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ABSTRACT

In this paper we outline an approach to describing and
analyzing designs for distributed software systems. A
descriptive notation is introduced and analysis techniques
applicable to designs expressed in that notation are presented.
The usefulness of the approach is illustrated by applying it to a
realistiec distributed software system design problem involving
mutual exclusion in a computer network.



1. Introduction

Motivated by the increasing demand for highly complex yet
highly reliable distributed computing systems, we have been
investigating tools and techniques to aid in the
pre-implementation stages of distributed software system
development. In this paper we present a notation appropriate for
describing designs of distributed software systems and techniques
for analyzing the behavior of systems whose designs are expressed
in this notation. The notation describes systems as collections
of sequential processes communicating entirely via message
transmission, and hence is well-suited for use in developing the
design for a distributed system's software. The analysis
techniques employ methods derived from basic algebra. Our
experience has shown that these techniques provide valuable
assistance in uncovering even very subtle flaws in designs
expressed in the notation. Moreover, they can also be used to
rigorously demonstrate that certain aspects of a design are
correct.

The role that we envision for these techniques in
pre-implementation distributed software development is
illustrated by the following 'scenario: A designer, early in the
development of a 1large, complex, distributed software system,
conceives a modularization for the system. The designer can then
use our notation to describe this modularization, identifying the
individual processes comprising the system and specifying how
those processes will interact. Continued development of the
system, eventually culminating in an implementation, will involve

a great deal of time and effort, much of which would be wasted if



any error has been made at this early pre-implementation stage.
Therefore, before proceeding with the development, the designer
employs our analysis techniques, expressly tailored for
pre-implementation use, to check for design flaws. Specifically,
these techniques can be used to determine whether or not certain
patterns of behavior occur, given the specified processes and
process interactions. The patterns of interest may represent
desirable properties of system behavior, such as mutually
exclusive wutilization of a shared resource, or graceful
degradation and continued operation following the failure of one
or more system components. Alternatively, the patterns might
represent pathological behaviors such as deadlocks. Through use
of these analysis techniques, the designer could gain confidence
in the suitability of a design before proceeding to later stages
Qf the software development process.

Although this paper focuses on the design stage of
distributed software system development, it is worth noting that,
with appropriate modifications, the analysis techniques presented
here could be applied during 1later stages as well. Such
generalized wusage of these techniques would contribute to
uniformity of analysis methods and hence to increased integration
of the development process for distributed software systems.

In this paper we describe both our notational framework and
our approach to analysis, illustrating their use and their
usefulness with a realistic example. The next section discusses
our design notation framework, and compares our approach with
some related work by other researchers. This is followed by a

short section in whiech we discuss the distributed mutual



exclusion problem that serves as the basis of our example.
Section four presents the first part of the example in which we
illustrate the use of our notation in developing a design for a
distributed system. In section five, we describe the analysis
techniques that we have developed, specifically showing how they
can be applied to designs expressed in the notation introduced in
section two. We continue our example in section six, showing how
our analysis techniques can be used both to uncover design errors
and to demonstrate correctness of aspects of a design. We
conclude the paper with an assessment of the applicability of our

work and prospects for future progress.

2. Framework for a Design Notation

Our work on techniques for describing and analyzing
distributed systems has been guided by our interest in
gontributing to the production of practical, automated tools
applicable to the pre-implementation stages of distributed
software system development. We believe that this goal imposes
two basic constraints. First, 1t requires that we base our
techniques on a descriptive formalism (with accompanying
notation) that not only is precise enough to be unambiguous, but
also is appropriate for use by developers of distributed software
who may have no special mathematical or theoretical training.
Second, it requires that we provide practical analysis methods
that can be applied to descriptions phrased in that formalism and
that can answer the types of questions arising most crucially

during the design of distributed software systems.



Our choice of a descriptive formalism reflects our view of
the distributed software development process. We believe that
the designer of distributed software needs tools that will
support descriptions of a modularization for the system,
identifying the component processes of the system and specifying
the ways in which ‘those components will interact. Such a
description must be sufficiently abstract to allow the aesigner
to focus on just the properties of interest, namely modularity
and interaction, without being distracted by details concerning
other properties that are irrelevant at this stage. At the same
time, the description must be sufficiently rigorous that it can
be analyzed.

In addition to providing abstraction and rigor, we feel that
a pre-implementation deScriptive formalism must be relatively
easy to understand and use. Specifically, it must be amenable to
use by software designers who may have little or no training in
advanced mathematics or theoretical computer science. Therefore,
an appropriate formalism should bear a reasonable relationship to
standard software specification and design techniques. Ideally,
it should be possible to provide an automated version of the
formalism to permit ifs use in a distributed software development
environment [4]. Finally, a formalism can only be appropriate
for general use in designing distributed software if it 1is
applicable to a wide range of distributed system organizations.

The descriptive formalism that we have chosen to use as a
‘basis for our work is the Dynamic Process Modelling Scheme (DPMS)
and its Dynamic Modelling Language (DYMOL). This formalism,

described in detail in [33], was originally developed for



studying distributed systems with dynamic structure [31]. It
evolved from the PPML formalism [29] that served as the
foundation for the DREAM software development system [28,32].
One component of DPMS is a modelling language, called DYMOL, that
can be wused to formulate precise, high-level, procedural
descriptions of constituent processes in a distributed system
[33]. A second component of the modelling scheme, called

constrained expressions [34], is a closed form, non-procedural,

representation for all the possible behaviors that could be
realized by some distributed system. For an important subset of
dynamically-structured distributed systems these two components
of DPMS aré related by an effective procedure for deriving the
constrained expressions describing the potential behavior of a
given system described in DYMOL. In the remainder of this
section we summarize the relevant features of tﬁe Dynamic Process
Modelling Scheme. We first describe the computational model on
thch DPMS is based, then discuss the DYMOL language and relate
it to other languages for describing distributed systems.

In DPMS, a dynamically-structured distributed system is
considered to be composed of individual sequential processes,
communicating with one another by means of message transmission.
Each individual process is an instance of a class of potential
processes. Each class 1is described by a template, 1i.e., a
generic program written in DYMOL. This DYMOL template precisely
specifies the ways in which processes of the class may interact
with other processes, through (ésynchronous) message transmission
or by creating or destroying processes, but only abstractly

describes the 1local, internal activities of the process itself.



