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ABSTRACT

Many workers have obtained rigid body motion parameters
from observations of a few points in two successive images.
These calculations have been consistently fragile in the
presence of observational error. The present work provides
a somewhat different basis for calculation of such motion
descriptions. This approach, based on perturbation theory,
identifies the source of calculational fragility and pro-
vides methods for localizing unavoidable ambiguity. That
is, only those parameters which are in principle ambiguous
are to be substantially affected by data errors.

This paper presents the basis for the method and
results for some special cases, including determination of
general rigid motion parameters from accurate position
observations. A somewhat unusual choice of rigid motion
parameters is employed, and its advantages for such
calculations are described.
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Determining Motion Parameters Using

a Perturbation Approach

1.0 Introduction

Analysis of isolated images of static scenes has begun
to give way to consideration of multiple images. For
instance, a set of stereo images of a single scene taken
from different viewpoints provides more information than any
single view could. Again, a sequence of images recorded by
a single camera may be analyzed to obtain motion informa-
tion. The special cases of a static camera in a dynamic
scene and 'egomotion' in a fixed environment have both
received particular attention. (A recent book, [Huang 1982]

is devoted specifically to treatment of motion).

The present paper is concerned primarily with analysis
of motion. Of the two principal views of the image data
employed: as the source of an 'optic flow field', or of a
more conventional sequence of static 'snapshots', the latter
is employed. 1In this approach, distinguished points or
regions are tracked from frame to frame, each providing a
sequence of positions and (for segments or regions) orienta-

tions due to motion.
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Such treatments of motion generally suppose a scene to
consist of some number of rigid 'objects', within each of
which all physical distances are preserved through the
complete sequence of views. (Any group of static or
co-moving entities are thus 'objects' in this sense.) From
this rigid-body assumption, are obtained 'structure from
motion' relations [Ullman 1979] eg that four independent
orthographic views of four noncoplanar points allow unique
reconstruction of all obtainable motion and position para-
meters. Various workers, [Fennema+ 1975, Nagel 1981,
Prazdny 1981, Roach+ 1980, Tsai+ 1980, Yen+ 19831 have
obtained similar results, each choosing a different para-
metrization of motion, and with each version having its own
theoretical or computational advantage. Some recent work,
[Longuet-Higgins 1981, Tsai+ 1982] has been particularly
elegant. From one point of view, then, the problem of
motion from multiple observations is already solved. Redun-
dantly solved. From another point of view, the situation is

not so satisfactory.

What happens when one examines actual images, extracts
clearly identifiable points, and applies the various
formulas to obtain the underlying motion and position infor-
mation? Generally, the results are very ill-behaved indeed,
with small errors in observation yielding unpredictably
large errors in the parameters, even when the underlying
model is not violated. (Known difficulties, such as

following points on highlights or occlusion contours, are a
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separate problem.) This situation has caused a number of
workers to examine approaches applicable to special cases,
such as pure translation, pure rotation, and motion confined
to a plane [Lawton 1982]. For each such special case, a
computational scheme could be obtained which was much more

robust than any of the general methods.

The investigation reported here is an attempt to
examine general motion in a way that permits image data to
be utilized in an hierarchical way. This identifies some
motion and depth parameters as being particularly evident
from image motion, while other parameters are shown to
depend on finer observation. The mathematical approach
taken is to apply perturbation analysis, long used in
physics and astronomy, to extract accurate approximate rela-
tions between motion parameters and observable quantities.
expressions for all these parameters are obtained in a way
that permits simple polynomial smoothing of observed data to
be matched cleanly to the analytic results. Simple data
fitting measures can thus be used as measures of the relia-

bility of the motion parameters obtained.
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2.0 Perturbation Theory, General Remarks

Perturbation theory was developed as a method for
accurate calculation of the orbital parameters of celestial
objects, a problem wholly unrelated to the present one,
though both are attempts to relate motion parameters to
observational data. 1In more recent years, it has been dev-
eloped as a general-purpose tool for approximate solution of
a variety of physical and mathematical problems (see, for
example, [Morse+ 19531). It can be applied to a problem
which can be considered to be a 'small' modification of an
already solved problem. ('Small' here means that the known
solutions are reasonable first approximations to the solu-
tions desired). Formally, we write the problem as an
operator equation, usually involving a matrix or differ-

ential operator. There will be an equation of interest:

Op f = 0

and a similar equation:

(0] (o]
Op £ = 0

which can already be solved.

