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This reView presents a sampling of recent research on the design of perceptual systems for robots, with special
emphasis on pattern recognition based on an array of touch sensors, and optic flow techniques for depth
extraction and navigation based on a sequence of visual images. It not only presents specific work in machine
vision, machine touch and robotics, but also illuminates what we believe to be general principles for the design
of perceptual systems for an animal, or human, as well as for a robot.

A hypothetical program which indicates the way one
might integrate vision and touch in the control of
movement is shown in Figure 1. This is not something
yet implemented on our robot system, but it provides
a simple example of the shape of things to come. It
indicates the way in which the sensory systems
described below might be used in a coordinated way.
The task is simply to reach out and grasp an indicated
target object. When human beings perform this task,
they do not reach to the object and then start shaping
the hand to grasp the object; rather, they use visual
cues about the shape and orientation of the object to
determine, as movement toward the object begins,
the distance between the fingers and the thumb and
the orientation of the hand. Thus, when the hand
reaches the object, only minor shaping is required,
under a delicate spatial pattern of tactile feedback,
to complete the actual grasping that conforms the
shape of the hand to the shape of the object.

INTEGRATING VISION AND TOUCH IN
MOTOR CONTROL

A program for this would not be a serial computer
program in which one movement is done at a time,
but would rather be a coordinated control program
in which a number of control systems are phased in
and out in various patterns to complete the task.
Figure | suggests one pattern whereby the various
subsystems, the perceptual schemata of visual target
location in the top of the figure and the motor
schemata of reaching and grasping of target, below,
could pass activation and data to each other. First
there would have to be visual location of the target
on the basis of some recognition criteria and the
available visual input. Successful visual location of
the target, using the dashed lines in Figure | to
indicate activation, would then turn on perceptual
schemata to make available the size and orientation
of the target. When we activate the reaching, this
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sensory information, coded now in terms of salient
parameters of the object, is available not to one, but
to several motor schemata. We turn on the ballistic
movement schema which throws the hand toward the
object, but at the same time activates those schemata
that rotate the hand and adjust the separation of the
fingers.

Figure 1 shows hand rotation and finger adjustment
as part of the grasping schema, the control of the
hand’s shape to grasp the object successfully. What
is interesting is that once these subschemata complete
their initial setting, they turn themselves off. The
grasping schema does not wake up its other sub-
schemata until the ballistic movement has reached
the stage where visual or tactile feedback states that
movement of the hand toward the object is complete.
This message wakes up the actual grasping schema,
not the ones that use visual cues to shape the hand
in anticipation, but the one that uses a delicate spatial
pattern of tactile feedback to conform the grasp to
the hand.

This example indicates the robot control architec-
ture we may expect in the future, in which multiple
chips are used for differential processing, passing
messages to each other, many being active simul-
taneously, in a style we call cooperative computation.

TACTILE PERCEPTION

In the first stage of our research on touch, reported
here, we studied a simple robot hand with two fingers,
one of which has a touch sensor. The important point
1s that the touch sensor is not a simple on/off contact
switch, but comprises an array of force sensors, giving
us the possibility of pattern recognition. In due course,
our research will close the loop, using such pattern
recognition to guide coordinated hand movement.
Here we emphasize the use of touch to recognize
what is being touched and to locate it so that if further
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Figure 1. A coordinated control program for visually locating, and then reaching and grasping, an

object. (From Arbib.")

manipulation is required — think of the robot as work-
ing on an assembly line — the relative position of hand
and object will provide the necessary parameters.

Another area of current research, going beyond
what we report here, concerns dynamic patterns of
touch. For example, a particular static force pattern,
maintaining a hold upon an object, will change during
the use of that object during assembly. The dynamic
pattern of force will provide crucial feedback to guide
the fitting together of parts. Before moving on to an
interesting example of tactile pattern recognition, we
mention a trivial example (Figure 2(a)): holding an
egg, and then printing out a classification such as
Jumbo Grade A. This is trivial because the program
did not recognize the egg as such — all it had to do
was process the separation of the fingers to come up
with the appropriate classification, using a table of
the range of sizes to be classified. This is not intended
as an example of the state of the art, but rather serves
to emphasize the point that one wants to know, for
any particular discrimination task, the minimal
sensory information needed within the context of a
given set of objects.

A more interesting pattern recognition task invol-
ved recognition of each type among several different
components: in one study, the parts included three
transformers which are of the same width because
they are to be used interchangeably in the assembly
of some computing equipment. Thus the simple
strategy of using finger separation would not discrimi-
nate between them. Yet the correct manipulation for
assembly may depend on the type of transformer,
and so more subtle use of the pattern of the ends of
the transformer is required to make the discrimina-
tion. Below, we give some insight into one simple
algorithm for such discrimination, and also an indica-
tion of what more complex algorithms would look
like.