Thus, DPMS descriptions focus on process organization and
interaction, which is the appropriate orientation for design
description and analysis, rather than on internal process
activity.

Message transmission as modelled in DPMS 1is both a
communication and a synchronization mechanism. A process may,
using an appropriate DYMOL instruction, send a message through an
outbound port into a link associated with that port. The 1link 1is
essentially an unbounded, unordered repository that is wused to
mediate the asynchronous message transmission activity of DPM3
processes. Sending a message may be viewed as copying the
current contents of the process' buffer (a distinguished memory
location within the process) into the designated link leaving the
buffer's contents unchanged (a non-destructive copy operation).
Having sent a message, the sending process may continue with
subsequent activities as described by its DYMOL program.

Using another DYMOL instruction, a process may request
receipt of a message through one of its inbound ports. Such a
request can be fulfilled whenever at least one 1link containing
one or more messages is connected to the designated inbound port
by an interprocess communication channel. When the request is
fulfilled, the following steps are followed: First, one link is
nondeterministically selected from among those that contain one
or more messages and are connected to the designated port by
channels. Then one message is chosen, again
nondeterministically, from those residing in the selected link.
Finally, this message is removed from the link and placed into

the buffer of the requesting process. If no messages are



currently residing in any of the links currently connected to the
designated inbound port when a receive request is lodged, the
requesting process simply waits. The wait continues at least
until a message becomes available in a link connected to the
designated inbound port, or until a link containing a message is
connected to the designated port by a newly established channel.
(Both of these obviously must result from activities of processes
other than the waiting process.) Neither the appearance of a
message nor the opening of a channel will necessarily end a wait,
however, since competing requests might be lodged in the interim
and requests need not be serviced in the order in which they were
made. Clearly, a process could wait for receipt of a message
indefinitely.

The DYMOL language is a simple programming-like language
whose syntax is based on Algol ©60. Among its features are
instructions for message transmission (SEND and RECEIVE), and a
standard set of control flow constructs. Dynamic structure can
be described using DYMOL instructions for communication channel
manipulation (ESTABLISH and CLOSE) and process creation and
destruction (CREATE and DESTROY). Branching within a DYMOL
program can be based either on communications from other
processes, represented by the current contents of the process'
buffer, or on purely internal process computations. Branching
decisions based upon internal process computation are modelled as
non-deterministic choices (e.g., IF INTERNAL TEST ... or WHILE
INTERNAL TEST DO ...). Examples of DYMOL descriptions appear in
Section 4 of this paper while further details on DYMOL can be

found in [331].



Since DYMOL bears a strong resemblance to a programming
language, DPMS models are easy for system developers to
understand and have a natural relationship to standard software
specification and design techniques. Because its primitives are
message transmission and the creation and destruction of
processes, DPMS is suitable for describing a wide range of
distributed system organizations. DPMS focuses on process
organization and interaction, and therefore addresses precisely
those issues most crucial during specification and design. For
these reasons we believe that the Dynamic Process Modelling
Scheme is an appropriate basis for both describing and analyzing
designs of distributed software systems.

The DPMS descriptive formalism on which we are basing our
work 1is similar to several other approaches to describing
distributed systems. It most closely resembles the DDN design
language of the DREAM software design system [28,32], which can
be considered its predecessor. It also resembles the numerous
other languages, such as PLITS [7]1, that use buffered (or
asynchronous) message transmission as their principal
interprocess communication and synchronization mechanism. DPMS
differs from these other approaches primarily in its ability to
describe dynamically structured distributed systems, a capability
not illustrated in this paper¥*, and its close relationship to
design-oriented analysis techniques.

Of course, viewing a system as a collection of communicating

sequential processes 1is common to many description schemes.

¥See [33] or [34] for illustrations of DPMS' application to
dynamically-structured systems.



Hoare's Communicating Sequential Processes [11], Brinch Hansen's
Distributed Processes [2], and the tasking facility in the Ada
programming language [6] are three of the better known examples
of descriptive approaches that take this view. Unlike DPMS, DDN,
and PLITS, however, all three of these approaches (and many
similar ones) employ an interprocess communication protocol in
which information is transferred only when both the sender and
the receiver are simultaneously prepared to communicate. We find
buffered message transmission a more natural descriptive medium
that 1is easier to use, especially in formulating the high level,
abstract descriptions appropriate during the design stage of
distributed system development. Thus, although it has been
repeatedly pointed out that each style of communication <can be
used to describe the other with minimal difficulty (e.g.,
[11,21]), we have chosen to base our initial development of
analysis techniques on the DPMS descriptive scheme and its
buffered communication constructs.

Alternative approaches that are explicitly intended for use
in pre-implementation development of distributed systems and that
provide for some analysis during that process include the COSY
formalism [20] and the distributed system specification technique
of Ramamritham and Keller [25]. Both are based on formal
semantic models, the former on the theory of nets and path
expressions [19] and the latter on temporal logic [24]. Both
also describe distributed systems as collections of communicating
sequential processes. These two approaches both employ a
descriptive style in which the behavior of individual processes

is specified and then added constraints are imposed to limit
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process interaction. This resulting description seems further
from a programmed solution, and hence less natural for the design
stage of a distributed software system's development, than a DPMS
description. Nevertheless, these two approaches are potentially
very useful, especially if employed in conjunction with a
language such as Path Pascal [3] that supports the same style of

description at the implementation level.

3. An Example Design Problem

To investigate the usefulness of our descriptive notation
and associated analysis techniques, we have applied them to
several distributed software design problems. In this paper we
present the results of one such experiment in order to illustrate
both the notation and the analysis techniques.

The distributed software design problem that we address in
this example is mutual exclusion in a distributed system. The
basic problem is to create a mechanism that will allow nodes in a
distributed system to achieve mutual exclusion when they have no
common shared memory, but can communicate only by message
passing. This is a realistic problem that is of particular
significance to designers of computer networks, since nodes in a
network normally do not have access to a common shared memory,
but can communicate only through messages.