The 'perturbation trick' is to consider instead an
entire class of problems parametrized by a continuous

quantity x. The solvable problem and its solution corres-
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pond to x=0, while the real problem is taken to be the
operator and solution at some other value, say x=1. We then
try to solve the generélized problem for all values of x.
Moreover, we assume that our general solution will be ana-
lytic in x in some interval about x=0. We can therefore
expand the operator and general solution as Taylor's series

in x. Combining all terms with a common power of x:

i [kl [i-k]

Z Z x Op f = 0
ik
i [i]
where Op(x) = z x Op
1
i [1i]
and f(x) = ) x f

Since this equation is to be analytic, every

coefficient of x must separately equal zero:

(0] (0]
Op f = 0

ol 11 (11 101
Op f + Op f = 0

etec.

The 'zero-order' equation is just the problem already
known to be solvable. Each successively higher-order equa-
tion involves the elements which appeared in the preceding
equations as well as one new operator and one new ‘'correc-

tion' to the solution f. These equations can be signif-
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icantly simpler than the original. In a typical application
of the method, they are successively solved until a suff-
iciently accurate approximation of the desired solution f(1)
is obtained. Often, only the first- or second-order equa-

tions must be solved to get useful values.

2.1 Formulations Of The Motion Equation

In order to apply this technique to motion estimation,
one must first find an appropriate equation to solve and a
suitable solvable related equation. A convenient form of
the motion equation which we must solve is given in the next
section. The related equation can be the motion generated
by approximate motion parameters. In some cases, we may

even use the simplest estimate: no motion.

As noted earlier, a variety of different formulations
of the motion equations have appeared. All treat essen-
tially the same situation. A set of vectors { Xi } in
3-space are given. Any rigid motion of this set of vectors
to positions { Xi' } can be described uniquely as a transla-
tion T in the original reference frame followed by a rota-
tion R about the observation point. (See [Nagel 1981] and
many others)

(2.1) Xit (Xi + T ) *¥R



Determining motion parameters Page 8

With the vectors Xi, Xi' known, this is a first-order
equation for the motion parameters Rij and Ti. Unfortu-
nately, for this linear equation to represent a rigid
motion, the nine elements of R must satisfy six more quad-
ratic constraints. Further, since in our case we can
observe only projections of the vectors Xi, Xi', the product
contains unknown depths as well. Thus, the equations we
actually solve are all quadratic, with the constraint equa-
tions quadratic in the individual unknowns. These equations
are by no means intractable, but results obtained with real
image data seem not totally satisfactory. Perturbation
methods may be helpful in dealing with these equations
directly, but in this paper a slightly different form of the

motion equations will be used.

A general rotation can be specified by three para-
meters. Most representations use more, thus requiring
additional 'constraint' equations to be satisfied, as well
as the motion equations themselves. Common representations
include a 3x3 orthogonal matrix, as above, a unit quaternion
(4 parameters), or a magnitude w and a unit vector along the
rotation axis (again, Y4 parameters). A rather interesting

choice is to combine these last as:

(Qx, Qy, Qz) = tan(w/2) (Sx, Sy, Sz)

where S and w are the unit vector and the rotation mag-

nitude. As these are a minimal set of rotation parameters,
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no additional constraint equations are required. The
elements of R are quadratic functions of the Qi. (Again,
[Nagel 1981] described this parameter choice, though very

tersely.)

If we could factor the rotation matrix into a product
of linear terms, we would have a somewhat more tractable
equation. Such a factorization is actually possible. The
clearest demonstration uses a quaternion form of equation
2.1. While use of quaternions is not essential to the
results we derive, it is still of some interest. (See
[Pervin+ 1983] for some related forms). Instead of the
vector quantities, Xi, Xi', Q, and T, we introduce the

(four-component) quaternions:

(0, xi', yi', zi')

<
[
[}

(0, xi, yi, zi) Xit

(0, tx , ty , tz )

(1, qx, qy, qz) T

o
"

We can then represent the motion compactly by:

(2.2) Xi' = Q+ * (Xi) *Q + T

Here, Q+ is the inverse of Q, and '¥' represents quaternion

multiplication. This equation can be rewritten as:
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Rewriting this equation in terms of more conventional

vector multiplication:

(2.3) Xi' = Xi + T = (Xi' + Xi + T) x Q

This equation relates the absolute positions Xi, Xi'
and the unknown (vector) motion parameters Q and T. (Of
course, it can be derived without the brief excursion into

quaternions, but not so briefly or so clearly).

