83 -2

High-Level Debugging of Distributed Systems:
The Behavioral Abstraction Approach

Peter C. Bates!
Jack C. Wileden®

University of Massachusetts
Amherst, Massachusetts

ABSTRACT

Most extant debugging aids force their users to think about errors in
programs from a low-level, unit-at-a-time perspective. Such a perspective is
inadequate for debugging large complex systems, particularly distributed
systems. In this paper, we present a high-level approach to debugging that
offers an alternative to the traditional techniques. We describe a language,
EDL, developed to support this high-level approach to debugging and outline
a set of tools that has been constructed to effect this approach. The paper
includes an example illustrating the approach and discusses a number of
problems encountered while developing these debugging tools.

! Supported in part by the National Science Foundation under Grant MCS-8006327 and by the
Defense Advanced Research Projects Agency (DOD), monitored by the Office of Naval Research
under Contract NRO049-041.

2 Supported in part by the National Aeronautics and Space Administration under grant NAG1-115.

10 INTRODUCTION

Debugging of computer software is often a frustrating and difficult experience for
software designers and implementors. This is due in part to the tools and techniques which
are available for debugging. In order to keep pace with the increasing complexity of
computer systems and the tasks they are required to perform, the emphasis in software
engineering has been on improving the quality of software and on improving the ease with
which software systems are specified. Debugging technology, which must also address the
complexity of a system, albeit from a different perspective, has not advanced similarly.
Current debugging technology tends to offer users a low-level, unit-at-a-time perspective on
a system being debugged (e.g.[1],[2],[3].[4D. This perspective is necessarily detail laden and
offers little aid in dealing with complex operational characteristics of a system.

In our work, debugging is viewed as a process of creating models of actual behavior
from the activity of a system and comparing these models to the models of expected
behavior held by implementors and users of the system. Through these comparisons,
debugging tool users attempt to identify sources of errors in the system. OCur goal is to
facilitate this process by providing tools and techniques for describing abstractions of system
behavior and recognizing the occurrence of these abstractions in the systems activity.

In contrast to the traditional, low-level approach to debugging, our <“high-level”
approach promotes model building and evaluation as its paradigm for debugging. The
high-level approach emphasizes machine-based tools to aid user intuition in understanding
gystem behavior. The high-level approach may be further characterized by its attempt to
liberate debugging from the detailed programming-object level view of programs, its
top-down approach to creating models of system behavior, its provision for creation of

multiple viewpoints on a system and the ability to view the system at different levels of

Introduction 2

abstraction.

Currently, there is a growing movement towards distributing the functionality of
computer systems across local area networks consisting of small to medium size computing
elements connected by a high-speed communications subnet [5],[6]. Distributed software
systems are harder to debug than centralized systems due to the increased complexity and
truly concurrent activity that is possible in these systems. Extant debugging technology is
barely adequate for existing programming technology and should not be expected to
improve with its extension into the distributed software domain. Our abstraction based
approach to debugging originated with the desire to overcome many of the difficulties
inherent in debugging distributed software systems and is fundamentally different from past
approaches to debugging.

The next section of this paper will briefly discuss the approach to abstraction that we
have taken and give a detailed description of the Event Definition Language (EDL) which
is used to describe these abstractions. The following section will provide an extended
example of the use of EDL in describing a high-level view of system behavior. Section
four is a look at several important issues that arise in the construction of tools to recognize

behaviors.

20 BEHAVIORAL ABSTRACTION - WHAT AND WHY
It is our belief that debugging complex distributed systems fundamentally requires the
ability to observe particular aspects of the system’s detailed activity from a suitably abstract
perspective. Such selective observation would permit a user to focus on suspected problem
areas without being overwhelmed by the considerable volume of detail present in system

activity.

Behavioral Abstraction - what and why 3

Our approach to selective observation is termed behavioral abstraction. It is based
upon considering a system’s activity as consisting of a stream of event occurrences
representing significant behaviors of the system. Behavioral abstraction results from the
ability to define a particular viewpoint, or window, on that event stream. A viewpoint is
defined by filtering and clustering events from the stream. Filtering deletes all but a
designated subset of events from the stream. This serves to highlight those aspects of
system activity that are currently of interest to the user. Clustering events treats a
designated sequence of events as constituting a single higher level event. This provides a
means of obtaining an abstract view of system activity.