In a restricted environment, such as that of a robot
working on an assembly line, we do not have to solve
very celaborate perceptual problems if we can assume
that the system will be working with just one object
from a small repertoire of objects. In this case, the
recognition program has to (a) decide which is the
most plausible hypothesis from a rather small set to
identify the part; (b) determine if there is something
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Figure 2(a). A URI gripper, with a tactile sensor
array attached to one fingertip, holding an egg.

wrong, perhaps based on an error measure, so that
if a part does not quite meet the usual specifications,
this can be detected and some appropriate course of
action taken, rather than proceeding with assembly;
and then, if a part is successfully recognized, (¢) report
not only what it is but where it is so that the appropri-
ate pattern of coordination of this hand with other
objects and other hands can take place.

Figure 2(b) shows a prototype of the touch array
we have developed® mounted on the finger of a simple
gripper. It comprises a rubber pad in which is embed-
ded a crisscross matrix of wires, so that when you
press on the pad, the resistance at ecach junction
changes. With proper circuitry we can obtain an array
of numbers proportional to those resistances. The
readout is not a linear function of force, but is usually
a monotone function of the force, and thus adequate
for pattern recognition. Just as people in picture
processing talk about picture elements and abbreviate
them to pixels, so we talk about force elements and
abbreviate them to forcels.

Scanning circuitry has been developed allowing a
particular forcel to be selected. The resistance of the
forcel forms part of a voltage divider, with the voltage
seen across a reference resistor going through an
analog-digital converter to a PDP 11/23 which can
thea build up. in perhaps 0.02 second, a complete
foree image. We can display these images using com-
puter graphics. In this review we use a display in
which we have a brightness array, with the brighter
the pixel, the larger the value of the forcel it rep-
resents. Figure 3(a) shows the diagonal pattern of
intensity which corresponds to pressing a 1/16-inch
shaft into a l-inch-square pad containing a 10X 10
array of forcels.

Note that there is one forcel in the top right corner
which is black. That proved to be a dead forcel -
there were no responses at that point of the array,
no matter what stimuli were applied. In developing
touch sensors, we have to improve quality control to
ensure that there will be no dead forcels as there
were in the prototype. Then, before using the array
for pattern recognition, we carry out systematic analy-
sis of how the activity in a particular forcel varies

Figure 2(b). The tactile sensor array.

with stimulation, and we use that to calibrate the
forcels to compensate for different response charac-
teristics. In the case of Figure 3(a), no calibration
was done, and the top right forcel is of no use in

(b)

Figure 3. These two graphic displays translate
the resistance read from each forcel on the
tactile sensor array into brightness. The greater
the force, the brighter the image, though the
relation is not linear. (a) The force image for a
thin cylinder pressed against the array. (b) The
image for a square plate with a hole in the center.
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pattern recognition. We have deliberately chosen to
use our early results in the present exposition since
the smoother, more recent results obscure some of
the interesting design problems that arose during
development.

Figure 3(b) shows the response of the touch pad
to a square plate containing a circular hole. The
central region is dark, representing low force; it is
surrounded by a region which, using the very crude
quantization here, corresponds to the plate: the outer
region corresponds to the region outside the hole.
Our task is to demonstrate a very simple pattern
recognition problem: to locate the hole. Ina restricted
robotics application, a tactile recognition program
need not be able to handle exotic objects, or objects
of variable shape and size, or even, as in vision (see
the final section, on visual systems). the problem of
compensating for distortions of the image due to
distance and perspective. The tactile array sensor
merely provides an image corresponding to the
environmental stimuli in contact with it, while the
image available in vision is a two-dimensional rep-
resentation of an inherently three-dimensional world.
If the job is in fact to recognize whether or not a
specific type of plate is being pressed against the touch
pad, then the size is known; the question is to return
a confidence measure that the object really is the
plate and to provide its location. We can outline a
crude algorithm for locating a hole of known size
given data of this kind. This is not the state of the
art, but rather serves to indicate the increasing
subtlety of such algorithms as we move beyond the
simple size monitoring of our Jumbo Grade A
example.

The algorithm takes the original force image, scaled
such that all forcel values are within a specified range,
and analyzes it at multiple thresholds. At each thresh-
old, the image becomes a binary image, with a 1 for
those forcels which are above threshold, and a 0 for
those forcels which are below threshold. The
algorithm then breaks this binary image into four-
connected regions — vertical and horizontal, but not
diagonal, connections. The labeled regions, derived
from the binary images at two threshold values, are
shown in Figure 4(a) and (b). The algorithm then
tests each connected region to determine whether or
not it could be the hole. The algorithm calculates the
centroid for cach four-connected region and fits a
circle centered at that point to the region. Here the
small number of forcels allows the application of
straightforward processing techniques; a much more
subtle guided search would be required for analyzing
for example a 512 X 512 visual array. Issues of compu-
tational efficiency will become far more important
than they are at this prototype stage as the spatial
resolution increases, and the number of sensors
employed grows.

