Precise Interface Control:
System Structure, Language Constructs,
and Support Environment

Lori A. Clarke
Jack C. Wileden
Alexander L. Wolf

COINS Technical Report 83-26
August 1983

Working Paper

Computer and Information Science Department
University of Massachusetts, Amherst
Ambherst, Massachusetts 01003

This work supported in part by the National Aeronautics and Space Administration under NASA grant
NAGI1-115

ABSTRACT

Although the importance of interface control in the production and maintenance of large,
complex software systems has been repeatedly recognized, there has been no systematic
treatment of interface control and its role in the software development process. Existing
languages provide incomplete and imprecise mechanisms for indicating which entities in a
software system can access other entities and how they are allowed to manipulate those entities.
Moreover, these weaknesses undermine the effectiveness of any analysis that can be done to
assure consistency among interfaces and proper use of shared entities.

This paper presents an approach for achieving precise interface control which has three
interrelated aspects. First, it employs a system structure that, in addition to facilitating interface
control, fosters information hiding, managerial control, separate compilation and incremental
analysis. Second, it provides a small set of language constructs that, in conjunction with this
system structure, provide a framework for a consistent set of abstractions for representing
module decomposition and entity interaction throughout the software development process.
Finally, the approach relies upon a support environment that includes an integrated set of tools
for constructing, viewing, manipulating, and analyzing the interface control aspects of a
software system during all phases of its development. A realistic example demonstrating use of
the approach during design of a software system is presented.

1. Introduction

The description of the eatities contained in a software system along with the relationships
among those entities is of primary importance during every phase of the software lifecycle. For
example, generating such a description is one of the first activities undertaken during the early
phases of software development, while insuring that entity relationships remain correct and
consistent is a major consideration during maintenance. In most software languages, entities are
those language elements that are given names, such as procedures, functions, tasks, data objects
and data types. Unfortunately, software languages, including the recently introduced Ada®
programming language [DODS83] and its PDL/Ada design language derivatives [KERNS3],
continue to be deficient in their ability to describe the relationships among the entities
contained in a software system. In particular, the mechanisms provided in existing languages for
indicating which entities can access other entities and how they are allowed to manipulate
those entities are generally incomplete and imprecise. As software systems become larger and
more complex, these interface control considerations become increasingly important.

In this paper, we present an approach to achieving precise interface control that is based
upon a hierarchical, but nest-free, system structure, a small number of language constructs, and
an integrated set of tools in a support environment. In addition to facilitating interface control,
the system structure is designed to foster information hiding, managerial control, separate
compilation and incremental analysis. The entire approach has been carefully tailored to support
incremental development and to be applicable across the phases in the software lifecycle.
Specifically, the system structure and language constructs provide a uniform framework for
representing module decomposition and entity interaction throughout the software development

process. The support environment enhances this capability by providing an integrated set of

®ada is a registered trademark of the US Government (Ada Joint Program Office).

tools for constructing, viewing, manipulating, and analyzing the interface control aspects of a
software system. As a result, the system structure, language constructs, and associated tools
provide a genuinely integrated approach to interface control applicable throughout the software
development process.

In the next section we present the background and motivation for this approach to
interface control. Section 3 describes the system structure and language constructs. Section 4
describes the support environment, with particular emphasis on the analysis required to
incrementally maintain interface consistency during the design, coding, and maintenance of a
software system. A realistic example illustrating use of the approach during design of a
software system appears in Section 5. The final section reports on the status of a prototype

implementation of these ideas and comments on directions for future research.

2. Background and Motivation

Traditionally, interface control has been associated with visibility control, where visibility is
usually described in terms of declaration, scope, and binding. A declaration introduces an entity
and associates an identifier (name) with that entity. The scope of a declaration is the region of
program text over which that declaration is in effect. Many languages allow a single identifier
to be associated with more than one declaration and the scopes of those declarations to
overlap. Binding relates the use of an identifier, at a given point in a program, to a particular
declaration. A description of a visibility control mechanism is essentially a description of how
that mechanism controls scope. Interface control is that facet of visibility control that deals
with the visibility relationships among the units of a system, where a unit is, for example, a
subprogram (procedure, function, or task) or an encapsulation (package, module, or common

block).

3

The traditional approach to visibility control is exemplified by scope rules based on
nesting, the predominant visibility control mechanism in modern programming languages. In
nested languages, from Algol60 to Ada, visibility depends upon the location of entities within a
program’s nested structure. This approach is inadequate for precisely describing the wide range
of possible interface relationships among the entities contained in a software system since it
usually results in weaker interface control than desired. For example, a subprogram’s “local”
entities are unavoidably visible to other subprograms nested within that subprogram.
Furthermore, nesting forces a software system to take the form of a single, monolithic unit.!
For these reasons, it has been argued that nesting is inadequate for achieving some desirable
software properties, such as information hiding, and is antithetical to others, such as readability,
incremental development and separate compilation [WULF73, CLAR80, HANSS81]. Thus,
particularly for large, complex software systems, more versatile and powerful mechanisms for
interface control are required.

A more general view of interface control that is the basis for the approach presented
here arises from an important distinction between two aspects of scope: accessibility and
provision. An entity’s accessibility refers to the entities that can be (potentially) accessed by that
entity. In general, the accessible entities for a unit include the unit itself and any locally
declared entities, as well as any non-local entities imported (implicitly or explicitly) into that
unit. An entity’s provision, on the other hand, refers to those entities that it makes available
for access by other entities in a software system. The entities provided by a unit may include

the unit itself and any locally declared entities exported (implicitly or explicitly) from that unit.