Using the clustering and filtering techniques a window on the event stream can be
constructed that gives a view of the system relevant to the particular monitoring task being
performed. The higher level events created through clustering may themselves be
incorporated into subsequent event clustering definitions. By repeatedly using clustering to
build higher level events and then using these new events to create a still higher level
view, a set of abstractions of the system can be obtained that will allow an observer to
view the system at various levels as well as observe specific kinds of behaviors. Filtering
of the event stream removes those event instances that are not considered relevant to the
monitoring task being performed. Filtering is accomplished by considering the specific
properties of each particular occurrence of an event. Depending upon those specific
properties, a given occurrence may or may not be judged relevant to the particular
viewpoint being defined. By employing an appropriate behavioral abstraction, the developer
of a complex distributed software system can monitor those aspects of the system’s behavior
that are relevant to specific questions presently under investigation without being distracted

by other, less relevant details of the system’s behavior.

Behavioral Abstraction - what and why 4

Naturally, the particular behavioral abstraction that will be appropriate when searching
for the causes of a given failure will vary, and no behavioral abstraction can be expected
to be appropriate for all problems. Therefore, our approach is founded upon a flexible
mechanism for defining behavioral abstractions. This mechanism is embodied in the Event
Definition Language [7]. Using EDL, a user can specify the particular high-level viewpoint
on detailed system activity that seems suitable for understanding a particular problem with
a distributed system’s behavior.

2.1 EDL - A Mechanism for Behavioral Abstraction

The Event Definition Language provides users with a means of both filtering and
clustering a system’s event stream to obtain a behavioral abstraction. As its name suggests,
EDL supports these capabilities by allowing the user to define events. Event definitions in
EDL are formulated by combining previously defined events using a set of event formation
operators (clustering) and by stipulating the properties of the constituent events (filtering).
We discuss these operations in more detail below. This constructive approach to viewpoint
definition depends upon the existence of an initial set of events from which additional
events can be constructed. We refer to this set of events as the primitive events. The
primitive event set for a given system is a characteristic feature of that system and
determines the lowest level, most detailed, view of the system that can be obtained.

Given a collection of previously defined events, which may be primitive or the resuit
of clustering, the features of the Event Definition Language can be used to define new
events in terms of those already defined. This allows a user to gain a different viewpoint
on the system’s activity, seeing it in terms of the newly defined events rather than their
constituents. Using these viewpoints for debugging assumes the existence of an adequate set

of tools supporting the behavioral abstraction approach [8]. A minimal set consists of a

Behavioral Abstraction - what and why 5

recognizer which uses EDL-created definitions as a guide to interpreting the system event
stream, a librarian to maintain viewpoints of the system for a user and a compiler used to
translate EDL definitions into a form suitable to guide the recognizer as well as to check
their correctness. We describe such a tool set in section four.

An EDL event definition does not actually describe a specific individual event, but
rather an entire event class or type of event. A specific individual occurrence of an event
from some event class is referred to as an instance of that event class. Different instances
of event classes are distinguished by a set of artriburtes that each instance of the class
possesses. Depending upon its particular attributes, a given instance of an event may or
may not be relevant to a given viewpoint or system behavior as defined by higher level
EDL event definitions.

An EDL event definition describes how an instance of an event might occur and
what the attributes of the instance will be if it does occur. Each event definition is
composed from a heading and three types of defining clause: the is clause, which defines
an event expression over previously defined events; the cond clause, which places constraints
on the events mentioned in the is clause; and the with clause, which defines a set of
attributes that each instance of the event class will have. (The syntax of EDL is detailed
in the Appendix.)

The event heading of an event definition associates a name with the event class being
defined. The name is the means by which the event class is known and referred to in the
system. An optional parameter list provides a means of parameterizing events and permits
users to tailor recognition requests to dynamic conditions. For example, the following event
heading:

event login(port)

Behavioral Abstraction - what and why 6

introduces a definition for an event named “login”. There is a single parameter, “port”,
which may be used as a variable within the event being defined.