To test the hypothesis that a point is at the center
of the circle, the algorithm measures how much of
the region of the circle is covered by the posited
threshold region, and how much of the threshold
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(b)

(c)

Figure 4. In (a) and (b) we see, for two different
thresholds, the result of thresholding the image
to yield a binary image (1=above threshold;
0=below) then forming connected regions with
the same binary value. (¢) The current result of
estimating circle position by performing a best
fit to the regions in the threshold series. The
cross indicates the position of the center of the
circle.



Figure 5. If the ‘holey-plate’ of Figure 4(b) is
moved across the sensor array, we can estimate
the hole position for each successive snapshot.
Here we superimpose the resultant series of
estimates.

region lies outside the circle. The sum of the two
discrepant areas provides the error measure. For each
threshold level, the region with the minimum error
measure is saved. Centers with low error measure get
a high confidence measure, and vice versa. The cen-
troids of the saved regions are combined in a weighted
average based upon the error measure to produce a
final estimate. Figure 4(c) shows the final weighted
combination of these estimates. Note that this image
is somewhat biased by the fact that there was a small
vote all the time for a hole comprised solely of the
bad forcel. As mentioned above, we now have tech-
niques to ignore that forcel automatically and thus
not bias the estimates.

Figure 5 shows the result of moving the plate across
the pad. We see a sequence of estimates of where the
hole is, with a general progression downwards and
to the right, but it is not a smooth progression. In
our work on sequences of visual images, we have
already developed prediction algorithms,” but have
not yet applied these to our tactile processing. These
yield more accurate and efficient performance, for
example, by weighting search to the neighborhood
of the previous estimate and by extrapolating the last
few estimates. The result is a weighted sum of an
extrapolation and a neighborhood search which gives
an increasingly reliable estimate of hole position as
time progresses, as long as the hole follows a reason-
ably smooth trajectory.

OPTIC FLOW, NAVIGATION AND DEPTH
PERCEPTION

The attention of the psychological community was
first drawn to optic flow fields by J. J. Gibson® during
World War I1, when he was studying the visual perfor-
mance of pilots landing airplanes. He noted that, quite
apart from the recognition of landmarks, there was
the diffuse information of flow of patterns across the

retina; this could be used by the pilot in deciding
when to switch his trajectory from descent to leveling
out, prior to landing.

Figure 6 shows three successive views as seen by a
simulated robot, called the flowbot, as it flies through
a landscape of Gaussian mountains. Its motion is
unrestricted but the orientation of the sensor is fixed
relative to the environment. Thus, the robot’s motion
can be described as successive translations along an
arbitrary trajectory. What sort of visual information
will enable it to avoid a simulated collision with the
hillside? Figure 6(d) shows an optic flow field
obtained by drawing arrows, each going from a point
in Frame 1, 6(a), to a corresponding point in Frame
2, 6(b). This results in a vector field of displacements
of the retinal image from one moment to the next,
called the optic flow field or optic displacement field.
Figure 6(e) shows the flow from Frame 2, 6(b), to
Frame 3, 6(c).

From the flow field, it is possible to deduce very
important information for purposes of visually guided
navigation; this can be the direction of heading, rela-
tive to the environment, and the relative depths of
environmental points.” Note that the flow radiates
from a particular image point termed the Focus of
Expansion, the roE. This point corresponds to the
intersection of the image plane and the translational
axis of observer motion. Thus, the FOE specifies the
direction in which the flowbot is heading. To relate
that to everyday experience, recall that when you are
driving down a straight road and the image of the
world is flowing across your retina, there is a point
on the horizon from which the whole visual world
appears to stream - the FOE - and it is towards that
point that your course is taking you.

In Figure 6(d) we see that the flowbot is heading
towards the hillside. A navigation system would take
the pattern of optic flow and use it to compute a
change of course, rather than using a single control
parameter, like an angle of orientation. Figure 6(c)
shows the flowbot’s view after such a correction, and
Figure 6(e) shows that the system has changed its
course so that the focus of expansion is moving off
the hillside. The relative depth of environmental
points is recovered from its position and from its rate
of motion along a flow path, radiating from the rFoE.
As we will see, environmental depth is recovered
from a translational flow field in units of time-until-
adjacency, or how long it will be until an environ-
mental point is beside the flowbot. For motion along
arbitrary trajectories, the position of the FoE and the
time-until-adjacency values will change.

