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Abstract

The use of algebraic techniques in defining a neighborhood of functions
is particularly suited to testing for computation errors. Two possible
approaches are Howden's algebraic testing method and perturbation testing,
which in this paper is generalized to permit analysis of individual test
points rather than entire paths. These approaches are shown to be
mathematically equivalent when applied to a program's black-box output.
Perturbation testing, however, offers more flexibility in the choice of
potential errors to be investigated. A significant alternative offered by
perturbation testing is the ability to work in the static domain, choosing
test data to eliminate possible error terms in specific assignment and output

statements.



I. Introduction

A common approach in testing research has been the design of testing
strategies to detect all members of some class of errors. Even though the
type of errors in a given program are probably not known prior to testing,
various complementary strategies can then be employed to cover a variety of

error types.

A classification of errors which has proven useful is the division into
domain and computation errors. A domain error occurs when incorrect output is
generated due to executing a wrong path through the program [10]. A strategy
for detecting domain errors has been presented by Cohen and White [15], with
improvements suggested by Clarke, Hassell, and Richardson [3], but will not be

considered further here.

This paper is concermed with methods for detecting computation errors,
which occur when the correct path through the program is taken, but incorrect
output is generated. Howden has proposed an interesting approach to detecting
computation errors called “algebraic testing” [11,12]. An alternative
approach is perturbation testing [16,17], which centers on the idea of
deriving the set of functions which would yield the same test results as the
program, and choosing new test data to minimize the size of that set. In this
paper, the techniques of perturbation testing will be expanded to cover
computation errors, and the strong relationship between the algebraic and

perturbation testing methods will be explored.

II. Algebraic Testing

The key idea behind algebraic testing is the use of standard analysis
techniques for distinguishing among all functions in a given class, such as
the class of linear functions or polynomials of fixed degree [11,12]. For

example, it is well known that any n+l distinct points will distinguish all



degree n polynomials in ome variable. If one knew, therefore, that a given
program computed a degree n polynomial, and that the intended function of that
program was also a polynomial of degree m, then any n+l distinct test points

would suffice to completely test that program.

This technique can be extended to more elaborate programs. Howden cites
lesser known results which show that the class of multinomial functioms in k
variables with exponents less than t can be tested using tk points arranged in
a configuration called a “cascade set” [11,12]. 1In fact, it will be shown
later that algebraic testing is closely related to classical interpolation
problems. By implication, it can be extended to any vector space of
functions, since interpolation problems are solvable on vector spaces. The
class of functions must, however, have been previously analyzed to derive a

set of rules for constructing distinguishing sets of test data.

It can be argued that the number of points required for algebraic testing
on multinomials is unnecessarily inflated by treating each input uniformly.
It may be extremely unlikely that some inputs (e.g. flags) would ever appear
in the output raised to a power higher than one, or that certain combinations
of variables would ever be multiplied together in a term of the output
multinomial. The number of points in a cascade set is required only if every
variable in the multinomial may be raised to the same maximum power and may be
arbitrarily multiplied by the other variables. Other arguments for reducing
the number of points required have been made by DeMillo and Lipton [6] and by
Rowland and Davies [14], but a full discussion of these is beyond the scope of

this paper.

The requirement that the total output function of a program be a
multinomial function is also highly restrictive, especially since the effect
of conditional statements in a program is to partition the program's input
domain, with different functions computed on each subdomain. It is possible
to show that certain classes of programs may still be handled with this
strategy [12], but even then the number of test points grows exponentially

with the. number of inputs.



Nevertheless, the overall approach has many attractive features. When
partitioning prevents the description of the total program function as a
multinomial, these techniques could be applied to the output functions of the
individual partitions. The major drawback to this approach is the
multiplication of the number of points required for testing by the number of
subdomains being tested. This drawback is at least partially offset by the
expectation that the individual partial functions will be considerably simpler
than the aggregate program function, and so can be tested with fewer data
points each. In addition, a major portion of the research into program
testing has dealt with choosing paths or input partitions from which to select
points for testing [9,10,13]. Applying algebraic testing to partial functions

would permit its combination with these other techniques.