! Numerous attempts have been made to alleviate this problem while still retaining a nested structure.
The Ada subunit facility, for example, permits the textual separation of a mested unit from its parent
in order to allow the nested unit to be separately compiled. The fact remains, however, that for

of determining and understanding the visibility context of the textually scparate unit, the unit
is still considered to be logically nested; 1e., it is treated as being located at some partzcular point in
the monolithic tree structure of the software system.

Thus, accessibility and provision present two cifferent, yet complementary, points of view on
visibility control—accessibility describing what can be (potentially) used by some unit and
provision describing what is made available by some unit to other units in a software system.
A variety of languages, such as Ada [DODS3], Alphard [SHAWS1], CLU [LISK79],
Euclid [POPE77], Gypsy [AMBL77a], Mesa [MITC79], Modula [WIRT77], and Protel [CASHS1],
have attempted to compensate for the inadequacies of nesting by offering alternative
mechanisms for interface control. These languages have relied, to a greater or lesser degree, on
the concepts of encapsulation and explicit importlexport control to describe which entities are
accessible and provided in a unit of a software system. In its most general form, which is not
exactly the way it is used in all of these languages, an encapsulation serves to group related
units, objects, and types. Examples of encapsulation constructs include the Ada package,
Alphard form, CLU cluster, and Modula module. Explicit import/export control provides the
means by which external entities are made accessible from within a unit and, in the case of
encapsulations, the means by which internally defined entities are provided outside the unit.
Many languages incorporating these concepts retain nesting and use import/export to further
constrain the visibility resulting from a nested structure? Not one of the languages mentioned
above, however, supports the precise description of both what an entity accesses and what an
entity provides. The approach advocated in this paper shuns nesting altogether and builds
upon existing encapsulation and import/export concepts to create a mechanism capable of
describing the desired accessibility and provision of entities in a program more precisely and

flexibly than is possible with the mechanisms provided in any one of these previous languages.

2 While nesting is supported in Ada, Alphard, Euclid, Mesa, Modula, and Protel, its use can, with some
effort, be avoided in these languages (see, for example, [CLARSO]).

5

The system structure and language constructs embodying this approach are quite simple.
Without appropriate automated support, however, development of the proper interface
relationships for large software systems remains a complex task. This task could be greatly
facilitated by the application of processing tools and sophisticated analysis techniques to assure
the consistency of the software system. Therefore, an important aspect of the approach is the
inclusion of an integrated set of tools constituting part of a software development environment.
These tools would provide an integrated set of facilities applicable throughout the software
development process and would support analysis of a software system at any point during its
development, even when the description of the system is only partially complete. In particular,
the system structure and language constructs embodying the approach are suitable for describing
the modular decomposition and entity relationships of a software system from the earliest points
in design through maintenance. The associated set of tools can be applied to descriptions at all
of these stages to provide analysis information about a particular class of properties of the

software system being developed.

3. System Structore and Language Constructs

The approach to interface control that we are advocating is based upon the adoption of
a general hierarchical system structure that is not restricted to a tree-like format. Unlike
nesting, this approach makes no attempt to capture the (two-dimensional) hierarchical structure
of a system by the (one-dimensional) textual location of the units. Instead, a software system
created using our approach consists of a nest-free collection of units where the hierarchical
relationships are explicitly declared.

A unit in the approach described here is either a subprogram (procedure, function or
task) or a package (i.e., an encapsulation). To support information hiding, managerial control,

separate compilation and incremental analysis, there are three distinct kinds of subunits that

may be associated with each unit: an interface specification, a body, and an interface stub. In
describing each subunit and the benefits of the resulting system structure, we will employ an
Ada-like notation. This notation is merely a vehicle for conveying our ideas, however, and
could easily be modified to demonstrate how these ideas could be incorporated into many other
languages.

An interface specification subunit completely describes a unit’s interface. It specifies both
the accessibility of external entities from within a unit and the provision of entities by that
unit to other units. In Ada, an import statement, called the with clause, is used to control a
(non-nested) unit’s accessibility. A with clause can import the names of packages and
unpackaged subprograms. Importation of a package affords access to all the package’s provided
entities, while importation of an unpackaged subprogram permits invocation of that subprogram.
Our notation uses an Ada-like with clause in the interface specification subunits to specify
importation. 1;1 our notation, however, with clauses can be attached to packaged entities as well
as to packages themselves, in order to provide more flexible control over accessibility. When
attached to the package itself, a with clause governs accessibility for all the entities of the
package, while with clauses attached to individual packaged entities control the accessibility for
just the individual entities. Further flexibility is achieved in our notation through selective
importation, the ability to import arbitrary subsets of the entities provided by an encapsulation.
This capability, although not available in Ada, has been provided in Modula, Euclid, and
Mesa. To achieve selective importation, we have enhanced the Ada with clause by permitting
individual packaged entities (subprograms, objects, and types) as well as entire packages and
unpackazed subprograms to be specified. Therefore, if only some of the entities provided by a
package are needed, then the balance of the entities provided by that package do not also

have to be made accessible. In the example in Figure la, procedure Subl imports the entire

package Pacl interface
type Typl is ..

