Verifiable Abstract Database Types

David Stemple
Tim Sheard

COINS Technical Report- 83-37
' November 1983

ABSTRACT

A database system, comprising a schema, integrity constraints, transactions, and
queries, constitutes a single abstract data type. This type, which we call an abstract
database type, has as its object the database itself. Thus, the value set of such a
type is the set of all legal database states, legal in the sense of obeying all the
structural specifications of the schema and the semantic prescriptions of the integrity
constraints. Thke database transactions are the operations of the abstract database
type and must be functions on the value set of the type. A transaction specification
is safe if it defines a function which is closed on the database state set, i. e., any
execution of the transaction on a legal database yields a legal database.

We propose an approach to the definition of abstract database types which is
both usable by typical database designers and which facilitates the mechanical
verification of transaction safety. We present a language, ADABTPL, to be used by
database system designers. This language consists of two parts: a type definition part
for defining schemas and integrity constraints; and a procedural part for defining
database transactions. In order to verify the cafety of transactions, axioms on the
primitive operations of the system are generated from the ADABTPL type
definitions and a pure, recursive function built from the primitive operations is
generated from each ADABTPL transaction program. The Boyer and Moore theorem
proving technique is then used to prove transaction safety theorems using the
recursive functions and axioms.

1. Introduction

A database system, comprising a schema, integrity constraints, transactions, and
queries, constitutes a single abstract data type. This type, which we call an abstract
database type, has as its object the database itself. Thus, the value set of such a
type is the set of all legal database states, legal in the sense of obeying all the
structural specifications of the schema and the semantic prescriptions of the integrity
constraints. The database transactions are the operations of the abstract database
type and must be functions on the value set of the type. A transaction specification
is safe [WALKSI] if it defines a function which is closed on the database state set,
i. e, any execution of the transaction on a legal database yields a legal database.

This report deals with the specification of abstract database types and the
verification of the safety of their transactions. It also touches on the implementation
of database systems specified as abstract database types, specifically the avoidance of
run-time checks of integrity constraints shown by safety prodfs to be unviolatable.
We present the preliminaries of a specification language which is usable by database
system designers and which is sufficiently formal to allow verification of properties
of specificatioxis written in the language. We also discuss the use and enhancement of
the Boyer and Moore theorem proving techniques for verifying the safety of
abstract database type transactions.

This research has as its goals the development of a technique for defining
database systems that is usable by typical database designers and the implementation
| of a transaction safety verifier which is powerful enough to prc;ve mechanically the

safety of most safe transactions specified using the definition technique. The second

2

goal requires that the definition facility be very formal, and that the proof
technique be powerful. We have decided to adapt the Boyer and Moore theorem
proving system to the problem of verifying transaction safety since it is very
powerful in proving properties of recursive functions on lists. We will demonstrate in
this report that the domain of recursive functions on lists has sufficient relevance
to the problem of proving the safety of database transactions to warrant investigation

of the utility of the Boyer and Moore approach in our work.
1.1 Overview of the Specification and Verification System

Since typical database designers are not likely to be familiar with axiomatic
' specification, logic, set theory, and proof techniques, the starting point in a database
system specification should be something very much like database schemas and
transaction programs. Thus, in the proposed system, users begin the specification of
| an abstract database type by writing type definitions for the components of a
database in a form very similar to that of a relational database schema. This schema
of type definitions may contain predicatés expressing database semantic constraints
much like those of [MCLE76] and [BRODS80]. However, all constraints, including
interrelational constraints, are integrated into type deﬁnitions. Transactions are written
in a special high-level programming language ‘in a manner similar to the way they
are written in current database systems.

The database system specified by the type definitions and transaction programs
undergoes two different translations, one into a functional form for the purpose of
verification, the other into an implementation in a lower-level language. The first

translation transforms the type definitions into a set of axioms and the transactions

3
into a set of pure, recursive functions. The translation of the transactions into
recursive functions is possible since each statement in the transaction programming
language is defined as a mapping from one state of the database to another, and the
control structures themselves are capable of being translated into recursive functions,
though the form of the programming language is neither functional nor recursive.

Attempts are made to verify mechanically the safety of the transactions using
their functional forms and the axioms generated from the type definitions. The
safety requirement, i. e., the requirement that the range of all transaction functions
be the database type, is a major part of the consistency requirement on a system’s
implementation. The other is the requirement of transaction atomicity which we will
not deal with in this proposal. We will assume that transactions are atomic. Since
transactions can be complex, their safety requirement requires eithei run-time
checking or proof. A 'safety proof can be used to obviate the necessity of run-ti.n;e
checks. This follows from the fact that, though individual updates in a transaction
may violate constraints, the structure of the transaction and the system’s enforcement
of transaction atomicity may guarantee the execution of subsequent updates in the
transaction which make the constraints true at the end of the transaction (if they
were true at the beginning).

The second franslatién compiles thé high-level transactions and type definitions
into implementations in a lower-level system, e. g., Pascal R [SCHM77], or even
COBOL with Codasyl data manipulation language extensions. It is during this
compilation that the transactions are bound to physical files and file access methods.
We will call this translation implementation compiling and refer to the compiler as the

implementation compiler to distinguish it from the translator which translates the

4
transactions into their recursive function form.

The implementation compiler uses results from the verifier’s attempt to verify
the safety of a transaction. If a transaction is fully verified, the compiler may
translate it as is, and the system must thereafter assure only that it runs atomically
and serializably using any of the well-studied techniques for achiéving this [DATES3].
If, on the other hand, the transaction was not fully verified, the constraints which
may be violated by the transaction must be checked at run-time, and the compiler
must compile these checks based on the information received from the verifier. The
capture of the appropriate information by the verifier and its use by the
implementation compiler is one of the problems to be solved as this work progresses.

The information that certain constraints may be violated by a transaction could,
of course, be of interest to the writer(s) of the transaction and constraints. This
information may indicate that either 1. the definition of the tramsaction is incorrect
in the sense that it doesn’t do what the designer -wanted it to do; 2. the constraints
are incorrect in a similar sense; or 3. the transaction, though correct, is not
combining enough updates to assure integrity without run-time checking. In any of
these three cases, the designer may decide to change either the constraints or the
transaction. Thus, the verification phase may be used in the design phase for
improving parts. of the system design. The manner of presenting the information
about verification failure to a designer, who may not be at all familiar with either
the axioms generated from the schema or the functional form of the transactions, is

another problem being addressed in this work, but is not discussed in this report.