Since the three-space positions (Xi, Xi') are not
known, but only their projections, a slightly different form
of the equation is easier to use. Two different (central)
projections are commonly used: onto a plane or onto a unit
(Gaussian) sphere. If a full solution were to be obtained,
the two projections would be entirely equivalent, but as we
will be obtaining approximations, they are not. While
neither form seems to be greatly superior, projection on the
Gaussian sphere seems to provide slightly simpler expres-
sions. We therefore introduce unit vectors Ui and Ui' (the
directions of the observed vectors Xi and Xi'), and the dis-

tances ri and ri'.

Xi = ri * Ui - and Xi' = ri' * Ui

Substituting into the earlier motion equation, we now get:
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EQO: ri'*(Ui' - ri®Ui + T = (ri**Ui' + ri*®Ui + T)xQ

This equation seems particularly useful for our
purposes. No additional constraint equations are required.
It is linear in each unknown variable (allowing successive

solution) and quadratic overall.

2.2 Use Of The Exact Equation For Known Motion

Though it is a digression from the main point of this
paper, as the form above has not often been used a brief
comment on its applicability seems in order. The primary
use would seem to be when the motion is already known, ie
for 'shape from motion' or 'shape from stereo'. For this

case, we rewrite EqO0 as:

ri*'®¥(Ui' - Ui'xQ) = ri¥(Ui + UixQ) - T + TxQ

or,

ri**®Ai' = ri*pAi + B
with the obvious values for the vectors Ai', Ai, B.

Given exact values of Ui, Ui', these three (normally)
independent linear relations between each pair of unknowns
ri, ri', permit convenient solution. 1In some cases, the
direction of view will be such that two of these equations
are dependent, but only rarely will all three be dependent.
In only those cases will the values for ri and ri' not be

determined. 1In fact, with approximate Ui, Ui', the equa-
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tions are likely to be inconsistent, requiring a best-fit
solution of some kind. This point will be discussed briefly

in Section 4.2.

3.0 Perturbation Expansion Of The Motion Equation

To apply this method to motion, we must select an
appropriate perturbation parameter in which to expand the
quantities above. We will first write down the most general
form of the equations (so general as to be useless for cal-

culation), then explore some special cases.

The approach here is straightforward. We assume that
each of the variables appearing in Eq0 depends on the
perturbation parameter. Expanding each as a power series,
we see that EqO effectively establishes relationships which
must hold among these series. We can write out these
dependencies explicitly as perturbation equations of various

orders. We will write, for each quantity A,

A = A0 + x*A1 + x"2%A2 + ...
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EQO thus becomes (suppressing the index i, for compactness):

EQ1: O = rO'*J0' - r*¥y0 + TO - (r0o'#U0' + rO*U0 + TO)xQO
+ x¥(r1'*#J0" - r1¥0 + ro'*U1' - ro*u1 + T1
- (r1'#g0' + r1*U0 - rO'*U1' + ro*J1 + T1)xQ0)
- (ro*'*Jo' + ro*uo + TO)xQ1 + ...

+ X*n¥( Yn - Z0xQn - Z1xQn-1 - ... = ZnxQ0) + ...

where we have used:

Yn rn' *U0' +...+ rO0'*Un' - rn*¥y0 -...- rOo¥Un + Tn

Zn rn'*¥U0"' +...+ r0'*¥Un' + rn*0 +...+ rO¥*n + Tn

Setting this equation equal to zero term by term:

(3.0) ro'*#(U0' - U0'xQ0) - rO*(UO + UoxQ0) + TO - TOxQ0 = 0O
(3.1) r1'*%(U0' - U0'xQ0) - r1¥(U0 + UOxQO)
+ ro'*¥(U1'xQ0 + U0'xQ1) - rO*(U1xQ0 + UOxQ1)
+ TOxQ1 + T1 - T1xQ0 =0
(3.n) Yn - ZnxQ0 - Zn-1xQ1 - ... - Z0xQn =0

