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The Titanic Parallel Array Processor is a Single Instruction Stream
Multiple Data Stream (SIMD) machine which will be connected, as a slave
device, to a VAX-11/780. Like the Floating Point Systems AP120B slave
processor, it can be used for vector processing, but it is actually a
general purpose parallel processor like the 1Illiac IV or Staran. The
Titanic will be used both as a research project for the investigation of
parallel processing systems and as a tool for other researchers who are
investigating such computationaly intensive applications as static image
processing, motion image processing, robotics, and neural-network
algorithms.

The Titanic general purpose parallel processor is necessary because
there are many problems which are so computationally intensive that even
the fastest general purpose serial processors are unable to solve them in
real time, for example, real time signal processing, computer vision,
speech understanding and robot sensory analysis. Although special purpose
machines exist to solve some of these problems in a limited domain, they do
not provide the flexibility necessary to allow the exploration of new
solutions to the problems or adaptation to new domains. The Titanic will
provide this flexibility as well as the raw computing power necessary to
solve these problems,

There are many problems which are still compute-bound, even in this
era of Cray 2s and Floating Point Systems vector processors. Examples of
such problems include image processing, motion analysis searching, sorting,
pattern recognition, database management, etc. Speaking generally, the
availability of a CAM enables one to approach the solution of a problem in
ways that would be rejected out-of-hand in a von-Neumann organization.
Below are some examples of the kinds of problems and solutions we have
worked on to date.

¥ Storing and searching a dictionary of several thousand common English
words, Wall found that the CDC-6600 might take up to several hours to
solve a single simple substitution cryptogram. The same approach
implemented on a CAM could solve the same cryptogram in approximately
half a second. Suddenly, an "obvious" approach that had been
completely impractical becomes very attractive.

# In a data base application, storing key descriptive words in the CAM,
we can let a user enter information in very nearly normal English, pick
out the key words he uses, and do an incremental search while he is
still inputting his description or query.

* One of the problems that inhibits the use of LISP for real-time
applications is due to the unpredictable and arbitrarily long delays
that occur when main memory becomes full and garbage collection must be
performed.

A typical LISP cell in a CAM might contain three fields (at least)
called "garbage" (one bit lang), "left" (CAR), and "right" (CDR). When
a free cell is needed, we search for a cell whose garbage bit is ™1n,
Before we can use this cell, we must discover if it is the only cell in
memory now pointing to the cell named in the "left" field (ecall it
TARGET). In a CAM we can ask, in parallel, if there exist any cells
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which point to TARGET in either their CAR or CDR. If there are none,
then TARGET is also a garbage cell, and we set its garbage bit. A
similar search must be done for the cell pointed at by the "right"
field. Once these four searches have been done, and garbage bits set
if required, the original cell can be reused. This takes only four
exact match searches. Thus, LISP becomes available for real-time use
where arbitrary delays might be fatal.

* Local, window-type convolutions are very common in signal processing
and image processing applications, as well as many other areas.
Indeed, much of the interest in Fast Fourier Transforms is because once
the transform has been carried out, a simple multiplication followed by
an inverse transform can be used to perform a convolution. In a CAM we
can perform a simple convolution 1in about one hundred microseconds
directly on the image in question without having to perform the
transform and its inverse. The is some times faster than is possible
on, for example, a Floating Point Systems AP120B vector processor.

*# In the analysis of images taken by a moving camera one tries to
identify "interesting points". Successive positions of an
"interesting" point establish a "flow-vector" for that point and a set
of such flow-vectors, when projected, can be used to identify the FOE
(focus of expansion) which is the point toward which the camera is
moving. Due to noise in the images and inherent digitization noise,
the set of flow-vectors will not all interseect at a single point.
Taken pairwise, the flow-vectors will intersect in a set of points and
the center of mass of these intersection points is a good estimate of
the FOE. Such a center of mass can be found in a CAM in under a

millisecond , or roughly 1,400 times faster than a conventional
machine.

Besides our own research groups at the University of Massachusetts,
groups at Digital Equipment Corporation and General Electric Corporation
have shown interest in the research. These companies are both
investigating computer designs which solve computationally intensive
problems such as signal processing, machine vision and robot control.

Once the Titanic actually exists, even more progress will be made by
researchers who have access to it. These people are committed to spending
the time and energy necessary to develop new algorithms, new theories, and
new applications which take advantage of the advanced architecture and
processing power of Titanic.



Things that Titanic is good at

%¥ Anything that an associative processor like STARAN is good at:

~ Database query/update

~ Text to speech synthesis

~ Real time LISP garbage collection
- Radar analysis

~ Graph processing

- Digital differential analysis

-~ Air traffic control

- Scalar arithmetic (scalar * vector)
- Vector arithmetic (vector ¥ vector)

¥ Anything that an SIMD parallel processing array like ILLIAC IV is good
at:

- Convolution

- Relaxation

- Simulation of planar dynamic physical systems (fluidics, weather,
crystal lattices)

- Modelling

- Signal processing

- Edge detection

- Line thinning

- Image processing

* Things that neither of the above architectures is good at but which the
combination can do:

- Segmentation

- Converting a segmented image into a graph representation
- Region specific adaptive image enhancement

- Histogram analysis

-~ Some forms of Hough transform

- Hidden line/surface removal

- Flow field determination from image sequences

- Stereo image correlation / depth extraction



Things Titanic is bad at

* Anything that only an MIMD architecture is good at.
* Some things that a shuffle-exchange network is good at.
* Examples:

- Distributed processing applications

- Matrix multiply

- Fast Fourier Transform

- Anything which requires complex or random parallel communication
between distant nodes in a network.

Note: Titanic gets around the inability to do Matrix Multiply and FFT
by doing directly many of the operations that these are needed for in other
architectures. For example, FFT's are commonly used to do convolutions in
image and signal processing. Titanic simply does the convolve directly,
avoiding the FFT altogether, which results in a substantial speed increase.
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A VLSI Based Content Addressable Parallel Array Processor¥
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Abstract

A design 1is presented for a Content Addressable
Parallel Array Processor (CAPAP) which is both practical and
feasible. 1Its practicality stems from an extensive program
of research into real applications of content addressability
and parallelism. The feasibility of the design stems from
development under a set of conservative engineering
constraints tied to limitations of VLSI technology.

¥This work was supported in part by a grant from the Army
Research Office DAAG29-79-G-0046.

A shortened version of this paper appeared in the proceedings of the

1982 International Conference on Circuits and Computers (September 29

to October 1, 1982, New York)



Origins

Starting in the Summer of 1979, after acquiring a small
Content Addressable Memory (CAM), we conducted an extensive
exploration of applications of content addressability and
parallelism. During the -ensuing three years some thirty
applications have been developed with over a dozen being
programmed to completion. All have been analyzed with an
eye toward the design of more useful hardware. Application
areas have included data base retrieval, LISP garbage
collection, text-to-speech synthesis, and image convolution.
Some of the results of this work are presented here as a

rationale for some of our architectural design decisions.

More Cells With Less Memory

One of our major findings is somewhat counterintuitive.
Normally, CAM designers give a large amount of memory to
each cell of the CAM. This is so that each cell may hold a
large record of 1logically associated data. Such a design
attempts to maximize the benefits of the CAM's
associativity. We have found, however, that a majority of
interesting CAM applications require only one to sixteen
bytes of memory in each cell, and that these applications
benefit much more from the added parallelism of having more
cells. Further, we have found that those applications which
require more memory in each cell will work adequately if an
efficient means of moving data between cells is provided.
Thus, we conclude that the resources required to construct

large cell memories would be far better spent 1in



constructing more cells with less memory.

Need Fast Some/None and Find First

A common means of controlling loop execution in CAM
algorithms 1is to continue processing until none or only one
of the CAM's tag bits are turned on. It is thus essential
that we have a fast means of determining this. The simplest
way of doing this is to test whether any tags are on; if
so, then we select one and turn it off, then repeat the
some/none test. The find first operation is also used
frequently when a search finds several data elements with
the same key value. It then provides a way to select one of
these for processing. These cases combine to emphasize the

need for fast some/none and find first operations.

Slower Response Count is Acceptable

Many CAM designs devote much complex and expensive
hardware to increasing the speed of the operation which
counts the tag bits that are turned on. We have found,
however, that the count of responding tags is used primarily
as a way of gathering statisties for wuse at much higher
levels of processing control to direct the strategic
application of the CAM. It is thus rather infrequently
applied as compared to operations such as comparisons and
some/none test;. We thus feel that slower, simpler, less
expenéive resﬁonse count hardware 1is quite acceptable.
Further, we have designed a very simple response count

system which runs only about an order of magnitude slower
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than much more complex designs.

Convenient Additions

CAMs typically have only one tag bit per cell. We have
found, however, that most algorithms need two to four tags.
Usually this is simulated by storing tag bits in the memory,
however this becomes a major inconvenience when the cells
have small memories. It is thus convenient to have multiple
tag bits in each cell. Although any CAM with bit select and
multi-write can perform bit-serial addition (and,
incidentally, 1is thus called a Content Addressable Parallel
Processor -- CAPP -- see Foster [1]), it is far more
convenient and several times faster to perform additions if
each cell contains a full adder. Finally, we .have also
found it quite convenient if each cell is provided with a
way of logically combining stored tag bits. When a CAPP is
provided with these capabilities at the individual cell
level, the result is a Single Instruction Multiple Data

(SIMD) parallel processor of considerable power.

An Image Processing CAPP

By the Winter of 1981 we had begun to examine
application of a CAPP to image processing. We soon found
that we were dealing with two kinds of problem solutions.
One kind worked independently of where pixel values were
placed in the CAPP. An example of this truly assoéiative
type of solution is histogram directed feature extraction.

The other kind required that pixel data be combined and it
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was thus necessary to use inter-cell communication links to
accomplish this. Although we had already considered a
linear cell interconnect (as a way to simulate cells with
larger memories), we were now faced with problems that
required a rectangular interconnect (hexagonal and
triangular interconnects were not considered because
digitized images do not map well onto them). An example of
this is contrast enhancing image convolution. We also
discovered that the edges of an image require special
processing. Our solution to this problem was to provide a
four-way (N, S, E, W,) cell inerconnect network with three
different edge treatments. The simplest edge treatment is
dead-edging, that is making the edges of the grid act like a
frame of inactive cells. Another treatment is
circular-wrap. In this case each edge cell is logically
connected back around to its counterpart on the opposite
edge. The most complex treatment is zig-zag wrap in which
each edge cell is logically connected to a cell on the
opposite edge that 1is offset by one row or column. This
last treatment provides a way to turn an essentially
rectangular CAPP into a linear structure and thus make it
more general.

Some practical aspects of designing an image processing
CAPP include the need to be able to load the memory with an
image in one video frametime (1/30 second). This may seem
like a long iime, but remember that a 512x512 image contains
262,144 pixels. For sixteen-bit pixels this means a data

transfer rate of about sixteen million bytes per second. We
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have also considered types of secondary storage that will be
needed to keep up with such transfer rates. Hardware
testing and debugging have also been major concerns simply

because of the large number of components involved.

Titanic

In the Summer of 1981 we started work on the design of
a VLSI-based CAPP for image processing. Our intent was to
produce a conservative design which would be simple enough
for us to construct with reasonable confidence of success
but which would also provide a significant advance in
processing power. From the beginning we imposed a number of
constraints on the design. For example, the CAPP would have
to consist of no more than one hundred circuit boards and
each board should have a maximum of one hundred off-board
connections. As another example, the VLSI chips we designed
would be restricted to no more that 40,000 devices, have a
pin-out of no more than forty pins, and dissipate less that
two watts.

We also set a number of goals which we hoped to
achieve. It was decided that the CAPP should contain
262,144 cells arranged as a rectangular 512x512 array to
facilitate iqage processing. Each cell would contain at
least thirty-two bits of memory, multiple tags: and some bit
serial processing power. One hundred nanoseconds was set as
a goal for the minor clock cycle time. We also plahned to
meet as many of the design recommendations established by'

our CAM research as we could. Finally, it was decided that
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the CAPP would be built to be driven by another machine,
such as a Digital Equipment Corporation VAX. Once the goals
and constraints were set, work on the design got under way
and, for obscure reasons, the project was given the name

"Titanic".