12 Relationship to Other Work

The system being described here has goals which overlap those of the work
of Gardarin and Melkanoff [GARD?79), i. e., the development of a transaction
consistency verifier which can be used in the development of safe transactions, but
differs in the following respects. We use a type construction approach in which the
database constraints are entered as an integral part of automatically axiomatized
abstract data type definitions, while in [GARD?79], the integrity constraints are
expressed separately in predicate calculus. In our approach, transactions are written
in a special, high-level language designed specifically for the purpose, not in an
ALGOL-like language extended with relational operations and assertions. The most
important differences are that the transactions written in our programming languagg
are translated into recursive functions on the database type and that Boyer and
Moore techniques of mechanical theorem proving [BOYE79] are used to prove the
safety of the transactions in their recursive function form. Gardarin and Melkanoff
use proof techniques based on the Hoare axiomatic method [HOARG9] applied to
programs in their extended ALGOL 60. Our approach is based on the belief that
the human factors of our overall system design in general, and the specification
language in particular, are superior to those of the Gardarin and Melkanoff scheme;
and on our belief that the proof techniques of Boyer and Moore will prove more
safet& theorems with less human intervention than a mechanical verifier using a

Hoare axiomatic basis,

Our work can also be compared to that of Gerhart in which a simple database
application is validated by methods including verification and testing [GERHS3].
While there are several differences between this work and ours, including proof
techniques, the two major distinctions lie in the treatment of the database, i. e., the
state of the system, and in the starting point of the sytem’s specification. Using
Gerhart’s scheme, a user starts with the informal requirements and builds a theory
in a typical axiomatic style: axioms on operations and “state variables” are written to
capture the essential behavior of the system. In our approach, users start with two
predefined, generic abstract data types, tuples and finites sets, and build a type for

the state space (the database type) from them. The axioms of the primitive

| operations on the state vector (database) arc not written by users, but are generated

automatically from the user-written type definitions designed to be very similar to
traditional database schemé definitions. These axioms define the operations of the
specific tuple and finite set types of the database schema. The definition of an
abstract database type constituting the database system is completed by writing
transactions, the type’s operations, in what looks like a typical, though very
high-level, programming language. The transactions are rewritten automatically as
recursive functions to facilitate the mechanical verification of their safety and other
properties by the Boyer and Moore theorem proving techmiques.

In addition to having a different starting point, our approach treats the
database differently from Gerhart’s method. Gerhart treats the system state in various
ways: abstractly and as a sequence of state tramsitions at her highest level of
abstraction, and in increasing degrees of concreteness as she considers levels of

implementation. Our database looks like one of her higher-level implementations. This

7
comparison is validated by the fact that many of her axioms are our theorems, a
view which obtains when attempting to verify the correctness of an implementation
with respect to a set of axioms (i. e., one attempts to prove the axioms from the
properties of the implementation). Thus, Gerhart’s approach is somewhat higher-level
than ours in that she requires fhe definition of an abstract data type from "scratch”,
while we insist on thg: use of two predefined abstract data types as building blocks
of an abstract database type. The advantage of our approach hes in not requiring the
user to write axioms, and in allowing the use of database system design methods,
such as the entity-relationship model, as a natural prelude to the specification of the
system as an abstract database type.

As indicated by the discussion above, our approach to database systein design is
to be used as an adjunct to other database design methods which focus on tqe
structural design of databases at the conceptual level. For example, having decided
on the normalized relations or entity and relationship sets of a particular design, a
user would write the type definitions for the relations or sets in our specificétion
langﬁage, adding integrity constraints as appropriate. Transactions would then be
written using the procedural part of the specification language, and attempts could be
made to verify their safety and other properties. These attempts would provide
feedback to the designers of both the database and the transactions. Qur approach
augments other database design methods by providing a formal system in which
integrity constraints can be incorporated into schema design in a way which
facilitates the analysis of both transactions and schemas. The system brings the design
and analysis of transactions to the level of formalism and human fac_tors attained in

the design of database schemas wusing relational normalization and the

8

entity-relationship model, respectively.
13 Organization of Report

In the rest of this report we deal with the techniques used to specify abstract
database types and to verify the safety of their transactions. First, we present an
overview of the specification system: the type definition language, the transaction
programming language, and the functional language. Then we discuss the verification
system in which the programming language is first translated into the functional
language, deriving in the process, the safety theorems, and then a version of the
Boyer and Moore prover is used to prove the safety theorems. The translation of
‘the programming language into the functional language is included in this section
since we consider it to be the first phase of the verification process, and it involves
choices which may determine the difficulty of safety theorem proofs. We then
summarize the research questions we are addressing in this work. A sample safety

theorem proof generated by our prototype verifier is given in the appendix.

2. Specification of Abstract Database Types

In this section we present the two parts of an abstract database type
specification in our system. The first is the definition of the constituent types of the
database type and of the database type itself using a type constructor approach.
The second part of the sﬁeciﬁcation defines the operations on the database type as
programs in a high-level transaction programming language. First, we give a brief
overview of some of the approackes to applying the abstract data type paradigm to

database systems.

9

There have been many formulations of an abstract data type view of database
systems [BRODS81, EHRI78, GERH83, LOCK78, SANTS80, SCHESO, SMITS0,
VANES], WEBE78, YEH77]. Among the goals of these efforts have been good
software engineering [YEH77, WEBE78, SMIT80, GERHS3], rigorous proofs of
system properties [EHRI78, GERHS83], and even rapid prototyping for evaluating
database system specification§ [VANES1, GERHS83] Most researchers have
concentrated on the abstract data types for the components of a data base, e. g
relations. Only in [VANESI], and in a sense in [GERHS3], do we find the database
itself considered to be the object of an abstract data type. While some of these
efforts are formal [e. g, EHRI78, GERHS3, LOCK78, SANTS0, VANESI), none
have been developed to the point of mechanically proving the safety of complex

operations on the database, with the exception of [GERHS3]. :

I
|

We take a type construction approach to the specification of database state
constraints, both the structural constraints, i. e., the schema, and the integrity
constraints which are traditionally outside the schema. Four type constructors are
used, basically equivalent to a set suggested by Brodie [BRODS81]. The first is
classification for the purpose of renaming, typically used in the naming of the
constituent types of tuple types, e. g., domain specification for relational tuples. The
second is aggregation for use in defining tuple types. The third is grouping used
mainly for defining relation types from tuple types. The fourth is derivation which is
used for . defining types whose value sets are definable as set expressions on other
types” values sets. This is used most often to introduce constraints which have the
effect of defining subtypes. For example, a key constraint is used to derive from a

relation type a subtype containing only those relations which obey the key constraint.

10

In order for the type definitions constructed using these four constructors to be
useful mx proving the safety of the functional versions of the transactions, (expressed
in terms of the primitive operations of the defined types), each type definition must
lead to a set of axioms on the operators of the types. Furthermore, these axioms
must be of a form which aids the proof methods adopted. Thus, finite sets as
abstract data types must be captured in a manner amenable to the production of
induction proofs, since induction is a cornerstone of the Boyer and Moore style of
proof.

One of the unique features of the approach taken in this work is the exélicit
treatment of the database type, i. e., the state specification part of the abstract
' database type. This is a tuple type in that it is formed by agg;regatiﬁg all the
relation types of the database. The state of the database is a single tuple (an
instance) of this type. Components of the tuple are the relations (instances of the
relation types). Derivation on a database type is the method used to introduce
interrelational constraints into the system specification in the same manner as domain
constraints in tuple types or relational constraints such as the key property are
specified. Transactions which are said to change ihe state of the database are
functions which take a database type tuple (and some input) and return a new
database type tuple.

The types of input to a transaction are defined Vusing the same constructors as
are used for the database type. This allows the definition of complex input types and
the automatic axiomatization of operators on them. One of the benefits of this is
that we can treat any transaction as a function with the database and its input types

as the domains. The range of any transaction is the database type.

11
We now define in more detail the four type constructors introduced above,
which are used to build up the database type, the type whose value set comprises all

legal states of the database.
2.1 Classification

Classification is used to define a type having the same value set as some
previously defined type or some primitive type. Operations defined on the
predefined or primitive type are defined on the new type as a result of
classification.

