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ABSTRACT

A pumber of mechanisms have been designed for controlling entity visibility. As with
most language concepts in computer science, visibility control mechanisms have been developed
in an essentially ad hoc fashion with no clear indication given by their designers as to how
one proposed mechanism relates to another. This paper introduces a formalism for describing
and evaluating visibility control mechanisms. The formalism reflects a generalized view of
visibility in which the concepts of accessibility and provision are distinguished. This formalism
provides a means for characterizing and reasoning about the various properties of visibility
control mechanisms. In particular, the notion of preciseness is defined. As an example, the
formalism is used to evaluate and compare the relative strengths and weaknesses of the
visibility control mechanisms found in ALGOL60, Ada, Gypsy, and an approach we have
developed that specifically addresses the concerns of interface control in large software systems.



1. Introduction

For over twenty years, nesting has been the predominant visibility control mechanism
found in modern programming languages. It has been informally argued elsewhere that nesting
is not sufficient to describe the wide range of possible visibility relationships among the entities
comprising a software system (see, for example, [CLARS0]). A variety of recently designed
languages, such as Ada® [DOD83), Alphard [SHAWS1], CLU [LISK79), Euclid [POPET77],
Gypsy [AMBL77], Mesa [MITC79], Modula [WIRT77], and Protel [CASH81], have attempted to
compensate for the inadequacies of nesting by offering alternative mechanisms for visibility
control. As with most language concepts in computer science, visibility control mechanisms have
been developed in an essentially ad hoc fashion with no clear indication given by their
designers as to how one proposed mechanism relates to another.

This paper introduces a formalism for describing and evaluating visibility control
mechanisms. The formalism reflects a generalized view of visibility in which the concepts of
accessibility and provision are distinguished. This formalism provides a means for characterizing
and reasoning about the various properties of visibility control mechanisms. In particular, the
notion of preciseness is defined. The next section presents the basic features of the formalism.
The use of the formalism for describing visibility control mechanisms is discussed in Section 3.
Section 4 discusses use of the formalism in evaluating such mechanisms. Theorems are
presented that serve to characterize the relative strengths and weaknesses of the visibility
control mechanisms found in ALGOL60, Ada, Gypsy, and an approach we have developed that

specifically addresses the concerns of interface control in large software systems [CLARS3).

®Ada is a registered trademark of the United States Government (Ada Joint Program Office).



2. The Formalism

Traditionally, the concept of entity visibility has been defined in terms of declaration,
scope, and binding. In many programming languages, an entity is a language element that is
given a name. Thus, entities include such things as data objects, types, statements (labels), or
subprograms. A declaration introduces an entity and associates an identifier (name) with that
entity. The scope of a declaration is the region of program text over which that declaration is
visible and has effect. Many languages allow a single identifier to be associated with more
than one declaration and the scopes of those declarations to overlap. Binding relates the use of
an identifier, at a given point in a program, to a particular declaration. A description of a
visibility control mechanism, then, is essentially a description of how that mechanism controls
scope.

The formalism presented here is based on the concepts of accessibility and provision,
which are two different, yet complementary, points of view on visibility. Accessibility is
concerned with the entities that can be (potentially) accessed by some entity. For example, the
accessible entities for a subprogram typically include the subprogram itself and any locally
declared entities, as well as any non-local entities imported (implicitly or explicitly) into that
subprogram. Provision, on the other hand, is concerned with making entities available for access
by other entities in a software system. Again for a subprogram, the provided entities typically
include the subprogram itself and any locally declared entities exported (implicitly or explicitly)
from that subprogram.

This distinction between accessibility and provision reflects the differences in the overall
approaches that language designers have taken to controlling entity visibility. In languages such
as ALGOL60 and Pascal, accessibility and provision are essentially mirror images; those entities

accessible from an entity are always also provided to that entity and vice versa. In the designs
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of more recent languages, particularly languages intended for the construction of large and
complex software systems, the desire for greater control over entity visibility has resulted in
mechanisms that address accessibility and provision in separate, and often unequal, ways. Our
formalism, by drawing out this distinction, is equipped to expose these differences in visibility
control mechanisms.

The formalism centers on the construction and manipulation of a unique representation
of entity visibility relationships. This representation takes the form of a graph called the

visibility graph.