Mutual exclusion in a distributed system has been studied by
Lamport [17;18] and by Ricart and Agrawala [26,27], who have
presented algorithms for solving the problem. Our interest here
is not in developing a new approach to solving the problem of

mutual exclusion in a distributed system. Rather, our goal is to
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demonstrate the wusefulness of our descriptive notation and
analysis techniques for developing solutions to this and other
distributed software design problems. We have therefore relied
upon the approach developed by Ricart and Agrawala as a basis for
our example solution to the problem of mutual exclusion in a
distributed system. Hence, our example should not be construed
as offering a novel solution to the distributed mutual exclusion
problem, but as presenting an illustration of how a satisfactory
solution to that problem might be developed.

Familiarity with the Ricart and Agrawala solution to the
distributed mutual éxclusion problem is not required for
understanding and appreciating the example. A brief outline of
their approach may, however, make the example easier to follow.
In essence, their distributed mutual exclusion algorithm requires
that a node wishing to obtain exclusive use of a shared resource
send a request for such use to each of the other nodes in the
distributed system and then wait until all of the other nodes
have replied before proceeding to use the resource. Whenever a
node receives a request message from another node, it decides
whether to reply immediately, thereby granting its permission to
use the resource, or to defer its reply until after it has used
the resource itself. This decision is based wupon the relative
priority of the requesting node and the recipient of the request.
Priorities are determined in part by a sequence number sent as
one portion of the request message and in part by a fixed
priority ordering on the nodes that is used in case two sequence
numbers are equal. The sequence numbers are generated by the

individual nodes and are similar to the numbers used in Lamport's
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"bakery algorithm" [15].

4y, Example Design Development Process

Suppose that, at an early stage in designing a distributed
software system, a designer recognizes that mutually exclusive
use of some system resource by the nodes in the system would .be
necessary. Suppose further that the designer then chooses to
focus temporarily on working out this aspect of the system's
design, employing the notation outlined above. The remainder of
this section describes the first stage in a hypothetical design
development process that this designer might then follow. As
mentioned previously, the actual solution to the distributed
mutual exclusion problem that results from this hypothetical
design development process is based on an algorithm due to Ricart
and Agrawala.

As a first step in the design development process, the
designer chooses to decompose the distributed mutual exclusion
aspect of a node's computation into three cooperating subparts.
These subparts can be represented as processes, and might even be
implemented on separate processors if the nodes of the overall
distributed system were themselves networks of processors. One
process in this decomposition would primarily be responsible for
generating requests for wuse of the shared resource and then
performing the critical section processing involving that
resource once exclusive use of it had been granted. This process
will be referred to as the invoker. A second process, designated
the reply_handler, would receive the replies from other nodes in

the distributed system indicating that they had received the
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invoker's request for mutually exclusive use of the shared
resource and were prepared to grant that request. Upon receiving
such replies from all other nodes in the distributed system, the
reply handler process would inform the invoker process that it
had been granted exclusive use of the shared resource and could
proceed with its critical section processing. Finally, a set of
processes would be responsible for receiving and responding to
the requests for mutually exclusive use of the shared resource
that will be generated by other nodes in the distributed system.
Each such process, referred to as a request_handler, would
receive and respond to the requests of one of the distributed
system's other nodes. Under certain circumstances a
request _handler process might decide to defer a reply, in which
case it would inform the invoker process of this decision so that
the invoker could later send a reply. This modularization of the
node's activity closely parallels the decomposition used in the
Ricart and Agrawala distributed mutual exclusion algorithm
([261).

Figures 1, 2, and 3 are DYMOL programs that the designer
might use to describe the behavior of the invoker, reply handler,
and request_handler processes, respectively. Taken together,
these three DYMOL programs describe one node (specifically
node 1) in a distributed system consisting of three nodes. The
designer must also specify how the processes are interconnected
by communication linkages and indicate the communication linkages
joining them with the other nodes in the distributed system.
These 1linkages are shown in Figure 4. In this graphical

representation, processes are depicted as 1labeled circles,



INVOKER:
IN1: WHILE INTERNAL TEST DO

BEGIN .
- IN2: RECEIVE get_ status;
IN3: SET BUFFER := true;
INY: SEND put_status;
IN5: SEND listen;
ING: SET BUFFER := sequence number;
INT: SEND ask 2; ‘ -
INS: SEND ask_3;
IN9: RECEIVE ok; _
IN10: SET BUFFER := critical;
IN11: RECEIVE get_status;
IN12: SET BUFFER := false;
IN13: SEND put_status;
IN14: RECEIVE from_rq2;
IN15: IF BUFFER = def THEN
BEGIN o
IN16: SET BUFFER := true;
IN17: . ’ SEND resp 2;
IN18: SET BUFFER := no def
END -
IN19: - SEND to rq2;- "
IN20: RECEIVE from rq3;
IN21: IF BUFFER = def THEN
BEGIN '
IN22: ’ - SET BUFFER := true;
IN23: ' SEND resp_3;
IN2Y4: : SET BUFFER := no_def
END _
IN25: SEND to_rq3
END

Invoker DYMOL program

Figure .1



REPLY HANDLER:
RP1: DO FOREVER

BEGIN
RP2: RECEIVE get_reps;
RP3: RECEIVE reply_2;
RP4: RECEIVE reply_3;
RP5: SEND got_reps

END

Reply handler DYMOL program

Figure 2
REQUEST_HANDLER_1_2:
RQ1: DO FOREVER
BEGIN

RQ2: RECEIVE req_2;
RQ3: RECEIVE 2_status_in;
RQ4: SEND 2 status_out;
RQ5: IF BUFFER = true AND INTERNAL TEST THEN

BEGIN
RQ6: RECEIVE 2 from inv;
RQT7: SET BUFFER := def

END

ELSE

BEGIN
RQ8: SEND resp to 2;
RQ9: RECEIVE 2 from_inv;
RQ10: SET BUFFER := no_def

END
RQ11: SEND 2_to_inv

END

Request_handler DYMOL program

Figure 3
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inbound and outbound ports are represented by inbound and
outbound arcs, respectively, and links are represented by boxes.
This figure also shows the messages that are assumed to be
initially available through the communication 1linkages. A
character string, such as "no def", inside a link represents an
available message, while an empty box indicates that no message
currently resides in that link.