Titanic and Its Environment

The Titanic is divided into two main parts: the
central control and the parallel processor. The central
control is a simple, fast, fetch-ahead pipelined processor
which will be built from MSI devices. It 1issues
instructions to the parallel processor, controls loading and
unloading of aata in the parallel processor, serves as an
interface to the VAX or other host computer and to other
data sources and secondary storage devices. The central
controller contains a ROM with a set of micro-coded
subroutines for performing commonly needed higher level CAPP
operations, and a writeable control store which allows users
to add their own special microcoded instructions. Also
contained in the éentral controller is a small program
memory into which subroutines or entire programs may be
loaded. The writeable control store and program memory are
loaded directly by the VAX. Once these memories are loaded,
the VAX can issue commands to the central controller which
tell it po execute routines stored in the program memory, to
Single sgep through a stored routine, or to execute a single
instruction passed as a literal by the VAX. Figure 1 shows

Titanic and its environment.
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The Parallel Processor

The Titanic parallel processor consists of an 8x8 array
of processing circuit boards and a set of special purpose
boards which control how the edges of the CAPP are treated,
buffer broadcast signals, and perform other functions such
as collecting the some/none signals to a single 1line. The
parallel processor receives data and instructions broadcast
to it by the central controller. Each parallel processor
instruction operates in exactly one minor cycle time. Some
operations do require multiple clock cycles, but these are
taken care of by having the central control rebroadcast the
instruction as many times as necessary. Figure 2 shows the
structure of the parallel processor.

Each processor board consists of an 8x8 array of
special CAPP integrated circuits plus some random buffer
logic. A list of the sixty-three I/0 lines on each board is
given in Table 1. Our current design calls for all
sixty-four processor circuit boards to be placed in four
card racks (sixteen per rack) and interconnected by a

broadcast backplane and ribbon cables.

il The Titanic IC

The heart of the Titanic design is a special purpose
nMOS VLSI CAPP integrated circuit. Each of these chips
contains sixty-four CAPP cells, an instruction decoderg and
other miscellaneous logic. The design of this IC is
actually much further along than the rest of the pfoject

(this being mainly due to test chip fabrication time



" 15
constraints). To compensate for this somewhat bottom-up
development we have designed the chip with as much
generality as possible, knowing that such generality need

not be fully used later on.

The Communications Interconnect

One of our biggest problems in designing Titanic was
how to handle the rectangular interconnection of the cells.
The number of wires required for such a network, even for
bit serial communications, is staggering. This became ﬁost
evident when we tried to design the IC communications
interface. For sixty-four cells, the arrangement which
gives the minimum number of external connections is an 8x8
grid. With a four-way N,S,E,W interconnect there are then
only thirty-two neighboring cells to connect to. (We
considered an eight-way N,S,E,W,NW,NE,SW,SE interconnect,
but were forced to abandon it due to the wiring complexity.)
By the time control, power, and clock signals were added to
the thirty-two neighbor lines, we found that a sixty-four
pin package would be required to hold the IC. Further
examination also revealed that a full interconnect would
require that each processor board have 256 ribbon cable
communication lines -- in other words, a two foot wide swath
of ribbon cable running between each pair of boards!
.Because this violated two of our main design constraints, we

had to simplify the interconnect.
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By 8:1 multiplexing the communications net as it
crossed chip boundaries, we were able to reduce the IC pin
count to twenty-two pins and the total board wire count to
sixty~-three (of which only thirty-two need to be run in
ribbon cable). By going from sixty-four pin to twenty-two
Pin packages, the board size was also reduced significantly.
Unfortunately, all of these benefits were paid for in a loss
of speed. The new interconnect takes 0.8 microseconds to
transfer one bit between cells (25.6 microseconds for
thirty-two bits). We should also note here that the Titanic

instruction set makes this multiplexing transparent to the

user.

Some/None Logic

On-chip the Some/None signal is determined by feeding
the output of the main tag bit into a sixty-four-way NOR
with an inverter between its output and the Some/None pad
driver. Once the signal goes off-chip, it passes through a

four-level OR tree before reaching the central controller.

Count Responders

The count responders operation réquires only three
changes to be made to the CAPP circuitry to be feasible.
Firstly, it must be possible to‘connect‘all of the response
bits into a circular shift register: This is easily
accomplished because the neighbor communication network
already provides most of the necessary links. Secondly, a

register, a counter, and a full adder must be added to each
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chip. Finally, the cards that control the top-bottom edge
treatment must be modified to include column summing
registers and a final sum register.

The algorithm used to count responders is given in
Figure 3. This method is reasonably fast (about twenty-six
microseconds), inexpensive, and most importantly it can be
used with any size of array without having to modify the IC

-- only the bottom row circuit board needs to be changed.

Device Floorplan

Figure 4 shows the Titanic IC's floorplan. The wunit
cells are arranged in ¢two columns of thirty-two. This
arrangement was chosen because we found that the best
compaction would be obtained if we could share control and
memory select lines among as mény cells as possible. Each
cell is thus very long and narrow. A column of thirty-two
cells is almost covered by a river of metal control and
select 1lines which run vertically over it. These lines are
simply duplicated and mirrored for the two columns. Control
is genefated by a NOR-NOR network forming the instruction
and address decoders. Responder count hardware is provided
in a small block of random logic. The overall size estimate
of the active chip area (excluding pads and drivers) is
2400x2400 1lambda. Thus if lambda 1is three microns, the
central portion of the die would be roughly 285 mils on a
‘side. This is somewhat large, but not unreasonable. Power
‘dissipation is estimated at 1.5 watts, which is 1low enough

to allow forced-air cooling. Table 2 1lists the pin
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functions of the Titanic IC.

The Unit Cells

A unit cell consists of thirty-two bits of fully static
memory, four one-bit static tag "registers" called A, B, X,
and Y, and a static carry bit ‘"register" called Z. Each
cell also contains an ALU which continuously generates X
nand Y, X nor Y, and X + Y + Z. Finally, each cell contains
logic for selecting some source of data (a register, memory,
an ALU function, broadcast data, or a neighbor cell),
possibly inverting the selected signal and storing it in a
destination (memory or register). Neighbor communiation
lines run vertically 1in two channels in the middle of the
cell. The Z register is special in that it is not available
for selection as a data source. It can be copied directly
to the X register and can be loaded from the output of the
selector. It also is loaded with the carry from X + Y + Z
whenever that function is selected.

The X register is special in that 1its output is
connected to the some/none logie and the neighbor
communication network. 1In some sense it is the "main" tag
bit.

The A register is also special. It controls whether
the cell is active. If a cell is not active, it ignores all
instructions broadcast by the central controllgr except a

special few.
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The Y register is intended to.be used for storing a
second set of tag bits which may eventually be combined with
other sets through the logical operations provided by the
ALU.

The B register is intended as temporary storage for a
second set of activity bits, essentially providing a single
level of "subroutine call" or an alternative activity
"screen".

Figure 5 shows the logical arrangement of a unit cell

while Figure 6 shows its silicon floorplan.

Titanic IC Instruction Set

Table 3 lists the instruction set of the Titanic IC.
Each instruction executes in one minor clock cycle (100 ns).
This was done to avoid feedback loops in the decoder on the
chip and to avoid special instruction states in the central
controller. This means that thé central controller must be
programmed to re-issue some instructions several times. For
example, transferring data to neighbor «cells across chip
bohndaries requires eight individual transfers because of
the 8:1 multiplex. The central control must therefore issue
the shift instruction eight times in a row. This, of
course, will be encoded as a single operation in the
controller's miecrocode ROM.

There are eight basic instructions recognized by the
chip. Of these, six are memory transfer operations and use
a five-bit address value to select the bit to be read or

written. The other two instructions treat the address as a
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sub-operation specifier. For the most part these are
non-memory data source to register data transfer operations
with one op code causing the data to be inverted before
storage and the other causing a direct transfer. There are
nineteen special sub-ops, however, which are reserved for
unusual operations such as transferring data on and off the
chip or counting responders.

Some operations (those followed by exclamation points
(1) in Table 3) are also designated as "jam transfers".
This means that they are performed regardless of whether the
A register contains a logic one. These provide a means of
storing and retrieving different activity patterns and of
applying global operations which ignore activity without the
usual overhead of having to save the current activity

pattern, and retrieve it later.

Current Status

As of this writing we have designed a sixteen-cell
(4x4) test chip, and are negotiating for fabrication.- Using
a simple set of three micron design rules, we haVe succeeded
in fitting the circuitry onto a 180x180 mil body area with
room to spare. The actual cell area occupies only 130x106
mils. Estimated power dissipation is only 350 milliwatts.
The design includes about 7000 transistors. '

We have already written a number of' programs for the
Titanic and estimated their.operation times by hand. For
example, one special purpose convolution of interest in

computer vision processing (a simple 3x3 mask) required only
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97.8 microseconds for the entire 512x512 image. More
complex convolutions take 1longer, of course, but most of
interest can be performed in less than five milliseconds.
We have also examined motion analysis and found the results

to be quite encouraging.

Further Research

Based on the results of our test chip experience, we
intend to proceed to full sixty-four cell ICs and,
eventually, construction of the entire machine.
Architectural changes which we intend to pursue are
increasing the memory size to sixty-four bits per cell and
perhaps going to an 8:2 communications multiplex (with a
twenty-eight pin package) for a doubling in the data
transfer rate.

We also plan to program a statistiecs gathering Titanic
simulator which will allow us to experiment with software
development and optimization.

Our work thus far has indicated that a Content
Addressable Parallel Array Processor 1is extremely well
suited for image processing, vision, and motion analysis.
We intend to pursue further applications in these areas and
also in new areas such as tactile object recognition in

robotics.
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Conclusion

Rationale and a design have been presented for a
Content Addressable Parallel Processor suitable for both
general wuse and image processing applications. The
architecture of the processor 1is based in practical
experience and the hardware design has been constrained to
make 1t possible to construct using existing technology and
with a high confidence of success. Despite these
constraints, simulations have shown that such a machine
would provide a significant increase 1in processing power

over what is presently available.
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List of Processor Board I/0 Lines

Function

Bidirectional North Neighbor Communications
Bidirectional South Neighbor Communications
Bidirectional East Neighbor Communications
Bidirectional West Neighbor Communications
Chip Column Select

Chip Row Select

Op Code

Bit Address or Sub Op Code

Broadcast Comparand Data

Some/None OQutput

Clock phases

Power

Ground

Table 1
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List of Titanic IC Pin Assignments

West Neighbor
Chip Select 1

Function

Communications (Bidirectional)

South Neighbor Communications (Bidirectional)

Op Code Bit 1
Op Code Bit 2
Op Code Bit 3
Op Code Bit U4
Comparand in
Some/None out
Clock Phase 1
Ground

East Neighbor
Chip Select 2
Spare (Test)
Address Bit
Address Bit
Address Bit
Address Bit
Address Bit

=W

Communications (Bidirectional)

North Neighbor Communications (Bidirectional)

Clock Phase 2
Power

Table 2

- 24
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Titanic IC Instruction Set

.OP-CODE R/W ADDRESS
Memory Operations N (R A
| ] 1 (] H 1
Op R/W FUNCTION ! - Transfer ignores activity
0 0 M:=C A - Activity register
0 1 A:=M B - Secondary Activity register
1 0 M:=B C - Comparand
1 1 B:=M M - Memory
2 0 M:=X X - Main tag register
2 1 X:=M Y - Secondary tag register
3 0 M:=Y Z - Carry register
3 1 Y:=M N Data from North
4 0 M:=A! E - Data from East
y 1 A:=M! W Data from West
5 0 M:=B! S Data from South
5 1 B:=M!