Even when the form of the correct output is not known, algebraic testing
can provide significant confidence. Suppose that a set of test points chosen
to distinguish some class of polynomial or multinomial functions executes
correctly. The unique function from the chosen class which would yield the
same answers as the program forms an interpolating polynomial/multinomial for
the program function. Hence the degree of confidence the tester gains in the
correctness of the program is proportional to the closeness with which the
program function can be approximated by the interpolating multinomial of the
degree chosen. While interpolating polynomials in general need not converge
to an arbitrary function (although convergence can be guaranteed if a finite
bound exists on the higher order derivatives of the function being
approximated), they often do form good approximations, especially at points

well inside the extreme values of the chosen test points [4].

In the sections which follow, an alternmative to algebraic testing will be
presented which retains its chief advantages while providing more flexibility

in the choice of functional classes and in dealing with partitioned functioms.



I1TI. Blindness Expressions for Test Points

The general problem of selecting test data in order to determine whether
an arbitrary program computes the same function as an arbitrary specification
is unsolvable [10]. A reasonable compromise is to design testing strategies
which are capable of distinguishing between the given program and any members
of some class of related programs [2,8,17]. Intuitively, as the size of this
class increases, so does the confidence gained from the testing method. This
intuition has been justified formally by Gourlay [8]. The tester is then
required to make some assertion about the relationship between the given
program and the correct program it approximates, defining a neighborhood of

programs in which a correct version is expected to lie.

Previous research by the author has demonstrated a method for deriving
the set of potential errors in arithmetic expressions which are missed by a
set of previously selected test paths, no matter what points are chosem within
the path domains [16,17]. An error in an arithmetic expression in a given
statement can be represented by the addition of a perturbing function to the
“correct™ form of the expression. This view of incorrect expressions is more
flexible than might be initially apparent, since an error term cam involve

subtracting out the correct expression and adding a completely different onme.

The selection of a class of possible perturbing functions defines the
neighborhood of programs to be examined. Little can be done if the class of
functions from which the potential error terms are drawn is unrestricted. If,
however, the set of possible error terms is believed to be a
finite-dimensioned vector space (e.g. a set of polynomials or multinomials of
fixed degree), then the set of error terms which cannot possibly be detected

by a given test path can be readily computed [16,17].

This analysis can be easily extended to individual data points. Begin by
describing the state of the program at any point in its execution in terms of
the current environment, v, where



; = ( xl. x2’ eoes xm) y1’ Y25 ocoes YD)'

The %; are the inputs to the program, and the y; are the current values
assigned to the program's variables. A path within a program is an ordered
sequence of statements representing a possible flow of control. Each
assignment statement in a path transforms the environment, generating a new
value for one of the program variables. For any path P) we can designate a
function Cp which represents a transformation equivalent to that of the

program computations along that path:

Initially, only the input values, X, will be considered to be defined, with
the program variables being defined later via these computations. Input
statements will therefore be treated as assignments of input values to the

appropriate variables.

When a statement containing an arithmetic expression is executed, the
value of that expression is determined by substituting the appropriate values
from the current environment for each of the variables in the expression.
Hence if an arithmetic expression T is evaluated at the end of path P,, the
resulting value is T(v,), where Vv, is the environment resulting from the
execution of path Py, This can be expressed as a function of the program
inputs by utilizing the path computation:

T(GA) =T o CA(;O)

where Vo is the initial environment (with only inputs and constants defined),

and "o” denotes functional composition.

Consider now the possibility that the expression T has been replaced by
an erroneous expression T'., Then (T'-T) represents an error term which was
added to T to produce the incorrect expression T'., While in general this
error term could be any function, in practice the original expression, T', is

directly observable in the program, and the tester may have some notion of the



correct functional class of T. If so, this intuition constrains the set of
possible error terms. An assertion that the error terms fall within some
finite-dimensioned vector space (such as a set of polynomials or multinomials
of some fixed degree) will permit useful analysis without being overly
restrictive. In all of the discussion which follows, if later inspection
should reveal that the tester's initial choice of error class was too limited,
a more general functional class can be substituted with no penalty for the
initial mistake as long as the new class of possible errors entirely contains
the old class. This would be the case, for example, if testing was simply

moved from one degree of multinomial to a higher degree.