It must be emphasized that these DYMOL programs are not
intended to be a complete description of all aspects of the
node's activity. That 1is, although they have the form of
programs they by no means represent an implementation of the
processes that they describe. Instead, they should be viewed as
a model offering only an incomplete and abstract description of
the behavior of the processes. Here, 1in keeping with the
designer's decision to concentrate on the distributed mutual
exclusion aspect of the system, the DYMOL programs focus on just
that aspect. Other aspects are represented in only the most
abstract fashion or are omitted altogether. We feel that such
selective description 1is both appropriate and necessary during
early stages in the design of a complex, distributed software
system.

The DYMOL program representing the invoker process (Figure
1) consists of a nondeterministic (WHILE INTERNAL TEST) loop.
This corresponds to the designer's view of this process' activity
as it relates to mutual exclusion, namely that it will repeatedly
attempt to enter its critical section, but may eventually decide
to stop doing so. Each pass through the loop begins with the

invoker's announcing its intention to enter the critical section
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(statements IN2 through INS). The invoker makes this
announcement by replacing the currently available message in the
links connected to the get status inbound port (which are also
connected to the inbound ports 2_status_in and 3_status_in) with
the message "true", then sending a "true" message to the
reply _handler via the listen port. (Since SEND does not destroy
the contents of the buffer, no SET is needed after the "SEND
put_status" instruction.) After announcing its intention, the
invoker process requests permission to use the shared resource by
sending messages to each of the other nodes in the distributed
system (statements ING to INS). The "SET BUFFER :=
sequence _number" instruction (IN6) abstractly models the detailed
internal processing that the invoker process uses in selecting
the sequence number portion of its message. Such details are
irrelevant at the current stage of the design development
process, although they clearly must be addressed in later stages.

Having announced its intention to enter the critical section
and having sent requests for use of the shared resource to the
other nodes in the distributed system, the invoker awaits (at
statement IN9) a message from the reply handler indicating that
it can proceed. Upon receiving that message, the invoker
performs its critical section processing, abstractly modelled in
Figure 1 by the "SET BUFFER := critical" instruction (IN10). It
then announces completion of its critical section processing by
replacing the message currently available in the links conneated
to the get_status (and 2_status_in and 3_status_in) inbound port
with a "false" message (IN11 to IN13). Finally, the 1invoker

checks to see if any replies were deferred while it was
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performing critical section processing. The current contents of
the 1links attached to ports from rq2 and from_rq3 indicate
whether request_ handler_1_2 or request handler_1_3, respectively,
has deferred a request. The invoker inspects the contents of
these links (at IN14 - IN15, and IN20 - [IN21, respectively),
returning the "no_def" message to the 1ink immediately (IN19
and/or IN25) if it finds that no request is deferred. Should the
invoker find a "def" message, indicating that a request has been
deferred, in either link, it dispatches the deferred replies
(IN16-IN17 and/or IN22-IN23) and updates the appropriate link
contents (IN18-IN19 and/or IN24-IN25) to indicate that no replies
rgmain deferred. The invoker 1is then ready to repeat the
instructions in its WHILE loop if it chooses to do so.

The DYMOL program representing the reply_handler process for
node 1 (Figure 2) consists of a nonterminating (DO FOREVER) loop.
Upon being informed (via its get_reps port) that the invoker has
requested use of the shared resource, the reply handler awaits
messages from the other nodes in the distributed system granting
their permission for such use. When both other nodes have given
their permission, the reply_handler so informs the invoker by
sending a message through its got_reps port. Here, since the
message ("true") received as a reply at RP4 will serve as an
appropriate message for the invoker, a SET instruction replacing
the present contents of the reply handler's buffer is not used.

Figure 3 is the DYMOL program for one of the two
request_handler processes in node 1. The program for the other
request_handler in node 1 (i.e., request_handler_1_3) is

identical except for the replacement of port names containing 2's
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with port names containing 3's. The request handler shown in
Figure 3 monitors port req 2 (at RQ2) awaiting a request from
node 2 for use of the shared resource. Upon receiving such a
request, the request_handler checks the current status of the
invoker process by obtaining the message currently available
through its 2_status_in port (at RQ3). After returning this
message (at RQ4) so that it can be inspected by the other
request_handler or updated by the invoker, the request_handler
decides whether to send an immediate reply or to defer its reply.
The decision (made at statement RQ5) depends in part upon the
current status of the invoker (recall that SEND does not alter
buffer contents) and in part upon a priority comparison,
abstractly represented at this stage in the design as an INTERNAL
TEST. If the invoker is attempting to enter its critical section
and it has priority over the other requesting node, then the
reply will be deferred (RQ6 and RQ7). Otherwise, the reply is
sent through the request _handler's resp_to_2 port (RQ8). In
either case, an appropriate message (composed at RQ6 and RQ7 or
RQ9 and RQ10) is made available to the invoker indicating whether
or not the reply was deferred (RQ11).

The design description contained in Figures 1 through y
represents a reasonable and realistic first step toward designing
a distributed software system in which mutual exclusion plays an
important role. In fact, this description is an accurate
abstract version of the Ricart and Agrawala solution to the
distributed mutual exclusion problem ([26]). Further iterative
refinement steps would elaborate the design by detailing the

priority determination "used in the distributed mutual exclusion
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mechanism and gradually introducing other aspects of the overall
function of the distributed software system.

Before proceeding with further elaboration steps, however,
our hypothetical designer decides to first analyze the design as
it currently stands. One objective of such an analysis 1is to
uncover any errors made to this point so that they can be
corrected now rather than being incorporated into later, more
detailed versions of the design. Alternatively, this analysis
effort may serve to increase the designer's confidence in various
portions of the current design by demonstrating that they will
produce appropriate patterns of system. behavior. The next
section describes the analysis techniques that we have developed
for use with our design notation. Section 6 illustrates these
techniques by applying them to the example design that we have

developed in this section.