OP-CODE__DEST SOURCE
1 T | S |

Register Operations | L OP CODE 6 - NORMAL
1 i OP CODE 7 - INVERT SOURCE
Destination
Source 0 1 2 3
0 X:=A! A:=B B:=A! Y:=A!
1 X:=B A:=B B:=B Y:=B
2 X:=X A:=X B:=X Y:=X
3 X:=Y A:=Y B:=Y Y:=Y
y X:=X+Y A:=X+Y B:=X+Y Y:=X+Y
5 X:=X"Y A: =YY B:=XY Y:=XAY
6 X:=XvY A:=XvY B:=XvY Y:=XvY
7 X:=C A:=C B:=C Y:=C
8 X:=N A:=N B:=N Y:=N
9 X:=E A:=E B:=E Y:=E
10 X:=W A:=W B:=W Y:=W
11 X:= A:=S B:=S Y:=S
12 X:=N"! A:=C! X:=CN™! Z:=C
13 X:=E™! A:=B! X:=CE™! (6)Z:=X
(7T)X:=2Z
14 X:=W™! A:=X! X:=CW™! (6)SCRR!
(7)CRCR!
15 X:=8"! A:=Y! X:=CS™! (6)SCRC!
. (7)PANS!
~ = Zig zag shift with data transfer in and out of chip
SCRR - Shift and count responders by rows
CRCR ~ Clear response count register

PANS
SCRC

- Pipelined add North to South
- Shift and count responders by columns
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Set all activity bits 0.1us
Clear Response Count Register (CRCR) 0.1us
For I:=1 to 64 do

Shift and Count Responder (SCR) 6.4us
Turn off all chip row select lines 0.1us
Turn on all chip column select lines 0.1us
For I:=1 to 64 do

begin

Turn on row select line I 12 .8uS
4 Pipeline Add North to South (PANS)

en
For I:= to 6 do (*Empty the pipeline¥) 0.6

Pipeline Add North to South (PANS) -bus
For I:=1 to 64 do 6 4

Pipeline Add West to East on Bottom Row Board -4u8
Response count is now available on Bottom Row

Board 26 .6uS

Pipeline Add North to South (PANS) takes the low order bit
from the response count register, adds it to a data bit input
on the North line and outputs the result on the South line.
The carry from the addition is stored in a temporary storage
cell and used in the next PANS. The input and output opera-
tions are buffered and appropriately clocked to allow true
pipelined operation. Row and column select lines are turned
on and off by setting and clearing bits in registers on the
edge control cards. Once a row is turned on, it remains on
until it is explicitly turned off and vice versa.

Fig. 3
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An Algorithm for a Simple Image Convolution on
the Titanic Content Addressable Parallel Array Processor

Charles Weems

June 1982

Abstract
An algorithm is presented for the Titanic Content
addressable Parallel Array Processor [1] which will cause it
to perform a simple image convolution very quickly. It 1is
further shown that this algorithm can be generalized to
perform more complex convolutions with only a moderate

reduction in speed.

Background

Our previous work on Conway's Game of Life implemented
on a CAM [2) demonstrated that such a device could be
effectively used to speed up algorithms which dealt with
rectangular grids of cells and small neighborhoods about
each of those cells. Because Conway's Game of Life actually
involves performing a very simple image convolutionmn, it was
soon realized that the technique developed for Life could be
applied to more general convolutions. This method was
further refined with the Titanic design -- a content

addressable parallel array processor.

This paper is available separately as COINS Technical Report #83-07.
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Basic Technique

One simple form of convolution involves each cell on a
rectangular grid examining its immediate neighborhood and
then updating its own contents based upon some function of
that neighborhood. The update must, of course, be performed
after all cells have finished examining their neighborhoods.
On a parallel array processor this examination can be
performed simultaneously by all of the cells on the grid, as
can the wupdate operation. Thus the algorithm for the
convolution can be described as the actions of a single cell
with the understanding that each action is performed
simultaneously by all of the cells.

There are two different ways of approaching the problem
of examining the neighborhood. The one that first comes to
mind is that each cell ™"looks" at each cell in its
neighborhood, gathering what information it needs to perform
an update. In practice this involves moving data from each
cell in the neighborhood into the "central" cell where some
function is then applied to it and the result stored for the
update phase of the convolution. The problem with this is
that the data must often pass through other cells before it
reaches the central cell. For example, when the
neighborhood is 7x7 cells, data from the outer ring of cells
must pass through at least two other cells before reaching
the center cell. Because movement of data takes time, this
"passing through" is rather inefficient. The solution is to
have the data stored in the intermediate cells on its way to

the center, thus taking advantage of the fact that those
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cells will also need to know the values in order to compute
the function of their neighborhoods. Although this will
work, the algorithm becomes rather messy since we must now
consider the actions of several cells at once and how these
relate to each other. It also becomes a complex problem to
determine an optimal set of data collection paths as the
neighborhood's diameter varies.

It turns out that the other approach to examining the
neighborhood greatly simplifies these problems. This
approach takes the opposite view of the collection process.
Instead of each cell collecting all of the data from its
neighborhood, each cell distributes its own data to every
cell in the neighborhood. Because every other cell is also
doing this, the end result is that the central cell (and
hence all cells) gets the data it needs from all of the
cells in the neighborhood. The problem of establishing an
optimal distribution path is trivial for a square array of
odd diameter: It is simply a rectangular spiral out from
the center cell. For even diameter square neighborhoods the
problem is only slightly more difficult because the center
cell 1is actually half of a cell width off center in two
diections. In this case it is simply required that the
appropriate choice of initial direction and of clockwise or
counter clockwise spiral be made to select the optimal path.
The only other point that requires mentioning is that,
because this is a distribution process rather than a
collection process, the funtion mask for the convolution

must be mirrored across the central cell. For example, when
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the cell's value is being stored in its north neighbor, the
function applied to that value is the south neighbor
function. The reason for this can be seen when it is
realized that the central cell is actually the south
neighbor of the cell to its north. The mirroring of the
convolution function mask is actually quite easy to
accomplish: we simply step through the mask in exactly the
opposite direction that the distribution path takes.

Let's look at an example: A simple convolution for
smoothing isolated cells of noise out of an image. We will
use a 3x3 convolution mask in which the cell accumulates the
sum of its neighbor's values, weighted inversely with
distance away from the center. The sum will then be

normalized. Define the mask to be an array Mi J;

'
i
|

0 i 1 2 1
]
i

11 2 y 2
'
i

2 | 1 2 1
]
i

Where M1 1 1is the central cell. Then the following
?
algorithm will perform the convolution (north is up, west is

to the left, etc.):

i =1

J =1

sum := value ¥M_

move value nort J

i 1= i+1

sum := sum + value ¥ Mi'
move value east J
J = j+i
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sum := sum + value ¥ M_ .

move value south 1J
i= i-1
sum := sum + value ¥ M, .
move value south 1J
i = i-1

sum := sum + value ¥ M
move value west

i+ -1

sum := sum + value *¥ M
move value west

J = J-1

sum := sum - value * M. .
move value north 1)

i = i+1

sum := sum + value ¥ M. .

value := sum ¥ normaliiing factor

ij

iJ

It should be noted that the time required to perform a
convolution using the parallel processor is independent of
the size of the image and only dependent upon the area of
the convolution mask. Since the Titanic does cell level
arithmetic bit-serially, the size of the data values also

affects the speed of the algorithm.

Convolution on Titanic

The following algorithm gives the list of instructions
required to make Titanic perform the convolution given in
the above example. In this case we have taken advantage of
special characteristics in the mask values to help direct
the shift and add process of the required multiply
operations. The algorithm is written for 8 bit data values
and runs in an estimated time of 98 microseconds.

(¥ Initialize ¥)

A := 1!
Empty_Edges

(* Send to North ¥)
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Z := 0
For Bit := 2 to 9 do
X := M(Bit)

Shift_X North

M(Bit+10) := X

Y := M(Bit -1)

Y := X+Y

M(Bit - 1) := Y
End For

X := 0

For Bit := 9 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) := Y

End For

(* Send to Northwest ¥)

Z :=0

For Bit := 12 to 19 do
X := M(Bit)
Shift_X_West
M(Bit) =
Y := M(Bit - 12)
Y := X+

M(Bit - 12) := Y
End For
X :=
For Bit := 8 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) :=
End For

(*¥ Send to West ¥)

Z :=
For Bit := 12 to 19 do
X := M(Bit)
Shift X_South
M(Bit) == X
Y := M(Bit - 11)
Y := X+Y
M(Bit - 11) := ¥
End For

X := 0

For Bit := 9 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) := Y

End For

(*¥ Send to Southwest ¥)

Z := 0
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For Bit := 12 to 19 do
X := M(Bit)
Shift_X_South
M(Bit) = X
Y := M(Bit - 12)

Y := X+Y
M(Bit - 12) := Y
End For

X := 0

For Bit := 8 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) := Y

End For

(* Send to South ¥)

Z :=
For Bit := 12 to 19 do
X := M(Bit)
Shift_X East
M(Bit) =
Y := M(Bit - 11)
Y := X+Y
M(Bit - 11) := Y
End For
= 0
For Bit := 9 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) :=
End For

(* Send to Southeast ¥)

Z :=
For Bit := 12 to 19 do
X := M(Bit)
Shift_X East
M(Bit) ==
t= M(Bit - 12)
Y := X+Y
M(Bit - 12) := Y
End For
X := 0
For Bit := 8 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) :=
End For

(* Send to East ¥)

Z :=
For Bit := 12 to 19 do

39



e AR m——ae o

X := M(Bit)

Shift_X_North

M(Bit) ==

Y := M(Bit - 11)

Y := X+Y

M(Bit - 11) := Y
End For

X :=0

For Bit := 9 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) := Y

End For

(¥ Send to Northeast ¥)

Z :=

For Bit := 12 to 19 do

X := M(Bit)
Shift X North
M(Bit) T= X
Y := M(Bit - 12)
Y := X+Y
M(Bit - 12) := Y
End For
X := 0
For Bit := 8 to 11 do
Y := M(Bit)
Y := X+Y
M(Bit) :=
End For

(% Scale Result ¥)

For Bit := 2 to 11 do

X := M(Bit)

M(Bit - 2) := X
End For
M(10) := 0
M(11) := O

980 CAM Operations
98 uS per Convolution

340 Conv / Frame Time
10204 Conv / Sec
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Convolutions with more general and/or larger masks will take

longer.

A very rough worst case estimate of the time

required for such convolutions

can

be

obtained

from

the
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formula:
T = P(.8N+.2M+.1) + .3M(N2P+N+1)
where T = time in microseconds
N = number of bits in a pixel
M = number of bits in a mask value
P = number of pixels in the mask area

This is a worst case time which assumes that all of the bits
in all of the mask values are ones (since this gives the
slowest multiply speed). Under normal circumstances, T will
be about half of the value obtained from the formula. This
also assumes a totally general square mask where the values
can change. If constants are to be used for the mask
values, a significant speed increase can be obtained by
optimizing the multiples for those values. Thus, for
example, a convolution on 16 bit values with 8 bit mask
values could be applied over at most a 7x7 mask in one video
frame time with a worst case situation. For normal
situations, it should be possible to convolve a 10x10 area.
Given constant mask values, and depending upon the amount of
optimization possible, even a 25x25 mask could be done in
one video frame time.

As a final note, this method 1is not restricted to
square masks and in fact should be readily generalizeable to
any mask shape. All that 1is required for this 1is an
algorithm for efficiently shifting the center cell's value
so that it covers the mask area. Thus it should be possible
to easily adapt it to such mask shapes as annuli and

disjoint areas.
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Conclusion

A method has been shown which can be used to program
the Titanic content addressable parallel array processor to
perform image convolutions simply and efficiently. Such a
program, for a simple convolution, was shown which operates
in ninety-eight microseconds. The time of the algorithm is
independent of the size of the image and depends only upon
the size of the mask and, for bit serial processing, upon
the number of bits in the pixel and mask values. A formula
was given for a worst case time estimate and a factor for
estimating normal case time from this was discussed. It was
also noted that the method could be applied to masks of

other than square shapes.
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Finding a Center of Mass with a CAMT%

by
Caxton C. Foster
Computer and Information Science Department

University of Massachusetts
Amherst, Massachusetts 01003

ABSTRACT

Given a set of active points scattered about a plane, it is often
of interest to discover the center of mass of these points. A method
is presented for discovering the conter of mass using a Content Address-

able Memory.