Examples of the definition of classified types:
Type age = integer
Type name = char20

For primitive types (and for types derived from them), e. g., integers ax;d
character strings, we assume the existence of an equality relation (=). We also define
the predicate primtypeP to be true for elements of all the primitive types and false
otherwise. We then start the definition of a general equality function equal by the
partial definition
(equal x y) == (if (and (primtypeP x) (primtypeP y))

(if (= xy) TRUE FALSE)
We use a Lisp-like;" language for all functions and predicates. In this notation, if is
a function of three arguments which returns the second argument if the first is true
and thé third if the first is false. (In other words, it is the if-then-else function.)
The ellipsis stands for the definition of equality for other types which we give

below.

12

22 Aggregation

Aggregation is the association of several types into a single new type whose
value set is the cartesian product of the value sets of its constituent types. We use
the term in much the same manner as in [SMITS0]. We will use the following
notation. Let Kj, .., K, be previously defined types. Let Sy, .., S; be n unique
names referring to the n components (called attributes) of the new type, and T be
the name of the new type. We write
Type T = Aggregation of (Sy: Ky, .., Syt Kp)
where no K; is T, nor is any K; constructed using T. T is defined by this
statement to be an n-ary constructor function on the value sets of Kj, .., K. The
constructor function and the type have the same name. The function T returns
values of type T. In addition to the definition of T, the specification above defines
the destructor (selector) functions, S1s e S;» on objects of type T. The destructor
functions return values of their corresponding types in the aggregate definition. For
example, if X is of type T, then (S, X) is of type K,.

Example definition of an aggregate type:
Type Emptuple = Aggregation of (Eno: empid, Ename: name, Sal: saltype)

In addition to named aggregate types, we will often have to deal with
anonymous aggregate types. These are the unnamed types of objects created by the
projection of other aggregate type objects on a subset of their attributes. We will use
the notation (tuple Ny aj N; a5 .. N, a;) to mean a call of function tuple which
creates an instance of an unnamed aggregate type with destructors Ni, N, .. N,

from the values aj, ay, .. ,a,.

The axioms for the constructor, destructor, and tuple functions are:
For type T = Aggregation of (S1: Ky, - Syt Kj) and a; of type K;, i=1,n
(equal a; (§; (T -al w 3 .. ap)))

(equal a; (N; (tuple Ny ag .. Ni a; .. N ap)))

These axioms simply state that values used to construct a tuple are the values
returned by the destructor functions, whether the construction is done by a named
constructor (T) or by the constructor of anoﬁymously typed tuples (the tuple
function). The axioms are well-defined if the K types are primitive types. In order
to extend the equal function to pairs of tuples and to give axioms on a projection
function, we introduce the following axioxhs and definitions.

For a tuple type T, (TP t) is true if and only if t is an element of the value
set of the type. TP is the recognizer predicate for type T. We also define the
generic tuple recognizer tupleP to be true on tuples and false otherwise. For each
tuple type T the following is an axiom
(implies (TP t) (tupleP t))

In addition, we define the function width into the natural numbers by
(width t) == (if (not (tupleP t)) 0 np)
where ny is the number of destructor functions for type T (possibly anonymous).

We can now extend the definition of equal to tuples by

14

(equal tj ty) == (if (and (tupleP t;) (tupleP)
(if (not (equal (width tq) (width t5)))
FALSE
(if (and (equal (Su tl) (321 t»)
(and (equal (812 tl) (Szz t»)

(and ...
(equal (Sqyw t) Sow 12))-)

TRUE
FALSE)

)

where w is the width of the two tuple_s when they are of the same width, and Sy;
and S,; are the ith destructor functions of t; and t, respectively, for i=1,w. This
defines two tuple to be equal if and only if they have the same width and have
equal components, though the selector functions may be different. The ellipsis stands
lfor the part of the definition for comparisands which are not both tuples.

| We can now define a projection function projT on tuples. If X is an
instance of the named aggregate type T described above, with destructors Sy,
Sy, - Sy, then (projT §; ... Sj X) with 1 <= i,..,j <= n returns an instance of
an anonymous aggregate type with attributes of the same types as §;, .., Sj. The

following are axioms for projT on named and unnamed tuple types.

(equal (projT §; Sj (T ag ... ap))
(tuple S; a; Sj aj))

(equal (projT N; Nj (tuple Ny aj ... Nj a; ... Nj aj . N, a,)
(tuple N; a; Nj aj))

23 Grouping

Grouping constructs one type from the finite subsets of another. If g is an
instance of a type formed by grouping type T, then g is a finite subset of the value
set of type T. -If T is an aggregate (tuple) type as above, we can define a relation
type R by grouping T. We use the keyword Set to denote grouping.

Examples of relation types defined using grouping:

Type R = Set of T

Type Employees = Set of Emptuple

Grouping can not define a group type inductivély on itself either directly or
indirectly.

The following functions are defined on objcts of types formed by grouping:
insert, delete, empty, equal, and choose. Of these, only choose deserves discussion. Thé
choose function returns an arbitrary member of its finite set argument. Though the
member is arbitrary, it does not vary from one application to another on the same
set since choose is a function. The importance of choose, and of its related, defined
function rest (see below), lie in their use in building recursive functions on finite sets
so that inductive proofs can be constructed. We also define the empty set, written
emptyr since most group types of interest are relation types, to be in the value set
of all group types unless removed by derivation.

We define the recognizer function fsetP to be true on elements of group types
and false otherwise, and include the axiom |
(implies (RP r) (fsetP r))

for any R defined as a group type, where RP is the recognizer function for type R.

16
Before we give the axioms for grouped types, we will define three functions
which simplify the statement of the axioms. First we define the function mem be

the boolean function that indicates membership in a relation. It has the following

recursive definition.

(mem x y) = (if (empty y)
false
((if (equal (choose y) x)
true
(mem x (rest y))))

We also define the function rest as follows:
(rest x) = (if (empty x) emptyr (delete (choose x) X))
The function contains is defined by

(contains x y) = (if (empty y)
true
(if (mem (choose y) x)
(contains x (rest y))
false))

The following is an initial set of axioms for grouped types which we have
found useful during our first efforts to prove .safety theorems. We expect that these
will evolve as our experience increases. These axioms define an abstract data type
for finite sets with operations, insert, delete, empty, and choose.

Equality of finite sets
(equal R S) == (if (and (fsetP R) (fsetP S))
(if (and (contains R S) (contains S R))

TRUE
FALSE)

)

See below for the complete definition of equality and a discussion of the
conditions on its completeness.

Axiom about empty and emptyr

17

(empty emptyr)

The empty set is empty.

Axioms about insert
(mem x (insert x R))
The element x is in a set after it is inserted.

(implies (mem x R)
.(equal (insert x R) R))

If x is in a set, then inserting x does not change the set.

(not (empty (insert x R)))
A set is not empty immediately after an element is inserted.
(implies' (mem x R)
(mem x (insert y R))) :

If x is in a set, then it is still in the set after y is inserted.