5. An Approach to Analysis

For the purpose of analysis, we regard the possible
behaviors of a system modelled in DPMS as a set of strings of
symbols representing events involving the internal computations
of the component processes of the system and the transmission of
messages between those processes. This view resembles the
"trace" perspective used, for example, by Hoare in studying the
semantics of CSP [12,13]. In our setting the events of interest
include those involving the execution of a statement in the DYMOL
program of some process in the system and the normal termination
or starvation of such a process. To analyze a design for a

distributed system expressed in DPMS, we determine whether a
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particular symbol, or pattern of symbols, appears in a string
representing a possible behavior of the system. The symbols in
question may correspond to some desirable property of the system,
such as graceful degradation, or may represent a pathology, such
as deadlock.

OQur analysis techniques begin with a collection of rules
which are used to iteratively generate inequalities involving the
numbers of occurrences of particular symbols that can appear in
various segments of a string representing an actual behavior of
the system. These rules are based on the underlying semantics of
DPMS, on the description of the given system in DPMS, and on the
particular symbols in question. If the assumption that a certain
pattern of symbols occurs in a string representing a possible
behavior leads, at any stage of the jterative process, to an
inconsistent system of inequalities, we have reached a
contradiction. We may then conclude that our assumption is
incorrect, and the given pattern does not occur in a behavior.
Otherwise, we continue to generate inequalities until we have
enough information to construct a behavior containing the given
pattern.

Our approach can be viewed as a generalization of the
technique employed by Habermann [9] 4in analyzing a semaphore
solution to a producer-consumer problem. Other related
approaches applied to different aspects of the problem of
analyzing distributed software systems include Taylor's method
for static analysis of Ada programs [30] and Holzmann's technique
for protocol validation [14]. Numerous researchers have

investigated the alternative of using proof techniques [8] and
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proof rules [10] for establishing properties of distributed
software systems (e.g., [1,16,18,22,23]). While all these
apprbaches have their strengths and weaknesses, we believe that
the approach described in this paper is particularly promising as
a practical tool for use in the design of realistic, full-scale
distributed software systems.

The rules we use to generate the systems of inequalities for
analysis fall into three general classes. The first of these
classes consists of rules which reflect the sequential nature of
each of the component processes of the system. The rules in the
second class are based on the message transmission protocol of
DPMS. The third class reflects the dependence of branching on
buffer contents, and so involves both the flow of control in the
individual processes and the communication between processes. In
the remainder of this section, we will describe these rules and
the way they lead to inequalities. We have chosen to present the
rules in a somewhat informal fashion. A fully formal description
would involve the introduction of a great deal of notation and
the substitution of several mathematical statements for each of
the rules stated here. Although the full formality is necessary
to automate the analysis, the discussion given here more closely
resembles the way that a human would use the techniques without
automated assistance and is therefore much easier to read and
understand. Nevertheless, the discussion has been kept

sufficiently formal to indicate the rigor of our approach.
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The rules in the first class impose the requirements that,
in an actual behavior of the system, statements from each
individual process are executed in the correct order, and that a
process can halt only by terminating_normally or by starving. We
list the rules below, and indicate the types of inequalities they
generate. We use the symbol r(p,q,m) to represent the receipt of
message m through inbound port q from the 1link associated with
outbound port p, and the symbol s(p,m) to represent the
transmission of message m through outbound port p to its
associated 1link.

Rule I.1. Statements in a given process are executed in order,
as specified by DYMOL control constructs.

This rule implies, for example, that statement RQ3 in the
request_handler_1_2 process is executed only after statement RQ2
in each pass through the loop. We state this conclusion in terms

of the number of occurrences of symbols in a behavior string as

ir(*,2 status_in,*)}{ < ir(%*,req_2,%){ < ir(*,2 status_in,*)| + 1

where we use !|symbol} to denote the number of occurrences of
"symbol" in the string under consideration, and the asterisks (%)
are a shorthand indicating "don't care" with respect to links and
message. types. Equality on the left holds in any initial segment
of a behavior containing an r(%*,req_2,*) not followed by an
r(*,2 status_in,¥), while equality holds or the right in any
initial segment of a behavior containing an r(*,2_status_in,*)

not followed by an r(#*,req_2,%).
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Rule I.2. Once a process halts, either by normal termination or

starvation, no further events from that process occur.

For a fixed behavior of the system, this rule 1implies that

the number of occurrences of a symbol representing an event in a

given process is the same for all initial segments of the

behavior that contain a termination or starvation symbol for that
process.

Rule I.3. A complete behavior includes exactly one termination
or starvation symbol for each process in the system.

This rule implies that each process must continue to execute
statements until it starves or terminates normally. This can be
used to show that certain events must occur. For example, every
execution of statement RQ3 1in the request_handler_1_2 program
must eventually be followed by an execution of statement RQ4.
(Note that this uses Rule I.1 as well.) This can be stated as an
inequality in a number of ways. Perhaps the simplest is:

is(2_status_out,*)i_ . < |s(2_status_out,¥*);

g

where |s(2_status_out, denotes the number of occurrences of

*)iseg
the symbol s(2_status_out,*) in any initial segment ending with
an r(*,2 status_in,*) and Is(2_status_out,¥*); denotes the number
of occurrences of s(2_status_out,*) in the whole behavior.

We remark here that, while an automated analysis would
presumably rely entirely on the systems of inequalities, it is
often convenient to formulate some steps in the analysis
verbally, using the mathematics only when it is necessary. Thus,
we Will usually simply say that an s(2_status_out,*) must occur

after each r(*,2_status_in,*) in a behavior, without writing down

an inequality.
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The rules in the second class are based on the message
transmission protocol of DPMS. The first of these is
Rule II.1. In order for a message from the link associated with
outbound port p to be received at inbound port q,
there must be a channel connecting the link and port
q and there must be a message available in the link.

This rule leads to inequalities of the form

ir(p,a,*){ < is(p,*)i + ny - 'r(p,q',*)|
\
qQ'#q
where N, is the number of messages in the link associated with p

at the start of the behavior. This says that the number of

messages from p received at q is less than or equal to the number

of messages sent through p plus the number of messages initially
in the link associated with p minus the number of messages

received from p at ports other than q.

Rule II.2. 1In order for a process to starve while waiting to
receive a message at port q, there must be no
messages available in links connected to q at the
time the process last reaches a "RECEIVE q"
instruction and also at the end of the behavior.