The is clause introduces a regular expression over event classes that occur in the
system. We refer to the is clause regular expression as an evemt expression (cf. [9],[10],[11]).
An event of the class given by the event name occurs when a sequence of events occurring
in the system matches one of those in the set described by the event expression. The
event expression is composed from event class names, either primitive or previously defined,
and operators indicating alternative ways to form sequences that are acceptable for this
event definition. The operators consist of the normal set of formation operators for regular
expressions with the addition of a shuffle operator to indicate concurrency [9],[10],[11],[12].
The event expression is the means provided by EDL for describing aggregates of events and
hence it provides the clustering capability necessary for abstraction of system behavior.

The catenation operator “™ specifies that an event follows another. As an example
consider the following partial event definition:

event login(port) is

port_access “ process_creation

end

A “login” event is determined by the occurrence of a “port_access” event followed by a
“process_creation” event.

The shuffle operator “ indicates that its operand events may occur with no
preferred ordering between them. All of the events connected by the shuffle operator must
occur, but the order of occurrence of the shuffle operand events is not important (although
ordering of each operand’s constituents is still subject to the ordering constraints imposed by

the operand’s defining event expression). Inclusion of the shuffle operator provides the

Behavioral Abstraction - what and why 7

ability to express concurrency among participating events of the shuffle. Expression of
concurrency results from the lack of any implicit time ordering imposed on the operands
participating in the shuffle.

In a similar fashion, alternation, denoted “P”, indicates that occurrence of any one
of its operand evenﬁ is an acceptable sequence for this operator. Both the alternation and
shuffle operators are commutative and as a result may denote groups of operands that are
to participate in their operations. For example the sequence:

x“(@iblclid) 2z
denotes that an “x” event followed by any one of “a”, “b”, “c” or “d” followed by a “z”
will constitute a valid sequence.

Two unary repetition operators are used to indicate a possibly unbounded
sequence consisting of repeated occurrences of their operand event. Both the star “*”
and plus “+” operators are left associative. The plus operator indicates that one or more
occurrences of the operand are needed in an instance of the event. Star is the closure of
plus with zero or more occurrences being a valid string. For example, the (partial) event
definition:

event breakin_attempt(port) is
port_access “ (login_failure)+ ° port_release

end

defines a class of events named “breakin attempt” related to an attempt by possibly
unauthorized users to gain access to a dial-up communications port. Here the clustered
event consists of the allocation of a line and a series of (at least one) attempts to log on
to the system followed by a releasing of the line previously allocated. The argument “port”

would be used to indicate a specific port attached to the communication device. This

Behavioral Abstraction - what and why 8

definition could now be used to detect an event resulting from an attempt to enter the
system through a privileged dial-up port:

event security_alert is

breakin_attempt(“diagnostic_port”) | breakin_attempt(“console”)

end

An event class may be used in an event expression more than one time. An
event index provides a local (to the event definition) qualifier that will distinguish
different mentions of the same event class in the event expression. For example, in the
partial definition:

event all_entries_tried is

breakin_attempt[1](“diagnostic_port™) * breakin_attempt[2](“console”
* breakin_attempt[3](“mail_delivery_port™)

end

the indexing convention will distinguish among the three instances of “breakin_attempt”
which are necessary for an instance of the “all entries tried” event. The importance of this
capability is illustrated in the example given in the next section.

The with clause of an event definition introduces the names for the attributes of the
event being defined and indicates how to determine values for those attributes when an
instance occurs. The operands of the expressions are taken from the attributes bound to
instances of event expression constituents and any attributes local to the event being
defined.

The with clause is an optional part of the event definition. However, every event
instance will carry with it certain predefined attributes, such as time of occurrence, that

might serve to distinguish various instances of the class. Other predefined attributes might

Behavioral Abstraction - what and why 9

be dependent on specific characteristics of the system, such as the name of the processor
node on which the event occurred.

When an event occurs, each attribute name defined in the with clause is bound to
a value determined by its defining expression. Expressions are composed of the usual
relational, arithmetic and logical operators (in the style of the programming language C
[13] using operands supplied by local (defined in the enclosing event definition) or qualified
(by a constituent event name) attributes. Adding to the previous partial event definition,
“breakin attempt”:

event breakin_attempt(port) is
port_access ~ (login_failure)+ ° port_release

with
port_id = port_access.port_name;
interval = port_release.time - port_access.time;
attempts = count(login_failure)

end

defines three attributes for each instance of “breakin_attempt™: “port_id”, “interval” and
“attempts”. Each of these attributes is defined in terms of attributes bound to the event
instances of the event expression constituents. Specifically, “breakin_attempt.interval” is
defined in terms of the “time” attributes of the events “port_access” and “port_release”
while the “port.id” and “attempts” attributes of the “breakin attempt” event are defined in
terms of the “port_name” attribute of the “port_access” event and a function “count”
(defined elsewhere) of the “login failure” event.