Since the error terms will be taken from vector spaces, an appropriate

representation is defined by
g = T' - T

where o is any real number (and is non-zero whenever T'#T), and € is a
function drawn from the chosen vector space which has been normalized

according to some appropriate norm. @ may be considered the “direction” of
the error and a the “magnitude”.

The conditions under which o€ may be detected will vary somewhat
depending on the type of statement and error for which testing is being done
[16]. In this paper we shall be concernmed with computation errors. In most
languages, computation errors are caused by faults in assignment statements or
in the expressions which form the arguments of output statements. The case of
faults in assignment statements turns out to be the more general of these two

and so will be considered first.

An incorrect assignment statement may be represented as
V: = (v
j=1'(0)

where v; is any program variable. If Vj is the environmment when this
statement is reached, then the fault in this statement is detectable exactly



when T'(v,)#T(V,) and a subsequent output statement uses vj directly or
indirectly. By “using” Vj» we mean that a small change in the value of v;
would cause some change in the output. To capture this idea formally, we will
say that a function f(v) is partially dependent on v; if, for some k, the kth
partial derivative of f with respect to V3 is nonzero when evaluated at v.

For many functional classes such as multinomials, partial dependency is easily

determined.

Theorem 1.

Let Cy be the computation performed along a path P, from the start of the

program up to but not including an assignment statement

vi= T'(9)

and Cp be the computation for a path Py leading from but not including
that assignment statement to an output statement which prints the value
of an expression M. Let 30 be an input causing P, the assignment
statement, and Py to be executed. If o€, the error term in T', is in
some vector space E, then the error in T' is detectable with input 50

exactly when

MoCy is partially dependent on A&

and

€ £ { e eoCy(vp)=0 and e € E }.

The proof of this theorem is essentially identical to the theorem proven
in [16] for determining the set of undetectable errors for an entire path. In
fact, this problem can be reduced to the one analyzed there by replacing each
input statement by a set of assignment statements which set the appropriate
variables equal to constants whose values are identical to those found in the
input stream. Alternatively, this theorem can be proven by noting that the
final line describes the set of all functions in E which interpolate to the

constant zero function on the environment v and which therefore clearly could



not have been detected, if indeed they had been added in as error terms.

It is worth noting that the magnitude of the error term plays no part in
the detectability of the error. If € cannot be detected, than neither can a€.
In such cases, the test input 50 is said to be blind to €, and the final line
of the theorem defines the space of errors to which the test data GO is blind.
This “blindness space” is itself a vector space, and therefore can be
described using a finite set of characteristic elements. When the partial
dependence requirement is not satisfied, any error term will go undetected.

In such a case the test input 50 will be considered blind to the entire space

of potential errors, E.

As an example of the application of this theorem, consider the subprogram
RECIP shown in figure 1. Suppose that Theorem 1 is applied to the assignment
statement in line 6. As a first choice of error class, it seems reasonable to
use functions of about the same level of complexity as those appearing in the

program itself. Consequently we will use

E(a) = 0y + ajA + 0X0 + a3ABSERR + 04X + asXLAST
+ Q¢DIFF + a70LDDIF + agA*X0 + agA*X + ajA*XLAST
+ “IIXO*X + d]_zXO*XLAST + 0-13X*XLAST + 0.14A*X0**2
+ 0) cA*X#*%2 + 0] A*XXLAST**2 (D

1: SUBROUTINE RECIP(A,X0,X,ABSERR)

C

Cx* This program uses the Newton-Raphson algortihm to estimate
C** the reciprocal of A without em IOYIBE division, given an initial
C** estimate X0. Iteration is halted when the product of A and the
C** newest estimate of 1/A is within ABSERR of 1.0, or when two

C** successive such products show that the estimate 1s moving away
C** from the true reciprocal.