The control of a flying robot is extremely complex.
In particular, it involves taking into account and rep-
resenting a whole array of spatial information to
determine time-critical decisions. Additionally, it is
necessary that the control be done in an expectancy-
guided or model-driven mode. That is, there is a plan
specifying behavior over different time scales and a
representation of the environment in which these
plans are embedded. The flowbot has plans at the
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(e)
Figure 6. (a), (b), and (c) show three successive views of a Gaussian hillside, while (d) and (e) show

the optic flow fields — vectors indicate displacement of corresponding points in two successive images
- for (a) = (b) and (b)- (c), respectively.
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Figure 7. (a) To simplify visualization of correspondence between retinal and spatial coordinates, the
focal point has been placed behind the retina, but this is, of course, equivalent to placing the retina
behind the focal point and then inverting coordinates. We thus have £€=ax/z and n=by/z, where a
and b are positive scale constants; £, horizontal coordinate, and m, vertical coordinate, of a point on
planar retina; x, y, and z, horizontal and vertical body-centered coordinates and coordinate of distance
in organism'’s line of gaze. (b) Relative motion of organism and environment; (Xo, Vo, Zo) is initial
position of point in organism’s frame of reference; (xo— uUt, yo, 2o— W) is its position at time t, where
(u, O, w) provides the (x,y,z) components of the organism's forward velocity relative to the
environment. {c) Optic flow radiates from common FOE when motion of organism relative to environ-
ment is constant and forward; 8, u, and w are as givenin (a) and (b). (d) For a given retinal x-coordinate
£(t) at time t, the closer the corresponding texture element P, or P, is to the organism, the larger is

the velocity |&(t)] with which the optic element at £(t) moves across the retina.

level of ‘get around the next potential obstacle; then
find the next potential obstacle and repeat.’ This is
based upon monitoring the relations between the
position of the FOE relative to extremal boundaries
with the time-until-adjacency values that correspond
to particular Gaussian mountains. The flowbot rep-
resents the environment in terms of position of FOE,
time-until-adjacency maps, and extremal boundary
maps. It does not even have particular knowledge
about mountains. It attempts to capture the control
of navigation in an egocentric space, based upon an
environmentally stabilized body. This is assumed to
be interfaced with more long-term spatial knowledge
as modeled by Kuipers®” and in Lieblich and Arbib."

We next turn to two observations concerning the
computation of the flow field and the FOE. The first
is that in the real world hillsides are rarely marked
with coordinate systems. Therefore, the process
which was easy in a simulated system, like that of

Figure 6 of matching points in Frame 1 with points
in Frame 2, actually involves resolving considerable
ambiguity in processing a sequence of real images.
Which small part of texture on a real hillside in Frame
1 is to be matched with which small part of texture
on the hillside in Frame 2? This is what we call the
stimulus-matching problem: Given a pair of views at
the same time in stereopsis, or a sequence of views
at different times in optic flow, how do we match up
corresponding features from frame to frame? We
shall discuss algorithms for this below.

The second point is that, even if the stimulus-
matching problem has been solved to determine the
optic flow, where in fact is the focus of expansion?
It is easy for a human to point to a small area in
Figure 6(d) and agree that it contains the focus of
expansion. But how do we pick the exact point, and
how is that determination to be turned into an
algorithm? For navigational purposes, some small
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Figure 8. In a world made up of surfaces, nearby features are likely to have similar optic flow. Thus
the flow of (b) is far more likely to be correct than that of (2). (¢) Frame 1 comprises the dots indicated
by circles: Frame 2 is obtained by rotating the array about the pivot at A to place the dots in the
positions indicated by crosses. The dashed circle at lower right is the receptive field of a local
processor. The solid arrows indicate the best local estimate of the optic flow, the dashed arrows
show the actual pairing of features under rotation about A. (d) The circles indicate features in Frame
1, the crosses features in Frame 2, and the solid arrows the current estimate of the optic flow — the
head of the arrow shows the posited position in Frame 2 of the feature corresponding to the Frame
1 feature at the tail of the arrow. Feature matching alone would adjust A’'s optic flow to the wavy
arrow pointing to the Frame 2 feature nearest to B (the current estimate of A’s Frame 2 position),
local smoothness would yield the dotted arrow, the average of the optic flow of the neighbors,
whereas our relaxation algorithm yields the dashed arrow as a weighted combination of these two

estimates.

region of confidence would be sufficient, but consider-
able problems still remain in finding an algorithm
which will take an optic flow field and infer the focus
of cxpansion. Below, we shall discuss how to interdigi-
tate a variety of processes for solving stimulus-
matching and for finding the focus of expansion.

Such interaction between algorithms returns us to
a constant theme of this paper, that of cooperative
computation: when we design complex action/per-
ception systems, very rarely do we design one system
that completes its task, switches off, and lets another
system take over. Rather, as in Figure 1, we have a
whole set of simultaneously active subsystems passing
data and activation messages to each other.