Defn. A visibility graph vg = (N, A,, Ap) is a labeled digraph where
N is a finite set of nodes labeled by the (unique) names of entities;

A, is a finite set of ordered pairs of nodes (n;, nj) denoting the accessibility
relationship n; “can access” n;

A, is a finite set of ordered pairs of nodes (n;, nj) denoting the provision
relationship n; “is provided to” n;.
Any pair of nodes in a visibility graph may be connected by multiple arcs resulting from the
accessibility and provision relationships. A visibility graph may also contain loops (arcs whose
origin and terminus are the same node) and cycles, both resulting from recursive visibility.
A consistent set of entity visibility relationships exists when the entities that each entity

can access have in fact been provided. In terms of visibility graphs, this corresponds to the

following property:

Defn. A visibility graph vg = (N, A;, A)) is wellformed iff for all (n;, n) € A,,
(nj, n) € A,

In the remainder of this paper, we only consider the set VG of well-formed visibility graphs.



A visibility graph uniquely represents a particular set of visibility relationships among a
set of entities since the visibility relationships of any entity e are defined by the arcs from the
corresponding node n, to that node’s nearest neighbors in the graph (i.e., adjacent nodes), and
the absence of an arc between two nodes indicates that no visibility relationship exists between
the corresponding entities. Notice that the arcs could be tagged in order to indicate a special
kind of accessibility or provision relationship. For instance, if a data object is provided
“read-only”, as is possible in a number of languages, then this fact can be recorded as a
“read-only” tag on the appropriate arc.

To consider accessibility and provision separately, we refer to two spanning subgraphs of
a visibility graph. One represents only the accessibility relationships of the entities in the

visibility graph, while the other represents only the provision relationships.

Defn. An accessibility graph ag = {N, A,, A} is a visibility graph where A, = 0.
Defn. A provision graph pg = {N, A,, AP} is a visibility graph where A, = @.
Two functions on visibility graphs are defined that produce these subgraphs.
Defn. The accessibility extraction function ae: VG - VG, is a mapping from a
visibility graph vg = {N, A, Ap} to an accessibility graph ag = {N, A,, &}.
Defn. The provision extraction function pe: VG - VG, is a mapping from a
visibility graph vg = {N, A, A} to a provision graph pg = {N, &, Ap}.
Using these functions, two useful relationships between visibility graphs can be defined.
Defn. A  visibility graph vg; access-satisfies a  visibility graph vg; iff

ae(vg;) C ae(vg).

Defn. A visibility graph vg; provide-satisfies a visibility graph vg; iff
pe(vgj) C pe(vg)



Informally stated, the desire for a set of entities s; to be accessible from (provided to) some
entity e is satisfied by e having access (being provided) to any set of entities 5; of which 8 is
a subset.

A visibility graph can be derived from some representation of a program by applying the
rules of a particular visibility control mechanism, or combination of mechanisms, to the entities
in the representation. More formally, we denote the set of program representations by PR and
define a function that performs this mapping as follows:

Defn. A visibility function vi: PR - VG, is a mapping from a program

representation pr to a visibility graph vg.

A set of visibility functions VF = {vi,vf,,.} can be defined where vf, is the visibility

function implementing the visibility control mechanism(s) m.

3. Describing Visibility Control Mechanisms

One of our goals is to provide an effective means of describing visibility control
mechanisms so that one can reason about and evaluate these mechanisms. Existing informal
and formal descriptive methods have proven inadequate. The Pascal Report [JENS74], for
example, causes many problems due to the ambiguity of its prose description of visibility
control [WELS77, BRIN81]. The few formal approaches to describing visibility control
mechanisms are operational in nature. Thus, they appear to be more suitable for the
implementor and verifier than for the language designer or programmer. Such formal
descriptions of visibility control mechanisms have appeared primarily in operational and
denotational semantic specifications, where a mechanism is typically described by the
manipulation of an (identifier) environment component. The technique of employing an

environment component in a formal description is unsatisfactory because the method for
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describing manipulation of that environment component is essentially algorithmic (despite the
use of a “functional” notation; see, for example, [FDA80]). Moreover, the information in the
environment component only describes entity accessibility. Employing such a description makes
it difficult to understand the ramifications of using a mechanism. With nesting, for example, a
subprogram’s so-called “local” entities are unavoidably made visible to other subprograms nested
within that subprogram, but this fact is only implicitly stated in existing formal descriptions of
nesting.

