¥800IZ8—SOW "OU juel3 ‘zopepunog 30USDS [euoneN o3 Aq pauoddns sem YIom siqy,

€00T0 SHOSNUoESSE] ‘ISIqUIY
s}2snYdEsSE]N JO AysIoArun)
90usS uonewoju] pue rndwo) jo Ivounreds

861 Areniqog :pasmaoy
€861 39qUIdSQ
8¢-€8 Modoy [edruyR], SNIOD

TRZ [UdANS

sioury upEwoq 0} Supsa), UopEqINM3g

Abstract

Perturbation testing is an approach to software testing which focuses on errors within
arithmetic expressions appearing throughout a program. In this paper perturbation testing is
generalized to permit analysis of individual test points rather than entire paths, and to
concentrate on domain errors. Errors are modeled as perturbing functions drawn from a
vector space of potential errors and added to the correct form of an arithmetic expression.
It is possible to derive the set of error functions to which a given input is blind. For those
errors to which the input data was not blind, sensitivity measures can be derived which
limit the possible size of those errors. The combination of these new measures with
standard optimization techniques opens up new possibilities for testing strategies, either alone
or in concert with established path selection techniques.

These measures are used to evaluate the domain testing strategy and its variants. It is
shown that both the original and the improved versions achieve their principal goal, and
simple extensions are proposed to apply these strategies to more elaborate programs.

I. Introduction

Testing newly written programs for possible errors is considered a basic necessity by
any professional in computer science. The sad fact is that such testing is usually conducted
in an ad hoc, informal manner, guided as much by instinct as by any understanding of
how to properly test software. There is an obvious need for testing techniques with more
rigor and demonstrable levels of reliability. Such techniques need not, indeed, can not
provide complete reliability for all programs, but techniques which can be shown to capture
useful classes of errors for wide varieties of programs would be quite valuable.

A classification of errors which has proven useful is the division intoc domain and
computation errors. A domain error occurs when incorrect output is generated due to
executing a wrong path through the program [3]. A computation error occurs when the
correct path through the program is taken, but the output is incorrect because of faults in
the computations along that path. Discussions on the detection of computation errors may
be found in [3,4,10], among others.

This paper will be concerned with the detection of domain errors, but the techniques
to be presented here take as their starting point the author’s analysis of computation errors
in [10]. Domain errors can be further broken down into two classes, path selection errors
and missing path errors. These are distinguished by whether a path through the program
exists which, had it been taken, would have produced correct output. Where such a path
exists, the error is considered to be a path selection error. Where the conditional statement
and computations associated with part of the input data domain are missing entirely, it is
called a missing path error [3,6]. In this paper, we will be concerned with path selection
errors. Test data which captures these errors should catch most missing path errors, but in
general it is undecidable whether a program is missing a path.

The simplest case of a domain error is the predicate fault, in which a fault in a
conditional statement causes execution to flow down the wrong path for some input data.
Since the evaluation of a predicate usually depends on previous computations, a fault in an
assignment statement can also cause domain errors. This will be referred to as an
assignment fault. A method to detect both of these forms of path selection errors has been
proposed by White and Cohen [6], with improvements suggested by Clarke et al. [1], but
this method presumes that the paths to be tested have already been selected. It is hoped
that the theory outlined in this paper will eventually shed some light on how to effectively
choose paths for use with that method. In addition, the theory presented here is applicable
to a wider range of programs, providing more flexibility in the types of functions which
may be employed as program computations and errors.

Previous work by the author has introduced perturbation testing, a method that focuses
on errors in arithmetic expressions appearing throughout a program [7,89,10]. Errors in
arithmetic expressions are represented as perturbing functions added to the correct form of
the expression. It is then possible to derive the set of potential errors in a chosen
functional class which would have escaped detection with a given set of test data. For
example, test runs which pass through an assignment statement “X := f(Y)” are incapable
of revealing whether the perturbing function “X — f(Y)” might have been added to later
expressions. Other test data might avoid that assignment statement, and so would be
capable of detecting that particular error. In general, there are an infinite number of such

2

undetectable error perturbations for any test run. However, when the functional class of of
error expressions being investigated is well-behaved, it is possible to compute a finite
description of that infinite set of untested possible errors, which can then be used to guide
the selection of additional test data.

Perturbation testing has been applied to selecting paths for testing in order to catch
both domain and computation errors [89], and has more recently been extended to
evaluating the power of input data points (rather than entire paths) in detecting
computation errors [10]. This paper will extend the theory of perturbation testing to
provide a measure of the ability of data points to detect domain errors due to predicate or
assignment faults. This measure may be used as a guide to the selection of test data, or as
a tool in evaluating the effectiveness of other testing techniques. Section II reviews the
basic model underlying perturbation testing. Sections III and IV derive expressions for
predicate and assignment faults, respectively, showing the set of untested error directions
and the sensitivity with which the remaining directions have been tested after any test run.
Section V discusses possible testing strategies based on these new senmsitivity measures. The
remaining sections contain an analysis of the domain testing method of White and Cohen
[6] and its variations as proposed by Clarke, Hassell, and Richardson [1], in which a
perturbational analysis is used to examine the power of these methods, and to suggest
extensions of the method to more general programs.