With this background, let us look in more detail at
the geometry of optic flow. Figure 7 shows the case
of a planar retina and uniform translation - that is,
a constant relative velocity of all objects in the
environment relative to the observer. In Figure 7(a)
- with the retina on the wrong side of the focal point
just to make the external and retinal coordinates the
same way round — we see how a given ray projects
to a single point on the retina. In Figure 7(b), we see
that as the organism moves a certain distance forward
into the environment (looking down on the land-
scape), a distance indicated by the arrow radiating
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out from the origin, it is as if each point in the
environment has an equal and opposite displacement,
shown by the other arrows, relative to a coordinate
system centered on the robot. (Note that in this review
we discuss only uniform translation, but we have also
developed algorithms for nonuniform trajectories.)

If, using the geometry of Figure 7(a), we project
the coordinates for the motion of Figure 7(b) onto
the retina, we obtain the display of Figure 7(c): with
a planar retina, the uniform translation of each point
in the environment relative to the observer is conver-
ted into a vector on the retina, with all vectors radiat-
ing from a common point, the rok: (Figure 7(d))
(Recall the intuition driving down the road: ‘Optic
flow flees the FOE.’)

A RELAXATION ALGORITHM FOR
STIMULUS-MATCHING

We now return to the stimulus-matching problem.
As mentioned above, unlike the situation in Figure
6, points of the real world are rarely tagged with their
coordinates. One way to solve the stimulus-matching
problem is to do expensive processing on single



images, for example to recognize actual objects, so
that distinctive features of objects are then readily
matched. But here we are concerned with relatively
cheap ways of stimulus-matching which do not rest
on a prior perceptual analysis. An analogy: when
walking down the street you have recognized certain
objects, but if somebody suddenly bears down on you
from the side, you will jump out of the way without
even recognizing what is there. Optic flow is akin to
that process which we suggest comes before detailed
classification of the input, yet conveys information
useful for navigation.

In Figure 8 we pose the stimulus-matching problem
for features which are indistinguishable. In Figure
8(a) and (b), Frame 1 has four features shown by
circles while Frame 2 has four features shown by
crosses. How do we match them up? In general, we
look at a world made up of surfaces so that nearby
points will on the average be on the same surface
and thus, although they will not move with exactly
the same velocity (consider a rotating surface),
they will have similar velocity. Thus a good hypo-
thesis is that the optic flow is locally smooth, and
for that reason the hypothesis shown in 8(b), which
meets the local smoothness criterion, is a better
bet than that of 8(a), given just the data available
there.

Now consider the large circle in the lower right-
hand corner of Figure 8(c), and try to match up the
small circles within it with the crosses, while respect-
ing the local smoothness condition. The solid arrows
are our best hypothesis using the local data - they
constitute a locally smooth flow, and the flow vectors
are relatively short. However, if we look at Figure
8(c) globally, we see that Frame 2 is obtained from
Frame | by rotation about the point A, and as a result
the correct flow for that pattern is obtained by the
dashed arrows shown for the features in the large
circle.

The point is this: we expect the architecture of
complex visual systems, whether implemented for a
robot or occurring naturally in an animal or human
brain, to involve local processes communicating with
each other. What we show in Figure 8(c) is that even
with constraints like nearest-neighbor match or local
smoothness of the flow field, a local view need not
be correct. The question then is: how do we set up
a communication process which will get each local
view to influence its neighbors in such a way that
eventually there will be a global pattern of con-
sistency?

The general name for such a process is a relaxation
procedure, derived from Southwell’s study of how to
compute the conformation of a beam to various loads:
Start from an initial hypothesis as to what the vertical
displacement at different points of the beam would
be, then use the stress-strain equations to adjust
hypotheses on nearby displacements, and iterate the
adjustment until the pattern of displacements along
the entire beam relaxes into a pattern in equilibrium
with the external forces.

Figure 8(d) is a diagram of one relaxation pro-
cedure for computing the optic flow as shown by
Prager” and by Prager and Arbib.? This procedure
has two time scales: one is a time scale on which
Frame 1 comes in, then Frame 2, and so on. But we
now turn to a finer time scale of successive iterations
used to estimate the optic flow based on displacement
from Frame 1 to Frame 2. At each iteration we update
our optic flow estimate for each feature in Frame 1.
The solid arrows in Figure 8(d) represent the result
of one such iteration, indicating for each Frame 1
feature (a circle) where it is posited to move into
Frame 2. Consider two ways to update the estimate
for Feature A. Local smoothness would replace the
current vector by the average of its neighbors; neigh-
borhood match would examine the position B of the
current Frame 2 estimate and replace it by the Frame
2 feature that is nearest with respect to a metric which
includes both similarity of feature and displacement
on the image. In fact, our algorithm takes a convex
combination of the smoothness hypothesis and the
nearest-neighbor hypothesis. Each iteration applies
the updating rule to every feature in the image.