In the formalism presented here, a visibility control mechanism m is described by its
corresponding visibility function v, Bach such function has two components that explicitly
address the accessibility and provision aspects of eatity visibility. The accessibility function af
describes accessibility by mapping a program representation to an accessibility graph while the
provision function pf describes provision by mapping a program representation to a provision

graph. Thus,

VEn(pr) = af,@1) U Pl (pr)

where pr is some program representation and the union of two visibility graphs vg; and vg, is
the visibility graph {N; U Ny, A ; U Ao, App U Apz}. Component functions af and pf can
be further broken down into functions operating on individual kinds of entities, such as

subprograms and data objects, as follows:

af(P1) = 2y 1) U = U by (0)

pfm(Pr) = pfm,ckl(pr) U-u pfm,ck”(pr)

where ek; denotes the entity kind upon which the accessibility function operates. Hence, for

each entity kind that is of interest, there is a function that describes accessibility and a
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function that describes provision. Accessibility functions are similar in nature to the “binding”
functions of [HENNSI]. Provision functions, however, appear to have no counterpart in previous
formalisms.

The full description of a visibility control mechanism is of course quite large and
therefore presenting such a description in this paper is inappropriate. To illustrate the use of
the descriptive method, we instead give descriptions of the accessibility and provision of
subprograms as they are controlled by the nesting mechanism of ALGOLG60. This entails the
definition of the accessibility function afy;c0760 subprograms and the provision function
PEALGOL60 subprograms- The discussion is further simplified by only considering the accessibility
of subprograms to subprograms.

Accessibility and provision functions, as mentioned above, operate on a representation of

a program. One suitable representation for ALGOLG0 is a graph we call the nesting graph.

Defn. A nesting graph ng = {Nng' Ang} is a labeled digraph where
N"g is a finite set of nodes labeled by the (unique) names of entities;
A, is a finite set of ordered pairs of nodes (n;, nj) denoting the relationship
n; “child of” n; which means n; is directly nested in n;.
Notice that for this example Nng consists only of nodes whose entities are subprograms. In the
subsequent definition of the accessibility and provision functions, we make use of three

auxiliary functions, each of which maps Nng to the powerset of Nng as follows:

(1) Parent(n) = {n; € N, | (o, n) € AL

(2) siblings(n) = {n; € N, | there exists n, € N, such that (n;, oy) € A,

(3) Ancestors(n) = {n; € N, | n; = Parent(n;) or n; ¢ Siblings(Parent(n,))
or n; € Ancestors(Ancestors(n;))}.



For any n; € Nng, Parent(n;) will always be a singleton since an entity can be directly nested
in only one other entity.

The accessibility function is now defined to transform ng, a graph representation of the
pested structure of subprograms, into an accessibility graph, which explicitly describes the effect

of ALGOL60’s nesting mechanism on the accessibility of subprograms.

Defn. awaowo’,ubprogrm(ng) = {N, Aa, Ap} where
N = N”g;

A, ={opn)|i=jorm= Parent(n;) or n; € Siblings(n,)
or n; € Ancestors(n,)};

From this description it can be easily seen that 1) all subprograms are accessible from
themselves, 2) all subprograms are accessible from the subprogram in which they are directly
nested, 3) all subprograms are accessible from those subprograms with the same parent, and
'4) all subprograms are accessible from those subprograms nested within them as well as
accessible from those subprograms nested within their siblings.

For ALGOLG0, the provision function is quite similar to the accessibility function.

Defn. pfALGOMO,mbprograms(ng) = {N, Aa’ Ap} where
N = Nng;
A, =G

A, = {(; n) li=jorn; = Parent(n,) or n; € Siblings(n))
orn; € Ancestors(nj)}.
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These descriptions reveal the fact that in ALGOLG0 accessibility and provision are
essentially mirror-image counterparts. In particular, the expression defining the set of tuples
(n;, nj) in A, of the provision function is the same as the expression defining the set of tuples
(n; nj) in A, of the accessibility function, except that the is and js are reversed. This
similarity, however, is certainly not true of all mechanisms.

We contend that accessibility and provision functions are easier to comprehend than
algorithms that manipulate a dynamic environment component. For instance, the problem
mentioned at the beginning of this section, concerning nesting’s effect on the visibility of a
subprogram’s local entities, is clearly exposed using this formalism. By simply looking at the
accessibility and provision functions for subprograms it is immediately evident, for example, that
a subprogram’s supposedly “local” child subprogram is in fact visible to any other subprograms

nested within that subprogram.