We regard this last attempt to receive at d, which results
in the process waiting forever, as the starvation event, and
represent it by the symbol w(q). Note that messages which could
be received at port q might become available after the last
attempt to receive at q. The rule asserts that, if the process
starves while waiting to receive at q, all these messages must be
received by other processes before the end of the behavior. This
rule gives equalities of the form

Ir(%,q,®) ] =2 (s(p, )+ ny) - ir(p,ar M)
where the first summation ranges over the outbound ports p which

are connected to q, N, is again the number of messages initially

available in the link associated with p, and the second summation
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ranges over the pairs (p,q') with p an outbound port connected to
q and q' an inbound port connected to p. The rule asserts that
such an equality must hold for any initial segment of a behavior
ending with the symbol w(q) as well as for any complete behavior
containing a w(q).

The third class of rules involves both the flow of control
in the individual processes and the messages transmitted between

those processes.

Rule III.1. Branching depends correctly on buffer contents.

This rule implies that certain events must be preceded by
the placing of particular messages in a process's buffer. For
example, if statement AIN16 of the invoker DYMOL program is
executed in a behavior of the system, the message received at the
immediately preceding execution of statement IN14 must have Dbeen
ndef". Thus we know that the r(*,from_rq2,*) symbol representing
that execution of IN14 must have been an r(*,from rq2,def). This
rule is used not to directly generate inequalities but to provide
additional information to guide the process of producing the
inequalities.

In the next section, we illustrate the use of these rules
and the inequalities they generate by applying them to analyze

the design described in Section 4.
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6. Analysis of an Example Design

In this section we illustrate the analysis technique based
on the rules and associated inequalities we have just described
by applying it to the design of Section 4. This example shows
how our analysis technique can be used both to detect errors in a
design and to establish that a proposed system will function as
intended.

The design described in Section 4 uses the message in the
links connected to the port from rq2 to inform the invoker
process when the requést_handler_1_2 process has deferred a
reply. When the invoker .completes its critical section
processing, it can then send that reply. Thus, it is essential
that, while | either the invoker or request_handler_1_2 1is
examining or updating the message in these 1links, the other
process does not wuse either of the links. We.will begin our
analysis by checking that these links are indeed used correctly.

Recall that in order to determine whether some property
holds for the behaviors of a system, we first interpret that
property in terms of the appearance of a pattern of event symbols
in behavior strings. In this case we would like to show that,
between the time one of the processes receives a message from a
link connected to the port from_rq2 and when it next sends a
message to one of those links, the other process makes no use of
those 1links. In terms of symbols in a behavior strihg, we would
like to show that the next symbol representing a use of the links
following a symbol representing the receipt of a message from one
of them must represent the transmission of a message by the

process which has just received.
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We suppose to the contrary that the next symbol represents a
use of the 1links by the other process. From Rule I.1 and
statements IN14 and IN19 we know that

(1) 1s(to_rq2,%)| L ir(*,from rq2,%)| < is(to_rq2,%)! + 1
while Rule I.1, and statements RQ6 or RQ9 and RQ11 give us

(2) is(2_to_inv,*)| < ir(*,2 from_inv,*)| < !s(2 to_inv,*)! + 1
with equality on the left for any prefix of a behavior containing
the send symbol not followed by the appropriate receive symbol
and equality on the right for any prefix of a behavior containing
the receive symbol not followed by the appropriate send symbol.

Rule II.1 implies that, for any prefix of a behavior, we
have

ir(*,from_rq2,%)| < is(to_rq2,*)} + is(2_to_inv,¥*)| -
ir(*,2 from_inv,*)| + 1
(the 1 arising from the initial message in one of the 1links
connected to 2_from_inv) from which it follows that
ir(¥*,from_rq2,*)| + |r(*,2 from_inv,*)! < Is(to_rq2,*)! +
i1s(2_to_inv,¥)| + 1
But adding (1) and (2) and combining with this last inequality we
have
(3) is(to_rq2,*)| + |s(2_to_inv,*)| < ir(*,from_rq2,%)| +
ir(*,2_from_inv,¥*)] < |s(to_rq2,%)| +
18(2_to_inv,*)| + 1
In a prefix of a behavior containing one of the receive symbols
not followed by the corresponding send symbol we have equality on
the right in at least one of (1) and (2). But (3) implies that
this cannot be true for both (1) and (2). Thus two receive

symbols cannot occur in a behavior without an intervening send
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symbol.

Suppose a symbol representing a use of the 1links occurs
between an r(¥,from rq2,%*) and the next s(to_rq2,¥) in some
behavior. We have just seen that the first such symbol must be
an s(2_to_inv,¥*), since an r(*,2_from_inv,*) cannot follow an
r(*,from_rqz,*) without an intervening send symbol. Consider the
prefix of the behavior ending with this s(2_to_inv,*). For this

prefix, we have

ir(*,from_rq2,*)} = is(to_rq2,*)i + 1 by (1)
and
ir(*,2 from_inv,*)| = Is(2_to_inv,¥)| by (2)
so
'r(*,from_rq2,*%)| + 'r(*,2 from_inv,*)| = Is(to_rq2,*)| +

1s(2_to_inv,*)i + 1
Since the s(2_to_inv,*) represents the first use of the 1links
following the r(*,from rq2,%*), we have

.ir(*,from_rq2,*): + }r(*,z_from_inv,*): = Is(to_rq2,%)i +

Is(2_to_inv,*)i + 2
for the prefix ending with our r(*,from_rq2,%). This contradicts
(3), so our system of inequalities 1is inconsistent and the
assumption that a use of the links occurs between an
r(*,from rq2,%) and the next s(to_rq2,*) must be false. A
similar argument shows that no use of the links occurs between an
r(*,2 from_inv,*) and the next s(2_to_inv,*).

This demonstrates that the aspect of the design involving

mutually exclusive use of the 1links connected to from_rq2 is
indeed sound. Arguments of the same type, which we omit here,

show that the 1links connected to the get status port and the
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from_rq3 ports are also used in the proper mutually exclusive
fashion.