X = X0
DIFF = 1.E20
1 OLDDIF = DIFF
XLAST = X
X =2, X - A % Xkk2
DIFF = ABS(1l. - X * Ag
IF E(DIFF .LT. ABSERR) .AND. (X .NE. 0.)) GO TO 99
IF (DIFF .&T. OLDDIF) GO TO 1
2 WRITE 26.3 A,X0
3 FORMAT(' ALGORITHM DOES NOT CONVERGE TO 1/',Gl13.6,
% ' WITH STARTING POINT ',Gl3.6)
99 %%EURN

W =OWONOVIPWN

Pttt et

Figure 1. RECIP routine




for all real @; as our space of potential errors. Suppose that RECIP is
tested with inputs (A=3, X0=0.1, ABSERR=0.001). When statement 6 is reached,
the environment will be v,= (A=3, X0=0.1, ABSERR=0.001, X=0.1, XLAST=0.1l,
DIFF=1.0E20, OLDDIF=1.0E20). It happens that the partial dependence
requirement for this statement is satisfied for all non-zero X. By theorem 1
then, the set of possible error terms which could be added to the right-hand
side expression but not be detected with this execution are those for which
E(a)evy= 0. Substituting the values from the environment into E(a) gives a
linear equation for a which is solvable by a relatively trivial manipulation.
The solution set, the set of undetected potential error terms, is the set of

all linear combinations of the expressions in figure 2.

This solution set indicates, for example, that instead of

X = 2%X - A*X*%2

we could have written
X = 2%X - 3%X*%2,
X = 2%0.1 - A%Q.1%*2,

or, less obviously,
X = 2%X0 - A*X%%*2,
X = X0 + X - A*XLAST*%x2,

or any of a literally infinite number of alternate expressions which would
give the same result as the original expression and hence any of which may in

fact be the correct form for this program.

(A - 3) (X0 - .1) (ABSERR - .001)
(x - .1) (XLAST - .1) (DIFF - 1.E20)
(OLDDIF - 1.E20) (A*X0 - .3) (A*X - .3)
(A*XLAST - .3) (X0*x - .01) (X0*XLAST - .01)
(X*XLAST - .01) (A*X0**2 - ,03)  (A*X**2 - ,03)

(A*XLAST**2 - ,03)

Figure 2. Blindness Space for First Execution

of Statement 6



Continuing the execution, the program would return to statement 6 a
number of times, each time with a different environment. On the second
iteration, for example, the environment would be (A=3, X0=0.1l, ABSERR=0.001,
X=0.17, XLAST=0.17, DIFF=0.49, OLDDIF=0.49). and the blindness space would be

the span of the expressions appearing in figure 3.

Some of the expressions here are the same as before; many are different.
This reflects the fact that the new environment is not completely different
from the old one. The value of A, for example, is unchanged, and so the term
(A - 3) remains. The value of X has changed, and consequently the

undetectable expressions involving X are different.

When the expression to be tested appears in an output statement, the
situation is somewhat simpler. A statement of the form
PRINT T'(v)

can be conceptually split into two parts by introducing a temporary variable:

TEMP := T'(V)

PRINT TEMP.
Theorem 1 can then be applied to examine the effects of testing T'. Cp
becomes simply the identity function, and M is a selector function which
extracts the value of TEMP from the environment. The partial dependence
requirement is clearly satisfied, and so the final line of Theorem 1 defines

the blindness space for expressioms in output statements.

(A -3) (x0 - .1) (ABSERR - .001)

(x - .17) (XLAST - .17) (DIFF - .49)

(OLDDIF - .49) (A*X0 - .3) (A*X - .51) T
(A*XLAST - .51) (X0*X - .017) (X0*XLAST - .017)

(X*XLAST - .0289) (A%X0**2 - ,03) (A*X*%2 - ,0867)

(A*XLAST**2 - .0867)

Figure 3. Blindness Space for Second Execution

of Statement 6

10



Of course, a single test run is seldom considered sufficient. As
additional test runs are made without finding an error, some increase in the
level of confidence associated with the program is expected. Because ome test
may uncover errors to which an earlier test was blind, the size of the total
blindness space should be reduced by additional testing. This intuitiom is

formalized in Theorem 2.