II. The Perturbation Model

We begin by presenting a model of programs as groups of functional components and
of errors as perturbing functions added to the correct components. The state of the

program at any point in its execution is described in terms of the current environment V,
a vector containing the current values of the program inputs and program variables. In the

initial environment, denoted by v, only the input values are considered to be defined. We
will often be discussing these initial environments in terms of their relation to the set of all
possible inputs, in which case we will treat them as points (i.e. cartesian coordinates) within
an input space.

As execution proceeds down some path, the assignment statements along that path
transform the environment, computing new values for the program variables. For any
subpath P, we can designate a function C, which represents a transformation equivalent
to those computations:

VA = CA(VO)'

Predicates are represented as functions, T(Vv), which are applied to the current
environment and then compared to zero in order to determine the subsequent control flow.
The comparison to zero may employ any of the conventional relational operators for real
arithmetic.

Path selection errors can be caused by errors in the program predicates or by errors
in assignment statements whose results are directly or indirectly used by later predicates.
Turning first to the case where a predicate is in error, consider a predicate whose proper

3

form is given by the function T, but which has been mistakenly replaced with the function
T’. The error in T’ is defined as the difference of T and T°, and will be denoted by €,

e=T -T.

In practice, we will postulate a set of possible functions for €, and that set will be chosen

to be a vector space. Examples of possible classes of € would be the set of linear functions
or the set of multinomials of arbitrary, fixed degree. Part of the power of perturbation
testing stems from the ability of these functions to serve as approximators for other, less
manageable functions. The advantage of dealing with vector spaces of functions is that a
linearly independent set of characteristic functions can be chosen for any vector space such
that any function in the space can be uniquely expressed as a linear combination of those
characteristic functions. The coefficients of that linear combination can then be viewed as
coordinates in an “error space”, with the axes of the coordinate system being those
characteristic functions.

Although the choice of the class of functions to be investigated as potential errors is
left to the discretion of the tester, a simple inspection of the code can often suggest
appropriate classes. In fact, the initial choice should probably be kept quite conservative
(eg. linear functions), since if later inspection should reveal the first choice to be to
limited, a more general functional class can be substituted with no penalty for the initial
mistake as long as the new class of errors entirely contains the original class.

€ can be split into two parts,

~

e = ae

where a is any non-zero real number and & has been normalized. The reason for this
normalization is the separation of the “size” of the error, a, from the “direction” of the
error €.

Similarly, for assignment faults we will treat the replacement of a basic block of
assignment statements C by C° as the addition of a perturbing function ae, where € is, as
before, a normalized direction drawn from a vector space of potential errors. An important

distinction between the error functions for predicate and assignment faults is that &(V)
returns a single value when used with predicates but returns a vector when representing an
assignment fault, with each element in the vector representing an erroneous perturbation to
a different variable in the environment.

III. Predicate Faults

Suppose that a test run has been conducted with input data vy Under what
circumstances would the predicate fault aé be detected using this input data? Assuming, of
course, that Vv, causes execution to pass through the erroneous predicate, there are two
possible ways for aé to go undetected.

4

The first possibility is that T and T have exactly the same value. More formally, let
C be the function representing the change in the program environment caused by the
computations performed prior to reaching T°. The predicate, like any expression in a
program, is evaluated on the environment C(vy) which results from the prior computations,
and so

T o C(¥p) = T ° C(¥p)

is a sufficient condition for the error going undetected. Since T* = (T + ag), this condition
reduces to

aé o C(vg) = 0,
and since a is non-zero (otherwise there is no error),
e C(vg = 0. (6]

When this condition is satisfied, Vy will be said to be blind to aé. This is a slightly
simplified form of the principle theorems of [9]. It should be noted that equation (1)
depends only on the direction of the error, not on the size.

Equation (1) can be solved for those errors to which a given Vg is blind whenever é

is believed to lie within a vector space. Even when € and C are nonlinear functions, (1)
is still a linear equation in the vector space coordinates and hence is solvable with standard
Gaussian methods.

The second possible way for aé to go undetected is associated with the size of the
error and represents the major addition to the theories previously developed in [89,10) I

(1) does not hold, then €(V) is non-zero, where Vv=C(Vy) is the environment when the
predicate is reached. There are two ways in which the error term can be non-zero without
changing the result of the predicate at V. First, if T(V) and €(v) have the same sign
(The possibility that T(V)=0 is discussed later), then T = T + af must have the same
sense as T at Vv and the result of comparing the two functions to zero must be the same.

Second, if T(V) and a&(V) have opposite signs, but T(V)l > la&(V)l, then T" will still have
the same sense as T, in this case because the change wrought by the error was not large
enough to affect the sense of the predicate. More formally, the error can be missed when

T'(V) # T(V) @

and
(T'(V) inequ 0) -~ (T(V) inequ 0)

where “inequ” can be replaced with “<”, “<”, “>”, or “=”, whichever originally appears in
the predicate (The “=" and “#” operators will be examined later). Equation (2) implies that
aé&(V) is non-zero. If T(V) and aé(Vv) have the same sign, then T must have the same
sense as T at V and the result of comparing the two functions to zero must be the same.