Since U, U' are always unit vectors, an additional set
of equations is needed to express that constraint. To be
consistent with observations, these vectors only need to be
of unit length for x=0 and x=1. It is usually convenient to
accomplish this by requiring that they be units for all
values of the parameter, resulting in the normalization

equations:
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uo . Uo

n
-—

uo . U1

n
o

U0 . Un + U1 . Un-1 + ... +Un . U0 = O

4,0 Some Applications Of The Perturbation Equation

The above equations are a bit overwhelming. We will
try taming them a bit by considering some specific problems
related to observed motion. For each of these, it will be
possible to truncate some of the expansions yielding more
tractable forms. Two complementary questions to pose for
each of these formulations are consistency and solvability.
The exact equation is usually inconsistent. That is, there
will commonly be no single motion exactly consistent with
all the (errorful) point observations used. It is the
requirement of exact satisfiability which causes the
idealized equations to be ill-behaved in practice. On the
other hand, something like Eq1, while consistent with any
observations whatever, contains arbitrarily many unknown
values for each observed point, and hence cannot be solved.
An important art is to establish a set of solvable equations
for which known approximation methods will obtain answers
(not really solutions) which are not highly sensitive to

errors.

Once gotten, the equations can be used in two different
ways. One method is to take a few of the low-order equa-

tions (perhaps only the zeroth and first) and treat them as
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exact. We will use this approach in most of what follows.
The second approach is to solve the entire system of equa-
ﬁions. Because of the simple form of the equations, the
infinite series for Q, T etc. can be formally summed, and
approximate solutions for the first few terms extended to a

complete solution.

4.1 Known Motion, Errorful Observations

We might first consider a problem mentioned earlier:
finding 'best' values of the depths, knowing that the
position measurements are inexact. The usual least squares
methods treat the observations as exact, determining the
depth values that create the least anomoly, while in most
cases somé observation error would be expected. While other
regression methods can provide more equable treatment of the
variables, they still fail to take into account the vari-
ation in sensitivity of the equations to different errors.
So. Suppose we assume Q and T exactly known. The low order

equations would then become:

(3.0') rOo'*(UO' - UO'xQ) - rO*(UO0 + UOxQ) + T - TxQ = 0
(3.1') r1'#(U0' - UO'xQ) - r1¥*¥(U0 + UOxQ)
+ ro'*J1'xQ - rO*UixQ = 0
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We recognize (3.0') as the usual 'exact' equation, but
now it is interpreted as giving the first approximation to
r, r' based on the observed U0, UO'. Equation (3.1")
involves refinements of both depth and position. This equa-
tion is linear in all the new parameters, but since there
are 8ix new parameters introduced for each point and only
three constraints, solution is not possible. We can get

useful information, however. First, we can notice that:

r1'*¥(Q.U0') = ri1%¥(Q.U0)

S0 we have some idea of the relative accuracy of our two
depth estimates. Second, if we have some estimate deltal of

the reliability of U and U',

ir1'*¥(U0' - U0'xQ) - r1*(UO0 - UOxQ! ~= (r0+r0')*!Q}*deltaUl

which gives an estimate of the absolute errors possible.

Neither of these results is startling, but they might
be of practical use, and certainly are more informative than

the error bounds one would obtain from simple regression.

4,2 Approximately Known Motion, Accurate Observations

When we already know the motion, but not to sufficient
accuracy to allow exact depth calculations to be useful, we

can again simplify the perturbation equations enormously.
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This allows use of additional points to get depth infor-

mation and at the same time to refine the motion estimate.

For this case, assume Q = Q0 + x*¥Q1, T = TO + x¥*T1,
where Q1 and T1 are the corrections to the initial estimates
Q0, TO. Further, assume U' and U to be accurately known.

EqQ1 is much simplified, giving:

(4.1) rO'®#(U' - U'xQ0) - rO*(U + UxQO0) + TO - TOxQO =0
(4.2) r1i'*®(U' - U'xQ0) - r1%¥(U + UxQO)
+ (rO'*U' + rO*U + TO)xQ1 + T1 - T1xQ0 = 0

etec.