Theorem 2.

Let Py and Pg be subpaths satisfying the conditions of Theorem 1,
and E' be the blindness space remaining from previous tests such that
E' ¢ E. Then if partial dependence is satisfied on Pg, the error in T'

is detectable exactly when

efE"n{e: e°Cy(vg)=0 and e € E }.

The proof of this theorem follows directly from the observation that am error
term is detected if it is detectable with the most recent test or with any of
the earlier tests. Hence the total blindness space for a set of tests is

formed as the intersection of the individual spaces.

A test point is useful, therefore, if it reduces the size of this
intersection. Since the individual blindness spaces are vector spaces, their
intersection must also be a vector space. The size of a vector space may be
measured by that space's dimension. Hence a proposed test is useful only if
it reduces the number of characteristic expressions in the blindness space. A
simple rule of thumb in choosing test data is therefore to select input data
for which any one or more of the characteristic blindness expressiomns is

non—zero.

In the example given previously, separate blindness spaces were found for
different executions of the statement being tested. The set of potential

error terms remaining after both executions is given by the intersection of

11



the spaces described by figures 2 and 3. This intersection can be computed by
standard linear algebraic techniques [7,16], which have been incorporated into
a prototype system which computes blindness expressions for FORTRAN programs.
The intersection of these two spaces is the span of the expressions shown in
figure 4. This space has fewer terms (i.e., a smaller dimension) since the
combination of both executions allows fewer errors to escape detection than
would have escaped either execution alome. In fact, if the execution of the
input (A=3, X0=0.1, ABSERR=0.001) is allowed to run to completion, the
intersections of the individual blindness spaces for each encounter with the

statement being tested is reduced to the space described in figure 5.

In choosing the next test inputs, we should attempt to find a point for
which any one or more of the expressions in figure 5 is non-zero. This may be

trivial (e.g.s find an input for which (A - 3) is non-zero), somewhat more

(A - 3) (X0 - .1) (ABSERR - .001)

(X - XLAST) (DIFF - OLDDIF)  (A*X0 - .3)

(A*X - 3*X) (A*XLAST - 3%X)  (10*X0*X - X)
(10*X0*XLAST - X) (A%X0**2 - .03)  (A*X*%2 - A*XLAST**2)
(OLDDIF + 1.43E21*X - 2,43E20) (A*X**2 - 3*X*XLAST)

(100 *A*XXLAST*%*2 - 81*X + 5.1)

Figure 4. Intersection of Previous Two Spaces

(A -3) (X - XLAST) (DIFF - OLDDIF)

(A*X - 3%X) (A*XLAST - 3*X)  (X0*X - XO+*XLAST)
(ABSERR + .00225*%X0 - .001225) (A*X0 - 3*X0)
(5%A*X0**2 - 9*X0 + .75) (A*X*%2 - 3*X*XLAST)

(A*XLAST#%2 - 3%X*XLAST)

Figure 5. Errors Escaping Detection With
(A=3, X0=0.1, ABSERR=0.001)

12



difficult (e.g., find inputs for which (A*XLAST**2 - 3*X*XLAST) is not zero),
or completely impossible (e.g., there is no input for which (DIFF - OLDDIF) is

non-zero at statement 6).

As additional useful test points are chosen, the blindness space will
eventually be reduced to the set of expressions like (DIFF - OLDDIF), the set
of expressions in E which are invariantly equal to zero at that point in the
program. Such expressions, being always equal to zero, cannot possibly affect
the program's execution. Consequently, when this point has been reached, all
terms in E which can be considered as errors have been successfully tested.
Unfortunately, it is not decidable when this point has been reached. How much
difficulty this will pose in practice is unclear and will, no doubt, depend

strongly on how complex a space is initially chosen for E.

A “complete” test of RECIP would require the computation of blindmess
expressions at every assignment and output statement. This does not, however,
mean that the amount of test data will grow in direct proportion to the number
of lines of code. Two factors act to significantly reduce the amount of test
data.