4. Evaluating Visibility Control Mechanisms

Visibility control mechanisms can be characterized in a number of ways and these
characterizations can then provide a basis for evaluating the strengths and weaknesses of
different mechanisms. This section presents one such characterization which is possible within
the framework of our formalism. Specifically, the notion of preciseness is defined for a visibility
control mechanism in terms of the mechanism’s accuracy in capturing desired accessibility and
provision relationships.

It can easily be argued that the visibility control mechanisms in a language L should be
such that

for all vg € VG, there exists pr € PR such that vf;(pr) access-satisfies and
provide-satisfies vg.
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In other words, it should be possible to find a program representation that realizes any
accessibility and provision relationships that a programmer might wish to devise, although
additional accessibility and provision may be allowed as well. It is not surprising that the
visibility control mechanisms of all modern languages that we have examined satisfy this
minimum requirement.'! Stronger properties for evaluating mechanisms are needed, however,
which leads to the following definitions.

Defn. A visibility control mechanism m is access-precise iff for all vg € VG,

there exists a pr € PR such that ae(vi,(pr)) = ae(vg).

Defn. A visibility control mechanism m is provide-precise iff for all vg € VG,
there exists a pr € PR such that pe(vf,(pr)) = pe(vg).

Defn. A visibility control mechanism m is precise iff it is both access-precise and
provide-precise.
Intuitively, the definitions state that if for each possible visibility graph, a program
representation can be found with the property that the visibility relationships among its entities
are exactly those specified in the visibility graph, then the mechanism is indeed precise. A
mechanism is less than precise if only the accessibility relationships or provision relationships
can be exactly realized. This suggests the following hierarchy of visibility control mechanisms

based on preciseness:

PRECISE MECHANISMS

/ \
ACCESS-PRECISE MECHANISMS PROVIDE-PRECISE MECHANISMS
\ /

IMPRECISE MECHANISMS

! Many pre-ALGOL60 languages do not satisfy this requirement since they do not support recursion. For
example, the FORTRAN standard [ANSI78] excludes recursion from the language, and therefore no pr
can found such that vfpoprpan(Pr) access-satisfies or provide-satisfies a vg containing a loop

either its A, or Ap.
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where by imprecise mechanisms we mean those that are neither access-precise nor
provide-precise. If we disregard self-recursive visibility, which in most languages cannot be fully
controlled, then entries in this preciseness-characterization hierarchy are exemplified by the
mechanisms found in ALGOL60, Ada, Gypsy, and our approach to interface control. The
following theorems, whose proofs are only sketched in this paper, position these mechanisms in

the hierarchy.

Theorem. ALGOLG0 is neither access-precise nor provide-precise.

Proof (sketch). For a mechanism to be imprecise, a visibility graph must exist for
which a program representation cannot be found that results in exactly the desired
accessibility and, similarly, a visibility graph must exist for which a program
representation cannot be found that results in exactly the desired provision. One
such graph, which reflects a very common situation in programming, conveniently
exhibits both these properties. This graph consists of two subprograms, each not
callable by the other, sharing exclusive use of a third, utility subprogram. From the
definition of afALGOMO,mbprogrm and pfALGOMO,mbpragrwm it can be seen that for
the two subprograms to be hidden from each other, and so not callable by each
other, one cannot be nested (directly or indirectly) in the other nor can they be
siblings. The utility subprogram must then be an ancestor (other than a parent) so
that it is callable by both subprograms. This being the case, the utility subprogram
must unavoidably be accessible from, and provided to, other ancestors of the
subprograms, thus violating the desired visibility relationships.

Theorem. Ada is access-precise but not provide-precise.