Computation experience with simple images has
shown that about 20 iterations yield a stable estimate
of the optic flow. If we have a sequence of images,
we can do much better by using the computed dis-
placement for a feature from Frame n to Frame n+1
to initialize our hypothesis for its displacement from
Frame n+1 to Frame n+2. This is of course only a
first approximation — consider a rotating flow — but
we find that with this informed initialization we not
only get a more reliable estimate of the optic flow
field, but we require only five or six iterations, rather
than 20, to come to a state where there are no
significant changes with further iterations.

DEPTH ESTIMATION

Just as stereopsis uses the disparity of view between
two eyes separated in space to provide depth cues,
so the optic flow between two views separated in time
provides depth cues. In stereopsis, the depth cues are
scaled by the spatial separation of the eyes; in optic
flow, the depth cues are scaled by the temporal separ-
ation of the frames. Depth is thus in terms of time-
until-adjacency rather than centimeters, a very useful
form for the control of behavior. Figure 7(d) demon-
strates how the length of the optic flow vector pro-
vides a depth cue - for a given relative velocity, the
farther away the object, the smaller the optic flow
vector.

With this background, we turn to the integrated
computation of optic flow and focus of expansion,
with consequent determination of a depth map.'®
Figure 9 shows successive images taken from a car
moving down a country road in Massachusetts. The
camera was stabilized with a gyroscope so that
the motion was basically a translation with respect
to a stationary background. Processing involved
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Figure 9. (a)and (b) show two successive views
taken from a moving car.

determining three things: first, the diretion of sensor
translation; second, the displacements of image
features over the successive images: and thirdly, the
extraction of the relative environmental depths of the
corresponding image points. In the processing
described here, all three factors are determined simul-
tancously, using the strong constraints that each type
of information supplies. For example, image displace-
ments are constrained to lie along image paths which
radiate from a single point, the FoE. In addition, the
determined displacements should yield consistent
environmental depth inferences that break the image
into pieces, or segments, that have related depths.

The particular processing steps are detailed in
Figure 10. Figure 10(a) shows contours which have
been extracted from the initial image of the sequence.
These particular contours were found by using zero-
crossing extraction: convolving the image with a
Gaussian—Laplacian mask and then thresholding the
resulting image at zero. It should be noted that the
technique used here is independent of the type of
contour extraction used, and. in fact, the resulting
flow and depth inferences can be used to evaluate
particular and simultaneous segmentations formed by
any of several means.

The image points along the contours are then pro-
cessed to extract interesting points along them. An
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interesting point is basically one which is different or
distinguished with respect to the image positions sur-
rounding it. This distinctiveness is important for
motion analysis because it limits the potential dis-
placements of an image feature over successive
images. The interest operator applied here basically
finds points of high curvature along the extracted
contours, and this is shown in Figures 10(b) and (¢).
This processing involves finding interesting points
along the contour and then filtering. based upon
curvature estimates along the contours. Other pro-
cesses we have developed combine the steps shown
here into a single procedure which is applied locally
over an image.

The determination of the translational axis and the
image displacements of the extracted image features
is performed by a simple optimization process. For a
particular translational axis there is a corresponding
roE in the image plane. It constrains the image dis-
placements of the extracted image points to lie along
the paths which radiate from the FOE. We then
express the value of a particular translational axis as
the sum of the best match values, which have been
normalized, that ecach feature can find along the image
path determined by the corresponding translational
axis. This optimization measure has been found to
be very well behaved in all image sequences we have
investigated: it is smooth, with a single maximum in
a very large neighborhood surrounding the correct
translational axis. Because of this, the optimization
can be quite simple and rapid, especially when
expressed hierarchically.

How can this procedure be extended to more gen-
eral motions? One technigue is based upon the fact
that the translational processing procedure can be
robustly applied to small image areas containing a
few features. By applying this procedure to small
image areas across an image surface, an intermediate
description of the environmental motion results,
which associates a direction of environmental motion
with the small image areas. This is called the local
translational decomposition, and it can be used to
simplify significantly the processing of unrestricted,
and potentially nonrigid, motions. In addition, the
interpretation of local image motion as being pro-
duced by translations of the corresponding parts of
the environment provides a powerful heuristic,
related somewhat to the smoothness constraint dis-
cussed earlier, for consistently determining image
displacements.

We are also considering hybrid sensor systems
consisting of image processing and other sensor
systems for determining the rotational parameters of
sensor motion to deal with general motions. Conven-
tionally, expensive gimbal-gyroscope systems are
used to do this. However, there is the very exciting
possibility of using optic fiber rotation sensors in the
near future to do this.'” These have several desirable
qualities: they are small (currently less than 10 cubic
centimeters), cheap, and robust. Some designs bear
a striking resemblance, perhaps not coincidentally,
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Figure 10. (a) shows contours extracted from the image of Figure 9(a) by using zero-crossings. (b)
and (c¢) show the stages in extracting high-curvature points in the image, as targets for matching in
forming the optic flow field. (d) shows the rays which contain the optic flow vectors for the estimate

computed for the optic flow field.

to the semicircular canals of animal vestibular
systems.