Having shown that the messages 1in these 1links are wused
properly, we next consider whether any of the processes in the
design starve unexpectedly. Since the reply handler and
request _handler DYMOL programs consist of nonterminating loops,
we expect that these processes will eventually starve while
waiting to receive at statements RP2 and RQ2 respectively. This
is the 1intended behavior of the system after the invoker
processes of the various nodes have terminated. But we would
like to be sure that the processes of our system never starve
under other circumstances. In the design described in Section 4
we have concentrated on a single node. We will retain that
perspective here, and for the moment we will simply assume that
every request from node 1 eventually receives replies from the
other nodes of +the system. w§ are then concerned with the
possibility that one of the processes in node 1 suffers
starvation while waiting for a message from another process in
that node.

Suppose, for example, that request_handler_1_2 starves while
waiting to receive at port 2_from_inv, that is, while waiting to
execute statement RQ6 or RQ9. Clearly, we can interpret this
simply as the appearance of the symbol w(2_from_inv) in a
behavior. If a w(2 from_inv) appears, Rule II.2 implies that

ir(*,from_rq2,%¥)| + ir(*,2 from_inv,*)}| = Is(to_rq2,%)| +
:s(2_to_inv,*): + 1
(the 1 arising from the initial message 1in one -of the 1links

connected to 2_from_inv) and Rule I.1 implies that
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ir(*,2 from_inv,*)} = }s(2_to_inv,*) i,
both conditions applying to the complete behavior string.
Combining these, we see that

ir(*,from_rq2,*)| = is(to_rq2,*)| + 1
at the end of the behavior. This is only possible if the invoker
process halts between statements IN14 and IN18. Rules I.2 and
I.3 imply that a process can halt only at a RECEIVE statement (by
starvation) or at a STOP statement. Since none of statements
IN15, IN16, and IN17 is a RECEIVE or STOP statement, we see that
the invoker cannot halt between IN14 and IN18, contradicting the
last inequality. We may therefore conclude that no w(2_from_inv)
appears in a behavior.

Again, arguments of a similar nature apply to the rest of
the design, showing that none of the processes in node 1 starves
while waiting for a message from another process in the node. We
would now like to determine whether a node will in fact
eventually send a reply for each request it receives. We will
begin by assuming that node 1 receives a reply for each request
it sends and determining whether node 1 repiies to each request
from other nodes. We will then consider the problems of
interaction among nodes.

Suppose that node 1 eventually receives a reply for each
request it sends, but that it pefmanently defers a reply destined
for some other node, say node 2. We can interpret this as the
appearance of an r(*,req_2,%) in a behavior which is not followed
by an s(resp_to_?,*) from request_handler_1_2 or an s(resp_2,%)

from the invoker.
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Since the request_handler does not starve while waiting for
a message from inside node 1, the rules of class I imply that any
r(*,req2,%) 1is followed by an s(resp_to_2,%) and then an
s(2_to_inv,no_def), or by an s(2_to_inv,def). Our assumption
that the reply to node 2 is permanently deferred eliminates the
first possibility, so a behavior in which a reply to node 2 is
permanently deferred contains an r(¥*,req_2,%) followed by an
s(2_to_inv,def) but not by an s(resp_to_2,¥) or an s(resp_2,%).

Since node 2 waits for a reply to 1its request before
initiating any additional requests, no further r(%*,req_2,%)
symbols occur in the behavior, and thus the rules of class I
imply that request_handler_1_2 makes no further use of the links
connected to port 2_from_inv after sending the "def" message. We
saw earlier that the use of these links alternates between sends
and receives, so the next wuse of the links after the
s(2_to_inv,def) must be a receive. Since the request_handler
does not use the 1links again, that receive must be an
r(2_to_inv,from_rq2,def). But the rules of classes I and III
imply that  any r(¥,from rq2,def) will be followed by an
s(resp_2,true), which would contradict our hypothesis. So our
hypothesis can hold only if the "def" message sent by the
request_handler is never received, and the s(2_to_inv,def)
represents the last use of the links connected to 2_from_ inv Dby
any process in the system.

The fact that request_handler_1_2 sends a "def" message
implies, by Rule III.1, that the last r(*,2_status_in,*) in the
behavior was an r(¥*,2 status_in,true) indicating‘that the invoker

process was in its critical section. Our assumption that node 1
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eventually receives a reply for each request it sends, together
with our earlier observation that none of the processes starves
while waiting for a message from within node 1, implies that the
invoker will exit the critical section after this last
r(*,2 status_in,*). The rules of class I and the fact that no
process in node 1 starves while waiting for a message from within
the node tell us that, after ﬁhe invoker exits the critical
section, it receives. whatever message is then available in the
links connected to the port 2_from_inv. We have seen that the
last "def" message sent by the request_handler is never received,
so we conclude that, if our hypothesis is true, the invoker must
exit the critical section and take the message in one of those
links before request_handler_1_2 sends the "def" message. That
is, 1if there is a behavior fdlfilling‘our hypothesis, then that

behavior ends with a segment of the form:

s(put_status,true)..r(*,2_status_in,true)..s(2_status_put,true)..
r(*,get_status,true)..s(put_status,false)..r(*,from_qu,no_def)..

s(to_rq2,no_def)..r(*,2_from_inv,no_def)..s(2_to_inv,def)...

The rules of class I give no further information about these
events, since the events within individual processes 6ccur in the
correct orders. We have used the rules of class I together with
those of class II to show that the various links are used in a
mutually exclusive fashién, and we have used rule III.1 to show
that the behavior must end with a segment of the form given
above. Seeing no way to generate further inequalities that would

be inconsistent with this conclusion and thus show that a reply
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cannot be permanently deferred, the designer might now attempt to
construct an actual behavior in which a reply 1is indeed
permanently deferred.

