specified,
joint-interpolated motion occurs. One can control the rate of acceleration, speed and
deceleration if desired. The IBM system is typically run on a minicomputer or

microcomputer.

IV.13 External Device Interface

AML and the IBM system have extensive sensory capabilities. -An interface is
provided so that semsory equipment for a particular application may be connected in
addition to the 6 built in force sensors or strain gauges in the gripper. When
developing an application, if the hardware is not yet available it can be simulated by
buttons on the control box. User defined sensors are treated in the same manner as

built in system sensors.

DEFIO defines logical sensors and drivers as subfields of 16-bit input and output
hardware registers in the system controller and returns integers that may be used to
refer to the entities defined. One bit input might be used for determining whether a
part is in position, or whether a tool is on or off. One bit output could be used to
turn the tool on or off. For more sophisticated tasks, multiple bit input or output (up
to 16 bits) can be used, for instance to count widgets or access digital encoders.

DEFIO is used as:
sensornum = DEFIO(iogroup jotypeformat bitnonbitsscale, offset)
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GIOf# | AML NAME | DESCRIPTION | S/1 ADDRESS
1 X feedback Al point 0
2 Y feedback Al point 1 LIO# | AML NAME | DESCRIPTION | GIO POINTER
3 Z feedback Al point 2 .
4 Roll feedback Al point 3 1000 | PLEDS Pendant LEDs 18
S Pitch feedback Al point & 1001 | LED Gripper LED . 17
6 Yaw feedback Al point § 1002 | SRT Right tip s.g. 8
7 Gripper feedback Al point 6 1003 | SRP | Right pinch s.g. 9
8 Right tip s.g. Al point 7 1004 | SRS Right Side s.g. 10
9 -| Right pinch s.g. Al point 8 1005 | SLT Left tip's.g. 11
10 Right side s.g. Al point 9 1006 | SLP Left pinch s.g. 12
1 Left tip s.g. Al point 10 1007 | SLs Left side s.g. 13
12 ~] Left pinch s.g. Al point 11 1008 System reserved 0
13 Left side s.g. Al point 12 1009 System reserved 0
14 Systen reserved Al point 13 1010 Systen reserved 0
15 system reserved Al point 14 1011 System reserved 0
16 System reserved Al point 1§ 1012 System reserved 0
17 Gripper LED 67 1013 System reserved 0
18 Pendant LEDs 4B 1014 System reserved (]
19 PB1 Pendant buttons 48 1015 System reserved 0
20 PB2 Pendant buttons .l 49 1016 User defined User defined
21 User DI 6C 1017 User defined User defined
22 User DI 6D . . -
23 User DI 4C
24 User DI 4D . . .
28 User DO 6E 1079 User defined User defined
26 User DO 6F
27 User DO 4E
28 User DO | 4F
Figure 4. Group IO Figure S. Logical YO

The parameters are:

iogroup = a group /o number (Figure 4)

iotype = input (0) or ouput (1)

format = option to treat fields as two’s complement or
unsigned (1 or 0)

bitno = bit number of field

nbits = field is n bits long

scale = scale number of degrees or radians

offset = offset from scale

DELIO(sensornum) voids a DEFIO reference. The user can optionally define
scale and offset factors that may be used to convert between hardware values (which
are all integers) and floating point numbers corresponding to engineering units. These
defined bits may be accessed by SENSIO. SENSIO is used to perform the input and
output of defined values, and is used as valueset = SENSIO(sensorset, type). The
parameter sensorset is the name of a specific DEFIO, and type specifies a datatype or
value to be used. For instance, suppose you want to simulate a feeder. First select a
button on the pendant box. Then use a DEFIO to define that button as the feeder
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input like DEFIO(190,10.]). The 19 signifies pendant button group 19 (Figure 4), 0
specifies input,' 1 specifies a two’s complement representation, the next 0 specifies we
are reading in bit 0, and 1 specifies the field is 1 bit long. Suppose the DEFIO
returns 1016 for a label (Figure 5). Then SENSIO(I0160) will read the appropriate
pendant button, and a O returned means the button was not pressed. To simulate
the feeder you would press button 1 on the pendant box and watch the application
fill the feeder. Sensor output is also easily accomplished. Further discussion of the
external device interface is beyond the scope of this report.

Sensors can be monitored so as to trigger the execution of a subroutine, or to
terminate a robot motion. This will be discussed in more detail in section IV.432

(Sensor- Monitoring).