First, not all statements require as elaborate an error function as was
employed with statement 6. Since, for example, FORTRAN does not permit
arbitrary expressions in WRITE statements, there is no need to test for
quadratic or higher degree error terms in WRITE statements. Note the
distinction that, although it is possible for the value of X to be in error by
a quadratic function of the inputs, it is not possible to cause such an error
by changing the WRITE statement itself. Such an error must result from a
fault in a previously executed assignment statement. Testing for such an
error is controlled by the blindness expressions at the assignment statements.
Additional arguments can be advanced for simpler error terms in assignment
statements based upon the tester's understanding of those statements and their
purpose in the program. In effect, we allow the tester to perform “gedanken
experiments” in deciding that certain error terms are highly unlikely in

selected assignment statements.

13



The second factor serving to limit the amount of test data for
perturbation testing over an entire program is both more rigorous and probably
more significant. Choose any two adjacent assignment/output statements such
that the second one is executed if and only if the first has just completed
execution. Assume that there is a certain subset of the space of possible
error terms which is being tested by both statements. Then any test point
which is useful in eliminating a part of that common error space for the
second statement will also be useful for the first statement, providing that
the partial dependency requirement is satisfied for the first statement
somewhere along the path for that data point [16]. This implies that a
natural unit on which to perform test data selection is any block of
consecutive assignment/output statements containing no internal labels to
which execution might branch. Such groups of consecutive statements will tend

to be tested almost uniformly by a given set of test data.

IV, Perturbations and Algebraic Testing

The theorems of the preceding section can be used to examine algebraic
testing. Algebraic testing takes a black box approach which can be viewed as

collapsing the entire program into a single statement:
PRINT T'(vj)

where T' is now the function computed by the program under test. A set of

possible program functions, {T;}, is postulated for which rules are kmown by

which test points may be selected to distinguish any two members of {Ti}'

For perturbation testing, a class of error functions E was postulated
such that {T'+e;: V¥e;e E} represented the set of possible arithmetic
expressions which might appear in that statement. If, as is the case for the
real-valued functions on which algebraic testing has been defined, the set

{Ti} is closed under addition [11,12], then algebraic testing can be treated
as the special case of perturbation testing where T' € E.

14



When T' € E, the goal of test data selection to distinguish all {Ti} is
equivalent to reducing the total blindness space to the empty set. Any set of
test data which satisfies either of these criteria without revealing am error
proves that T' is the only function in E which could be correct. In fact,
there is no inherent reason why algebraic testing must have T' € E., The view
of E as a set of perturbing functions is more appropriate to the mneighborhood
paradigm, and allows these techniques to be meaningfully applied to a wider
range of programs, but the exact same set of data points will serve either

interpretation of a given E.

For example, if X, the “black box™ output of the reciprocal program, were
expected to match the Taylor expansion of 1/A through at least three terms,

then a reasonable choice for E={T;} would be a multinomial of the form

E(@) = @y + ajA + 0yX0 + a3ABSERR + q A*X0
+ GgA**2 + agX0**2 + a7X0*A**2 + agA*xXQ*x2 (2)

The error space used here is expressed purely in terms of inputs to the

module, in accordance with the “black box™ approach of algebraic testing.

As before, we will choose (A=3, X0=0.1, ABSERR=0.001) as the first test
input. The blindness space for this input is shown in figure 6. If the next
test point is chosen as (A=3, X0=0.5, ABSERR=0.0001), the space of undetected
potential errors is reduced to the span of the expressions in figure 7.
Eventually, after testing with the points listed in figure 8, the space of

undetected potential errors from E becomes empty.