Obj1 : Integer
provided to Pac3.Sub4

procedure Subl (...)
with Pac2, SubA, Pac3.0bj2

procedure Sub2 (...)

with Pac2
provided to Pac3.Sub4

private
procedure Sub3 (...)
with Pac2.Subl

end Pacl

(@

package Pacl body

procedure Subl (...)
end "éubl
procedure Sub2 (...)
end "éubZ
procedure Sub3 (...)
end "éub3

end Pacl

(®)
Figore 1: Example Interface Specification Subunit (a) and Body Subunit (b).

package Pac2, the unpackaged subprogram SubA, and }v.s; the object Ob2 from the package
Pac3. Notice that the interface specification subunit of a package may contain the interface
specifications of encapsulated subprograms. (The keyword interface is dropped from a packaged
subprogram’s interface specification for brevity.)

The interface specification subunit also defines what is provided by a unit to other units
in a system’ In Ada, provision of packaged entities is controlled through constructs that
textually separate a package’s provided entities from its hidden entities. Both the provided and
hidden entities are available to all other entities in the defining package, but only the provided
entities are available outside of the package. In the approach advocated here, the provided
entities reside in a section of the interface specification subunit referred to as the provides part
(and in Ada as the visible part) while the hidden entities reside in a section referred to as the
private part (as in Ada). In Ada, however, provision is controlled on an all-or-nothing basis;
either an ent_ity is provided to every umit, or it is provided to no unit, and so is hidden.
While these two extremes are useful (for instance, in describing the global provision of a
library unit such as a package of trigonometric functions or the hiding of a low-level utility
subprogram within the package needed to implement the trigonometric functions), the intended
provision of a particular entity often lies somewhere in between [MINS83]. Therefore, our
approach extends Ada by including a provides clause, which has its roots in Gypsy’s access list
[AMBL77a]. The provides clause may be appended to any of a package’s provided entities in
order to selectively limit their provision to external units. The absence of a provides clause on
a provided entity is interpretted to mean that the entity is provided to “all.” The provides

clause can also be applied to an unpackaged subprogram. An appended provides clause for such

* Unlike the visibility rules of a mested structure, the system structure presented here does not permit
sul to provide their internally defined entities to other units. In fact, subprograms can provide
nothing but themselves; packages are the only units that can provide their internally defined entities.
As a result, entities that are shared among subprograms would not be (artifically) placed within one of

those subprograms.

9

a subprogram limits its provision to other units and avoids the need to create a superfluous
package to encapsulate the subprogram and control its availability. In the package in Figure 1la,
object Objl and subprogram Sub2 are only provided to subprogram Sub4 in package Pac3,
while type Typl and subprogram Subl are provided to all units in the system. Finally,
procedure Sub3 is not provided to any external unit since it appears in the private part of
package Pacl.

An important aspect of the approach we are endorsing is that it can be used to
distinguish between the provision of the name of a type and the provision of the representation
of that type. Hence, in this approach, as in Gypsy, a provided type may be associated with
two provides clauses, one referring to the provision of the name and the other referring to the
provision of the representation. Access to the name of the type is, of course, necessary for any
sort of use of the type. Therefore, a provides clause associated with the representation serves as
a further restriction on the representation beyond that inherited from the name. Six basic levels
of control result (Figure 2), permitting a high degree of flexibility in controlling the use of a
type definition. By contrast, Ada only provides a few of these levels. Associating two provides
clauses with a type definition allows abstract data types to be easily defined and also solves
the problem of sharing the representation of an abstract type among different units [KOST76].

A unit’s body subunit contains the actual code sections implementing the unit’s interface
specification. Figure 1b shows the skeleton of the body associated with the interface
specification subunit given in 1la. Notice that a package’s body subunit contains the bodies
associated with the interface specifications of subprograms mentioned in the package’s interface
specification. (The keyword body is dropped from a packaged subprogram’s body for brevity.)
When our approach to interface control is used in the pre-implementation phases of the

development process, the body would contain a high-level description of its procedures. In the

(1) npe AisB
-~ name: no restriction
—~ representation: no restriction
- name and representation provided to all

(2 ppe AisB
provided to X
-~ name: no restriction
-~ representation: restriction
- name provided to all; representation
-~ provided only to X and defining package

() ppe Ais B
private
- name: no restriction
- fepresentation: complete restriction
-~ name provided to all; representation
~ provided only to defining package

(4) npe A provided to X
is B
— name: restriction
- representation: same restriction as name
~ name and representation provided only
-~ to X and defining package

(5) type A provided to X, Y
is B provided to X
- name: restriction
- representation: restriction
—~ name provided only to X, Y and defining
-~ package; representation provided only to
- X and defining package

(6) type A provided to Y
is B private
- name: restriction
— representation: complete restriction
- name provided only to Y and defining
— package; representation provided only to
— defining package

Figure 2: Basic Levels of Control Over Provided Packaged Type Definitions.

1

example presented in Section 5, a design is presented and the body of procedure
InterfaceCheck is given in a PDL (Figure 6). Both there and in the examples of Figure 1 we
make liberal use of the incompleteness construct, which is denoted using an ellipsis. This
construct is useful in all phases of development prior to final implementation for explicitly
indicating where details that will be supplied later have been omitted from a description.

Interacting components of large software systems are often developed independently
—perhaps even at different times. When a group of subunits desires access to entities from a
unit for which no interface specification subunit is yet available, an interface stub subunit can
be provided. An interface stub usually only contains some of the information described in the
interface specification. In particular, an interface stub of a unit need not contain any
information about what that unit is accessing but only needs to describe what is being provided
by the unit to the subunits in the accessing group. A number of different interface stubs of a
unit may exist to accomodate the development of a number of different groups. The
interface-stub mechanism provides a means for the various groups of users of a unit to
document their particular intended uses, or views, of that unit before the unit is available.
When a unit’s interface specification is available (in a library) or completely known, then it
could be used for processing instead of the interface stub. As described in the next section, the
environment provides tools to assure consistency among the interface stubs, to generate an
accumulated view, and to check that the interface specification, when submitted, is consistent
with any existing interface stubs of that unit. Use of interface stubs is illustrated in the
example presented in Section 5.