Introduction

Suppose a new disease has been reported from a number of towns across
the country, Suppose an area of a picture has been identified as belonging
to o particular object. Suppose the intersections of many pairs of vectors

have been Found,  Ta cach of these cases it might be of interest to find

the controid of the points of interest, If the points vary in mass or in
reliability, we might want to give the heavier points more weight in our
averaging algorithm.

and

Lot the set of points of interest, Pi’ have mass my XY coordinates
Xj. Yi{. What we would like to discover is the first moment of the
distributions:

n

L x; my

i=1
n
Zmi
i=1

X =

- MY,
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n
Zyymj
i=1

n

Z my

i=1

Y =

TF there are n points of interest then, in general, it will require a time
of order n to discover the center of mass in a conventional coordinate
addressed computer, Content Addressable Memories offer a method

of finding the center of mass in a time independent of the number of points

‘involved.

TITANIC
The machine we have calied TITANIC has been described elsewhere in
dotail, VFor our purposes here it is sufficient to note that it is a

content addressable memory with its cells arranged on a square grid.

Each ¢ell thus has four spatial neighbors with which it can communicate
ass well as a communication path to and from the central control unit,
A cel) which matches some scarch critevion is called a “responder",

This machine can do exact match searches, find the largest element or the
swallest element of a set; it can locatg the first responder or the left-
most or rightmost responder in each row or the topmost or bottommost of
cach column, and it can count number of responders,

Two algorithms in particular should be discussed because they are

central to the operation.

Global Add.
Adding up a vector is rélatively simple given the Count Responders

instruction in TTTANIC. Assume that in each cell of the memory the number
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we wish to add into the sum is stored in a field stretching from bit A
(most significant) to bit B (least significant). We begin with the most
significant bit and with the central variable SUM equal to zero. The
algorithm proceeds as follows:

For T=ATOB
Select those cells with bit I equal to 1
X = count of the number of responders.
SUM = 2*SUM + x

NEXT I.

As an example consider the following set of unsigned binary numbers:

1011 = 11
0001 = 1
0100 = 4
1100 = 12
0111 = 7

number of onoes
i column: 2323

SUM = ((2%243)%2 + 2)*2 4+ 3 = 35
The Count Responders instruction takes about 20useconds, so the sum of a
vector of 8 bit numbers can be found in approximately 160useconds independ-
ont of the number of elements in the vector.

Ffor maximum speed global add will be micro-coded into the central

cond roller of FITANICG.

FIND LOCATION

In a number of problems it is convenient if a cell can discover what
row (or column) it is in. Storing this information permanently in each
cell 1s wasteful of bits and serially writing the information in each of
the 512 rows éor columns) is slow. Since we wish to make the chips (and

circuit cards) of TITANIC interchangeable, we do not wish to put the
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location information on board a chip or wire it into each card. The follow-
ing algorithm takes advantage of the way TITANIC is designed to tell each
cell its row (or column) address very rapidly.

The chips which make up TITANIC have sixty-four words arranged in an
8x8 square. It takes .9 useconds to select the topmost row of cells on
cevery chip and .1 useconds to select successive rows thereafter. Writing
to many cells simultaneously (multiwrite) is possible in TITANIC. It is
done bit scrial-word parallel at a rate of ten bits per usecond.

We sct aside a nine bit field in each cell to hold its row address,

We can scelect the first row of cells on every chip of the memory and write
000 in the lTow order three bits of their address fields. This will require
9+ .3 = 1.2 pyscconds, We then select the next row of cells on every chip
and write 001, This will require .1 + .3 = .4 useconds. We proceed through
all eight rows on the chips writing 111 in the last row for a total of

1.2 + .4x7 = 4.0 useconds.

Sixty-four chips are arranged on each printed circuit card in eight
rows and eight columns. Circuits on the cards allow the central control
mit to select any row or rows of chips for participation in an operation.
The row in which a chip lies on a card will determine the middle three bits
of the "row address" of that chip's cells (see Figure 1), Selecting a row
of chips on each card requires .1 useconds, and writing three bits into
the address fields of all the cells on the selected chips requires .3 usec-
onds. Thus, in 8 x .4 = 3.2 useconds the central control unit can scan down
all cight rows of chips and deposit the appropriate patterns for each row.

Tn a similar way, the sixty-four cards that constitute TITANIC's memory

arce arranged in eight rows and eight columns, and the central control unit
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————— 9 bitsgm—m—m———>

8 7 6 5,4 3 2,1 0

which row of l 4}

cards

which row of
chips on a card

which row of
cells on a chip

Tigure 1. The counstitution of a cell's "row address"
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can select any desired combination of rows and columns of cards to partici-
pate in an operation. We select all the cells of all the chips on the first
row of cards and write 000 into the high order three bits of the address
fields of these cells. This takes .1 + .3 = .4 useconds. We repeat on each
successive row of cards and finish in .4 x 8 = 3.2 useconds. When we finish
the last row of cards, each cell will have all nine bits of its row address
ficld filled with patterns ranging from 000 000 000 to 111 111 111. The
total time involved is 4 + 3.2 + 3.2 = 10.4 useconds.

A similar algorithm can be described that will insert the "column
address' in the cells. Both of these algorithms will be micro coded in

TTIANIC's central control unit.

CAM ALGORITHM

Suppose that the points of interest are represented by CAM cells which
arc responders to a search. The location of the cell on the machine grid is
the analopgue of the X Y coordinates we wish to average. Such a situation
wipht rceadily arise if a picture has been mapped onto the CAM with each
pixel oceapying one memory céll.

To find the value of X we first find the total "mass". We begin by
setling the “activity bit" (A) of those cells that contain points of interest,
The desipgn of TITANIC is such that only those cells with A = 1 will partici-
pate Ln operations.

l. We perform "Global Sum" on the MASS fields of the participants. Let

this sum equal M.

2, We cxecute a:FIND ROW LOCATION, putting the row address in a cell field
called ADDR.
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3. For all participants in parallel we multiply MASS times ADDR and put
the product in P.

for all i: Pj <+ MASS; * ADDRj

This cell parallel operation is performed bit serially by shift and
add. Each bit addition takes .4 useconds, so the product of two
eight bit fields can be calculated in 64x.4 = 25.6 useconds.

4. We do a "Global Sum" of the products. Call this P.
5. The center of mass will be located on the row given by P/M.

6. Repeat steps two through five for the column addresses and we will

have the column on which the center of mass is located,

The timing for this algorithm is as follows.

ind XM 160 x 1= 160
Find Row 10.4 x 2 = 20,8
Multiply 25,6 x 2 = 51.2

Find ZP (16 bit products) 320 x 2 = 640

n

Total time in micro seconds = 872.0

In a conventional von Neumann machine we must fetch each cell, decide
whether it is a participant and the perform a multiplication and an additiom.
Letting R=1 for participants and O otherwise, then the program below will
discover the center of mass:

1 FOR I =1 TO 512

2 FOR J = 1 TO 512

3 IF R(I,J)=0 GOTO 7
4 MASS = MASS + M(I,J)
5 XP = XP+I*M(I,J)
6 YP = YP+J*M(I,J)
7 NEXT J
8 NEXT I
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Given the most efficient compiler, this will require 3x2!® additions and
2%21% pultiplications. The reader is welcome to make his own assumptions
about the time required for an add and for a multiply, and to calculate a
time to find the center of mass. Assuming all cells are active and one

218

usecond for each operation brings the total time to roughly 5x or one

and onc-quarter seconds.

CONCLUSIONS

The TITANIC has been shown to be about 1,400 times faster than a RAM
in computling the center of mass given reasonable assumptions. The reason
it is not 2'% times as fast is that the individual operations in a CAM
takes many times as long as they do in a RAM because they are performed
bit serially. It is interesting to note that the time required for a CAM
in the same no matter how many active cells are involved. In a RAM storing
data In compressed vectors will allow the time to depend linearly on the
number of active cells. Again assuming 1 psecond adds and multiplies, it
will take 5 pseconds to process each active cell, If there are fewer than
two hundred active cells and if the data can indeed be stored properly,

the RAM will be faster than the CAM,
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DETERMINATION OF THE ROTATIONAL AND TRANSLATIONAL COMPONENTS OF A
FLOW FIELD USING A CONTENT ADDRESSABLE PARALLEL PROCESSOR

M. E. Steenstrup, D. T. Lawton, C. Weems

Departmen: of Computer and Information Scieacel
University of Massachusetts at Ambherst

Abstract

The realization of motion perception in artificial
systems will require highly parallel architectures. Here
we demonstrate the use of a Content Addressable Parallel
Processor (CAPP) [12] as an effective means of quickly
and accurately decomposing a flow field into its rotational
and translational components [3] to recover the parameters
of seasor motion.

Organization of the CAPP

The CAPP is a VLSl-based Single Instruction Multiple
Data (SIMD) machine designed at the University of
Massachusetts [4). It consists of a parallel processor
containing 512x512 cells and a central controller. The
central controller issues imstructions to the parallel
processor, controls loading and unloading of data in the
parallel processor, and serves as an interface to the host
computer and to secondary storage devices. It broadcasts
data to the parallel processor bit serially, and the entire
memory may be bulk-loaded in one video frame time
(1730 second). The central controller contains a set of
micro-coded subroutines in ROM for performing high-level
CAPP routines and a writcable coatrol store for adding
microcode.

The parallel processor consists of an &8 array of

processing circuit boards and a set of boards which
control CAPP edge treatment. Each processor board, in
turn, consists of an &8 array of special purpose CAPP
IC chips plus random buffer logic. [Each chip thea
contains 64 cells, an instruction decoder, and some
miscellaneous logic. There are eight basic instruction
types recognized by the chip, each performed in parallel
by the constituent cells. Most instructions take one minor
cycle time (100 nanoseconds) to execute. Inter-cell
communication is bit serial and is accomplished by a
four-way (N, S, E, W) cell interconnect actwork, allowing
for three types of edge treatments: dead-edging, circular
wrap, and zig-zag wrap.

1. This research was supported by DARPA under Grant
N00014-82-K-0464.

0190-3918/83/0000/0492$01.00 © 1983 IEEE

Each unit cell consists of 64 bits of fully static
memory, four one-bit static "tag” registers A, B, X, and
Y, a static carry bit register Z, and an ALU which
continuously generates X NAND Y, X NOR Y, and X
+ Y + Z. Also, each cell contains logic for sclecting a
data source (a register (excluding Z), memory, an ALU
function, broadcast data, or a neighboring cell (N, S, E,
or W)), possibly inverting the selected signal, and storing
it in a destination (a register or memory). The X
register is the main tag register. Its output is connected
to Some/None logic, indicating cell response, and to the
neighbor communication network. The A register controls
whether or not a cell is active. An inactive cell ignores
all but a small set of instructions broadcast by the central
controller. The Y register provides a secondary store for
tag bits, while the B register provides a secondary store
for activity bits.

Flow Field Decomposition Procedure

Our algorithm is an exhaustive search procedure which
uses a set of rotational and translational flow field
templates to find a component pair which can account
for the motion depicted in a given flow field. Curreaty,
1000 rotational templates and 200 translational templates
are used. These are generated from 100 axes which are
uniformly distributed with respect to a unit hemisphere,
and all pass through the origin of the sensor coordinate
system. PEach flow field consists of 16x16 vectors and is
stored on a 2x2 square of chips consisting of 256 cells.
The 2x2 chip arrangement facilitates flow field addressing.
Each cell contains the horizontal and vertical componeats
of a flow vector, each specified with 10 bits of precision.

Thealgorithmeoﬁsuofioutbasicm
(0) The rotational templates are loaded into the CAPT,
one template for each flow field location. Each flow
field location corresponds to ona of the squares in the
CAPP diagrams shown in Figures 2a, 2b, and 2c. The
rotational templm“edonlyhcloadedmﬁneem
are used in determining any flow field decomposition.
(l)Acopyoftheinputﬁowﬁddisloadedinnach‘
flow ficld location in the CAPP. Figure ia and 1b show
same
was

two sample input fields, both produced by the
motion and eavironment, except
spike

produced by adding random

This paper originally appeared in the proceedings of the 1983 International
Conference on Parallel Processing, August 23-26, 1983




(2) A set of difference fields is formed by subtracting
each rotational template from the copy of the input flow
field stored with it. For each resulting difference field,
the slope of each difference vector is computed by
dividing the vertical componeat by the horizontal
component. These subtraction and division procedures are
performed in parallel across all flow ficlds represented in
the CAPP.