Examining these equations in order, we see that (4.1)
is three linear equations in the two unknowns ro0', roO.
Thus, we can obtain an initial approximation to the point
distances using the assumed motion parameters. Proceeding
to (4.2), we see that these three equations introduce eight
new parameters: r1, r1', Q1 and T1. Obviously, they cannot
be obtained by examining the motion of a single point. If
we analyze several points sharing a common motion, however,
we see that for each new point only two new depth parameters
are introduced in the three equations. Thus, if we have at
least six points available, we can get values for the motion
corrections, Q1, T1. The remaining equations allow improved
estimation of depths, as well as allowing examination of the

consistency of the parameters already obtained.
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4,3 Unknown Motion From A Pair Of Observations

Though the above expressions can be useful, one may be
more interested in using the equations to allow estimation
of the motion parameters when there is no a priori motion
information available. This case suggests somewhat diff-
erent perturbation choices, and yields slightly different

equations.

In this case, the values of Q0 and TO are zero: 'no
motion'. Both Q and T are taken to be linear in x, as
before. The initial position and distance are independent
of the effects of motion. We take the second observation to
be a linear function of the perturbation parameter (the
simplest coherent assumption). For this case, the perturb-

ation equations become:

(4.3) ro'*y' - r¥y =0
(4.4) r1'*J0' + rO'*01' + T1 - 2%¥r*¥UxQ1 = 0
and for N>1, the Nth-order equation:

(4.5) Yn - ¥n-1xQ1

1}
o

where in this simple case, (n>1)

Yn (= Zn) = rn'*U0' + rn-1'%J1"
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In addition, the requirement that U' remains a unit

vector means:

2%yo*'.U1' + U1'.U1Y = O

4,3.1 First-order Relations -

The zero-order equation for this case simply notes the
equality of r and r0', and of U and UO'. More interesting
information is contained in the first-order equation, which
describes the relationship between the initial and final
observations in terms of the perturbing elements Q1 and T1,

and the distances to the points.

Either by examination of the equations or by determined
introspection, one may realize that without knowing either
the amount of displacement or the distance to some point,
there is no way even in principle to determine the overall
scale of the images being observed. One may, then, take
some particular point to be at unit distance initially. The
corresponding set of three equations is linear, with one
other unknown distance and the six unknown motion para-
meters. Every additional observation of a point adds three
equations and two distance parameters. Thus, approximate
values of all motion parameters and (relative) depth maps
are attainable (in principle) by observing as few as five

comoving points.
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In optic flow or for small displacements, (where a
first-order approximation is quite good) the apparent motion
of a point can be seen to result from the components of
rotation and of translation perpendicular to the
line-of-sight to the point. That can be made clear by the

following observations: The equation can be written as:

(B.4') r*1' + r1'% + T1 = 2%r*yUxQ1
taking the scalar product of each term with U:
ri' = r*¥ . U1' - U . T1

(the change in depth is due to motion along the line of sight).

Rewriting (4.4')

Ui' = ((U.T1)*T1 - T1)/r + 2%UxQ1 - (U.U1'")*y

and we can see that the apparent motion consists of three
terms: one due to translation perpendicular to the line of
sight, one due to rotation perpendicular to the same line,
and the last an artificial term due to normalizing all
observation vectors to unit length. Note that the contri-
butions of the two motion vectors vary differently with
change of observation direction, so by simply observing
points lying at different visual orientations, one can
establish their separate contributions. Moreover, the
radial components of the vectors will be different in

different viewing directions, so all six motion parameters
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can be reliably obtained if (and only if) widely scattered

comoving points can be observed.

4.3.2 Second-order Relations -

Next, we can examine the second-order equations.

Writing them out explicitly we have:

r2'*J + r1'*01' - (r1'*0 + r*J1' + T1)xQ1 = 0

We see (with some difficulty) that the second-order
depth changes are generated by a term which is the product
of the perpendicular component of translation with rotation
about the viewing axis and another which combines line of
sight translation with rotation perpendicular to the viewing
axis. Just as for the first-order equation, the new para-
meter (r2') is a linear function of the observed data and
previously obtained parameters. Higher order equations
merely provide identities which hold for the case of perfect
observations, and would only be of interest for measuring
the accuracy of the calculated parameters. The observations
would rarely be sufficiently accurate for such relations to

be meaningful.

Notice that we get more from these equations than just
the calculational formulae we need. From the arrangement of
motions into different orders, we get some notion of the
dependencies of the observed quantities on different motion

parameters. Thus, (4.4") can be read as an assertion that
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at any one point, only the net effect of translation and
rotation across the field of view is accurately observable.
Further, it provides a means of determining how large an
angle must separate two sets of points before this composite

effect can be disambiguated.