Qualified attributes must be mentioned in the with clause of the event definition
associated with the qualifying event name. A form of scoping rule for qualified names is
effected in the following manner: an event may only examine the attributes of events it

explicitly names in its event expression. To make attributes of events visible which are

Behavioral Abstraction - what and why 10

more than one level of definition away, the intervening events must declare attributes which
will serve to simply pass the lower level attributes up to higher levels.

The cond clause defines a set of relational expressions over the attributes of the event
expression constituent events. These relationals place constraints on the attributes of events
that appear in the event expression. This creates the previously mentioned filtering effect
by allowing events having only certain characteristics to be considered for inclusion as
constituents of the event expression of the definition. For example, the “login” event
mentioned previously is only valid if the process creation is related to the port that has
been accessed, and the port was inactive at the time. These constraints might be expressed

as follows:

event login(port) is
port_access °~ process_creation

cond
port_access.state == “unallocated”;
port_access.multiplexor_port == port;
process_creation.input_device == port_access.multiplexor_port
end

A cond clause is an optional part of an event description. In the absence of a
cond clause any set of events from the classes and in the order prescribed by the event
operators will constitute an instance of the defined event. The cond clause serves to
narrow the scope of the event being described by allowing only events having certain
attributes to be constituents of the defined event. Several examples of cond clause usage

appear in the following example.

An example ' 1

30 AN EXAMPLE

In this example, three event definitions are constructed as a means of developing a
high-level abstraction for what may be a serious failure among a group of four cooperating
nodes. These definitions could provide an appropriate viewpoint for a user attempting to
debug a distributed system with a certain kind of faulty behavior.

The first definition, “paired.error” is simply an event that occurs if an error occurs
in two adjacent nodes vithin a certain time period. It is assumed that the topology of the
nodes is a ring structure. The serious failure would be the loss of the communications link
_between two adjacent nodes. It is further assumed that the only type of error that is
detectable (the primitive event “node_error”) is related to the maintenance of the
communications link. When the event occurs, it has the attribute “id” serving to identify
the node pair between which the error has occurred' :

event paired_error(nodes, epsilon) is

node_error[1] * node_error[2]

cond
node_error{1]id == nodes;
node_error[2)id == (nodes + 1) % 4;
abs(node_error{1].time - node_error[2].time) < epsilon
with
id = nodes
end

The event expression indicates that two errors must occur, but that their order is irrelevant.
In fact, the two errors might occur simultaneously. The cond clause relations specify that
the instances acceptable for the event expression must be from adjacent nodes. Further,

the maximum time delay is a parameter of the event definition and hence various

! “%” is a modulus operator as in the programming language C [13].

An example 12

instances of the event may have different time delay properties. The event indexing is
necessary here to distinguish the two “node_error” events needed to satisfy the event
expression. Further, indexing helps provide an unambiguous statement of the conditions
insuring that the instances used to satisfy the event expression are not from the same
node or from pairs of nodes not connected with a link.

Using this simple definition a single event class is created that will indicate an error
in any of the four pairs of nodes.

event multi_error is

paired_error(0, 3) | paired_error(1, 7) |
paired_error(2, 2) | paired_error(3, 18)

with
id = paired_error.id
end

This definition exists mostly as a shorthand notation to indicate any “paired_error” and its
source. (Note, however, that different maximum time delays are used for the various node
pairs.) This will greatly simplify the event expression in a more interesting definition to
follow. The inclusion of the “id” attribute in this definition recalls the scoping rules
mentioned earlier. Without it, the scoping rules w-:ld prevent any definition using the
“multi_error” in its event expression from examining the “id” attribute of the
“paired_error” responsible for the “multi_error”. Indexing the events is not required since
only one of the “paired_error” instances will be bound to an instance and therefore there is
no need to differentiate between the various mentions in the event expression.