Axioms abowt delete
(not (mem x (delete x R))))
X isn"t in a set after it is deleted.
(implies (not (mem x R))
(equal (delete x R) R))
If x is not in a set, then deleting x does not change the set.
(implies (not (mem x R))
(equal (delete x (insert x R)) R))

If x is not in a set, the set is unchanged by an insert of x followed
by a delete of x.

18

(implies (and (mem x R)
(not (equal x y))
(mem x (delete y R)))

If x is in a set and an element not equal to x is deleted,
then x is in the resulting set.
(implies (mem x R)
(equal (insert x (delete x R)) R)
If x is in a set, then deleting it and then inserting it does not

change the set.

(implies (not (equal x y))
(equal (insert x (delete y R))
(delete y (insert x R))))

If x and y are not equal, then the insert of x and delete of y commute.

' Axioms about choose

(implies (not (empty R))
(mem (choose R) R))

The choose of a set is in the set.
(implies (empty R)
(equal (choose (insert x R)) x))

If a set is empty and x is inserted into it, then the choose of
the resulting set is x.

(implies (equal R S)
(equal (choose R) (choose S)))

The choose of a set is equal to the choose of an equal set.

(The function choose induces an order, but is not constrained by these axioms to
any particular order. However, not all orders will suffice. One order which does not
obey this axiom is the order of first insertion. We do not believe that the order
requirement is a strong restriction since most candidates for choose implementations
will induce an order which is the same for two equal sets and will therefore obey

the axioms.)

19

(or (equal (choose (insert x S)) x)
(equal (choose (insert x S)) (choose S)))

The order induced on a set by choose is a suborder of the order induced on the set
after an element is inserted.

We define the function card from finite sets to the natural numbers by
(card S) = (if (empty S) O (addl (card (rest S))))

The relation less is a well-founded-relation on the natural numbers [BOYE79] and the
| following is an axiom in our system

(implies (not (empty S)) (less (card (rest S)) (card S)))
This limits our system to finite sets and allows us to use induction on those
recursive functions on finite sets which use rest properly in their definitions.
For T and R defined as above, we extend the notion of projection to

relations, defining function projR on relations, and the following is then true. ,

|

(equal (projR §; ... Sj (insert x R))
(insert (projT §; -.. Sj x) (projR §; ... Sj R)))

24 Derivation

Let T be any previously defined type, and P be any predicate on objects of
type T, then all objects x of type Tl for which (P x) is true constitute the value set
of a new type derived from T. Simple derivation is specified by appending a where
clause to any of the other forms of definjtion. More complex forms of derivation
involving the set operations of union, intersection and minus are also possible, but
will not be discussed here. The predicates associated with derivation are constraints
which will need to be verified on the range of the transaction functions.

Example of definitions by derivation:

20

Type Fatcat = Emptuple where Emptuple.Sal > 50000
Type Fatcats = Set of Fatcat where Key(Eno)

2.5 Equality

In this section we give the complete definition of the function equal. It is
well-defined since by the rules of the type constructors all entities are ultimately
composed of primitive types, and because of the following three axioms which state
the mutual exclusivity of the generic types.

(implies (primtypeP x)
(not (or (tupleP x) (fsetP x))))

(implies (tupleP x)
(not (or (primtypeP x) (fsetP x))))

(implies (fsetP x)
| (not (or (primtypeP x) (tupleP x))))

The following defines the total function equal for any two entities x and y.

(equal x y) == (if (and (primtypeP x) (primtypeP y))
(if (= xy) TRUE FALSE)
(if (and (tupleP x) (tupleP y))
(if (not (equal (width x) (width y)))
FALSE
(if (and (equal (S¢1 %) (Sy1 ¥)
(and (equal (S %) (Sy2 ¥)

(and ..
(equal (Sgy X) (Syw ¥))-)
TRUE Syw
FALSE)
(if (and (fsetp R) (fsetP S))

(if (and (contains R S) (contains S R))
TRUE
FALSE)

FALSE)))

21

2.6 The Programming and Functional Specification Larguages

In this section we briefly describe the Abstract DAtaBase Transaction
Programming Language (ADABTPL). ADABTPL is to be used by transaction
designers. and programmers for writing transaction programs. ADABTPL is also the
language of the type definitions presented above. These definitions serve as the
declarations of ADABTPL programs. Transactions written in ADABTPL are
mechanically translated into the Functional Al;straction Specification Language
(FASL) for purposes of verification. FASL is basically the language used by Boyer
and Moore to express theorems as recursive functions and it is the language in which
| we have presented the axioms. It is the FASL form of the tfa.nsactions, and the
axioms derived from the database and input types, which are used in the verification
of ‘the safety of the transactions. The reader is referred to [BOYE79] for a
description of this language and to the next section for how it relates to
ADABTPL.

There are three basic exccutable statement types in ADABTPL: Insert, Delete,
and Replace. Their respective functions are to insert an element into some set
component of the database, delete some element of a set component of the database,
and to replace some component of the database. Expressions which produce values
for insertion or replacement are written in terms of tuple construction operators 1"
and ”]”, and selector operations which combine attribute names and ", e. g.
Emptuple.Sal. There are also functions :and relational operators defined on the
primitive types and logical operators for expressing boolean conditions. The language
includes four control structures, If-Then-Else, For-Each (in a set), For-To-Do and

While-Do.

The following is an example of a transaction and a database type definition

written in ADABTPL. The example is adapted from [GARD79].

Tuple types

Type Purchase = Aggregation of
(Pdate:date, Pitemname:char20, Pquant:int)

Type Sale = Aggregation of
(Ordemnosint, Sitemname:char20, Squant:nt)
Type Itemrecord = Aggregation of (Itemname:char20, Quant:nt)

Relation types
Type Buyrel = Set of Purchase

Type Sellrel = Set of Sale where Key(Orderno)
Type Invrel = Set of Itemrecord where Key(Itemname)

Database type

Type Store = Aggregation of
(Buy:Buyrel, Sell:Sellrel, Inventory:Invrel)

where
Contains(Inventory Itemname, Sell Sitemname)

and For each Itemname in Inventory

Sum(Buy Pquant
where BuyPitemname = Itemname)
- Sum(Sell.Squant
where SellSitemname = Itemname)
= (Inventory.Quant

where InventoryItemname = Itemname)

The two conjuncts in the database type express the constraint that only items
in inventory may be sold and that the amount in inventory is the amount bought

minus the amount sold.

23

The following transaction (T3 of [GARD79) adds a purchase item to inventory.

Transaction Add_to_Inv (Newpurchase:Purchase)

For Each entry In Inventory Do

Begin
If Newpurchase Pitemname = entryItemname
Then
Begin
Replace (entry.Quant,
entry.Quant + Newpurchase Pquant)
Insert (Newpurchase, Buy)
End
Endif

End Add_to_Inv

3. Verification of Abstract Database Types

In this section we outline the translation of ADABTPL to FASL, discuss our
use of the Boyer and Moore technique of theorem proving, and give the lines of
investigation we are proposing in the area of verification. First, we give an overview
of formal work in the area of vconstraint checking.

Except for [GARD79] and [NICO83], formal reasoning about the effect of
updates on integrity constraints has concentrated on simple updates. Much of the
work has concentrated on simplifying the constraints in order to minimize the
amount of data to .be accessed and thereby reduce the cost of checking the
constraihts [TODD77, BERN80, BERNS]1, BERNS82, NICOS83]. In other work, efforts
are méde to insure that ;>nly constraints that could possibly be violated are checked
[HAMM?78, BUNE79, GARD79, BERNS80, BERN81]. Our work fits the last pattern,

with the difference that we are interested in transactions, not simple updates.