(3) The similarity between the difference fields and
each of the translational templates is evaluated,
proceeding sequentially through all the traanslational
templates. For a given translational template, this
comparison is done in parallel with all difference fields
stored in the CAPP and consists of the following steps:

(3a) The slope of each component vector of the
translational template is loaded into the corresponding
vector location of each difference field. The sign of the
slope of each difference vector is compared with the sign
of the slope of the corresponding translational template
vector. If the signs agree, the absolute value of the
difference between the slope of the differeace vector and
the slope of the translational template vector is computed,
and then scaled according to the absolute value of both
slopes. If the scaled slope difference does not exceed a
predetermined maximum error value, then a vector match
is designated at that position. The quantity of error
permitted here allows the algorithm to be resistant to
uniformly distributed Gaussian noise of low variance
present in the original flow field.

(3b) For ecach difference ficld the number of vector
slope matches is counted. If this sum exceeds a
predetermined minimum oumber of matches (in our
implementation, 75% of the field size), then the associated
rotational and translational templates become a candidate
pair for the flow field decomposition. Utilization of a
minimum number of required matches ensures that oaly
templates which are reasonably close to the actual motion
will be chosea and permits some resistance to random
spike noise. Figure 2a shows, for difference fields
resulting from the input field in Figure la, the CAPP
response to the translational template which is closest to
the actual translational motion. Each ‘black dot within a
square represents a position in a difference field at which
the slope of the difference vector matches the slope of
the translational template. Figure 2b shows, for
difference fields resulting from the input field in Figure
1b, the CAPP response to the translational template
which is closest to the actual translational motion. Figure
2c shows the CAFPP response to a translational template
which is not close to the actual translational motion.
This translational template is shown in Figure 3.

(3c) For all difference fields yielding at least the
required minimum number of matches, the variance of
the scaled slope difference is computed, and the
difference field with the minimum variance is determined.
This value is compared to the minimum variance found
from processing the preceding translational templates. If
this value is less than. the preceding minimum, it becomes
the new global minimum, and the rotational template
associated with the difference field together with the
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current translational template become the current best
candidate pair for the flow field decomposition.

Steps 3a, 3b, and 3c are performed for each
translational template.

(4) The flow field decomposition considered to be the
best is the rotational and translational template pair
resulting in the difference field yielding at least the
required minimum number of matches and the least slope
difference variance. Utilizing minimum variance instead
of the maximum number of matches, the algorithm has
achieved better results, particularly for motions whose
component parts lie between sets of templates. Figures
4a and 4b show the rotational and translational templates
selected by the algorithm in the preseace of and in the
absence of noise, for the input ficlds in Figures l1a and
1b. These templates are the closest ones to the actual
motions, Figures 5a and 5b show the difference fields
resulting from subtracting the rotational motion in 4a
from the original fields in Figures 1a and 1b respectively.

Experiments

Experiments have been performed with a CAPP
simulator on a VAX 11780 using a wide variety of
motions and simulated environments. In all cases
examined, the translational template closest to the actual
translational motion was selected. The rotational template
was always close to the actual rotational motion, but was
sometimes not the closest template. The procedure
proved to be resistant to limited Gaussian noise as well
as to limited random spike noise in the original flow
field. Applying moticn to points at random depths
produced results similar to those obtained in the noise
experiments. The algorithm’s performance degraded
slightly if each flow vector component was specified by
eight bits of precision instead of by ten.

The CAPP timing calculations revealed that the
algorithm could perform the rotational-translational
decomposition in slightly more than 14 second. If two
CAPPs are used in parallel, then the time can be
reduced to less than 1/5 second, since only half of the
translational templates need be tested on each CAPP.
Given fabrication techniques available in the immediate
future, we expect execution times to be significantly
improved. We also suspect that performance will improve
by increasing both the number and size of the rotational
and translational templates. This amounts to utilizing
more CAPPs in parallel.
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Extracted from: "Incorporating content addressable array processors into
computer vision systems"; 27th Annual International Technical Symposium &
Instrument Display, August 21-26, 1983, San Diego, California; Charles Weems
and Daryl T. Lawton

Associating symbolic descriptions with segmentations

A basic step in the functioning of autonomous, general purpose vision systems
is the association of low level, spatially organized, symbolic descriptions with
the results of segmentation, region and edge extraction processes (for example,
the Primal Sketch [1] and the Regions-Segments-Vertices RSV representation of
the VISIONS system [2]). Such a representation acts as a data base which is
accessed by various recognition processes to determine the relations between
different image strucutres. We have analyzed the implementation of some simple
segmentation procedures using the CAAPP, such as zero-crossing extraction after
convolution with a Gaussian-Laplacian mask [1] and histogram-guided segmentation
[313. Both these procedures are very rapid and are selectively sensitive to
image information at different spatial frequencies and contrasts. We have found
that associating symbolic information with the results of these segmentation
procedures is most effective when the CAAPP is used in two different ways. In
one of these, the symbolic labelling takes place in the same memory locations
where the segmentation is, in parallel accross the CAAPP. In the second, a test
is performed at a specified location for a particular type of image structure.
If the test is successful at that location, the occurrance of the resulting
image structure is stored in a network residing in another CAAPP. Once the
symbolic data base is stored in a CAAPP, its associative character 1is wused to

make the extraction of complex structural relations possible [4].
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The particular representation we have been developing is a version of the RSV

representation of the VISIONS system [2]. In this the basic entities are
Regions (connected sets of pixels); Segments (portions of the contours
surrounding regions); and Vertices (selected points along contours). Each of
these entities has specific attributes (such as area and extent for regions;
length and orientation for segments). There are also specific relations between
these entities (such as adjacencies between regions and edges). The process for
associating a RSV representation with a segmentation present in the CAAPP is
somewhat involved. It can also be made sensitive to different types of image
structures by setting specific parameters. The first step labels the contour
pixels of the regions determined by the segmentation. The second step extracts
interesting points along these contours. This 1is done by a version of the
interest operator described in [5]. The extracted interesting points become
potential vertices since they tend to correspond to points of high curvature
along the contour. The next series of steps propogate the 1labels of the
selected interesting points along contours and into the interiors of regions.
The values of different attributes are determined while this propogation
oceurrs, For example, for 1labels propogated along contours, information is
stored concerning length, direction, and changes in direction. The attributes
of a segment are then determined by the state of this information upon collision
with another extracted interesting point. We are currently evaluating several
different ways of dealing with collisions of labels in the interior of regions

effectively.
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REAL-TIME LISP USING CONTENT ADDRESSABLE MEMORY ®

Jeffrey G. Bonar and Steven P. Levitan
Department of Computer and Informatior Science
University of Massachusetts
Amherst, Massachusetts 01003

Abstract -- The dynamic data structures of
LISP require periodic garbage collectior,
prohibiting the use of most LISP implementatiors
for real-time applications. We propose a scheme
for implementing a real-time LISP system which
uses Content Addressable Memory (CAM) to allow
incremental garbage collection. In our scheme,
all Vbasic LISP operations, notably including
retrieving a free cell for CONS, the list building
function, and retrieving a current name-value
binding, can be implemented with four or fewer CAM
searches and very 1little other computation.
Furthermore, CAMs are well suited for sufficiently
inexpensive {implementation with VLSI technology.
Our system is not suitable 1if a virtual memory
environment {s needed, and becomes considerably
more complex with CDR-coding., We are currently
implementing a version of our scheme on a
microcomputer.,

Introduction

There are many real-time tasks which lend
themselves to Artificial  Intelligence (AI)
solutiors. Examples include assembly line robots,
rapid transit system controllers, many complex
schedul ing tasks, and intelligent assistants for
interactive devices, Such systems will most
likely be designed and tested 4in LISP. The
flexibility and expressibility of LISP have made
it the "work-horse" langusge of the AI community.
Can the prototype systems, still written in LISP,
then be transferred to the final “production
model"™? We feel they can, but not with a standard
LISP implementation.

The dynamic data structures of LISP require
the use of "garbage collection® to reclaim memory
as the data structures of the program grow and
shrink. Garbage collection i{s typically done in a
two phase process of first tracing and marking all
active data, and then collecting all unmarked
data. Depending on the size of the memory this
operation can cause serious delays in processing:
These delays can occur any time the program needs
a8 new free cell. In particular they could occur
during time-critical applications. An alternative
space management scheme, reference counting, is
unacceptable because {t allows unbounded delays
whenever a cell is released to the free list.
This 1s because all successors of the released
cell could became garbage and would have to be put

® Support for this work was partially provided by
the Aroy Research Office under grant
DAAG29-79-G-~00U46.

on the free list at the same time. For these
reasons a standard LISP implementation {s not
considered acceptable for real-time environments.

In this paper we discuss a real-time LISP
implementation. Various LISP machines (e.g.
Greenblatt (7] and Deutach ([4]) -- although
usually presented as personal computing tools --
have shown that special purpose processors can
vastly increase the speed and utility of LISP
programs., Our paper shows how special purpose
associative memory can be used to gain additional
enefits.

Following Baker (2] we define a real-time
list processing system as having "the property
that the time required by each of the elementary
operations is bounded by a constant independent of
the number of cells in use”, Baker's real-time
LISP system involves incrementally compactifying
and linearizing active cells by moving them
between two memory partitions while leaving the
garbage behind. Wadler ([11] analyzes and
sunmarizes a real-time scheme i{nvolving two
processes running in parallel: the mutator is the
application program while the collector keeps the
free=-1ist from becoming empty.

Our scheme uses speéialized hardware, Content
Addressable Memory (CAM), to create a very fast
real-time LISP system, using a very simple set of
algorithms. This speed and simplicity, which are
the advantages of our scheme, are due directly to
our use of CAM to examine all cells ir memory in

parallel.

We begin with a discussion of CAM. After '
presenting our real-time LISP scheme, {ts
limitations are discussed. Finally, we discuss
our implementation of this scheme,

Content Addressable Memory

General Description

Content Addressable Memory (CAM) {3 memory
organized such that esch word can compare its
contents, rather than its address as {n random
sccess memory (RAM), with a value broadcast by the
central processor [5]. This comparisor process is
dene by all CAM words simultsaneocusly. The .
processor can then interrogate the CAM to discover
which words, {f any, match the broadcast value.

Each word of a CAM memory has an associated
responder bit (see figure 1). This single bit is
reset if the contents of the word do not match the
broadcast value, held in a register called the

This paper originally appeared in the proceedings of the 1981 International

Conference on Parallel Processing, Bellaire, Michigan, August 25-28, 1981.
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gomparand, All responder bits are typically OR'ed

together and their disjunctior is available to the-
processor as the sigral SOME-NONE. Using
SOME-NONE the processor can determine if there are
any words that match the comparand. Additionally,

a function to count the number of responders is
often provided.

Another function the responder bits provide
to the processor is to allow it to select a single
responder {f more than one exists. This 1is done
by daisy-chaining the responder bits such that
wher the signal SELECT-FIRST {s generated by the
processor only the (first responder in the chain
remains set and all the others are reset, The
processor can also perform the function SET-ALL
which sets all the responder bits true. This is
usually done before the comparand is broadcast to
the memory,

Along with the comparand the processor also
broadcasts a mask value., This 1is used by the
words of the CAM to determine which bits of the
word are to participate. For bits in the word
where the mask bit {s not set, no comparison takes
place, The full operation is:

for all wWords J

for all Bits I in Word J
Responder bit(J]) <-
Responder_bit([J)

and,
( ( Mask_bit{I]

and
CAM bit(I,J] s Comparand_bit(I)

) :
or rot Mask bit(I)
)

Note that this operation takes place in all words
in parallel.
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The processor car also perform the operations
READ-RESPONDERS and WRITE-RESPONDERS. These allow
the processor to read the cortents of and change
the contents of all words whose responder bits are
set. This operatior is often implemented to be
under the control of the mask. Finally it is
often convenient to allow the processor to access
the CAM as a regular RAM and allow reading and
writing of single words.

Suitabllitg For Very Large Scale Integratior

CAM {s well suited to VLSI implementation.
Foster (6] and Mead and Conway [10] both discuss
the practical desigr of a VLSI CAM circuit, Two
«f the most important criteria for determining if
a circuit can be implemented efficiently in VLSI
are the regularity of circuit components and the
rumber of input/output pins necessary (10]. CAM,
l1ike RAM, has an inherently regular sub.structure:
the word.