It 1is easy to write dowh a behavior in which
request_handler_1_2 executes its "RECEIVE 2_status_in" and "SEND
2_status_out" instructions between the execution of the "SET
BUFFER := gritical" instruction and the "RECEIVE get_status"
instruction by the invoker. If this behavior continues with the
invoker executing its "SET BUFFER := false", "SEND put_status",
"RECEIVE from_rq2", and (after skipping past the conditional
because it received a "no_def" message though from_rq2) "SEND
to_rq2" instructions before request _handler_1_2  executes a
"RECEIVE 2_ from_inv" instruction, a reply will be permanently
deferred. Because request_handler_1_2 got a "true" message
through port 2_status_in it can (assuming that  the
nondeterministic INTERNAL TEST evaluates to true) eventually
execute its "SET BUFFER := def" and "SEND 2_to_inv" instructions.
If the invoker now decides to exit from its WHILE 1loop, that
n"def" message will never be received by the invoker and thus a
reply will be permanently deferred.

The design error that has been revealed by this analysis 1is
rather subtle. Indeed, essentially this same error appeared in
the first published version of the Ricart and Agrawala algorithm
([26]1), necessitating the publication of a revised version a few
months later ([271). The problem is that, although each message
is used in a proper, mutually exclusive fashion (as the
designer's previous analysis had demonstrated), it 1is possible

for request_handler_1_2 to inspect one message and use that
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information in deciding what information to send in a subsequent
message, but not manage to send that second message until the
invoker has already invalidated the information used in making
the decision and inspected.an outdated, erroneous version of the
message that request_handler_1_2 is about to replace. Cur
experience indicétes that subtle errors like this dne, which are
very difficult to discover by simply studying the programs for a
distributed system, are generally uncovered with surprising ease
using these analysis techniques.

At this point we have established that some aspects of the.
design are sound, but that it also contains a serious error. The
next step in the development of the design would be to modify it
to eliminate the error and then analyze the new design to assure
that the modification does indeed correct the error and
introduces no furthér errors. A modification that appears to
eliminate the problem in our example is to change
request_handler_1_2's DYMOL program so that request_handler_1_2
removes the message available through its 2_from_inv port as soon
as it receives a request. The new DYMOL program is given in
Figure 5.

Most of the analysis of thé original system carrieé over to
the modified one and we will not describe it here. We will,
however , show that node 1 of the modified system does not
permanently defer requests, as long as its own requests receive

replies.



REQUEST HANDLER_1_2:
RQ1: ~DO FOREVER

BEGIN
RQ2: RECEIVE req_2;
RQ3: RECEIVE 2_ from_inv;
RQ4: RECEIVE 2_status_in;
RQ5: SEND 2 status_out;
RQ6: IF BUFFER = true AND INTERNAL TEST THEN
RQT: SET BUFFER := def
ELSE
BEGIN
RQ8: SEND resp to 2;
RQ9: SET BUFFER := no_def
END
RQ10: SEND 2_to_inv
END

Revised request_handler DYMOL program

Figure 5.
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Assume that a request from node 2 is permanently deferred.

Proceeding exactly as before, we see that the behavior must have

the form:

s(put_status,true)..r(¥*,2 status_in,true)..s(2_status_out,true)..
r(*,get_status,true).;s(put_status,false).,r(*,from_rq2,no_def)..

s(to_rq2,no_def)..r(¥,2 from_inv,no_def)..s(2_to_inv,def)...

Rule I.1 implies  that request_handler_1_2's last
r(%,2 from_inv,*) precedes its last r(*,2_status_in,trué) and
invoker's last r(*,from_fq2,*) precedes its last
s(to_rq2,no_def). But ﬁhen an r(*,from_rq2,*) éppears between an
r(*,2 from_inv,*) and the succeeding s(2_to_inv,¥). Since the
argument showing mutually exclusive use of these links applies to
the new system as well as the old one, this is a contradiction.
Therefore, node 1 does not permanently defer a feplf}

This discussion of the deferral of replies has assumed that
all requests from node 1 eventually receive repiies. This
assumption is appropriate at this stage of ﬁhe development
process, when the designer is primarily _concerned with the
structure of a single node. Since the decision to defér a reply
is described at this stage in the design as being based in part
on the nondeterministiec INTERNAL TEST, it is possible, according
to this description, that node 1 does not receive a reply to each
of its requests, leading to a deadlock with all replies being
deferred. In the completed system this possible source of
deadlock is avoided by the priority comparison used by the Ricart

and Agrawala algorithm. Further elaboration of the design would
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introduce this priority comparison, and analysis at that 1later
stage would then be able to confirm that no aspect of the design

would allow deadlocks to occur.

7. Conclusion

In this paper we have outlined an approach to describing and
analyzing designs for distributed software systems. A
descriptive notation has been introduced and analysis techniques
applicable to designs expressed in that notation have been
presented. We have given an example of the application of this
approach to a realistic distributed software design problem. In
the example, application of the analysis techniques to a design
description makes it possible to uncover a subtle design error at
a very early stage in the design development process. This
permits the designer to repair the error, and subsequently to
demonstrate that the repaired design is sound, before proceeding
with refinement of the design.

We have given a prose description of the analysis performed
on our example distributed software design. The analysis that we
were describing, however, can all be expressed entirely in terms
of the consistency or inconsistency of systems of inequalities.
We therefore believe that hany aspects of this analysis can be
automated. Such automation must, of course, cenfront the problem
of combinatorial explosion. In this regard, the work of our
student Laura K. Dillon on constrained expressions [5,34] is
especially promising. The constrained expression formalism gives
a closed form description of all the possible behaviors of a

distributed system, and the approach to analysis described here
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carries over naturally to the constrained expression setting. 1In
that context, however, the closed form descriptions allow large
classes of behaviors to be handled simultaneously, rather than on
a case-by-case basis, thereby greatly reducing the problem of
combinatorial explosion. We note also that the DYMOL design
notation presented in this paper is only a research vehicle.
Improved syntax and additional constructs would be desirable in
any design notation intended for practical use.

We believe that the approach outlined in this paper provides
a basis for tools that will be extremely useful to distributed
software system developers. In particular, this approach 1is
well-suited for wuse in a systematic, iterative refinement style
of distributed software system development. Our approach
facilitates productiqn of the incomplete and abstract
descriptions that are appropriate during early stages of the
development process. Moreover, it provides a means for
rigorously analyzing these incomplete and abstract descriptions.
Thus, it offers the prospect of a development process guided,
from its earliest stages, by continual assessment of the evolving
design. Such a carefully guided developmenp process could
dramatically increase the productivity of developers of

distributed software systems.
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