IV.1.4 Gripper Sensing Capabilities

The sensory devices on the gripper provide for force feedback and object
location. Forces may be detected by the use of the strain gauges in the tips, insides

and outsides of the finéers.

If the fingertips push against an object the tip forces (SLT.SRT) increase. If a
weight is lifted the forces decrease, and the weight of the held object roughly equals
the absolute value of their sum. Weighing objects as they are moved could be quite
useful for a sorting process in an application.

When the gripper is closed on an object the readings for the pinch strain
gauges (SLPSRP) increase, and if the gripper is opened the readings become smaller.
If the gripper comes into contact with an object “behind” it the side readings
(SLS.SRS) increase, and if the gripper is moved into an object in front of it the side
readings decrease. There does exist slight cross-coupling between strain gauges, and in

certain instances it is desirable to measure the effects and compensate.

An LED sensor across the fingers of the gripper may be monitored to detect
the presence or absence of an object. When the beam is interrupted the sensor gives
a reading of ome, otherwise it returns 0. The LED is often used in calibration for
precise movements such as required in assembly, and IBM has developed a package of

calibration routines.
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IV2 Data Structures

IV2.1 Data Types

AML supports the data type aggregare. An aggregate, like an array, is a data
set in which each individual component is referenced by an integer subscnpt Unlike
the conventional array, however, an aggregate may have elements of different data
types, like a Pascal record.

In AML there are three basic variable types, INTEGER, REAL and STRING. A
STRING represents character strings enclosed in single quotes.

IV2.2 Declaring and Modifying Variables

When declaring a variable in AML one has the option of simultaneously
amgmng it an initial value, thus saving one assignment statement per declaration. This
value may be in the form of a constant expression, or an expression comprised of
previously defined variables. The data type of the expressed value determines the data
type of the variable. All variables must be declared before they can be referenced in
an expression.

AML variables can be declared with one of the two keywords NEW or STATIC.
In the main program, the treatment of variables based on either designation is the
same. If declared within a subroutine, however, the difference is important. In this
instance a NEW variable is defined upon each entry and the storage for it is cleared
upon each exit. Large variables or aggregates with several elements should be declared
as NEW whenever possible. A STATIC variable is declared upon the first call to the
subroutine and its value is not destroyed when the routine is exited, although the
name of the variable is detached from its allocated storage. The last value saved will
be available from one subroutine call to the next. This alleviates having to pass the
variable as a parameter, and keeps it local to the subroutine in which it is used. For
the examples presented in this section STATIC and NEW should be considered
interchangeable.
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A string variable is declared as follows. To assign it an initial value, a
declaration such as NAME: NEW STRING *SOMETHING” is used, where in this case
NAME would be defined as a string of length 9. To similarly declare this string
without giving it the initial value we would use NAME: NEW STRING(9).

A variable declared with VAR: NEW 50 would be of type REAL, and one
declared with VAR: NEW 5 would be of type INTEGER. To define but not initialize
the variables one would use VAR: NEW REAL or VAR: NEW INT respectively.

The equal sign serves as the assignment symbol in AML in the conventional

manner.

IV3 AML Program Structure and Non-Motion Control

IV3.1 Modules

AML allows for subroutine modules. The names of AML system subroutines
are reserved words and may not be redefined. The format for an AML subroutine
declaration is :

name: SUBR(opt-param-list);
body-of -subroutine
END;

No distinction is made between a call to a user subroutine and a system
subroutine (i.e., command) in AML. Therefore, with any extensions to AML (by way
of added subroutine modules) the regular command syntax is preserved. One can
access a subroutine from any point in the program or another subroutine as long as
its declaration precedes the call. A standard call is made by specifying the subroutine
name and any parameters (optional), in a form name(param-l, param-2, .. param-n).
Subroutines can serve as fuactions by including a RETURN statement within, which
returns a value to the caller. For instance, the call could be in a variable declaration
such as AVAR : NEW ASUB;, or in an assignment such as AVAR = ASUB;, where the
body of ASUB would contain a RETURN(val). Variables are accessible in the
subroutine in which they are declared and in all subroutines called by that subroutine.
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Normally when a subroutine is passed a parameter in AML the parameter is a
copy of the variable in the calling routine, so that the value is not changed in the
outside routine. In order to extend the effects of a parameter change in the called
routine to the calling routine, the parameter must be passed by reference, which
entails concatenating an exclamation point to the passed parameter. In this manner a
pointer to the storage location of the variable is passed rather than a copy of its
value, and because pointers use less storage this is more efficient.