The reason for our interest in transactions, and the limitations of much of the
previous work, is that safe transactions may violate constraints during their
processing, but are guaranteed by their safety property and the system’s maintenance
of their atomicity to leave the constraints unviolated when they terminate. Thus,
checking the constraints at any point in the progress of a safe transaction is wasteful.
Furthermore, some constraints are violated by any of a class of useful and necessary
operations, and should never be checked in isolation. For, example, a tuple in a
relation containing an item which is the count of tuples in another relation, will be
incorrect after either it has been updated or a tuple in the second relation is
inserted or deleted. In this case, an atomic combination of two updates is the
minimum that should be allowed to execute, and, if atomicity is assured, no checks

need be made.
3.1 Translation of ADABTPL into FASL

Each of the operators, statement types, and control structures of ADABTPL
has a mapping into FASL. Sequences of statements in ADABTPL map into the
nested composition of their FASL functions. This is permissible since each FASL
function is defined using the database type as both range and as one of its
domains. We now present templates for translating the constructs of ADABTPL into
FASL. For ease of reading, most symbols in ADABTPL will begin with capitals and
the symbols in FASL, except for constructor and destructor functions, will be
completely in small letters. We will use the following type definitions, which are

declarations in ADABTPL, for our descriptions.

Type T; = Aggregation of (Dy: Kq, .., Dpni: Kpi) @i = 1,n)

Type RT; = Set of T; (i =1n)
Type DBT = Aggregation of (Ry: RTy, .., Ry RT,)

The templates given below are very similar to the partial‘ funct:idns associated with
the elementary statements of an ALGOL.-like language given in | [MANN72). An
ADABTPL construct with a superscript of FASL stands for the FASL translation of
the ADABTPL construct. We will use t; to stand for an instance of type T; and
db to stand for an instémce of the database type DBT. S stands for an ADABTPL

statement, S; S, stands for the sequence of statements S; and S,.

[S; SFASL = (SFASL (sFASL gp)

[insert(t;, R)FFASL =

(DBT (Rq db) ... (insert t (R; db) .. (R, db))

The R’s select the relations of db. The insert function insgrts. t; into the relation
(R; db), and the constructor function DBT puts the new. Rl and the otﬁer unchanged

relations back together into a new database state.

[Delete(t;, Rl-)}’?ASL =

(DBT (R; db) ... (delete t; (R; db)) .. (R, db))

[Replacé(Ri, F)FASL =

(DBT (R; db) ... (R;.g db) (FFASL db) (R, db) ... (R, db))

F is a function (call) on some component of the database, most often R;, and is
translated to a function on the database. Its purpose is to generate the mew version

of R‘ in the new database state.

[If P Then S; Else S, EndiffFASL =

26

(if pFASL (SfASL db) (SE‘ASL db))

In the next three templates ftd, fed, and w stand for families of functions. The
.particular function generated depends on the actual ADABTPL expressions or
statements substituted for expj, exp, and S in what is treated essentially as a macro

call.

[For I = expy To expp Do S(I)]FASL =
(ftd exp; exp, db) where (ftd init fin dbvar) =

(if (greater init fin) dbvar
(ftd (add1 init) fin (SFASL init dbvar))))

exp; and exp, are integer valued expressions.
i
[For Each T In Z Do S(T)JFASL =
(fed ZFASL gb) where (fed setvar dbvar) =
(if (empty setvar) dbvar
(SF ASL (choose setvar) (fed (rest setvar) dbvar)))
[While P Do SJFASL =
(w db) where (w dbvar) =

(if (not (PFASL gbvar)) dbvar ((w (SFASL dbvar))))

In order to prove things about a while loop we must be able tc; show that it halts.
To do thig it must be a theorem that

(implies (PFASL dbvar) (less (m (SFASL dbvar)) (m dbvar)))

where m is some measure function and less is a well-founded-relation defined on the
range of m [BOYE79]. It is, of course, not always possible to prove this even if it

is true.

27
We now give a FASL translation of the ADABTPL trarsaction Add_to_Inv
presented above. The variable db stands for the database state, i. e., an instance of
type Store. The relation names Buy, Sell, and Inventory are FASL functions which
return their respective relations when applied to the database. Store is a constructor
function which puts together 'a database state from a Buy relation, a Sell relation,
and an Inventory relation. The FASL function for the transaction is built from
insert and delete functions on the component relations selected using the relation
names. For example, inserting s into the Sell relation of database state db is written
in FASL as
(Store (Buy db) (insert s (Sell db)) (Inventory db))
In the following, fed is a function generated from the For-Each loop in the
ADABTPL transaction. It is recursive and causes the database used in tllle
construction of the new Store to be written as a recursive call to fed. The FASL
version of Add_to_Inv is
(fed (Inventory db) db) where
(fed setvar dbvar) =
(if (empty setvar) dbvar
(if (equal (Pitemname Newpurchase) (Itemname (choose setvar))
(Store
(insert Newpurchase (Buy (fed (rest setvar) dbvar)))
(Sell (fed (rest setvar) dbvar))
(insert
(Inventory
(Itemname (choose setvar))
(add (Quant (choose setvar)) (Pquant Newpurchase)))
(delete (choose setvar)

(Inventory (fed (rest setvar) dbvar))))

(fed (rest setvar) dbvar))

This has already been simplified from the version produced from the
straightforward application of our translation templates by repeated application of the
rewrite rules
(equal (Buy (Store b s i) b))

(equal (Sell (Store b s i) s))

(equal {Inventory (Store b s i) i))

The arguments to the Store constructor are the first relation Buy, transformed
recursively by the insert on the recursive call to fed; Sell unchanged; and Inventory
with the tuple to be replaced first deleted, then inserted with the quantity field
updated.

If we let Pg,re stand for the FASL version of the constraint in the Store
| database type definition, given above, and PurchascP stand for the predicate which
returns true if its argument is of type Purchase, otherwise false, then the safety
theorem for Add_to_Inv is

(implies (and (Pgore db) (PurchaseP np)) (Pgore (Add-to_Inv np db)))
32 Factors Affecting the Use of the Boyer and Moore Scheme

In this section, we first discuss the major difference between our system for
safety verification and the Boyer and Moore theorem proving system. We then
discuss two issues which will have impact on the effectiveness of using the Boyer
and Moore approach. These issues are the choice of FASL recursive functions to
represent the ADABTPL control structures and the use of database design
methodology in the production of the ADABTPL type definitions. We use the

Boyer and Moore approach because of its demonstrated power in proving theorems

29
of the type which are involved in asserting the safety of transactions. However, it
" has been necessary to discard some of their mechanism, in particular, shells, and it

may be necessary to add new heuristics to handle our theorems better.