To ninimize the pinout (the number of
input/output pins needed) several techniques can
be used. First both the comparand and the mask
values can be broadcast to the CAM in a bit serial
protocol. This would mean that comparisons are
done one bit at a time across all words in
parallel. Bit serial operatior would slow down
the comparisons somewhat, but only or the order of
the number of bits in a word. (a)

To minimize pinout further, the data in, data
out, and address 1lines of the circuit can be
multiplexed onto the same pins of the package.
This technique has been used successfully for
other types of VLSI circuits, for example, the
Zilog Z8000 microprocessor. Minimizing the number
of pins (and output drivers) would sigrificantly
reduce the cost of the circuit and increase the
area available for storage.

The cost of CAM has been estimated to be 1.5
to 3 times the cost of an equivalent size RAM (6].
Memory sizes up to 64k of 32 bit words per circuit
are not inconceivable (10]. Printed circuit cards
containing 4k bytes of CAM have been on the market
since 1978 [8].

Finally, CAM architectures lend themselves to
a solution of the yield problem for VLSI. The
problem i{s that a single flaw in one place of a
VLSI circuit will cause the whole circuit to be
unusable. As the physical area of VLSI circuits
increases, 30 does the the probability of a flaw
ruining a given circuit [10). Since CAM
operations, unlike RAM operations, do not depend
upor: where in memory a particular value is stored,
it would be possible to disable flawed words of a
CAM circuit, after testing, and still wuse the
resulting (smaller) memory.

(a) The time per bit would be on the order of 10
nano=-seconds, Therefore, ever with bit serial
operation, with reasonable word lengths, the time
for a CAM operatior would be on the order of the
time for a machine instruction.



The Ideal oM t'_or_ LISP

For most applications CAM words are quite
long. The Semionics CAM, for example, has 256
bytes (2048 bits) per word (8). This allows
entire records of data to fit in one word. A
.record might contain an employee's name, address,
telephone number, pay rate, regular hours,
overtime hours, etc. This would 2allow searching
on any fleld of the record to retrieve fit.
Although there are standard techniques for
spreading records across two or more CAM words,
this slows the search considerably (6],

An ideal CAM for LISP has much shorter words
since it {s desirable to have only one LISP cell
per CAM word. We discuss several types of LISP
cells below. Here we concentrate our discussion
on 1ist cells which have seven fields: Flags,
Garbage, Cell type, Left, Left_type, Right and
Right_type.

The Flags field 13 wused for complex CAM
searches involving 1logical disjunction and
conjunction of different match oriteria (6]. The
bits in the Flags field are used as "temporary
storage® for the responder bit of each word. The
Flags field could be replaced by several auxiliary
responder bits for each word and CAM operatiorns to
logically combine them (6] (81].

The Garbage field nreed be only one bit,
indicating if the cell were "free". Using this.
bit we completely dispense with the Free 1list
found in most LISP implementations.

The Cell_type field indicates if the cell 1is
a8 1ist cell, a string cell, or any one of a number
of other types, We discuss this in detail 1later.
The Cell_type will facilitate any desired strength
of typing and also allow cells of different types
to share the same memory space (without
partitioning) and the same garbage collecting
schene.

The Left_type and Right_type fields will also
enforce typing. They allow us to pack short
integers, bit strings, and pointers to machine
language code into the cell. In addition they
simplify the garbage collect process by allowing
us to test whether a given Left or Right is a
pointer.

The Left and Right fields would, as usual, be
large enough to point to any other cell in memory.
That is, a memory with 2%%n CAM words (cells)
would require n-bit Left and Right fields.

The CAM operations that need to be supported
are  SET-ALL, MATCH, SELECT-FIRST, SOME-NONE,
READ-RESPONDERS, WRITE-RESPONDERS, READ, and WRITE
as outlined above. The COUNT-RESPONDERS is not
necessary, Additionally, for the name-value
binding scheme outlined below, a FIND-GREATEST
function would be helpful,
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Real-Time List Processing with CAM

The Algorithm or a Simplified LISP CAM

We begin the description of our algorithm
using a CAM 1in which each word cortains one:
simplified LISP cell with only three fields: Left
(CAR) and Right (CDR), which both point to another
LISP cell, and a Garbage bit (see figure 2).

GARBAGE
"4
LEFT

RIGHT

€3

~

{133

Fijure 2. Staplified CAM LISP

The key observation about garbage collection with
such a cell is that we can find if there are any
pointers to a given cell with two CAM operations:

.a CAM sesrch of the Left fields and a CAM search

of the Right fields, of all cells in memory,

Any practical implementatiorn would use CAM
words to hold several different kinds of cells,
In particular, our implementatior uses special
cell types to allow garbage collectior of strings,
name-value bindings, and the primitives of the
GRASPER graph processing language [9). We discuss
how these special cells are hardled after
presenting the simplified ore cell type algorithm.

When a free cell is needed, a CAM search is
done for a cell whose Garbage bit is set. This is
done by the Supply_free_cell routine in figure 3
(which appears at the end of the paper). One of
these cells is selected with the SELECT-FIRST
operation, This cell, call {t C, is returned as
the needed free cell. It 1is still necessary,
however, to propagate "garbageness" to the
sub-structures of this cell. This is done by the
Potentially make_garbage routine in figure 3. We
do this by first CAM searching the Left and Right
fields of all other cells for equality to C.lLeft.
If there are no responders to this search
(SOME-NONE has value NONE), then the cell pointed
to by C.Left is garbage and we set its garbage
bit. If C.Left =z NIL, then the search need rot be
done. We handle C.Right in an identical way. The
algorithm requires that all cells be initialized.
with their Garbage bits set and their Left and
Right fields set to NIL.

A plece of list structure potentially becomes
garbage when one of possibly many pointers to it
is deleted. This can occur in several ways during
the execution of a program. The functions REPLACA
and REPLACD explicitly delete pointers from the
left (CAR) and right (CDR) fields of list cells.
The functior SET (assigmment) also deletes the
pointer to a variable's o0ld value, These
functions all call the routine
Potentially make garbage or the the pointer they
are deleting. This routine determines whether to
set the Garbage bit of the head cell of the



structure pointed to. All sub-structure will be
handled if that head cell is made garbage and wher
it 1is actually reused,

Circular lists cannot be garbage collected in
our regular scheme because there 1is always a
pointer to any cell in the circle. They can be
accommodated, however, either by requiring the
user to release them explicitly, or by simulating
them with a "lazy evaluation" scheme (see Allen
{1] for details on lazy evaluation).

Extensions For Other Cell Types

Our scheme is easily adapted to other kinds
of dynamic data structures, Here we will discuss
ar {mplementation for strings. Remember that, as
discussed earlier, our LISP 1ist cell actually has
seven fields. The simplified cell 1is augmented
with a .Type field for the cell and for the Left
and Right fields., These fields are necessary for
the algorithm, but also allow us to enforce
typing. Typlocally, typing is done by putting all
of one kind of data together so that address alone
can be used to determine type. In our scheme, {f
@ fleld is of type T, it may only point to a cell
of type T.

Strings are made up of linked lists of cells
(see figure 8). String cells, like any other cell
type, must be fit into the existirg size CAM word
and must have Type, Garbage, and Flags fields.
They also have several bytes of character data and
also Next, a Cell_ptr implicitly of type string.
The implicit typing saves space in the cell and it
does not csuse a problem, since string cells can
point orly to string cells.

CRRBAGE
CELL TYPE V'LRGS
st [ sl |

NEXT
[RTE[ATLI-T ~» 1]
,_4/

-
s2 Jsmmsf| | T]T] M| E oy ’jl

1 [ 3
E:ul._n'v_: klrmsslfzrrgit.sr rJﬁ_rlm(u_?i\

GARBAGE
The string "REAL-FIME® (31) and » Llisc osll (L)
wnose CAR points to a string Lsginning -surv

l’l‘ (. I% glc of CAd LISP Strings

Unlike a Iist when the head ‘of a string
becomes garbage, the entire string is known to be
garbage. Potential "garbageness® need only be
.-propagated down the Next field link and the
Other ptrs to operatior need not be done.

For example, in figure 4, assume that cell L1
is mede -garbage. When the cell is choser to be
reused, we attempt to propagate "garbageness" to
Li.left, If there are no other pointers to cell
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S3 the string "“SYSTE..." becomes garbage. S3 is
marked garbage and when it is reused no other CAM
searches need be done.

Atoms are also implemented as special cells.
In addition to the Flag, Cell _type, and Garbage
fields, atoms have a Value field arnd Value _type
field, pointing to the atom's static binding, and
a Print_name field implicitly of type string (that
is, pomung to a cell of type string).

A Truly Associative "A-List"

In LISP each function call creates a set of
name-value bindirgs which exist during the
execution of the function and disappear at its
completion, This 1s roughly equivalent to the
formal to actual parameter bindings in other
programming languages. Traditional binding
Schemes use one or more lists to associate names
with values, A 1ist used this way is called an
A-List for Association-List (see Allen (1] for

more details),

In our scheme the A-list, like the Free list,
does not exist. Instead the bindings are held in
a set of distinguished cells, existing anywhere in
CAM, When entering a new environment, we
inorement an environment counter and create a set
of CAM ocells to hold the names bound in that
environment, their values, and the new enviromment
number, Now we can ask the question above as a
single compound CAM search for a name-value
binding within an enviromment, and retrieve the
current binding directly. Since the current value
of a name might not be in the most current
envirorment, we need to search for the greatest
environment number for that name.

When an environment is exited, a pair of CAM
operations s executed. First a search for all
environment cells with the current envirorment
number, followed by a WRITE-RESPONDERS operation
to make all these cells garbage. Since no other
cell will point to these binding cells, even if
some do point to their descendants, they can all
be turned into garbage in one operation.

Figure 5 summarizes all the cell
discussed in this section,

types

Garbage, Flags, and Cell_type fields occur ir esch cell.

List Laft, Left_type, Right, Aight_type

Atom Prirt_reme y (1mplicitly of type string)
Velue, Value >_type

String heracter. l....cnneur r, Next (implicitly

of type string)

Envirorment Envirorment_rusber, Neze (implicitly of
type atom), Value, Value _type
- Figure 5. Susasry of Cell Types



Other Issues

CDR-Coding

Many recent LISP i{mplementations use
CDR-coding, compact encodings of list
representations which take advantage of
statistical regularity in 1list structures (see

Bobrow and Clark (3] for a summary and disoussion
of these schemes). A CAM augmented LISP with
CDR-coded cells is easy to imagine, though it
would require considerable extra time and
complexity in the implementation of the basic LISP
operations. Finding all pointers to a given cell
would, in general, require a CAM search for each
possible interpretation of a cell pointer field.

Given decreasing hardware costs, we did not
feel it necessary to compromise the simpl ieity and
speed of our algorithas. In particular,
CDR-coding offers no solutions to our primary goal
of real-time operation since it reduces space
rather than time needs.

Virtual Hemory

Our scheme does not support virtual memory,
In general, it would be impossible to perform the
test Other_ptrs to or a given cell without paging
every active page of the virtual memory into CAM.
The application programs we envisiorn for our
system can always be tested 1in advance to
determine their space needs. More CAM ocells can
always be added without a time penalty.

Our Implementation

We are currently implementing the LISP system
discussed above using a 280-based microcomputer
and 80K bytes of CAM. The CAM, Semionics
Recognition Memory (REM) (8], is organized as 320
256-byte words (called ™super words" in the
company literature). We do not need such long
words and have cut the memory into vertical
slices, yielding 32 LISP cells per word. Although
this means that many of our CAM operations will
have to be repeated 32 times in the worst case
(once for each vertical slice), the system runs at
an  scceptable speed., The real-time properties of
our system remain intact.

The project i3 a pilot study to examine two
fssues. First we wish to show that even with
relatively slow CAM (bit serial searches on the
order of 1 micro-second per bit) which is not
organized to our needs, we can build a real-time,
self-contained LISP system.

Second, the graph processing language GRASPER
uses many associative operations which can be
supported by CAM, (b) GRASPER objects have the

(b) GRASPER i3 used to represent and operate on
Semantic nets, augmented transitior networks
(ATNs), HEARSAY-II style blackboards, and other
associative data structures used by AI projects at
the University of Massachusetts.
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same dynamic allocatior needs as other LISP
objects. We will embed a subset of the GRASPER
language 1into our LISP system using the cell’
typing conventions already discussed. We expect
to show the advantages of a CAM based GRASPER
system as part of a feasibility study for the
design and implementation of a state of the art
CAM on our VAX 11/780.