The subroutines of AML may be recursive.

IV3.2 Conditional and ing Constructs

AML supports the IF.THEN statement and the IF.THEN.ELSE extension
provided by most structured high level programming languages. AML has the
conventional WHILE.DO and REPEAT.UNTIL expressions. In AML one can alter
variables within a WHILE.DO condition. A simple WHILE (I=I+1) LE NUM DO (LE
for “less than or equal to”) serves as a FOR loop. WHILE (I=I-1) GE NUM DO (GE
for ‘greater than or equal to”) is a reverse FOR loop in the sense that one can count
from an initial value down 10 a lesser value. Any positive or negative step value
may be constructed.

IV33 Terminating Clauses

The AML BREAK system subroutine, in the format BREAK(data-items), causes
program execution to be suspended and the data items to be displayed. During the
suspension one can enter any AML subroutine from the keyboard and can set any
values. To continue the program, RETURN; is entered.

IV.4 Manipulation

IV 4.1 Position Feedback

AML provides two ways to determine the position of the manipulator. QGOAL
is a function which returns the last joint destination issued, and QPOSITION returns
the actual position of the manipulator. QPOSITION should not be used in order to
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repeat an action because each move produces some error, especially if the moving of
objects is involved, and it would be desirable to move back to the commanded

position so that the error would not build up over several iterations.

IV4.2 Guiding

AML’s GUIDE system routine allows you to move the joints of the robot
manually with the control or pendant box. GUIDE returns the last commanded
position when finished. One can easily record a series of locations in an array
variable by calling GUIDE within a WHILE loop.

IV43 AML Motion Control
IV.43.1 Basic Motion Commands

The basic motion statements of AML are MOVE(joint, location),
MOVE(<joint-1joint-2,...joint-n>, <loc-1Joc-2,...loc-n>) or altemativ?ly MOVE(<joint-1,
joint-2,...joint-n>, common-loc) . The move statement should be used in every instance
where the location being moved to is known, or if that position can be calculated
from a base point - ie., MOVE(joint, QGOAL(joint) + displacement). As discussed
earlier a multiple-joint move will result in a joint-interpolated motion, in which the
case the joint with the furthest distance to travel from its current location becomes
the “controlling” joint.

The non-trivil MOVE statement has the form MOVE(jointsgoals,
monitors,<speed accelerationdeceleration,settle>). The user can control each phase of a
trajectory through parameters of the motion statement, or optionally by using the
global commands SPEED, ACCEL and DECEL. If settle is turned off (specified as 0)
the MOVE will not wait for the manipulator to settle so that it will just be in the
general vicinity of the goal. I will refrain from discussing motion with sensory
monitoring until the next section, where this will be discussed in detail.

The DMOVE command moves the joints an offset from their current positions,
and has the same general form as the MOVE instruction. This is useful if it is
desired to move a few inches away from a position for clearance. The AMOVE
instruction can be used to speed up a motion sequence. AMOVE acd MOVE use the
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same type of trajectory, but instead of waiting for a move to complete, AMOVE
returns so that the program can do other things while the motion finishes. One
example is to use AMOVE when points are stored in a file. The file can be read, an
AMOVE can be executed, and the next data point read. While the file is being
accessed the previous motion is being executed. If another AMOVE or MOVE is issued
before the first is finished, the system waits.

Two other useful motion statements exist. STOPMOVE is used to stop a motion
already in progress. Consider the following:

SMOVE: SUBR;
PARTEX : NEW STOPMOVE;
BREAK( ‘SUSPENSION OF MOVE’',EOL
‘ARM AT °,QPOSITION(ARM)EOL);
APPLY($AMOVE PARTEX);
END;

A monitor key could be tied to the above subroutine, so that pressing this key would
result in suspension of any move executing until the monitor RETURN key was
pressed.

STOPMOVE is like AMOVE in that it does not wait for the stopping process to
complete. If this is desired, it should be followed by a WAITMOVE.