It should be pointed out that the system structure and language constructs discussed
above provide little control within a unit over the accessibility and provision of entities

declared in that unit. This lack of control, which is based on the presumption that entities are

12

declared together because they are strongly interrelated, may be viewed as a notational
shorthand for a commonly occurring situation. If more control is desired, then it can be
achieved through the creation of additional units to hold the appropriate entities.

There are a number of benefits associated with the system structure that results from the
approach to interface control outlined above. Since what is accessible and provided is explicitly
and clearly stated, the resulting software is more readable than it would be using a nested
structure. Nested structures also have the disadvantage that units must often be physically
moved within the text of a program or design to accomodate changes to accessibility and
provision. Since the approach presented here results in a linear, order-independent collection of
units, no such movement is required. We contend that such a system is easier to change and
therefore easier to develop and maintain. Moreover, the structure facilitates managerial control,
separate compilation and incremental analysis, and information hiding. The remainder of this
section elaborates on these points.

The system structure associated with this approach requires that a unit’s interface control
information be completely separate from its body. Such a separation results in a structure that
is similar to a module interconnection language or MIL [DERE76, MITC79, TICH79). In fact, it
becomes only a conceptual issue whether interfaces are viewed as being specified in a separate
language or not. A major benefit of a MIL, and thus of the approach described here as well,
is that managerial control over both the éocasibility and provision of a unit can be supported.*
To achieve such control, a project leader would be the only person permitted to create or
modify an interface specification or interface stub subunit. While in languages such as Ada,
Mesa, and Protel there is support for “specifications” of units separate from their bodies, these

specifications do not completely define the interfaces to the units. In Ada, for instance, a body

 Tichy’s MIL [TICH79] also supports version comtrol. While this important capability is not addressed
here, our approach’s system structure is certainly amenable to inclusion of such a feature.

13

may itself import entities. In our approach the with clauses, which can only appear in an
interface specification subunit, completely constrain the external entities accessible from a unit’s
body. Similarly, the provision of a unit is completely defined in the interface specification
subunit. Thus, by giving only the project leader the ability to create and modify the interface
specification subunit, a method of enforcing interface control is obtained. Of course, in cases
where such managerial control is not desired, implementors of units can assume the role of
project leader and construct their own interface specifications.

The separation of a unit’s interface specification from its body facilitates separate
compilation [ICHB76] and incremental analysis, while minimizing the need for recompilation and
reanalysis. For instance, an interface specification or interface stub subunit may be developed
first and entered into a system library. Other units that access the provided entities of that
unit may be compiled (or analyzed) using the library description, which is independent of any
particular implementation of that umit. Later, if the body changes but the interface does not,
these units do not have to be recompiled (reanalyzed). Of course, a unit may not actually
make use of all the entities to which it is given access. The support environment provides a
tool to detect such a situation in order to avoid needless recompilation (reanalysis) of a unit’s
subunits when a change is made to an accessible entity that is in fact not accessed by that
unit. Finally, the separation of a unit’s interface specification and body also allows the
provision of a unit’s entities, as specifird in the interface specification subunit, to be changed
without the need to recompile (reanalyze) the body subunit, although subunits accessing the
entities may require recompilation (reanalysis). The incremental analysis capability supported by
this approach is particularly important since it permits interface consistency analysis to be

performed early and as often as desired during the software lifecycle.

14

Another beneficial feature of this system structure is that the textual separation of
concerns fosters information hiding. As noted above, the system structure separates a unit’s
interface from its body. Different implementations can be given without changing the interface
to a unit or the units that access that unit. Moreover, the environment can provide tailored
views of a unit, much like schemas in databases. A software developer working on a unit that
will access entities from another unit only needs to see the specifications of the provided
entities of the accessed unit and each such specification only needs to contain information
relevant to the accessing unit. The provides clauses in an interface specification actually define
the different views particular units have of a package’s provided entities.

In sum, while many existing specification, design, programming, and module
interconnection languages provide some of the desired capabilities, none provides all. The
preliminary framework outlined here incorporates features distilled from many of these previous
attempts. The resulting language framework is relatively simple and straightforward, yet
surpasses these previous attempts by providing precise interface control as well as the
comprehensive collection of benefits outlined above. Moreover, this framework provides a
uniform approach to interface control that can be exploited throughout the software

development and maintenance process.

4. Support Environment

The system structure and language constructs described above are most useful when
accompanied by an automated support environment. Such an environment should help a
software developer to create, store, modify, and analyze information about a system’s structure
and interfacm: Manipulation and analysis of these aspects of a system could be carried out at

any stage in the development of a software system using the environment’s tools.

15

We -are currently developing a prototype environment that will comprise a set of tools
applicable throughout the software development process. The capabilities of this prototype will
be invoked using an extensible command language and associated command language
interpreter, modelled on those provided in Toolpack [OSTES2]. Through this command
language, users of the environment will have access to three classes of tools: library management
tools, processing tools, and analysis tools. In the remainder of this section we briefly describe

these tools.