Conclusions

We have presented a scheme for implementing a
real-time LISP system by using Content Addressable
Memories for storage of the basic LISP cells, Not
only does our scheme perform all elementary
operations in real-time, it also has the following
other advantages:

1. All cells are available for use, in
contrast to other real-time schemes.

2. Retrieving the correct value for a name
can be be done truly associatively,
always requiring orly two CAM operations.

3. Strings and other dynamic data types can
bé elegantly and efficiently integrated
into the basic scheme without
partitioning memory.

4, CAM is eminently suited to modern VLSI
implementation technigues.

Our scheme does have limitations, however:

1. Circuler lists cannot easily be garbage
collected.

2. Our scheme does not lend {tself to a

virtual memory enviromment.

We believe that even given the above
limitations, our scheme {s an attractive
alternative for self-contained, dedicated systems.
It 1is usable in a real-time environment and all
basic LISP operations perform extremely quickly.
We believe that tested Al systems writter in LISP
could be transferred to a CAM-augmented LISP
machine without costly redesign and without
recoding in a standard systems prograzming
language (e.g. assembly langusge or Ada). In
this way we hope our scheme will aid in the
creation of simpler yet more powerful
computer-controlled systems.
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F\{wo 3. AMlgoritha for CAM Augwented LI3P Garosge
Jllection

function Supply_free cell : Cell ptr;
(* called by CONS to find a cell it can use
to build a list structure with. In addition
this function does the incrsaental garbage collect #)
var Free_cell, Temp : Call ptr;
begin
Search for first Free cell from Call
waere Celll!-‘ree_cell].carbagc

96 begin
Aif Cell(Free_cell].left <> NLl_ptr
then bezin

’E?:F':a Cell[Free_celll.Laft;
Call(fres_cell].laft := Nil_ptr;

(®* Thess two maks sure a ocheck for other
pointers = Cell(Free_cell]l.Laft will
not respond to that field itself ?)

Potentially make_garbage (Teap)

(* propagate "garbageness" #)

end;

Af Csll(Free_cell].Right <> ¥Nil_ptr
then begin
Temp :z Call(Frse celll.Right;
Call(Free_cell).Alght :3 Nil_ptr;

(* These two zake sure a check for other
pointers = Cell(Free cell].Right will
not respond to that fisld itself )

Potentially make_garbage (Teap)

(* propagate “garbageness" %)

end;
return Free_cell

end

else System_error ("Cell space full®)
end ;

procedure Potentially_ cake_garbage (C : Cell_ptr);

begin
8l1(C).Garbage := not Other_ptrs to (C)
end;
function Other_ptrs_to (C : Cell_ptr) : boolean;
yar Rasponder : Callptr;
bezin
search for Responder from Cell
wnere not Csll{Responder].Garbage

and TCell(Responder).lLaft = C
d_o return true
else ssarch for Responder from Csll
wnere not Cell{Responder).Garbage

and Tall{Responder].Right = C
do return trus

else return Talse

]
=

(continues an the next pags...)



(...figure 3} continuad)

procedure Init CAd;

var Responder : Cell ptr;

Begtn
Search for Responder from Cell
wnere trus

do bezln
Cellfﬂesponder].carbage iz true;

Call(Responder).Laft := Nil ptr;
Cell(Responder].Right :z NiT-ptr
end

&

Notational Conventions
The CAM is ssen as an "assooiative® array of records, where
each record represents the data in one CAM cell. Standard
fndexing into the array allows us to treat the CAM as RAM.
Froa the above we have two data types:

Call ptr = T..Num_ocells;

Cell = assoclative array (Cell_ptr)

of record

~ TGarbage : boolean;
Left, Right : Cell ptr
ond

The basic CAM operation is:

search for [ first ] <index variable into CAM>
from <CAN array naae>
wnere <(boolean expressiond
do <statezents>
else {statements>

The <index variable> is available <ithin the 40 <statesaents>
to syataotically represent all cells that neet the search
oriteria. This <index variable> is a free variable ranging
over all possible values, that i3, indexing all cells in the
CA4 array. For each CAM cell wnere the <boolean expression)
is satisfied, the do <(statements> are executed. The do
{statements> are perforaed in parallel for these cells. In
the ocase of "search for first", the index variable gets set
to the valus of the first responder. In the case that no
oells satisfy the <boolean expressicnd, the el se
<statenents> are executed. Typical CAMS do not support the
generality i{aplied by this construct, In particular,
arbitrarily complex <boolean expressions> will take N CA4

searches, where N i{s the nusber of 31isjuncts in a -

disjunctive-noraal-fora version of the <boolean expression>,
and do <statements> are limited to assignuents to the cells
indexed by the <index variable>. Other opsrations can be
supported either by =zore intelligent CAM oells or by a
afcro-coded CA4 controller. Our algorithms use the
construct in ways easily iaplemented in CAM.
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DECRYPTION OF SIMPLE SUBSTLITUTION CYPHERS WITH WORD
DIVISIONS USING A CONTENT ADDRESSABLE MEMORY*

Rajendra S. Wall

Abstract: The problem of decrypting simple substitution cyphers
can readily be solved by pencil and paper. It cam also easily be
attacked by various computerized approaches. This paper shows the
results of a table look up approach aided by simulated content ad-
dressable memory hardware.

Keywords: Content Addressable Memory, Parallel Search, Table Look-up Search,
Simple Substicution Cyphers.

Introduction.

The simple substitution cypher with word divisions, also known as the Aristo-
crat cypher, is encrypted by creating a one to one mapping of the alphabet on-
to itself and applying that mapping to the plaintext to be encoded. Various
methods have been proposed for decryption by humans with pencil, paper and
patience [4, 9, 6]. Human and computer abilities have been used together to
solve the problem (1]. In addiction, artificial intelligence approaches, at-
tempting to simulate human methods with computerized heuristics, have been
used (8], as well as abstract image processing relaxation procedures {71.

A more straightforward and less heuristic approach involves table look up.
Each time a crypt word is partially decyphered a dictionary of possible words
is searched to see if any words in the dictionary could be replacement words
to fit and €11l in the partial word. When using a general purpose computer
with standard memory architecture this approach is tedious and impractical.
As the dictionary of possible words grows to a useful size the amount of time
spent looking up partially decyphered words quickly becomes unacceptable.

Standard computer memory architecture can be thought of as a series of num-
bered boxes in each of which we place one word of the possible word diction-
ary. Standard memory access in a general purpose computer involves asking:
“What is in box one?” or "What is in box four hundred and thirty two?" Per-
forming the search of the dictionary is then asking: "What is in box one?
Does it look like this partially decyphered word?" What is in box two? Does
it look like this partially decyphered word?" and so on, for as many words as
are in the dictionary. When the dictionary is large, this could take a long
time to accomplish.

Content addressable memory (CAM) architecture allows a number of memory access
options that are unavailable in standard memory acrhitecture [2]. These extra
options involve more hardware and consequently are more expensive than standard
memories. Recent advances in silicon chip technology have made content addres-
sable memories more affordable. Companies such as Semionics offer a memory
board for micorprocessors that they call "recognition memory." Though not full
content addressable memories these boards do have some of the needed features.

*This research was supported in part by a grant from the Army Research Office
Number DAAG 29-79-G-0046.
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A content addressable memory begins with a set of numbered boxes simllar to
standard memory. To each box i3 added comparison circuictry that allows direct
comparisons between a central data item and each memory box. Since cach mem-
ory box has this circuitry all the memory boxes may be interrogated at the
same time. Circuitry is also added to allow the computer to know which boxes
have comparison results to return and what those results are. Thus the search
of a dictionary with a CAM begins with loading the dictionary into the memory
one word -per box as in the standard memory search. But to perform the search
we only need ask once: ''What boxes have words in them that look like this
partially decyphered word?" Since all boxes have circuitry to compare the
partially decyphered word against their own contents they can all perform this
comparison in parallel. The comparison takes the same amount of time no mat-
ter how many words are in the dictionary. Through the response circuitry Lt
can be determined how many boxes had matches as well as which specifllc bhoxes
had matches. Words that signalled matches to the partially decyphered word
are considered as candidates for being possible replacement words for that
partially decyphered word.

The Search Algorithm.

The system used a depth first algorithm to perform a tree search {n order to
implement the decryption process (Winston). A tree is a data structure con-
siting of nodes and links between those nodes {5]. One node is the root node.
All other nodes are either descendants of that root node or descendants of
descendents. An example of this type of structure is seen in a family trce:
The head of the family 1s the root node and all the children, the children's
children and so on are the descendant nodes. Links are thus made between par-
ent nodes and descendant nodes. A depth first search of a trece involves exam-
ining the nodes of the tree by first following a particular branch or path for
as long as possible before finally having to back up and try a new path when
the old one reaches a dead end. For example, in the family tree a depth first
search might involve following the line of first born males. The scarch would
follow the path of firast born males through gencration after generatlon until
it reached a node where there was no first born male (perhaps the first born
was female). At this point it might back up to the previous generation and
examine the children of the second born male, again following the path of
first born male. If the second born male did not have a first born male child
then the search would move to the third born male. If there was no third borm
male then the search would have to back up another generation and look at that
generation's second born male, and so on.

In the decryption problem, each node is a guess about some partially decy-
phered crypt word. The guesses are drawn from the set of all words jin the dic~-
tionary of the proper length and having A's where the partially decyphered
word has A's, B's where the partially decyphered word has B's and so on and
aanything where the partially decyphered word has blanks. Blanks represent
unknown, unconstrained positions in the partially decyphered crypt word.
Since the dictionary is ordered by frequency the first dictionary word that
matches the partially decyphered crypt word is the most frequent word that
fits, and is hopefully the best choice. The search thus always assumes that
the crypt was made up of words that occur often in usage before it 1is forced
to look at less frequent choices. A node's descendants are guesses about
other crypt words under the assumption that the guess in the parent node was
correct. Any given node could then have any number of descendant nodes but
only one parent node. The descendant nodes are grouped by which crypt word
they are replacements for.
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A search of the tree starts by choosing a crypt word to make guesses about.

In general this initial choice is arbitrary. A replacement word is chosen
from the dictionary to be the guess for this crypt word and is placed in the
root or top most node of the tree. The descendants of that node are then gen-
erated. This generation is done by taking the letter replacements suggested
by this guess/crypt word pair and inserting those replacement letters into

the other crypt words, creating partially decyphered words. These partially
decyphered words can then be used to interrogate the dictionary. At each lev-
el farther down into the tree there are fewer and fewer crypt words left to
make guesses about. Eventually the process will stop when either every crypt
word has a replacement word from the dictionary as its guess (this path
through the tree is then called a solution), or it is discovered that no solu-
tion exists. When no complete solution is found the partial solution of the
crypt at the deepest penetration of the search tree -- thus the most complete
but not nccessarily the most correct -- is returncd.

The depth firat tree search algorithm specifies the selection process of
which crypt word to make guesses about and which dictlonary replacement word
to choose to be that guess. The decision of which crypt word to pursue next
1s made by looking at all remaining partially decyphered crypt words and by
interrogating the dictionary noting how many responders and thus how many
possible replacement words each partially decyphered word has. The crypt
word that has the fewest number of replacement words is the one chosen. This
forces the search to take the easiest path to the solution first. The choice
of which dictionary replacement word is to be used as the guess for this
crypt word is done by choosing the most likely word that would show up under
the constraints of previous guesses if this crypt conformed to standard Eng-
lish text frequencics. This 1is done by ordering the dictionary based on fre-
quency of usage and then picking the first replacement word through the abil-
ity of the CAM to identify the first responder.

A crypt word that has no possible replacements at all will obviously be chos~-
en as the one with the fewest replacements. When this happens it mcans that
there is no way to solve the rest of the crypt if the previous guesses are
left unchanged. This 1is a dead end for the search. Since during the firse
pass of the search it is assumed that there does exist a solution and that
all words in the crypt are in the dictionary the only answer is that one of
the previous guesses was incorrect. The first candidate for correction is
the parent node. This node contains a guess for a particular crypt word.
Since this guess is incorrect the next most frequent alternative replacement
word from the ordered dictionary is chosen to be the guess for that crypt
word. The search then continues downward assuming now that this new guess is
correct. If there were no more alternative dictiomary replacement words then
the search has again been taken to an untennable position and the parent node
of the node with no alternatives is deemed incorrect, initiating the above
procedures for handling incorrect guesses.