32.1 Shells, Lists, and Finite Sets

Boyer and Moore have applied their techniques to proving theorems about
recursive functions on the domain of shell objects. Shell objects are tuples of a
named type or shell. Shells are types Qith naméd constructor and destructor functions
like ADABTPL tuple types, but may be defined inductively, unlike ADABTPL
tuple types. Shells are named by the object constructor function as in our tuple
types and can be defined inductively by allowing the type of a component to be the
shell itself. For example, the list type is defined by the shell CONS with destructors
CAR and CDR, with no restriction that CONS objects, i. e., lists, not be used as
either component in the construction of new lists. Shells are very powerful axiom
generating constructs. For example, the natural numbers are captured by the shell
ADD]1 with destructor SUB1 (and a bottom element which has no correlatev in our
tuple types).

We do not use the shell construct since our need lS for finite set types and
non-indixctively defined tuple types. One result of this is that wé do not use any of
the reasoning based on fype sets. This latter fact is not problematic since type
correctness is a precondition of our functions and is checkable during the ADABTPL
to FASL translation. We could use shells for our tuple types since our tuple types
are a subset of the shells definable by the shell definition facilty. The reasons we
have not done this are that 1. we want to treat tuple types and finite set types in

roughly the same manner, and 2. our tuple types require type restrictors on all

30
components. These reasons are "soft” reasons and our decision could be reversed in
tile future if we discover an advantage to using the shell mechanism for tuple types.

Sets, on the other hand, are not capturable by shells because of the automatic
inclusion in the shell axioms of an axiom which requires the component selected
from a shell object to be the component last used to construct it. This requires an
object to “remember” the order of its construction, a property of lists and of the
natural numbers, but not of finite sets constructed by insertions or unions. (See
below for more details on this subject) Thus, we do not use shelis in dealing with
FASL theorems, both because we do not need the power of inductively defined
tuples, and because we can not use shells to define finite set types.

In order to define the finite set types of a particular database system
axiomatically, we include the explicit group type axioms, given in section 23, along
with all the tuple constructor and destructor axioms and function definitions
generated from the type declarations for the database. One way of looking at our
approach in Boyer and Moore terms is to say. that we have introduced two new
kinds of shells, non-inductive, type-restricted, aggregation shells (a subset of their
shells having less power), and group shells for finite sets. However, we use these
shells, at the ADABTPL level, to generate axioms at the FASL level, which are
explicitly made known to our theorem prover, rather than build knowledge of these
kinds of shells into thei theorem prover itself.

The differences between lists and finite sets are evident in our group type
axioms even though they were designed to minimize the differences between the two
in order to exploit the Boyer and Moore techniques. The analogues to CAR,

CONS, and CDR are obviously choose, insert, and rest. The axiom for list L,

31
(IMPLIES (NOT (NULL L))
(EQUAL L (CONS (CAR L) (CDR L))))
has as its FASL counterpart for finite set S,
(implies (not (empty S))
(equal S (insert (choose S) (rest S))))
However, the following list axiom, generated automatically by the CONS shell
definition,
(EQUAL A (CAR (CONS A L))
has no simple counterpart since neither the obvious candidate
(equal a (choose (insert a S)))
nor the posibly appealing
(equal S (insert a (delete a S)))
is an axiom for finite sets. The lack of complete analogy may lead to a need f(in'
different heuristics than those which are useful in treating list functions. The

development of such heuristics is a goal of our work.

322 Choices in Forms of FASL Functions
Choices of FASL translations of the ADABTPL control structures different
from those given in section 3.1 may lead to theorems which differ in the ease of

their proofs. For example, the for-to-do construct can be translated by the template

[For I = expy To exp, Do. S(I)]FASL =
(ftd exp; expp db) where (ftd init fin dbvar) =
(if (less fin init) dbvar (SFASL fin (ftd init (subl fin) dbvar))))

The difference between this template and the one presented in section 3.1 is that, in

32
this version, the final value is counted down and the S function is ‘applied on the
way “up” the recursion stack. In the other template the counting aﬁd application was
performed on the way “down” and the resulting database had been computed upon
reaching the base case.

The while construct could be translated by the somewhat cryptic
[While P Do SJFASL =
(w db) where (w dbvar) =

(if (not (PFASL dbvar)) db (SFASL (w (SFASL gbvar))))

In this version, an implementation nightmare, the databaze is transformed repeatedly
'until the base case is reached, if ever, and then it starts over with the pristine
'database, db, and applies S all over again on the way “up”. While this may be an
insane way of expressing the performance of a computation on a database from an
implementation point of view, it may lead to easier induction since the base case is
simpler. (Remember that the FASL expression of programs is solely for the purpose
of verification and deriving information needed for the generation or avoidance of
run-time checks. The compilation of implementation code is the job of the
implementation compiler which starts with the ADABTPL version of the program.)
The For-To-Do template also has a simpler base case than the one presented in
section 3.1. However, the inductive steps required as a result of these templates
may be more difficult to deal with than those generated by the templates in section
31. We are currently studying these issues by using different translation templates

and comparing the attempts to prove the resulting theorems.

33
323 Forms of Theories and Theorems

One problem in axiomatizing abstract data types in programming languages is
that each' new application tends to require a new “theory”, i. e., a set of axioms.
Research in database management has led to what may. be called “generalized
application theories”, such as the relational model and the entity-relationship model.
Thus, the generation of a database system solution to an application may be quite
stereotyped in its “theory” due to the user following one of the database design
methods in developing the ADABTPL type definitions. Furthermore, the use of
ADABTPL in defining the transactions may also lead to reasonably stereotyped
safety theorems to be proved. If the theorems do tend to be stereotyped for either
of the§e reasons, then lemmas developed over the course of verifying the safety of
a number of transactions will have a reasonably high probability of being useful in
new transaction verification, obviously a desirable feature. The investigation of th1s
possibility is part of future work.

In the appendix we give an example of a schema and a transaction in
ADABTPL along with their FASL translations and a system generated trace of a
proof that the transaction is safe. This proof was generated by a prototype verifier
which occ-asionally needs direction since its heuristics are still minimal. This direction

by the‘ user in no way lessens the validity of the proofs.

34

4. Summary

We have presented a database system specification technique based on the
abstract data type paradigm. To define what we have called an abstract database
type a user first writes type definitions culminating in the definition of a database
type containing all the structural and integrity constraints on the database. The
definitions of the database type and of its constituent types are written in terms of
four constructors which build tuple and finite set types from primitive types and
integrity constraints. Use of the constructors causes axioms on the primitive
operations of- a system to be generated. To complete the definition of an abstract
database type, its operations, the transactions, are written in a special high-level
programming language consisting of operations on the constituent types of the
database type and a few control structures. The axioms generated by the type
definitions are used to prove the safety of transactions in order to avoid costly
run-time checkiné of the database integrity constraints. To facilitate the safety proofs
the transactions are transformed into pure, recursive functions on the database
object. This permits us to use the Boyer and Moore theorem proving technique in
verifying transaction safety. The major benefit of this approach is that systems are
specified formally enough to allow safety proofs to be generated mechanically, thus
permitting the implementation to avoid costly integrity constraint checking. This is
accomplished by a specification language which is sufficiently similar to traditional

schema and programming languages to be easily usable by typical database designers.