Library Management Tools. Along with the submitted subunits themselves, the system library
holds information about those subunits, such as completeness and interface-consistency status.
These tools maintain the integrity of this information. Since the major emphasis of our
environment is on controlling interface interaction among units, the library management tools
provide protection mechanisms to control modification of the interface specification and
interface stub subunits, preventing arbitrary changes by unauthorized users. In addition, these
tools support various management disciplines regarding the analyses performed on subunits, to
assure that checks are done thoroughly and in appropriate sequences. Finally, these tools

support the use of multiple libraries and of sublibraries within a library.

Processing Tools. These tools are used to create new subunits, modify existing subunits, and
produce reports regarding the current status of the software development project. They include
an editor, interface and view generators, update processor, translator, and report generator. The
editor is a typical syntax-directed editor that recognizes the interface control and other
constructs of the design and programming languages. The update processor is used to replace
one subunit with another. In so doing, it performs an update analysis (described below) and

modifies the status indicators of any subunits in the library that are (potentially) affected by

16

the replacement. The translator is a preprocessor that turns subunits containing the constructs
used to achieve precise interface control into the target language (which in our prototype is
Ada). The report generator produces reports on the current status of the software development
project, as reflected in the current status of the library, and on the results of the various
analyses that have been performed on the library’s contents.

Perhaps the most interesting of the processing tools are the interface and view generators.
Given a set of interface stubs of a unit, the interface generator will generate a single,
accumulated interface stub of that unit. Since a collection of interface stubs of a unit is not
likely to specify a consistent interface for the unit, this generator also reports any
inconsistencies that exist among the interface stubs. Note that the generator can also produce a
template for the interface specification subunit that is a minimal, and possibly incomplete,
representation of the interface. Conversely, given an interface specification of a unit, the user
view generafor will generate consistent user views of that unit as it would appear to other
(user) units. The initial version of our environment will produce these user views in the form
of interface stubs. Later versions will produce other forms for these descriptions, including

graphical representations of the descriptions.

Analysis Tools. These tools perform various kinds of analysis on individual subunits and on
the relationships among subunits. The analysis tools can be invoked through the command
language or, in some cases, by a processing tool. The results of these analyses may be stored
as new library information, attached either to a particular library or to the subunit itself,
depending on the type of analysis. Results may also go directly to the report generator or to
another processing tool, such as the update processor. The types of analysis that can be
performed include local syntax and semantic checking, visibility and semantic analysis, subunit

interaction checking, and update analysis.

17

Local syntax and semantic checking constitutes the analysis that can be performed on an
individual subunit without reference to any other subunits. Correct syrtax is checked for, as
much semantic consistency of the subunit as possible is ascertained and incompleteness of the
subunit, as indicated by the appearance of PDL constructs such as ellipses, is noted.

Visibility and semantic analysis tools check the consistency of interrelated subunits. One
set of these tools compares two descriptions of the same unit, such as an interface specification
and the corresponding body, or an interface specification and a stub for that interface
specification. Others of these tools compare subunits corresponding to different but related units.
Instances of these include comparisons of the interface specifications of two units that reference
one another or comparison of the body of one unit with the interface specification of another
unit that it references. In all cases, the analysis is intended to reveal whether units and the
entities that they contain are being used in the appropriate manner. The use of these visibility
and semantic analysis tools is illustrated in the example presented in the next section.

Subunit interaction checking determines what kinds of interactions a given subunit has
with other subunits in a particular library. The analysis can be performed with respect to the
entities that a subunit provides or with respect to entities that it accesses. The analysis
determines whether particular entities are available or not and whether those entities that are
available are actually referenced.

Update analysis determines what impact the proposed replacement of one subunit by
another will have on other subunits in the library. In particular, it is possible to discover
whether a subunit that references entities provided by the replaced subunit must be rechecked
or revised. Correspondingly, it is possible to discover whether a subunit that provides entities

used by the replaced subunit must be rechecked or revised.

18

5. Example

To illustrate the capabilities provided by the system structure, language constructs, and
support environment described above, this section presents a simple, yet realistic, example
showing the specification and analysis of an evolving system’s units during the high-level and
low-level design phases. The example is drawn from the development of the software for our
prototype implementation of the support environment.

In this example, two units are being designed: a package LowLevelAnalysisTools,
providing the low-level visibility and inter-subunit semantic analysis tools, and a package
ProcessingTools, providing the general subunit processing tools. Both sets of tools are to operate
on subunits through an abstract internal representation (attributed trees) realized in a third
package, InternalRepresentation. For the purposes of this example, it is assumed that package
InternalRepresentation is undergoing parallel development at a separate site and has not yet
been delivered. (This is in fact the situation encountered in the development of compilers for
Ada: Tartan Laboratories developed Diana [EVANS3], the internal representation for Ada
programs, at the same time that compilers using Diana were being built at Intermetrics
[TAFTS2] and Softech [BABI&Z].)

To allow development of the two tool packages to proceed while still gaining a certain
degree of confidence in the interface consistency of the system, a stub is created for the
interface of package InternalRepresentation (Figure 3). The interface stub indicates (a subset
of) the entities the package is expected to provide. In particular, it defines a data type Tree
for representing entities and a function MakeTree for initializing such representations. The
remaining entities defined in the stub are used to bandle the attributes associated with entity
representations. Type AttributeKind is an enumeration of the different kinds of attributes that

can be used to describe entities, while type Attribute is the definition for a variant structure

package InternalRepresentation interface stub
used by LowLevelAnalysisTools, ProcessingTools

- Tree manipulation entities

type Tree
is ... private

Sfunction MakeTree (...) return Tree
provided to ProcessingTools

~ Attribute manipulation entities

type AttributeKind -~ enumeration of attribute kinds
is (ArrayDeclaration, RecordDeclaration, ...,
IfStatement, CaseStatement, ...
ImportedEntities, ...)

tpe Attribute (AK : AttributeKind) — attribute value representations
is record
case AK is

when ArrayDeclaration => ..
when RecordDeclaration => ...

when IfStatement =
when CaseStatement =

when ImportedEntities => ...

end case
end record

-procedure AddAttribute (T : in owt Tree; A : in Attribute)
provided to ProcessingTools

Sfunction GetAttribute (T : Tree; WhichAttribute : AttributeKind)
return Attribute

end InternalRepresentation

Figure 3: Interface Stub Subunit of Internal Representation Package.