Returning to translational motions: Given the rog,
it is possible to attribute depth values to particular
image points, such as those along the contours deter-
mined by some segmentation process. For the image
points along the extracted contour in Figure 10(a),
the determined depth values of Figure 11(a) are
represented as a histogram in Figure 11(b). Note the
three distinct peaks which correspond to the three
distinct environmental objects in the scene: the sign,
the pole, and - over a wider range of depth values —
the trees. These peaks in the histogram can be recog-
nized by some simple procedures and the correspond-
ing clusters mapped back onto particular image
points. This will produce a segmentation based upon
environmental depth, and the image contours corres-
ponding to the extracted peaks are shown in Figures
11(c)—(e).

Note that the contours are now broken where
environmental depth discontinuities occur, and
approximate, but do not completely match, the con-

tours of the distinct objects in the scene. Further
refinement requires algorithms which embody impor-
tant new ideas about perceptual processing. For
example, after the depth map has been used to divide
the image into regions with a consistent estimate of
depth, high-level knowledge might then be invoked
to yield a clean segmentation of the image into separ-
ate objects. But rather than show such processes on
the present data, we turn in the next section to results
on outdoor scene recognition obtained as part of the
VISIONS project developed by Hanson and Riseman.' g
First, however, we briefly discuss how FOE processing
is used in the robotics domain.

Figures 12(a) and (b) show successive images of
some gear parts and a transformer on a table as it is
approached by a camera held in a robot manipulator.
These images are superimposed in Figure 12(c). Pro-
cessing was performed by thresholding the successive
images at regular intervals to form a set of binary
images. Points along the contours of the binary images
formed from the initial image were matched into the
points along the contours of the corresponding binary
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Figure 11. The depth map obtained from the optic flow field for the images of Figure 10(a) and (b)
is shown in (a), with brighter points being farther away. These depths are histogrammed in (b), and
we divide the depths into three clusters based on the peaks. We can then segment the images into
three pieces (c), (d) and (e) on the basis of these labels.

image, formed at the same threshold, in the succeed-
ing image. This matching was done by conventional
correlation matching techniques and was quite rapid
since processing involved binary images.

There is an implicit assumption here that the suc-
cessive images do not change greatly over small peri-
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ods of time corresponding to the sampling period
during motion. (Alternatively, the contours could be
extracted by techniques which are less sensitive than
thresholding to global lighting changes.) What is pro-
duced is a large number of matches which are cheap
to compute. These matches are then filtered by using



(a)

(b)

(d)

Figure 12. (a) and (b) show two successive views from a robot manipulator-borne camera moving
relative to an assembly line. (c) shows the problem of stimulus-matching for these images. (d) exhibits
the FOE and flow paths found for these images, while (e) exhibits the resultant depth map.

a smoothness constraint: displacements which are
highly variant with the displacements computed in
their surrounding neighborhood are suppressed as
being unreliable. The remaining displacements are
then used to determine a FOE, in this case by applying
a least-squares extraction of a common intersection
point. This, along with the determined ror and cor-
responding flow paths, is shown in Figure 12(d), while
the resultant depth map - the brighter, the farther
away — is shown in Figure 12(e).

INTERACTION OF LOW-LEVEL PROCESSES
AND HIGH-LEVEL KNOWLEDGE IN
VISUAL SYSTEMS

This final section presents some general observations
about cooperative computation by discussing the way

in which multiple processes are orchestrated in suc-
cessful visual perception.

Figure 13 shows a low-resolution image of a house.
[tisaninteresting feature of the stage of our computer
technology that it forces us to deal with poor images.
The problem is this: a finer image is much easier for
a human to recognize, but if we are processing the
image on a serial computer, the difference between
128 %128 and 1024 X 1024 can be decisive in terms
of the computer time required. Current research is
exploring how to take the algorithms that require
several minutes of CPU time on a VAX computer
and redesign them to be implemented in a fraction
of a second on an array of parallel processors, built
from VLSI chips.

Our vision problems are currently harder than they
need be, because we cannot afford enough time to
work serially with the high-resolution images that
provide the extra information that aids human
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Figure 13. An image of a house.

recognition. The current development of easy access
to VLSI design techniques will lead to a revolution
in vision processing in terms of computation times
that are realistic for on-line applications.