(A - 3) (x0 - .1) (ABSERR - .001)
(A*X0 - .3) (A*x*2 - 9) (X0**2 - ,01)
(X0*A**x2 - .9) (A*X0**2 - ,03)

Figure 6. Errors Escaping Black-Box Testing With
(A=3, X0=0.1, ABSERR=0.001)
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The number of points required here is less than the tk=33=27 points
indicated in Howden's treatment simply because the use of blindness analysis
permitted more control over the choice of perturbing function. Rather than
use all second degree multinomial terms, we were able to drop certain terms
such as ABSERR*X0. This seems quite reasonable given our understanding of the
purpose of ABSERR in this program, which makes it unlikely to appear in any
nonlinear terms of a computation. The ability to do such pruning of the
possible functional forms becomes more important as the multinomial degree and
the number of variables increase. Opportunities for such pruning will also
become more apparent as the number of variables in a program increases,
because of the natural groupings of variables which might reasonably appear
together in any calculation. For example, HOURLY-WAGE and DAYS-WORKED may
reasonably appear together, but HOURLY-WAGE and PHONE-NUMBER form such an

unlikely pair that it would be wise not to worry about terms involving their

(A - 3) (A*X0 - 3%*X0) (A**2 - 9)
(X0%A**2 - 9*X0) (A*X0**2 - 3*X(0**2)
(ABSERR + .00225*X0 - .001225)

Figure 7. Errors Escaping Detection With
(A=3, X0=0.1, ABSERR=0.001)
(A=3, X0=0.5, ABSERR=0.0001)

A X0 ABSERR
3.0 0.1 0.001
3.0 0.5 0.0001
8.0 0.1 0.001
c.2 3.0 0.001
.01 10.0 0.001
3.0 0.1 0.001
0.125 10.0 0.001
0.01 2.0 0.01
0.3333 1.0 0.001

Figure 8. Complete Data Set for Black Box Test

16



product.

V. Static versus Dynamic Measures

The choice of error function in the above RECIP example may have seemed
inappropriate to some. Even granting the arguments presented earlier
regarding the relationship between testing and interpolationm, one might
question the appropriateness of multinomials as approximators to that
program's function. In particular, although the output for any given path
through the program is indeed a multinomial, the coefficients and degree of
that multinomial depend on which path is chosen. Of course, if ome is willing
to go to much higher degree multinomials, approximations may be found for even
piece~wise continuous functions like RECIP. This hardly seems, however, to be
a natural approach to the problem. The penalty to be paid for such an awkward
technique is the exponential growth in the amount of test data required as the

degree of multinomial increases.

It is the author's contention that a major part of this awkwardness stems
from basing the testing model on the dynamic properties of the function
computed by the program rather than on the static properties of the code. The
terms “dynamic” and “static” must be taken here in a rather loose sense, since
as one considers more and more of the (static) properties of a piece of code,
one eventually must determine the (dynamic) program semantics. Hence these

terms denote opposite poles of a range of possible properties.

It may seem natural to emphasize dynamic quantities because the
testing/verification problem (i.e. show that a program computes the same
function as its specification) is expressed in those terms. Intuitively, it
appears that any testing method which aspires to the solution of this problem

must work primarily at the dynamic level.
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The neighborhood paradigm for testing introduced in Section III, however,
permits a very different approach to obtaining reliable tests. Under this
paradigm, one attempts to determine whether the given program is the best
approximation to the given specification from a neighborhood of similar
programs. Of course, in the limit as the neighborhood size is increased, this
paradigm approaches the testing/verification problem, but the neighborhood
model opens the way for methods which provide a spectrum of reliability,
allowing the tester to select the degree of rigor desired and the amount of
effort which is economically feasible. Testing methods for which such spectra
are evident include algebraic and perturbation testing, where the degree of
reliability depends on the generality of the chosen class of error terms, and
mutation testing where the choice of mutation operators may be varied to

accomodate the ecomomics of a given situation [5].

The neighborhood paradigm, per se, is not restricted to either static or
dynamic models. The similarity property which defines a neighborhood may be
chosen based on a variety of program properties. When, however, the goal is

to provide a spectrum of reliability, static properties appear more practical.