20

representing actual attribute values; the structure of an object of the latter type is discriminated
by a value of the former. Finally, subprograms AddAttribute and GetAttribute are used to
store an attribute value and retrieve an attribute value, respectively. Notice that specifications
of the entities are given at various levels of detail. For instance, the descriptions of
parameters to function MakeTree and the elements of type AttributeKind are deferred through
the use of the incompleteness construct (ellipsis), while the parameters to subprograms
AddAttribute and GetAttribute are fully described. Notice also that although the
implementation of type Tree is not yet known, the presence of the keyword private following
the (incomplete) definition indicates that users will not be able to operate on Tree’s
representation. Moreover, the fact that only entities in package ProcessingTools can invoke the
subprograms that create or update objects of type Tree is specified by restricting the relevant
subprograms to that package.

The first subunit to be submitted for checking with the interface stub of package
InternalRepresentation is the interface specification subunit of package LowLevelAnalysisTools
(Figure 4). Appearing in this subunit are interface specifications for procedures realizing six of
the basic analyses underlying the analysis capabilities described in Section 4. The three functions
EntitiesOf, Unavailable, and SemanticConflict, are utility subprograms employed by the low-level
analysis tools and hidden within the package. At the top of the package is a common with
clause that imports a number of entities from package InternalRepresentation. The list of
imported entities and the parameter lists for the six procedures are only partially specified as
indicated by the ellipses. Invoking the environment’s visibility-analysis tools at this point reveals
that package LowLevelAnalysisTools attempts to import an entity that is not available.
Specifically, the common with clause contains the entity AddAttribute defined in package

InternalRepresentation which has been restricted to package ProcessingTools (see Figure 3).

21

package LowLevelAnalysisTools interface
with
InternalRepresentation.(Tree, AttributeKind, Attribute, GetAttribute,
AddAttribute, ...)

procedure InterfaceCheck (InterfaceSubunitl, InterfaceSubunit2 :
in InternalRepresentation.Tree;

)

procedure IntraUnitBodyCheck (BodySubunit, InterfaceSubunit :
in InternalRepresentation.Tree;
.)

-procedure InterUnitBodyCheck (BodySubunit, InterfaceSubunit :
in InternalRepresentation.Tree;
)

procedure WeaklInterfaceCheck (InterfaceSubunit, InterfaceStub :
in InternalRepresentation.Tree;

-

procedure WeakInterUnitBodyCheck (BodySubunit, InterfaceStub :
in InternalRepresentation.Tree;

“)
procedure StubConsistencyCheck (InterfaceStubl, InterfaceStub2 :
in InternalRepresentation.Tree;
e)

private
function EntitiesOf (Subunit : InternalRepresentation.Tree) return ..

function Unavailable (ImportedEntity, Entity :
InternalRepresentation.Tree) return Boolean

function SemanticConflict (ImportedEntity, Entity :
InternalRepresentation.Tree) return Boolean

-~ Other hidden utility entities
end LowLevelAnalysisTools

Figure 4: Interface Specification Subunit of Low Level Analysis Tools Package.

22

Assuming the error lies with the interface of package LowLevelAnalysisTools, the inconsistency
can be rectified with appropriate editing of the interface specification subunit and invocation of
the update processor to recheck and replace the subunit.

The next subunit submitted is the interface specification for package ProcessingTools
(Figure 5). The subprograms defined in this subunit perform most of the basic processing
functions described in Section 4. Note that in addition to the entities imported from package
InternalRepresentation by the common with clause at the top of the package, certain other
entities defined in package InternalRepresentation that are used to create and update internal
representations are imported by a few of the packaged subprograms. The effect is to limit,
within package ProcessingTools, those subprograms that can alter an internal representation. In
particular, only subprograms Recognize, Edit, and Generatelnterface can perform such
operations. Invocation of the visibility-analysis tools at this stage of development would not
reveal any inconsistencies between the interface specification of ProcessingTools and the
interface stub of InternalRepresentation.

Independent of the development of the rest of the system, low-level design of the body
subunit of package LowLevelAnalysisTools can begin. Figure 6 shows this subunit at a stage in
which the basic algorithm of procedure InterfaceCheck has been specified using PDL constructs.
This algorithm involves checking, for each entity E defined in the first interface specification
subunit, whether the entities defined in the second interface specification subunit referenced by
E are both provided to E and accessed by E in semantically consistent ways.