The occurrence of the “multi error” may not be serious or even interesting in the
absence of other conditions. The following definition captures what may be a serious

failure in the link between two nodes.

An example 13

event big_error(threshold) is
multi_error{l] ° restart_attempt+ ° multi_error[2]

cond
multi_error{1]id == multi_error[2].id;
abs(multi_error{1]time - multi_error[2]time) < threshold
with
location = multi_error{1).id;
severity = error_estimate(threshold)
end

Briefly, “big-error” is defined as an error in a link followed by a number of attempts to
reestablish the link (at least one is necessary) and a subsequent error on the same link. It
is assumed that the “restart_attempt” event is either primitive or previously defined and
that the function “error_estimate” is defined elsewhere. The cond clause expressions insure
that the identity of the erroneous link is the same in both constituent “multi_error” events
and that no more than a designated amount of time elapses between the two errors.
Bindings to the attributes “location” and “severity” when the “big_error” occurs would allow

an observer to determine both the location and the approximate severity of the failure.

40 A PROTOTYPE BEHAVIORAL ABSTRACTION MONITCR

A necessary prerequisite to applying behavioral abstraction and effecting our high-level
approach to debugging is providing tools for comparison of actual system behavior to a
user’s abstracted view of the system. EDL provides a means for defining system
abstractions in terms of events and event attributes. To be useful, this mechanism must be
integrated with suitable aids to maintain and evaluate these abstractions. A set of
debugging tools based on behavioral abstraction permits a tool user to describe significant
system behavioral models and to receive feedback on how well these models match the

actual behavior of the system. The simplest version of a behavioral abstraction based

A Prototype Behavioral Abstraction Monitor 14

debugging tool would simply compare the user models to the actual system behavior. More
elaborate and helpful tools would be able to note differences between user models and
system behavior and have a rudimentary advisory capability to aid the user in the search
for the error sources.

A system to provide the necessary detection capabilities and support for modeling has
been constructed based on the design described in this section. Figure 1 is a diagram of
the system indicating the major components, their connections and the kinds of information
exchanged by the components. It is intended that this debugging tool be capable of being
distributed across a network of processors to take advantage of the desirable properties of
distributed computing.

4.1 A Set of Tools for Monitoring Behavior

The monitoring system is reasonably independent of the system it monitors. An
event based behavioral abstraction approach imposes only a few simple demands on
clements external to the monitor. The event traffic that forms the basis for behavior
recognition and abstraction is similar to message traffic that is normally found in distributed
systems. To integrate the monitoring tools into a system that is to be monitored, a
description of an appropriate view of the monitored system written in EDL and a network
interface which can translate system event traffic into a form acceptable to the monitoring
tools are needed. Additionally, probes must be inserted into the system to detect and
report the occurrence of primitive events. In a distributed implementation, the network

interface would be responsible for creating and sending messages which report locally
recognized events.

Monitored System

EDL-style |
descriptions |

event object
requests

recognition
requests |

debugging
requests

A Prototype Behavioral Abstraction Moenitor 15

Following is a discussion of the important components of the monitoring system. The
goal of the discussion is not to describe their workings in detail, but rather to provide a
functional view and relate these components to the behavioral abstraction techniques which
they implement.

Event Compiler and Librarian.

The event librarian mazintains a particular view on a system for the monitor. Each
view of a system is defined in terms of the set of primitive events upon which all
high-level events in the view are expressed. The librarian is also charged with keeping
newly defined abstractions consistent with previous ones. Monitor users can directly delete
definitions from the library, while the adding and replacing of definitions is done through
the EDL compiler. Users interact with the EDL compiler to create abstract views of the
system. The compiler checks these abstractions for syntactic and local semantic correctness
and will determine if usage in new abstractions of previously defined events is consistent
with their definitions. The compiler outputs are in a form suitable to be directly used by
the recognizer to perform its behavior recognition task and to aid the librarian in
maintaining consistency among the events in its view.

Behavior Monitor.