4,4 Series Of Observations: A Brief Comment

An attractive problem for the perturbation method is
determining motion from a series of observed point
positions. This is perfectly feasible, and clearly useful.
However, while pairs of positions can be analyzed without
any reference to the dynamics of physical objects, much more

is required to make sense of a series of positions.

Ideally, it would seem one would want to be able to
determine an arbitrary rigid motion. No restrictions should
be imposed as to the regularity of the motion from image to
image. Somewhat surprisingly, this case amounts to ana-
lyzing the sequence of points a pair at a time. This is the

case we have treated.

Because of the noisiness of observational data, we
often want to use the consistency of the motion parameters
with time as a further measure of accuracy of the
calculations. For real motion, we often know that the
rotation Q can change only slowly. To assume that T will be
well-behaved, however, normally requires that we express the

motion in some privileged coordinate system. Various
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choices of privileged frame are sensible, the choice depen-
ding on the physical situation: whether the observer motion
is expected to be significant, and so on. It seemed best to
avoid attacking these complications along with those

directly posed by the perturbation formulation.

5.0 The Case Of 'pure' Motions.

While we have treated a variety of special cases, they
may all seem a bit abstract. Two cases can be easily shown
in more detail. We will consider the simplest special

motions: pure rotation, and pure translation.

5.1 Pure Rotation

If the vector T vanishes identically, the equations

above are particularly simple. Since Q = x¥Q1,
EqO! Uur = U + (U'"+ U ) x Q1

where we have noted that r = r' identically.

(4.4m) Uilr = 2*UxQ1

gives us:

Q1 . (UxU1') = 1/2%(U1' . U1')
and

QT . U = 0

leaving one projection of Q unknown.
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Next, examining the higher order equations:
(4.5") Un' = Un-1'xQ1 (n>1)

we find that we can obtain similar projections of Q on all

Un', allowing us to derive the (elementary) exact result:
Q1 . (UxU') = 1/2%¥W -U").(U - U")

As each point observation provides us with two
components of Q (and no information at all about the
component along the line of sight), observing the motion of
two or more points determines Q completely. Realistically,
it is clear that to get accurate information about all three
components, it's necessary to have at least two observations

which lie in substantially different viewing directions.

6.0 Pure Translation
This case is very similar. With Q = 0 and T = x¥*T1:

EqO: r'¥' + T = r#U

(4.4%) ri'*¥U + r#Ug1' + T1 = 0
(4.5%) Yn' = 0
so

rit'* = - T1 . U

and T1 - (T1.U)* = -r¥*y1’
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Thus, because of the unknown depth parameter, we can obtain
only the ratio of the components of motion orthogonal to the
viewing direction from each data point. Otherwise, the
expressions are much like those for pure rotations, with two
points determining the direction of translation. (It has
frequently been pointed out that if one finds the great
circle passing through the two images of a particular point,
that the solution point is given geometrically by the inter-
section of the great circles corresponding to two observed
points). Further, (again examining an infinite sum of

terms)
T1 - (T1.U)*¥U = -—r¥(U' - U)

And just as before, the first-order equation turns out to be

the same as the exact one.

7.0 Using The Perturbation Equations: Point Pairs

Finally, a few explicit formulae will be given which
can be applied to real images. We will take as particularly
convenient the case where a pair of points has been found in
an image, along with the successors in a later image. We
will see that spatial motion has three main effects on
observed pairs: displacing the pair, changing the separa-
tion of its points, and causing rotation about its center.
The latter two effects arise primarily from the transla-

tional and rotational motions along the viewing direction,
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while the former is the net result of all the motions per-

pendicular to the viewing axis.

7.1 Dipole Lengths (apparent Angles)

For points on the unit sphere, a measure of the dis-
tance between two points is just the angle between their
direction vectors. More conveniently, the cosine of this
angle is given by the scalar product of the direction
vectors. 1If the points are associated with the same rigid

body, how do such distances change as the body moves?

We imagine observing two points, iX, jX --> iX', jX'.
The perturbation equations derived in section 4 will apply
equally to each of these points. If in fact they are asso-
ciated with the same rigid body, the motion parameters 'Q°
and 'T' must be identical for both iU and jU. Therefore,
from the given equations we can relate the iUk and jUk to
motion parameters. (The complex subscripting seems
unavoidable: observations i and j involve functions of
order k in x). We can take U' to be simply U + x*U1,
Q = x*Q1, and T = x*¥T1. For these to be consistent
assumptions, we must abandon unit normalization for U;
instead choosing to maintain a unit projection on the
original vector. That is, U'.U = 1, which implies U1.U = 0.