With the corresponding interface specification subunit of the package and the interface
stub subunit of package InternalRepresentation already present, a substantial amount of
consistency checking can be performed on the body subunit of package LowLevelAnalysisTools

even at this early stage. Invoking the visibility-analysis tools to analyze the consistency between

package ProcessingTools interface
with
InternalRepresentation.(Tree, AttributeKind, Attribute, GetAttribute, ...)

procedure Recognize (SourceCode : in ...
Subunit : owr InternalRepresentation.Tree;

)

with InternalRepresentation.(MakeTree, AddAttribute,
- Other tree alteration entities

)

procedure Edit

with InternalRepresentation.(MakeTree, AddAttribute,
.. = Other tree alteration entities

)

procedure Translate (Subunit : in InternalRepresentation.Tree; TargetCode : out ...)

procedure ProcessUpdate (OldSubunit : in InternalRepresentation.Tree;
NewSubunit : iz InternalRepresentation.Tree;

2)

procedure Generatelnterface (InterfaceStubs : in InternalRepresentation....;
InterfaceSubunit : our InternalRepresentation.Tree;

2)

with InternalRepresentation.(MakeTree, AddAttribute,
- Other tree alteration entities

)

function GenerateView (OfUnit : InternalRepresentation.Tree;

ForUnitName : InternalRepresentation.Attribute) return ...

end ProcessingTools

Figure 5: Interface Specification Subunit of Processing Tools Package.

23

package LowLevelAnalysisTools body

function EntitiesOf (Subunit : InternalRepresentation.Tree) return ...
begin ... end EntitiesOf

function Unavailable (ImportedEntity, Entity :
InternalRepresentation.Tree) return Boolean
begin ... end Unavailable

function SemanticConflict (ImportedEntity, Entity :
InternalRepresentation.Tree) return Boolean
begin ... end SemanticConflict
- Other utility entities (e.g., RecordInterfaceCheckError)

procedure InterfaceCheck (InterfaceSubunitl, InterfaceSubunit2 :
in InternalRepresentation.Tree; ...)

Entity : InternalRepresentation.Tree
WithList : InternalRepresentation.Attribute

ImportedEntity
. - Declarations of other local objects and types

use InternalRepresentation

begin
foreach Entity in EntitiesOf (InterfaceSubunitl) loop
WithList := GetAttribute (ImportedEntities, Entity)

Sforeach ImportedEntity in WithList loop
if (ImportedEntity.Parent = InterfaceSubunit2) then
if (Unavailable (ImportedEntity, Entity)) then
RecordInterfaceCheckError (...)
elsif (SemanticConflict (ImportedEntity, Entity)) then
RecordSemanticInconsistencyError (...)
end if
end if
end loop
end loop

end InterfaceCheck
- Bodies of other low level analysis procedures

end LowLevelAnalysisTools
Figure 6: Body Subunit of Low Level Analysis Tools Package.

25

the interface specification subunit of package LowLevelAnalysisTools and its body subunit does
not reveal any errors. On the other hand, invoking these tools to analyze the consistency
between the body subunit and the interface stub of package InternalRepresentation reveals that
function GetAttribute is being used improperly; the parameters to the function are reversed. A
decision must then be made as to which subunit is in error. Let us assume it is decided that
the body subunit is incorrect. We will then assume further that the parameter list is
appropriately edited, and finally that the subunit is resubmitted through the update processor
and is now found to be consistent.

Eventually, an official version of package InternalRepresentation is delivered. In general,
the interface specification subunit of a utility package such as InternalRepresentation (e.g.,
Diana) is delivered in a “virgin” state; application specific interface restrictions are left
unspecified. In order to tailor the package to the particular application under development and
foster a high degree of interface control, the interface specification subunit must be augmented
to include any desired restrictions on its provided entities. Significantly, such augmentation does
not affect the implementation of the package since restrictions on provision exclusively involve
the unit’s interface. Returning to the example, the appearance of the (augmented) official
interface specification subunit of package InternalRepresentation makes the interface stub
obsolete. All checking can now be performed—with greater confidence—against the true
interface subunit. As noted in Section 4, this checking can be expedited by using the
already-checked stub, rather than the subunit bodies, as a basis for most of the checking of

the newly-introduced interface specification.

26

6. Future Enhancements and Current Status

The approach to precise interface control described here improves upon the capabilities
provided in the existing approaches. Nevertheless, there are a few additional interface control
capabilities that might be desirable and hence we are investigating a number of enhancements
to the design of the mechanism we have presented. Most notably we are examining even more
stringent controls over provision. In particular, we are considering run-time constraints for
providing dynamic control over the provision of an entity [MINS83]. In addition, we are
considering finer control on the operations that can be performed on objects [JONE78] and the
operations that can be associated with types. We suspect that these enhancements, while
semantically quite powerful, can be added to our current framework with only relatively simple
syntactic modifications.

We are also exploring how a general approach to precise interface control may provide
protection capabilities [SALT75, AMBL77b]. Section 3 outlined how the system structure that
we have adopted will support stringent managerial control. This concept, combined with the
enhancements described above, provides the basis for extemsive protection capabilities. We are
investigating the strengths and limitations of such a mechanism, but suspect that with minor
extensions it can provide language level support for both object-oriented and capability-based
protection, which could be useful in database and operating system applications. Another
extension being explored is interface control and system structure for concurrent systems. We
suspect that in many cases the constructs that we adopt for sequential programs will also
suffice for concurrent systems. In other instances, particularly if a system can spawn processes

dynamically, additional constructs may be required.

27

To evaluate our ideas and to demonstrate the system structure, language constructs, and
support environment, we are currently developing a prototype implementation. As the example
in Section 5 indicates, we are using the system structure and language constructs described in
this paper in designing the prototype. Although pre-implementation and programming languages
embodying this approach to precise interface control could be based on almost any modern
language, we are basing our prototype’s languages on Ada. The prototype tools will be
provided as part of a preprocessor that performs the necessary recognition, analysis, and
eventual translation into ANSI-standard Ada. We believe that this prototype will be very
important in demonstrating the added power provided by our approach to precise interface

control as well as showing its applicability throughout the software development process.