The behavior monitor is the interface between the debugging system and the user. It

" is responsible for presenting system behavior to users and requesting that the recognizer

examine the event stream for instances of particular events. The capabilities of this
component can range from simply interacting with the user and passing direct requests to
the recognizer to a quite sophisticated version that could digest system events and notice
relationships among events or help the user by noting inconsistencies between what the user

is using for diagnosis and what the system is actually doing. Our current version of the

A Prototype Behavioral Abstraction Monitor 16

behavior monitor lies between these two as its advisory capability is limited to accumulating
statistics on user requests and requesting the status of recognition tasks from the event
recognizer. An enhanced version is being developed that has a graphical component which
relates the structural view of an abstraction to the state of its recognition. It is hoped that
this presentation technique will be a significant aid for users in directing their attention to
important behavioral aspects of a system.

Event Recognizer.

The event recognizer is the heart of the monitoring system. It accepts requests for
detection of primitive and high-level events, makes requests on the event librarian for event
definitions and watches the event stream for occurrences of these events. When a
requested recognition is completed, the requestor is signalled and the recognized definition
may be placed into the event stream for potential use as a constituent of a further
high-level recognition.

The most important capabilities needed by the recognizer are to support filtering and
clustering. Clustering is effected by extracting from the event stream a set of events that
matches an event expression representing an abstraction. The events that will match a
particular abstraction are not required to be contiguous in the stream. fther events, as
well as normal system message traffic, are present in the stream and the recognizer must
filter this “noise” from the stream. |

Filtering based on the attributes of events is a principal aid to abstraction of behavior
that is supported by the recogmizer. This filtering is expressed in cond clause constraining
expressions defined over the attributes possessed by an individual event and can eliminate
many events in the stream from consideration as instances to be used in satisfaction of the

event expression. When an event instance becomes a candidate for inclusion as a

A Prototype Behavioral Abstraction Monitor 17

constituent of a higher level event any cond clause relations involving attributes of the
candidate are evaluated.
4.2 Problems in Recognition of Behaviors

EDL provides a means for defining system abstractions in terms of events and event
attributes, Abstractions defined using the Event Definition Language are used by the
recognizer and behavior monitor of the monitoring system to guide recognition of behaviors
and assist in correlating actual system behavior with user views of intended behavior.
Many issues combine to make recognition of the occurrence of abstracted events more than
a task of matching user supplied patterns against the system event stream.

Simple issues such as filtering “noise™ —system message traffic as well as unneeded
event type messages—are easily handled by the recognition system. Other, more difficult
issues result from the characteristics of distributed systems, such as the lack of a central,
reliable clock. In addition to these, another group of hard issues are those which relate
the structural characteristics of EDL definitions to the dynamic properties of a system.

The following sections describe a number of the less easily resolved issues which
influence the design of a recognition algorithm. The manner in which an algorithm
addresses these issues will defermine how well the goals of the recognizer and debugging
tools are met. To place the discussion of these issues in perspective, figure 2 is a
structural representation of the “big error” event from the example of presented in section
three.

Time.

Many high-level system events consist of an ordered sequence of more primitive

events. A violation of the proper ordering of these events is most likely to be regarded as

an error. Sequencing is easily expressed in EDL using the event catenation operator

muttl_error restart_attempt

O S ® ® &
mmmmmmmm
AN Ay Ay A A AN /A

(i) - """“ “"”‘ ""‘“’“ ""”‘ e

A Prototype Behavioral Abstraction Monitor 18

between two events in an event expression. In addition, since each event has its time of
occurrence as an attribute, constraining clauses can place time restrictions on events to be
used as constituents of higher level events. The most intuitive method of determining if a
sequence of events has occurred in the proper order is to examine their time of occurrence.
This method may not always be valid in a distributed environment as individual processors
will define different clocks. Although there are algorithms for synchronizing and
determining skew between clocks [14], it still may not be possible to make time comparisons
[15] that are accurate enough to assist in debugging synchronization or dependency
problems,

At present we see no way to circumvent the inherent limitations on clock
synchronization in distributed systems. Hence our prototype debugging monitor relies on
the assumption that all clocks are synchronized accurately. We rely on the time attribute
each event carries with it to order events even though they may be from different sources.
Experimental evaluation of the impact of this assumption is planned.

Use of Abstraction Levels.