Proof (sketch). Ada supports a nesting mechanism similar to ALGOL60’s, but in
addition offers alternatives that can be wused to avoid many of nesting’s
shortcomings [CLARS0]. Since the previous theorem showed nesting to be
inadequate as either an access-precise or provide-precise mechanism, this feature will
not be considered in the evaluation of Ada for these properties. To show Ada is
access-precise, first observe that Ada programs can be constructed exclusively from
nest-free packages that are collections of data objects, types, and nest-free
subprograms. Each such package employs a construct called the with clause to
specify the entities accessible from its contents. The with clause allows the
realization of any arbitrary set of accessibility relationships since, in the extreme,
one package can be created for each of the entities in the system? In terms of

2 Of course, purely local entitics neced not be packaged, but can be left, for instance, in the subprograms
in which they arc used. Recursive subprograms referencing shared entitics introduce some minor
complications, but this can be handled by appropriate use of parameters and packages.



visibility graphs and program representations, this means that if only with clauses
are used to induce accessibility arcs, then for any given visibility graph a program
representation can be found that results in exactly the desired accessibility graph.
Thus, Ada is shown to be access-precise. Ada does not, however, offer a
provide-precise alternative to nesting. Provided packaged entities (in Ada’s
terminology, the visible packaged entities) are unavoidably provided to all other
entities in the program and hence their corresponding nodes in provision graphs
have arcs to every other node.

Theorem. Gypsy is provide-precise but not access-precise.

Proof (sketch). Gypsy does not support any degree of nesting. To control provision,
Gypsy employs a construct called (unfortunately) an access list which specifies for
an entity just those other entities to which it is provided. In terms of visibility
graphs and program representations, this feature solely determines provision arcs.
Hence, for any given visibility graph a program representation can be found that
results in exactly the desired provision graph with the consequence that Gypsy is
provide-precise. Gypsy does not, however, have Ada’s concept of the with clause.
Indeed, there is no way to control accessibility in Gypsy; all provided entities are
unavoidably accessible. Therefore, aside from visibility graphs having pairs of nodes
connected by both a provision arc and an accessibility arc, desired accessibility
relationships cannot be realized. Thus, Gypsy is not access-precise.

Theorem. The mechanism described in [CLARS3] is precise.

Proof (sketch). This mechanism combines the essential features of Ada and Gypsy

to create a means for constructing systems in which the accessibility and provision

of each entity can be precisely specified. In particular, it includes an Ada-like with

clause for determining accessibility and a Gypsy-like access list for determining

provision. It can be shown, therefore, to be a precise visibility control mechanism.

There are other characterizations of visibility control mechanisms that are useful for
performing rigorous evaluations. For instance, one would like to be able to understand the
kinds of situations that lead to imprecise realizations of entity visibility when using a particular

mechanism. This and other characterizations are under investigation.



§. Conclusion

It is worth noting that graphs have been used elsewhere to describe concepts related to
entity visibility. For instance, graphs are used informally for describing nesting’s effect on data
and control flow in Ada programs [CLAR80]. Thomas [THOM?76] uses graphs more formally to
analyze “resource information flow.” The usefulness of Thomas’s approach is restricted by its
strong orientation to the particular module interconnection language developed in [THOM76); it
was never intended as a general, descriptive formalism. Moreover, it lacks the useful concept of
provision. Lipton and Snyder [LIPT77] use a graph model to study a particular protection
mechanism, the rake and grant system, in which arcs in a graph are labeled with the access
rights one node has to another. This model is directed at analyzing the effect of rewrite rules
that dynamically add and delete nodes and arcs, and thus addresses a different problem
domain.

There are two limitations on our formalism that should be pointed out. First, the
formalism presented here is concerned only with staric visibility control mechanisms, that is,
those mechanisms that determine bindings before execution. Second, this formalism only deals
with direct visibility; the fact that an entity can use another entity through a third entity is
not considered (for instance, if e; and e; are subprograms, e, is a data object, and e; can
invoke e; to operate on e, this does not necessarily imply that e, is visible to e;). Relaxing
these restrictions is a topic for future study.

We recognize that there are other considerations that affect how a visibility control
mechanism is used. For instance, the package in Ada, besides being used in the control of
entity visibility, is used as a primary modularization tool; there are practical situations in which
modularity and visibility control constraints conflict. In light of this, the formalism should be

extended to explicitly address the sources of such conflicts. We have begun work in this
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direction, but discussion of that work is beyond the scope of this paper.

In summary, we have defined a formalism that can be used both to describe visibility
control mechanisms and to reason about those mechanisms in order to provide characterizations
of their strengths and weaknesses. In this paper, we have shown how the formalism can be
used to characterize the preciseness of visibility control mechanisms. In so doing, we have
pointed up the very different approaches to controlling entity visibility employed in four such
mechanisms. Based on examples such as these, we believe this formalism can be a valuable aid
to language designers and programmers as they try to decide on the suitability of a

mechanism.
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