IV.432 Sensor Monitoring

Motions can be influenced by sensory feedback using the MONITOR system
subroutine. MONITOR is used to initiate the sensory feedback and link motions or
subroutines to a monitor. MONITOR initiates reading of a specific semsor or set of
sensors at regular time intervals and returns a small integer or set of integers
labelling the monitors. A test condition triggers the monitor when a value is outside
user-specified limits. When the sensor condition specified occurs during a motion
linked to the MONITOR, the motion terminates and is considercd complete.

Three test conditions are available when monitoring sensors. “1° will trigger a
monitor if the sensor value is not within a given range, and “2° does so if the value
is within the range specified. Test condition ‘3" determines whether or not the sensor
value is within the limits specified relative to the initial value at the onmset of
monitoring. If a specified condition is met, any subroutine that is linked to a
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monitor will be executed, or any motion linked to a monitor will be terminated.

Consider the following simple case:
ZTOUCH: NEW MONITOR (<SLTSRT>,10,i0,,ADJUST");
MOVE(<JXJY>,<X(l)Y(I)>ZTOUCH);

The MOVE will be terminated and subroutine ADJUST executed whea the monitor
ZTOUCH is triggered, or when the tip forces are not within the limits specified
(roughly O to 10 grams).

The ENDMONITOR subroutine both stops the monitoring of a specific set of
monitors and clears the monitor indicator. QMONITOR returns -1 if a monitor has
been triggered and O if it is undefined or has pot been activated. To reset a monitor,
or reenable it after it has been activated, REMONITOR is used. Up to 16 monitors
may be accessed at one time by the four routines.



IVS Summary

AML’s greatest advantage is its ability to interact with external devices and
sensors. It is a well-structored, interpretive language and provides many of the control

constructs offered by high-level programming langaages.

To move the arm one specifies the joints to be moved and the displacements in
inches or degrees, depending on the type of joint. Whez a multiple joint move is
specified, joint-interpolated motion occurs. One can control the rate of acceleration,
speed and deceleration if desired.

AML and the IBM system have extensive sensory capabilities. An interface is
provided so that sensory equipment for a particular application may be connected in
addition to the 6 built in force sensors or strain gauges in the gripper. In developing
an application, hardware which is mot yet available may be simulated using switches
on the control box. User-defined sensors are treated in the same manner as built-in
system sensors. Sensors can be monitored so as to trigger the execution of a
subroutine, or to terminate a robet motion.

Meyer, Summers and Taylor [1982] describe important features of AML and
discuss the considerations invclved in its design. Example code for various applications
is illustrated. The AML user’s guide offers an explicit description of the language
and several programming examples [IBM, 1981].
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CHAPTER V
COMPARISONS

V.1 Interpreter vs, Compiler

VAL and AML are interpretive languages. An interpreter has just recently been
built for the AL system, although all previous versions of AL were compiler
languages.

Compiled programs execute faster than interpreted programs, but the difference
may be negligible even when aiming for real time response, as in most robotics
applications. The response time is more significantly dependent on the capacity of the

manipulator and the complexity of the manipulation.

One asset of compiled languages is that compilers provide for more thorough
syntactic error-checking, and errors may be detected in the compilation stage before a
program is run. However, interpreted languages provide on-line error detection and
usually on-line correction. For instance, VAL is very much an interactive language.
One can write to or read from the disk, edit user programs, and display, define and
modify variables while a program is executing. An executing AML program must be
interrupted and suspended to do these same things, but IBM has provided a very
good facility for debugging and “tracing” user programs.

V.2 Implicit vs. Explicit

As was discussed in the introduction, an implicit language has world-modelling
conventions, whereas in an explicit language any world-modelling is programmed by
the user. AL is a highly implicit robot language, and different facets of VAL may
be considered iffplicit or explicit. VAL does not provide a way to generate a world
model directly (like the POINTY extension of AL), and provides no means to
automatically update the model (affixment of frames). VAL does have coordinate
frame structures as a means to store positions and orientations of objects. The latest
release of the AML language provides for frame representations and homogeneous

transforms.
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Because of their complexity, implicit languages require much more computing
power than explicit languages. One major consideration in choosing or developing a
language is how much complexity is necessary or desired. This is dependent on the
application. For simple pick and place or playback operations an explicit language is
all that is needed. The modelling problem is examined more closely in the next
section.

V2.1 Models of the Environment

Proper use of the frames and transforms of AL is advantageous but may be
more than an unfamiliar user wishes to deal with, especially when programming a
simple task. However, for any complex operation some kind of implicit model is
fundamental. For instan<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>