35

We now summarize the research questions to be addressed as our work
progresses.
1. What is a good database system design and specification language which is easy to
read and write by designers and formal enough to allow proofs of transaction safety
to be generated mechanically?
2. How can the Boyer and Moore theorem proving techniques be wused and
enhanced for proving transaction safety theorems of the form presented in this
report?
3. What techniques are needed to compile the language of the first question into
implementations?
4. How can a transaction verifier, which deals with transactions translated from a
programming 1anguage into recursive formulas and algebraic axioms, communicate the
reasons for verification failure (or success) to writers and compliers of the languag;
in a useful and meaningful manner?
5. In what way does the substitution of finite sets for lists change the set of useful
heuristics of the Boyer and Moore approach to mechanical theorem proving?
6. Which among the different recursive functions that can be used to represent the
semantics of control structures lead to the easiest safety theorems to prove?
7. Does the use of database systems design methods, such as the normalization of
relations and the entity-relationship model, lead to axioms and transactions which

promote the ease of transaction safety theorem proofs?

References

[BERN80] Bernstein, P. A., Blaustein, B. T, Clarke, E. M. "Fast Maintenance of
Semantic Integrity Assertions Using Redundant Aggregate Data.” Proceedings of the
6th International Conference on Very Large Databases, 1980. pp. 126-136.

[BERNS8I] Bernstein, P. A., Blaustein, B. T. A Simplification Algorithm for Integrity
Assertions and Concrete Views.” Proceedings 5th International Computer Software and
Applications Conference, Chicago, November 1981.

[BERNSZ] Bernstein, P. A. and Blaustein, B. T. "Fast Methods for Testing Quantified
Relational Calculus Expressions.” Proceedings of 1982 ACM SIGMOD Conference,
pp- 39-50.

[BOYE79] Boyer, R. S. and Moore, J. S. A Computational Logic, Academic Press,
New York, 1979.

[BRODS0] Brodie, M. L. "The Application of Data Types to Database Semantic
Integrity.” Information Systems 5, pp. 287-296 (1980)

[BRODS8I1] Brodie, M. L. ™"Association: A Database Abstraction for Semantic
Modeling.” In Entity-Relationship Approach to Information Modeling and Analysis, P. P.
Chen, Ed., 1981.

[BUNE79] Buneman, O. P., Clemons, E. K. YEfficiently Monitoring Relational
Databases.” ACM Transcations on Database Systems vol. 4, No. 3. September 1979.

[DATES3] Date, C. J. An Introduction to Database Systems. vol. II Addison-Wesley
Publishing Company, Reading, Ma. (1983)

[EHRI178] Ehrig, H., Kreowski, H. J, and Weber, H. ”Algebraic Specification
Schemes for Data Base Systems.” Proceedings of the 4th International .Conference on
Very Large Data Bases, 1978, pp. 427444.

[GARD79] Gardarin, G. and Melkanoff, M. "Proving Consistency of Database
Transactions.” Proceeding of the 5th International Conference on Very Large
Databases, 1979, pp. 291-298.

[GERHS3] Gerhart, S. "Formal Validation of a Simple Database Application.”
Proceedings of the Sixteenth Hawaii International Conference on System Sciences,
1983, pp. 102-111.

[HAMM78] Hammer, M. M., Sarin, S. K. 7Efficient Monitoring of Database
Assertions.” Proceedings 1978 ACM SIGMOD International Conference on
Management of Data. June 1978.

37

[HOARG9] Hoare C. A. “An Axiomatic Basis for Computer Programming.”
Communications of the ACM, vol. 12, no.10, October 1969. pp. 576-580.

[LOCK78] Lockemann, P. C., Mayr, H. C, Weil, W. H. and Wohleber, W. H.
"Data Abstractions for Database Systems.” ACM Trans. on Database Syst., vol. 4, no.
4, March, 1978, pp. 30-59.

[MANN72] Manna, Z. and Vuillemin, J. “Fixpoint approach to the theory of
computation.” Communications of the ACM, vol. 15, no. 7, July, 1972, pp. 528-536.

[MCLE76] Mcleod, D. J. "High Level Expression of Semantic Integrity Specifications
in a Relational Data Base.” Report No. MIT/LCS/TR-165, Laboratory for Computer
Science, Massachusetts Institute of Technology (September 1976)

[NICO83] Nicolas, J. M. "Logic for Improving Integrity Checking in Relational Data
Bases.” to appear in Acta Informatica.

[SANTS80] Santos, C. S. dos, Neuhold, E. J. and Furtado, A. L. "A Data Type
Approach to the Entity-relationship Model.” In Entity-Relationship Approach to Systems
Analysis and Design, P. P. Chen, Ed., North-Holland, Amsterdam, 1980.

[SCHES0] Scheuermann, P., Schiffner, G., and Weber, H. "Abstraction Capabilities
and Invariant Properties Modelling within the Entity-Relationship Model.” In
Entity-Relationship Approach to Systems Analysis and Design, P. P. Chen, Ed,
North-Holland, Amsterdam, 1980.

[SCHM77] Schmidt, J. "Some High Level Constructs for Data of Type Relation.”
ACM Transactions on Database Systems. vol. 2, no. 3, September 1977. pp. 247-261.

[SMIT80] Smith, J. M. and Smith, D. C. P. »A Data Base Approach to Software
Specification” In Software Development Tools, Riddle and Fairley, Eds,
Springer-Verlag, 1980, pp. 176-204.

[TODD77] Todd, S. J. P. "Automatic Constraint Maintenance and Updating Defined
Relations.” Proceedings IFIP Congress 1977 (North Holland 1977)

[WALKS81] Walker, A. and Salveter, S.C. "Automatic Modification of Transactions to
Preserve Data Base Integrity Without Undoing Updates.” State University of New
York, Stony Brook, New York: Tech. Report 81/026 (June 1981).

[VANES1] Van Emden, M. H. and Maibaum, T. S. E. "Equations Compared with
Clauses for Specification of Abstract Data Types.” in Advances in Data Base Theory,
Volume 1, Gallaire, H., Minker, J., Nicolas, J. M., Eds., Plenum, 1981, pp.159-193.

[WEBE78] Weber, H. "A Software Engineering View of Data Base Systems.”
Proceedings of the 4th International Conference on Very Large Data Bases,
September, 1978, pp. 36-51.

38

[YEH77] Yeh, R. T., Baker, J. W. "Toward a Design Methodology for DBMS: A
Software Engineering Approach.” Proceedings of the 3rd International Conference on
Very Large Data Bases, October, 1977, pp. 16-27.

39

5. Appendix — An Example Safety Proof

In this appendix we present a proof of the safety of a "hire” transaction on a
simple employee database. The integrity constraint that is to be verified demands that
only dependents whose parents are in the employee relation are allowed in the
dependent relation.

Below we give the type definitions for this database followed by an ADABTPL
version of the transaction. (The ADABTPL presented here differs from that
presented in the body of this report. This version is used because it is simpler to use
the verifier rewrite rules as a translator for this form.) We present a system
generated trace of the proof of its FASL equivalent, showing that the database state
resulting from a “hire” obeys the integrity constraint.

Consider the following ADABTPL specification:

type name = string
= integer

type employeetuple = aggregation of (en: name ea: age)
type dependenttuple = aggregation of (dn: name en: name)

type employees ‘= set of employeetuple
type dependents = set of dependenttuple

type children = set of name

type dbt = aggregaﬁon of (emp: employees dep: dependents)
: where (contains (projR en emp) (projR en dep))
projR

db : dbt

Transaction Hire(en: name, c: children, ea: age)
Begin
Insert([en ea] emp)
For Each x In ¢ Do
Insert([x en] dep)
End

By the semantics of the type constructors, the following (among others) are axioms
of the system.