Consider, for example, the case where algebraic testing has been only
partly completed, or has been completed on a relatively simple class of
functions, and the testers are trying to decide whether additional tests are
required. They may have some very good intuition about what types of errors
are plausible in their program, but they must still determine whether all
those plausible errors have been accounted for by the tests conducted so far.
Does eliminating all third degree multinomial errors from the dynamic function
of a program like RECIP mean that, for example, all substitutions of ome
variable for another have been checked? If not, what level of algebraic
testing will permit such a guarantee? Such questions are extremely difficult
to answer because they bridge the gap between the dynamic world in which
algebraic testing is conducted and the static one in which errors are commonly

described.
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In many ways, dynamic complexity seems almost orthogonal to the effort
required for testing. Intuitively one would believe, for example, that the
more often a given statement is executed by a given set of test data, the more
confidence is gained in the correctness of that statement. This common sense
rule has been observed experimentally [1], and the theorems of section III may
be considered as a formal justification in which the rule holds as long as
each new execution is referenced and occurs on a significantly changed
environment. Hence loops tend to make a program easier to test, while "IF"
statements tend to have the opposite effect. This is true despite the fact
that both constructs tend to increase the dynamic complexity of the program

function.

To this must be added the very real fact that dynamic complexity, by
almost any reasonable measure, grows exponentially with increasing static
complexity. One need only examine the number of paths (and hence the number
of component partial functions) in a program as a function of the number of
non-nested IF statements or DO-WHILE loops to be convinced of this. Such
complexity is reflected in testing methods in a number of ways. Testing
strategies which attempt to test each component partial function of a program
function will experience a discouragingly rapid growth in the amount of test
data required. Testing methods which depend on useful properties or special
classes of functions are less likely to be applicable to the program function
than to its simpler component functions. Algebraic testing would require ever
higher degree functions if a reasonable approximation to the correct program
is to be guaranteed. Such increases often seem all out of proportion to the
change in intuitive complexity of the program. RECIP, for example, has a
relatively complex dynamic structure, but we perceive the code to be quite

simple.

It is interesting, then, to compare the test points chosen for RECIP in
the previous section under both static and dynamic criteria. The error space
described in equation (2) represents our uncertainty in the dynamic behavior
of the program, while the error space in (1) describes static alternatives to
the expression in statement 6. If the points chosen for the black box test

are employed to test the static form of statement 6, many of the executions of
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that statement are rejected as unnecessary for testing under the criteria of
Theorem 2. In fact, the static space described by (1) is reduced after only
the first five points to the set of expressioms imn figure 9, all of which are
obviously invariantly zero and hence are not truly errors. This means that,
although the two error spaces imnvolve terms of about the same degree, and even
though the static space for this problem is initially much larger, the
information obtained with those points about the static form of statement 6 is
much larger than the information gained about the dynamic form of the program
function. Had RECIP been dominated by IF statements rather tham by a loop,

the results might have been exactly opposite.

VIi. Conclusions

The use of algebraic techniques in defining a neighborhood of functions
is particularly suited to testing for computation errors. Two possible
approaches are Howden's algebraic testing method and perturbation testing.
Algebraic testing establishes rules for choosing data to differentiate among
all members of a functional class, and then applies those rules to any program
whose output is expected to fall within that class. Perturbation testing
involves the derivation of those members of the chosen functional class which
are indistinguishable from the program function using all test data chosen up
to that moment. When applied to the output function of the module, these
approaches are mathematically equivalent, but perturbation testing offers more

flexibility in the choice of functional class.

The set of programs to which these techniques are applicable can be
considerably expanded by changing the goal of the testing process, from

verifying that the program function is the only member of a class with the

(XLAST - X) (OLDDIF - DIFF) (A*XLAST - A*X)
(XO*XLAST - X0*X) (A*XXLAST*%2 ~ A*X*%2)

Figure 9. Final Blindness Space for Statement 6
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observed behavior on the test data, to determining whether the program
function has been perturbed by the addition of an error term from a chosen
functional class. This view also permits each method to offer a spectrum of
testing reliability by varying the class of functions used as potential error

terms.

A significant alternative offered by perturbation testing is the ability
to work in the static domain, choosing test data to eliminate possible error
terms in specific assignment and output statements. This approach promises
savings due to the lower complexity of the code as compared to the dynamic
program function. In addition, perturbation testing seems to be more easily
interpretable, being expressed in terms of the actual changes in the code

whose possible occurrence in the code has been checked.
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