EDL event definitions permit event abstractions to be defined in terms of previously
defined abstractions creating various levels of abstraction. The use of these levels by
recognizers occurs in two complementary ways. First, when an event abstraction is
recognized, it may be placed into the event stream and appear as any ordinary event does.
Second, the recognizer may incorporate these high-level events into its recognition of still
higher level abstractions. Using high-level events in this fashion is potentially an important
technique for distribution of the debugging task and recognition of complex behavioral

patterns.

A Prototype Behavioral Abstraction Menitor 19

One question that must be resolved when using this scheme is whether the entire
substructure of a higher level event must accompany the event when it is sent to other,
cooperating debugging nodes. If the structure must be sent, then the advantages of
abstraction to reduce overhead induced by the debugging tools will be lost. If the structure
does not accompany a higher level event, it may be difficult to determine the role that this
event plays in satisfying higher level abstractions. This difficulty is due primarily to a
possible inability to determine time relationships among constituents which are a number of
levels removed from the higher level and from effects caused by event “sharing” in the
substructure of a high-level event.

To put this time problem into perspective refer to figure 3. Each of the
“multi_error” events that constitute a “big_error” instance is dependent on the occurrence of
two “node_error” events. Under the event definitions given in section three, it is entirely
possible that the second “multierror” could have one or both of its substructure constituent
“node_error” events occur before those needed for the first “multi_error”. This possibility
arises because without explicitly passing time attributes from lower levels of abstraction to
higher levels, this information can be inadvertently lost during the abstraction process.
This becomes a possible problem because the second “multi_error” implicitly has an
instantiation time greater than the first. The “restart_attempt” events also have an implicit
time ordering, placing them between the occurrences of the “multi_errors”. This is easily
violated by the previously mentioned scenario.

As presently defined EDL only allows a single level of event definition for a given
event. An event definition may not look beyond its constituents for attributes or to direct
its recognition. This design decision was influenced by our goal of limiting communication

overhead in distributed versions of the monitoring system.

A Prototype Behavioral Abstraction Monitor 20

Sharing Of Events.

Sharing of events occurs when a single instantiated event is used as a constituent to
satisfy more than one request for higher level event recognition. When a user specifies
an event sequence as an abstraction the intention is probably for its constituents to be
independent occurrences unless specified explicitly to the contrary. In the expanded form
of the definition, it is possible for the same event class to be mentioned in many places
within the same structural definition. Also, within a given view of a system, an event
class may be used as a constituent of many distinct higher level event classes.

In which cases are the uses of a single instantiation to satisfy more than one request
proper? The latter case, where a single instance is used to satisfy unrelated event
expressions, is permissible and natural. Other cases will depend on what the creator of an
abstraction had in mind. EDL has no mechanism for indicating what is actually intended.
A means for letting users specify exactly what is desired is being considered for inclusion
into EDL. In the meantime, the current recognizer implementation is permissive and allows
the same event instance to satisfy many event expressions.

The sharing issue is closely related to the levels of abstraction issue in the following
way: It may be impossible to detect that events have been shared if high-level events are

communicated between nodes without also passing the details of their structure.

50 SUMMARY
At this time, a debugging monitor has been implemented and the problems involved
in connecting it to the system that is to be debugged are being investigated. The system
currently being used as an event source is a distributed version of the VMT testbed [16),
which is used to test various strategies in cooperative distributed problem solving [6]. This

version of the debugging monitor is centralized and only receives primitive events from the

Summary 21
system being observed.

Work is proceeding on a number of different aspects of the debugging monitor, One
important area is the development of techniques for presenting debugging information in
behavioral terms rather than as simple textual displays of state information. Distribution of
the debugging task is another important aspect of our current work. There are at least
two facets of distribution which are considered important. The first is determining what
parts of the debugging monitor need to be distributed to maximally exploit properties of
distributed systems and minimize the effects of debugging on system operation. Another
concerns the sort of strategies required for requesting and communicating high-level events
between nodes cooperating in debugging activities.

We believe that the behavioral abstraction approach, and the EDL based tools
supporting it, will provide valuable debugging aid to developers of large computer software
systems, particularly distributed systems. Having now constructed a prototype version of the
debugging system, we plan to undertake an experimental evaluation of this belief. We

anticipate that such experimentation will lead to new and refined tools supporting a

high-level approach to debugging.