(implies nil (equal (emp (dbt *x °y)) *x))

(implies nil (equal (dep (dbt °x *y)) *y))

40

(implies nil (equal (projR en (insert *x *y))
(insert (projT en *x) (projR en *y))))

(implies nil (equal (projT en (employeetuple *x *y)) (tuple *x)))

(implies nil (equal (projT en (dependenttuple *x *y))
(tuple *y)))

The following two functions are simplified versions of what the ADABTPL to FASL
translator would produce from the transaction above.

(hire *en *c *ea *db) =

(dbt
(insert (employeetuple *en *ea) (emp *db))
(addchildren (dep *db) *c *en)))

(addchildren *d *c *en) =
(if (empty *c)
*d
(insert (dependenttuple (choose *c) *en)
(addchildren *d (rest *c) *en))))

where “hire” is the FASL form of the transaction in question, “addchildren” is an
auxiliary function performing the For-Each loop. It is one fed function generated
from the For-Each translation template.

The theorem below states that if the database type constraint is met by the
input database, then it is met by the output of hire. ’

The following is an actual log file of the verifier in action with some of the
more obvious and repetitious intermediate forms deleted. In all cases every
transformation done by the system is recorded, even if the intermediate result is not
shown. At this stage of development the verifier occasionally stops and asks for
help in deciding which possible avenues to pursue. The user can then suggest ones he
believes to be most advantageous. This in no way invalidates the correctness of the
proofs produced.

(original theorem)
(implies (contains (projR en (emp $db)) (projR en (dep $db)))

(contains (projR en (emp (hire $en $c Sea $db)))
- (projR en (dep (hire $en $c $ea $db)))))

(expanding by hire)

41

(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (projR en
(emp
(dbt (insert (employeetuple $en $ea) (emp $db))
(addchildren (dep $db) $c $en))))
(projR en

(dep
(dbt (insert (employeetuple $en $ea)
(emp 3$db))
(addchildren (dep $db) $c $en))))))

(rewriting by rule (implies nil (equal (dep (dbt < *Y)))
(rewriting by rule (implies nil (equal (emp (dbt *x *y)) *x)))

(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (projR en (insert (employeetuple $en $ea) (emp $db)))
(projR en (addchildren (dep $db) $c $en))))

(rewriting by rule
(implies nil
(equal (projR en (insert *x *y))
(insert (projT en *x) (projR en *y)))))

(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (insert (projT en (employeetuple Sen $ea))
(projR en (emp $db)))
(projR en (addchildren (dep $db) $c $en))))

(rewriting by rule
(implies nil (equal (projT en (employeetuple *x *y)) (tuple *x))))

(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (insert (tuple $en) (projR en (emp $db)))
(projR en (addchildren (dep $db) $c $en))))

(proof by induction on addchildren)
(induction base case)

(implies (empty $c) ,
(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (insert (tuple $en) (projR en (emp $db)))
(projR en (addchildren (dep $db) $c $en)))))

42

(expanding by addchildren)

(implies (empty $c) '
(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (insert (tuple $en) (projR en (emp $db)))
(projR en
(if (empty $c)
(dep $db)
(insert (dependenttuple (choose $c)

$en)
(addchildren (dep $db)
(rest $c)

$en))))))

(rewriting by rule
(implies nil
(equal (projR *a (if *b *c *d))
(if *b (projR *a *c) (projR *a *d)))))

(rewntmg by rule
| (implies =il
(equal (projR en (insert *x *y))
(insert (projT en *x) (projR en *y)))))

(rewriting by
rule
(implies nil (equal (projT en (dependenttuple *x *y)) (tuple *y))))

(implies (empty $c)
(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (insert (tuple $en) (projR en (emp $db)))
(if (empty $c)
(projR en (dep $db))
(insert (tuple $en)

(projR en
(addchildren (dep $db)
(rest $c)
$en)))))))

(to conjnormal -form)

(((not (empty $c))

(not (contains (projR en (emp $db)) (projR en (dep $db))))

(not (empty $c))

(contains (insert (tuple $en) (projR en (emp $db))) (projR en (dep $db))))
((not (empty $c))

43

(not (contains (projR en (emp $db)) (projR en (dep $db))))
(empty $c)
(contains (insert (tuple $en) (projR en (emp $db)))
(insert (tuple $en) o
(projR en (addchildren (dep $db) (rest $c) Sen))))))

(throwing away vacuously true clauses)

(((not (empty $c))
(not (contains (projR en (emp $db)) (projR en (dep $db))))
(not (empty $c))
(contains (insert (tuple $en) (projR en (emp $db))) (projR en (dep $db)))))

(applied lemmas)

((true (by applying lemma)
(implies (contains *a *b) (contains (insert *x *a) *b))
to
(contains (insert (tuple $en) (projR en (emp $db)))
(projR en (dep $db)))))

(induction step is)
(implies (and (not (empty $c))

(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (insert (tuple $en) (projR en (emp $db)))

(projR en
(addchildren (dep $db)
(rest $c)
$en)))))

(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (insert (tuple $en) (projR en (emp $db)))
' (projR en (addchildren (dep $db) $c $en)))))

(expanding by addchildren)
(implies (and (not (empty $c))

(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (insert (tuple $en) (projR en (emp $db)))

(projR en
(addchildren (dep $db)
(rest $c)
$en)))))

(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (insert (tuple $en) (projR en (emp $db)))

(projR en
(if (empty 3c)
(dep $db)
(insert (dependenttuple (choose $c)
$en)
(addchildren (dep $db)
(rest $c)
$en)))))
(rewriting by
rule
(implies nil

(equal (projR *a (if *b *c *d))
(if *b (projR *a *c) (projR *a *d)))))

(rewriting by rule
(implies nil
(equal (projR en (insert *x *y))
(insert (projT en °x) (projR en *y)))))

(rewriting by
rule
(implies nil (equal (projT en (dependenttuple *x °y)) (tuple *y))))

(implies (and (not (empty $c))
(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (insert (tuple $en) (projR en (emp $db)))

(projR en
(addchildren (dep $db)
(rest $c)
Sen)))))

(implies (contains (projR en (emp $db)) (projR en (dep $db)))
(contains (insert (tuple $en) (projR en (emp $db)))
(f (cmpty S)
(projR en (dep $db))

(insert (tuple $en)

(projR en
(addchildren (dep $db)
(rest $c)

45

(to conjnormal form and throwing away vacuously true clauses)

(((not
(contains (insert (tuple $en) (projR en (emp $db)))
(projR en (addchildren (dep $db) (rest $c) Sen))))
(empty $c)
(not (contains (projR en (emp $db)) (projR en (dep $db))))
(empty $c)
(contains (insert (tuple $en) (projR en (emp $db)))
(insert (tuple $en)
(projR en (addchildren (dep $db) (rest $c) Sen))))))

(applied lemmas)

((true (by applying lemma)
(implies (contains (insert *a *x) *y)
(contains (insert *a *x) (insert *a *y)))
to
(contains (insert (tuple $en) (projR en (emp $db)))
(insert (tuple $en)
(projR en (addchildren (dep $db) (rest $c) $en))))))

QED