. REFERENCES

AMBL77a AL. Ambler, DI. Good, J.C. Browne, W.F. Burger, R.M. Cohen, C.G. Hoch, and

RE. Wells, GYPSY: A Language for Specification and Implementation of Verifiable
Programs, Proceedings of an ACM Conference on Language Design for Reliable
Software, appearing in SIGPLAN Notices, Vol. 12, No. 3, pp-1-10, March 1977.

AMBL77b ALL. Ambler and C.G. Hoch, A Study of Protection in Programming Languages,

BABI&2

CASHS1

CLARS0

DERE76

DODS3

EVANS3

HANSS1

ICHB76

JONE78

Proceedings of an ACM Conference on Language Design for Reliable Software,
appearing in SIGPLAN Notices, Vol. 12, No. 3, pp.25-40, March 1977.

W. Babich, L. Weissman, and M. Wolfe, Design Considerations in Language
Processing Tools for Ada, Proceedings of the Sixth International Conference on
Software Engineering, Tokyo, Japan, pp.40-47, September 1982.

PM. Cashin, M.L. Joliat, RF. Kamel, and DM. Lasker, Experience with a Modular
Typed Language: Protel, Proceedings of the Fifth International Conference on
Software Engineering, San Diego, California, pp.136-143, March 1981.

L.A. Clarke, J.C. Wileden, and A.L. Wolf, Nesting in Ada Programs is for the Birds,

Proceedings of an ACM-SIGPLAN Symposium on the Ada Programming Language,
appearing in SIGPLAN Notices, Vol. 15, No. 11, pp.139-145, November 1980.

F. DeRemer and H. Kron, Programming-in-the-Large Versus Programming-in-the-Small,
IEEE Transactions on Software Engineering, SE-2, No. 2., pp.80-86, June 1976.

Reference Manual for the Ada Programming Language (ANSI/MIL-STD-1815A),
United States Department of Defense, Washington, D.C., January 1983.

A. Evans Jr. and K. J. Butler (eds.), Diana Reference Manual (Revision 3), TL 834,
Tartan Laboratories Inc., Pittsburgh, Pennsylvania, February 1983.

D.R. Hanson, Is Block Structure Necessary?, Software - Practice and Experience,
Vol. 11, No. 8, pp.853-866, August 1981.

JD. Ichbiah and G. Ferran, Separate Definition and Compilation in LIS and its
Implementation, Lecture Notes in Computer Science, No. 54, Springer-Verlag, Berlin,
pp-288-297, 1977.

AXK. Jones and B.H. Liskov, A Language Extension for Expressing Constraints on
Data Access, Communications of the ACM, Vol. 21, No. 5, pp358-367, May 1978.

KERNS3

KOST76

LISK79

MINSS83

MITC79

OSTES2

POPE77

SALT7S

SHAWS1

TAFT82

TICH?9

WIRT77

WULF73

29

J. S. Kerner, Design Methodology Subcommittee Chairperson’s Letter and Matrix, Ada
Letters, Vol. 2, No. 6, pp.110-115, May-June 1983.

CH.A. Koster, Visibility and Types, Proceedings of a Conference eon Data:
Abstraction, Definition and Structure, appearing in SIGPLAN Notices, Vol. 11, No. 2,
pp.179-190, February 1976.

B. Liskov, R. Atkinson, T. Bloom, E. Moss, C. Schaffert, B. Schiefler, and
A. Snyder, CLU Reference Manual, Lecture Notes in Computer Science, Vol. 114,
Springer-Verlag, New York, 1981. '

N.H. Minsky, Locality in Software Systems, Conference Record of the Tenth Annual

ACM Symposium on Principles of Programming Languages, Austin, Texas,
pp-299-312, January 1983.

J.G. Mitchell, W. Maybury, and R. Sweet, Mesa Language Manual Version 50,
Technical Report CSL-79-3, Xerox PARC, Palo Alto, California, Apri: 1979,

LJ. Osterweil, Toolpack - An Experimental Software Development Environment Research
Project, Proceedings of the Sixth International Conference on Software Engineering,
Tokyo, Japan, pp.166-175, September 1982.

GJ. Popek, JJ. Horning, B.W. Lampson, J.G. Mitchell, and R.L. London, Notes on

the Design of Euclid, Proceedings of an ACM Conference on Language Design for
Relinble Software, appearing in SIGPLAN Notices, Vol. 12, No. 3, pp.11-18, March
1977.

J.H. Saltzer and M.D. Schroeder, The Protection of Information in Computer Systems,
Proceedings of the IEEE, Vol. 63, No. 9, pp.1278-1308, September 1975.

M. Shaw (ed.), ALPHARD: Form and Content, Springer-Verlag, New York, 1981.

T. Taft, Diana as an Internal Representation in an Ada-in-Ada Compiler, Proceedings
of the AdaTEC Conference on Aca, Arlington, Virginia, pp.261-265, October 1982.

WUF. Tichy, Software Development Control Based on Module Interconnection,
Proceedings of the Fourth International Conference on Software Engineering,
Munich, West Germany, pp.29-41, September 1979.

N. Wirth, Modula: A Language for Modular Multiprogramming, Software - Practice
and Experience, Vol. 7, No. 1, pp3-35, January-February 1977.

W.A. Wulf and M. Shaw, Global Variable Considered Harmful, SIGPLAN Notices,
Vol. 8, No. 2, pp.28-34, February 1973.