APPENDIX
event_defs := event_description | event_defs event_description
event_description = event event heading

is_clause

cond_clause

with_clause

end
event_heading := identifier | identifier (arglist)
arglist = identifier | arglist , identifier
is_clause := is event_expression
event_expression = re_expr | primitive number
re-expr = re_sexpr | re_expr °I” re_sexpr
re_sexpr ;= re_term | re_sexpr ~ re_term
re_term = re_factor | re_term " re_factor
re_factor ::= constituent_event | re_factor repetition | (re_expr)
constituent event := identifier elist event_index
elist = empty | (expr_list)
event.index ::= empty | [number] | [identifier]
repetition == * | +
with_clause := empty | wirh attribute_list
attribute_list ::= attribute | attribute_list ; attribute
attribute ::= attribute_name = expression
attribute_name := identifier
expression := primary
| - expression
| ! expression

| © expression
| expression binop expression

primary = value
| qualified_name
| identifier
| { expression)
| identifier (expr_list)
expr_list ::= expression | expr_list , expression
value ::= number | string | boolean
boolean = true | false

binop == * |
>

X

-+
A
A
Vv
Vv
A
A
I
A4
Il

/
I

= | =1 & ! "1 7T | & | W
qualified_name := identifier event_index . attribute_name
cond_clause = empty | cond boolean_exprlist

boolean_exprlist ::= expression | boolean_exprlist ; expression

References

(1] E. H. Satterthwaite, “Source Language Debugging Tools,” Technical Report
STAN-CS-75-494, Computer Science Department, Stanford University, Stanford, California,
1975.

[2] D. Van Tassel, Program Style, Design, Efficiency, Debugging and Testing, Prentice-Hall,
Englewood Cliffs, New Jersey, 1978

[3] VAX-11 Symbolic Debugger Reference Manual, Digital Equipment Corporation, Maynard,
Massachusetts, 1981.

[4] D. R. McGregor and J. R. Malone, “STABDUMP - A Dump Interpreter Program to
Assist Debugging,” Software - Practice and Experience, Vol. 10, pp 309-332, John Wiley,
1980. -

[5] Philip H. Enslow, “What is a ‘Distributed” Data Processing System,” IEEE Computer,
Vol. 11, no. 1, pp. 13-21, Jan. 1978

[6] Victor R. Lesser and Daniel D. Corkill, “Functionally Accurate, Cooperative Distributed
Systems,” IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-11, no. 1, pp. 81-96,
Jan. 1981.

[7] Peter C. Bates and Jack C. Wileden, “EDL: A Basis For Distributed System Debugging
Tools,” Proceedings of the Fift::th Hawaii International Conference on System Sciences,
(1982) pp.86-93.

[8] Peter C. Bates, Jack C. Wileden and Victor R. Lesser, “A Debugging Tool for
Distributed Systems,” Proceedings of the Second Annual Phoenix Conference on Compters and
Communications, (1983) pp311-315.

[91 W. E. Riddle, “An Approach to Software System Behavior Description,” Computer
Languages, Vol. 4, pp. 29 to 47, Pergamon Press Ltd., 1979.

f10] A. C. Shaw, “Software Descriptions with Flow Expressions,” IEEE Transactions on
Software Engineering, SE-4, #3, May 1978.

[11] A. C. Shaw, “Software Specification Languages Based on Regular Expressions,” in W.
E. Riddle and R. E. Fairley (ed.), Sofrware Development Tools, Springer-Verlag, Berlin, 1980.

[12] S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw-Hill, New
York, 1966.

[13] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978

[14] Leslie Lamport, “Time, Clocks and the Ordering of Events in a Distributed System,”
Communications of the ACM, Vol. 21, no. 7, pp. 558565, July 1978

[15] K. Marzullo and S. Owicki, “Maintaining the Time in a Distributed System,” in
Proceedings of the Second Annual Symposium on Principles of Distributed Computing, (1983),
pP- 295-305

[16] V.R. Lesser, P. Bates, R. Brooks, D. Corkill, L. Lefkowitz, R. Mukunda, J. Pavlin, S.
Reed and J. C. Wileden, “A High Level Simulation Testbed for Cooperative Distrubuted
Problem Solving,” Technical Report TR-81-16, Department of Computer and Information
Sciences, University of Massachusetts, Amherst, Massachusetts, 1981.