If it {s found that the root node has no more alternative dictiomary replace~
ment words then the search is terminated with only a partial solution to the
crypt. Up to now the search has assumed that all the words are in the dic-
tionary and that a partial word that is not found in the dictionary is in er-
ror. If the first search of the tree is found to have no solution under this
assumption then the search may be reinitiated at all its previous dead ends
with a new assumption, that there may be at most one word thdat is not in the
dictionary. Any solution found now will only be a partial solution. If this
second search again produces no solution then at most twc words are assumed
to be missing from the dictionary, and so on. Appendix 1 shows an example of
the system.
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Implementation and Test Results

Implementation was made on the University's Cyber 170 using the APLUM version
of APL [10]). Simulation of the content addressable memory was done with the
APL inner product operator. The dictionary was built from the Brown sample
of edited American English [3]. The full dictlionary containa over thircy six
thousand words. For this problem, reduced dictionaries were used to collect
statistlcs. The first dictionacy included the top five hundred words of cach
word length from one to ten, giving a total dictlonary slzec of sliphtly more
than four thousand words. The second contained the top one thousand words of
each word length giving a total dictionary size of around elpght thousand
words. The third and final dictionary contained all thirty six thousaund
words. In each search no unsolved words were allowed.

The system worked well in those cases where all cryptanalytic systems, human
or machine, work well: long messages, plaintext words of high frequency and
repeated text fragments. On those snmples of short messages, words of low
frequency (but still in the dictionary) or no repcated text It would have
some trouble but would not have a lot of backtracking if the crypt words were
of unique patterns. It worked worse on nonsense phrases such as "Grown under
the quick jazz film display box" that were short, had low frequency words,
little or no repeated text, and no distinguishing patterns. Lt obviously
worked worst on crypts that contained words that were not in lts dictionary,
since such crypts necessitated only partial solutions.

Using the APLUM system it is possible to obtain ‘statistics of processor time
spent executing statements or routines. This allowed examination of the tlme
spent in the content addressable memory simulation routine versus the time
spent in all the other routines combined. Appendix 2 shows the results of
the system.

The first table is a list of five crypts made of words from the [our thousand
word dictionary. The system was run three times against each crypt, once per
dictionary size. Below the list is the average amount of computer time spent
performing the non-CAM related parts of the search. This shows the time that
would he spent decrypting the cyphers if a CAM was available that could do the
dictionary look up in parallel. The results showed that the major drawback
to table look up driven procedures, that of incredible delays due to diction-
ary examination, are eliminated by the use of content addressable memor fes.
The decryption time becomes a function of the difficulty of the message and
is unrelated to the size of the dictionary.

The second table shows the results of putting a nonsense word "abcd” (encryp-

ted as "OJPM") at the end of the first crypt and then making four more tuns,

one with "abcd" as the five hundredth four letter word in the four letter

word dictionary, one with "abcd" as the one thousandth four letter word, once

as the last four letter word and once with it not in the dictionary at all.

These trials were made to see if the system would be slowed down by having to

dig through erroneous guesses about the crypt word "0JPM" as it hecomes par=

tially decrypted. This would be expected since the CAM returns all words

that £it the pattern of a partially decyphered crypt word in order of decreas-

ing frequency and if the word you desire is at the bottom of the dictionary

it may not be the first word in the returned list. It turned out this was

not the case. The computer time did not increase as much as would be expec=

ted when the sought word was placed deeper and deeper in the dictionary. !
This was due to the nature of the gearch procedure, rather than the CAM. By :
the time the system decided to pursue the crypt word "OJPM" the result was so
constrained that only "abcd" was returned. When the word was not in the dic-

tionary at all the entire decryption tree had to be searched and only a
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partial solution was returned. Thus the much higher amount of computer time
spent In that run.

Conclusion

This paper has shown the difference between standard and content addressable
memory achitectures in terms of solving a particular table look up problem,

decryption of simple substitution cyphers with word divisions. We have also
shown how a content addressable memory can eliminate the problems caused by

scarching a large dictionary.

APPENDIX 1

This execution example is of a crypt taken from the January-February 1978
issue of the American Cryptogram Association publication The Cryptogram. The
dictionary size was the full thirty six thousand words. The original crypt
was:

E SET ANU MEOTX QTUARKJMK ETJ JUKX TUY HXK OY OX ROQK E LEWSKW ANU
VRUAX NOX LOKRJ IRHY JUKXTY XUA OY

The first thing the system does {s break the crypt inte {ndlvidual words., 1t
then looks to see where would he the easlest place to start work. Since it
has no constraints, no letters are known yet, all it cam do s choose the

word with the shortest dictlonary length. LIn this case the one letter word
'E' can have at most 26 possible replacements, 'a' through 'z', so it is chos-
en as the first word to search on. The system takes the first choice from

the list of one letter words, which happens, by the fact that the list is in
frequency order, to be the word 'a', and substitutes that chelce fnto the
crypt wherever 'E' is found:

E SET ANU MEOTX QTUARKJMK ETJ JUKX TUY HXK OY OX ROQK E LEWSKW ANU
a a a a a a

VRUAX NOX LOKRJ 1Y JUKXTY XUA OY

The system then looks for the word that is now the most constrained. The ob-
vious choice is the second oceurrence of 'E', since given the cholce made for
the first occurrence of 'E' It must also be 'a'. After maklng that substltu-
tion into the crypt (which didn't change anything, but the system docsn't
know that) it again looks for the most constrained word, the word with the
fewest replacement choices. In order to do this it must query the content
addressable dictionary with each partially decyphered crypt word, e.g., 'a'
for 'SET', ' a ' for 'MEOTX', and so on. When it is finished, it finds
that the crypt word 'ETJ' has only 66 choices making that the fewest number
of choices of any of the other partial words. Since 'ET.I' is a three letter
word the system takes the first three letter word from the list of the 66 pos-
sible three letter words that begin with 'a', the word 'and', and substitutes
it into the crypt:

E SET ANU MEOTX QTUARKJIMK ETJ .JUKX TUY HXK OY OX ROOK E LEWSKW ANU
a an an n d and n n a a

VRUAX NOX LOKRJ IHY JUKXTY XUA OY
d d n

This process of finding the most coastrained word and substituting the first
dictionary word that fits that most constrained crypt word into the crypt,
glving more constraints so that other words can be looked up, and so on, con-
tinues through the choices of 'knowledge' for 'QTUARKJMK', 'does' for 'JUKX',
‘gains' for 'MEOTX', 'is' for 'OX', 'like' for 'ROQK', 'sow' for 'XUA', 'use’
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for 'HXK', 'doesnt' for 'JUKXTY', 'not' for “ryy', 'it' for '0OY' twice, 'who'
for 'ANU' twice, 'his' for 'NOX', 'fleld' for 'LOKRJ', and 'blows’ for
'WRUAX'. The crypt now look like:

E SET ANU MEOTX QTUARKJMK ETJ JUKX TUY HXK OY OX ROQK E LEWSKW ANU
a an who gains knowledge and does not use it is like a fa e who

VRUAX NOX LOKRJ IHY JUKXTY XUA OY
blows his fleld ut doesnt sow it

It can be seen that the choice of ‘'blows' for ‘VRUAX' might cause problems.
When the system examines its next choice for a most constrained word, ‘but’
for 'IHY', it discovers a UNIQUE SUBSTITUTION FAILURE. This means that the
system has recalized that it cannot have both 'V' and 'U' be replaced by 'b*.
So it throws out 'but' and tries the next dictionary word in the list of
three letter words that meet the constraints of ' ut'. This next word 1is
‘out', which also causes a unique substitution faitlure. The third word on
the list is 'put', which fits. It then goes to the crypt word 'SET', which
is now the most constrained. The first choice for a dictionary word that
fits ' an' is 'can'. But when the search is resumed assuming that the sub-
stitution 'can' for 'SET' {s correct it is found that there ia no solut lon
to the crypt word 'LEWSKW". The system then must back up to the provious
level which it assumes was in error, and removes the choice of ‘can' for
‘SET'. It then tries the next word on fts list of words that (it * oan' and
uses it as a replacement for 'SET'. This new replacement is the word 'man'
which allows the crypt word "LEWSKW' to he solved as 'farmer'. Since there
are no more words to work on the system ends the search with its f(inal solu-
tion:

E SET ANU MEOTX QTUARKJMK ETJ JUKX TUY HXK OY OX ROQK € LEWSKW ANU
a man who gains knowledge and does not use it is like a farmer who

VRUAX NOX LOKRJ IHY JUKXTY XUA OY
blows his fiecld put doesnt sow it

Notice that although to a trained speaker of English this solution can be
seen to be incorrect, at the level at which the system operates the solutlon
1s perfectly legitimate. Since both 'v' and 'l*' only occurred once there is
no way that from just the rest of unrelated crypt text the system can tell
which should be 'p' and which should be 'b', since both ‘plows’ and 'blows'
as well as 'put' and ‘'but' are words in the system's dictionary.

APPENDIX 2
Table 1
Five Crypts from the Four Thousand Word Dictionary
(1) OXAQF AEQDF GQZQFOH MDRPLRRDCZ EAQ PCWWDAAQQ SOR QKIQPAQM AC ORN XCF
WCFQ WCZQT XCF RFDQZADXDP FQRQOFPE
(2) ORW VWDWXGW HOOPCXWZ BUWGOMPXWV ORW LP JWCXIWXO HLWXOG OWGOMIPXZ ORHO
ORW FPYGKMCHFZ MXFSUVWV IWIAWCG PD ORW FPIIUXMGO KHCOZ
(3) KXTC UZOCNWUH QTENHOEE ZUHUFOZOHS EWRXXDE OPBOWSOY SRO JXQ ZUCLOS SX
WXHSNHTO SX NZBCXAO YOEBNSO SRO ESUSO XK SRO OWXHXZG
(4) UPB CEDUBK RUWUBR UOWKB WINWRRWKLO RWDK UPB FWTWEBRB ZDAA TCOSPWRB
UPOBB ECSABWO RCNJWODEBR HLO CRB WQWDERU OCRRDWE ZWO RPDTR
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(5) FAR BRHMFVY BMQK JR JRYR NSEHRYMDER FV M GQYBF BFYQOR QG FAR BVNQRF

9.

SHQVH KRNREVWRK M KRGRHBR MXMQHBF VSY BRPVHK BFYQOR PMWMDQEQFI

Average
Dictionary Non CAM CPU
Size Time in msec
4224 518.2
8147 551.8
36803 559.4

Table 2

Time Spent Searching for Word at Various Depths

Depth of
Nonsense Non CAM CPU
word "abed" Time in msec
500 170
1000 182
7000 194
not in
dictionary 7192

REFERENCES

Edwards, D. J. 1966. OCAS: On-line cryptanalysis aid system. MIT
Project MAC Technical Report TR-27. May.

Foster, C. C. 1976. Content addressable parallel processors.
New York: Van Nostrand Reinhold.

Francis, W. N. 1964. A standard sample of present day edited American
English, for use with digital computers. Providence: Brown University.

Gaines, H. F. 1939. cCryptanalysis. New York: Dover.

Knuth, D. E. 1975. The art of computer programming.
Reading, Massachusetts: Addison-Wesley.

Ohaver, M. E. 1973. Cryptogram solving. Columbus, Ohio: Etcetera Press.

Peles, S., and A. Rosenfeld. 1979. Breaking substitution cyphers using
a relaxation algorithm. University of Maryland Technical Report TR-721.
January.

Schatz, B. R. 1977. Automated analysis of cryptograms. Cryptologia.
1: 116-142,

Sinkov, A. 1966. Elementary cryptanalysis.
New York: Mathematical Association of America.

10. Wiedmann, E. 1975. APLUM reference manual.

Amherst, Massachusetts: Newell.

11. Winston, P. H. 1977. Artificial 1nca111§ence.

Reading, Massachusetts: Addison-Wesley.



	01.pdf
	02