Thus,

i0'.3U" = iU.jU + x*(iu1.ju + iU.ju1) + x2%*iu1.ju1
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and (4.4) yields:

n
o

ir1'*j0.iU0 + ir*jU.iU1 + jU.T1 - 2¥%ir*jU.(iUxQ1)

combining this with the same equation with indices permuted,

and observing that ir1' = -T1.iU, we find:

ivr.ju' - iv.ju -~

iv.jutr + iu1.j0

(1 - iU.jU)*¥(T.iU/ir + T.jU/jr)

so the change in dipole separation is proportional to the
separation, the amount of translation along the viewing
direction, and the average inverse distance to the two
physical points observed. As was noted earlier, this
equation connects T and the ir, but with one undetermined
scale factor. (We could choose either the length T or some

particular ir to establish a unit of distance.)

7.2 Apparent Rotation

Rotation of point-pairs is a bit more complicated to
analyze, but as we shall see, just as rewarding. Examining

the cross-product of two dipole vectors, we see:

(iu*-ju*) x (iU-ju) = 0
+ x¥*( iU1xiU - 1U1xjU - juixiu + jUuixju )

+ X2% ...
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From the above equations we can show

i1 x iU = =(T x iU)/ri + 2%(Q - (Q.iU)iUL)
iu1xju = -(Txju - (T.iU)iUxju)/ri + 2*((iU.julQ - (Q.juiu)

therefore:

(iU1 - JUDx(iU - jU)
= (1/73r = 1/7ir) *Tx (iU - jU)
- ((T.iU)/ir - (T.jU)/jr)*iUxju
—2%(2%(1 - iU.jUQ + Q.(iU - jU))*(iU - jU))

This expression is a bit awkward to use directly, but
taking the dot product with the average direction vector of

the dipole we get:

((iU1-3U1)x(iU-3U).(iU+3U)
= (1/rj - 1/ri) T.((iU-jU)x(iU+3jU))
~4%(1 - iU.JU) Q.(iU+jU)

Interpreting this latter expression takes some thought.
The first term is a rather complicated one, but vanishes
whenever the two observed points lie at the same distance or
when they both lie in the same plane as the true translation
vector. For the term to be large, both of these conditions
must be substantially violated. For most observed dipoles,
then, we may expect its contribution to be rather small.
The second term is the product of (1 - iU.jU), which depends

only on the size of the dipole observed, and Q.(iU+jU), the
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projection of the true rotation axis on the average observa-
tion direction. If we consider the vectors with magnitude
Q.(iU - jU) and direction (iU + jU), we can see that they
all lie on the surface of a sphere which passes through the
origin and through the desired Q vector. The center of the

sphere then lies at Q / 2.

Two convenient calculational approaches suggest
themselves for extracting these parameters from a set of
dipole observations. The first is to do a straightforward
least-squares fitting of this second-order surface. The

second is to note that the surface can be described by:

Qx*xc + Qy*yc + Qz¥zc = re”2

so that the parameters can be obtained by as the best plane
through the observed (xec, yec, zc, rc2) points. This linear
estimation approach is especially convenient, but both
approaches allow use of available values for calculating a

suitably averaged result.

7.3 Apparent Motion

The final information available from motion of point
pairs is the movement of the pair as a whole. This motion
conveys basically the same information as the motion of a
single point, and the low-order equations of motion are the

same. Use of point pairs should be of most use when abso-
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lute alignment may be in doubt anyway, so only the relative

measurements have been discussed here.

8.0 Discussion

This paper has tried to make a numbér of points. The
principle technical point has been that the mathematical
method of perturbation theory is a useful tool in the in-
vestigation of motion from image data. The principle philo-
sophical point has been that it is important to extract from
data, not just formulas for properties of interest, but some
information about the reliability of those properties. We
are all accustomed to statistical significance measures as
means of getting such information. But 'sensitivity anal-
yses' characteristic of classical numerical analysis and of
the perturbation method provide an a priori estimate of

accuracies.

In addition, a number of approximation formulas were

obtained which should be of considerable practical use.
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