We now ask the reader to examine Figure 13 care-
fully. Despite the coarse quantization. you can
delineate the roof quite clearly from this image as
something close to a parallelogram. This suggests that
we could deliver an image of this kind to a computer
system and program it to recognize various items:
‘Here is a blue region at the top, that must be sky
(the visions system works with color photographs as
input). Here is a parallelogram beneath it — given
that it is an outdoor scene, a parallelogram abutting
the sky is probably a roof. Beneath the roof arc some
rectangles — such rectangles are either windows or
shutters or doors. ..” and so the process could con-
tinue, calling upon high-level information, to classify
all portions of the image.

However, the above account was designed to lull
you into a false sense of security. To see this, try to
find the parallelogram in Figure 13. We can design
algorithms that will smooth over the quantization and
report with some confidence the lines at the top and
bottom of the roof. The left-hand side. however, will
not be well defined, for an algorithm using some
measure of gradient in color or texture would not
return the roof-edge, but the contour where the
foliage occludes the roof.

The problem is even worse for an algorithm tracing
a gradient of color and texture along the right-hand
side of the roof. Halfway up. the gradient wanders
off into the sky, eventually coming back and going
off again, to yield a bizarre shape that is nothing like
a parallelogram because of occlusion and because of
spectral problems which wash out boundaries in the
image.

The visions system does indeed include tools for
image segmentation, in terms of both joining points
of similar gradient to grow boundaries, and region-
growing algorithms. These produce a histogram of

44 INTERDISCIPLINARY SCIENCE REVIEWS, VOL. 9, NO. 1, 1984

L"‘—s,ﬁ.,az

Figure 14. A segmentation of the image of
Figure 13 using low-level segmentation tech-
niques.

how frequently different colors or textures appear in
the image, forming clusters, using cluster labels to
label the image, and then growing regions by
aggregating locales well characterized by the same
label, or constellation of labels. Moreover, we can
improve the performance of such algorithms by hav-
ing them cooperate to converge on a segmentation
which integrates boundary and region information.
Note that these are ‘low-level’ processes in that they
make no use of information about the type of objects
that may occur in the scene. Figure 14 shows the
result of running such algorithms on the image of
Figure 13. We do indeed see that the top and bottom
of the roof are fairly well delineated, but that the
left-hand edge is occluded while the right-hand edge
bleeds into the sky and foliage. The figure also illus-
trates that highlighting or variation in texture may
lead the algorithm to subdivide a natural region into
several segments, as we can see for several of the
shutters. «

The problem, then, is to design algorithms that on
the one hand, can take a region and split it into parts
that are to be seen as giving us information about
different objects, and on the other hand, will
aggregate regions that together characterize some
distinctive portion of the image. The process of image
interpretation calls on high-level information about
possible objects in the scene. For example, informa-
tion about houses would, among other things, initiate
a search for a parallelogram. However, the program
would not fail if there were no parallelogram in the
image, but might pursue more subtle possibilitics, as
for example: ‘if you find two approximately parallel
lines at top and bottom and portions of approximately
parallel lines on the left and right, join up the lines,
and explore the hypothesis that the resultant
parallelogram is a roof.” Given a confident roof



Figure 15. (a) A 2D projection of a 3D schema of a house scene. (b) By applying information in the
3D schema to the segmentation of Figure 14, the segmentation can be improved, and most of the
regions labeled.

hypothesis, the system can hypothesize that below
the roof the image will contain shutters or windows.
Thus if regions there can be aggregated into a rec-
tangle, the program can indeed follow the hypothesis
that there is a rectangle.

How then is high-level information to be represen-
ted without reducing the problem to the simple prob-
lem of template-matching, as in the hole-finder
described earlier? One approach used in preliminary
studies is to provide a three-dimensional schema
which gives confidence ranges for the location of
different objects in space.'* Figure 15(a) shows a
two-dimensional view of such information. A sphere
is not to be thought of as a veridical representation
of a tree, but rather gives a 90% confidence interval
for where tree foliage is located. Here we have gone
from a specific tree in a specific position to a stochastic
tree. Part of our research is to be able to look at
more and more general characterizations. We want
more general ways of representation which will allow
us to recognize very different types of trees or houses.
One question is to what extent one can recognize a
house from one very general template, and to what
extent it is one’s experience of seeing many kinds of
houses that allows one to use the appropriate form
from occasion to occasion. It is beyond the scope of
this review to detail the way the information is
applied, but Figure 15(b) shows what the system

finally produces for the segmentation of Figure 14.
The roof is clearly delineated, shutter subregions are
aggregated, and most of the image has been correctly
characterized.

The overall computation, then involves the
interleaving of multiple processes, a cooperative com-
putation in which each process is invoked where
appropriate, possibly many times, with hypotheses
being generated and discarded until the system con-
verges on as good an interpretation as it is able to
give with the facilities available to it. We claim that
this style characterizes the perceptual mechanisms of
brains, and will provide the style for future develop-
ments integrating perceptual systems for robot
control.
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