5

Alternatively, if T(V) and a&(V) have opposite signs, but I[T(V)l > ka&(V), then
T = T + aé will still have the same sense as T, in this case because the change wrought
by the error was not large enough to affect the sense of the predicate.

This suggests that, for a given error direction ¢ and a given test input V), there is a
critical size a below which errors of the form aé cannot be detected. This critical value
will be denoted by o (€,vp), and is defined by the point at which T and T acquire
opposite senses as lal is increased. Since T’ is given in the source code, we view T as
varying with o and & and ask, for a given input, when is T(a,) ° C(vy)=0? (For our
purposes it will not be necessary to worry about whether the sense changes at the border

point T(V) = 0 or just beyond it at T(V) = *e.) Substituting for T in terms of T° and
the error:

(T° — aye,vgk) C(vp = 0.
Solving for a . gives

a (8,7p) = T" o C(Vp) / & * C(¥Fy). 3

The critical value a, separates the errors o¢ into tested and untested ranges. Any

error aé for which a has the opposite sign of a, or a smaller absolute value than a, will

go undetected. Thus it should be possible to define a region within the postulated space of
possible errors which contains all as yet untested errors.

As a first step towards describing such a region, consider some special cases of
equation (3). One such case occurs when the input data Vv, lies exactly on the domain
border T~C. In this case, T°C(Vy) = 0, and so a, will be zero, indicating that any shift
of the proper direction in the value of the predicate should be detectable. This is correct,

but is the error detected for positive or for negative shifts? The answer will depend on the
relational operator used with the predicate. If, for example, the condition were

“T(v) < 07, then any Vv, which lies on the border is yielding a “false” result for this
condition. An error in T’ is detected only if the answer should have been “true”, so T(V)
must be less than zero. Since we have chosen the input v so that T°(V) = 0, we conclude

that the error is detected only when a&(Vv) = T(V) — T(V) is positive. Thus if a has the
same sign as €(V), the error is detected no matter how close to zero a might be, but if a
and &V) have opposite signs, the error goes undetected. By similar arguments, we reach

the same conclusion for “=", but the signs of a and é(Vv) must be opposite to detect errors
in “>” and “<” using points lying on the border.

The relational operators “=" and “#” can be treated by a simple extension of these
arguments. It should be clear, for example, that test points exactly on an equality border
give an a, of 0 for both positive and negative a’s, since any change, positive or negative,
in the predicate value would be detectable as being not equal to zero. By contrast, points

6

chosen within the “#” domain of a path yield almost no information at all about the “#”
predicate. All that can be said after such a test is that errors have been eliminated which
have the form aé and have a exactly T°C(V() / &C(Vg). In other words, choosing points
slightly off an equality border can only prove that the border should not have passed
through those particular points. (Such points may still be useful for other purposes, however.
They may be required in order to exercise some other statements, especially statements
lying along the “#” branch of the predicate, or may be required to detect the substitution
of one relational operator for another, as described later.)

Another special case of equation (3) which is worth examining is that of the
blindness errors. For those errors satisfying equation (1), a. approaches infinity, indicating
that no bound is imposed on the size of those errors. This is consistent with our
interpretation of a blindness error as being an error that is undetectable because of its
direction €, no matter what its size.

Figure 1 shows a program containing a predicate fault. The predicate in the WHILE
statement should have been “B*(1+R/12)) > A” to include the final month’s interest in the
stopping criterion. The error term is therefore —B*R/12. Clearly this error will be revealed
only if the value of —B*R/12 is large enough to necessitate another month’s iteration.
Taking B*R as the normalized error direction, we can ask whether various test data would
reveal the error.

Consider first the input (P,R,A) = (1000., 0.14, 100.). At the first execution of the
WHILE statement, o, = (B-A) / (B'R) = 900/140. which has the wrong sign and so

cannot detect the error. A negative a. is obtained only on the final execution of the
WHILE, at which time B=68.82 and o, = (B-A) / (B'R) = -31.18/3089 = -1009. The
actual error has a = —-1/12 = —0.0833, so this test is not nearly sensitive enough.

(* Loan History Program *
¢ ")
(* This program computes the monthly balances *
(* for a loan issued on principal P at annual *
(* interest R with monthly payments A. Interest *
(* is figured monthly, with the final payment *
(* being no greater than A. *
» »
)
READ P, R, A
B:=P

WHILE B > A DO
B:=B" (1 + R/12)
B:=B - A
WRITE “Balance: ”, B
END DO
WRITE “Final Payment is ”, B * (1. + R/12)
END

Figure 1: Loan History Program.

7

On the other hand, the input (P,R,A) = (38590, 0.18, 100.) results in a final
execution of the WHILE statement with B=99.00 so that o, = (B-A) / (B'R) = —0.0561,

which is sensitive enough to detect the error. For this test, the final balance of 99. is close
enough to the monthly payment that failing to figure in the last month’s interest causes an

early exit from the loop.
The discussion of a, has, so far, been concerned with a single, known €. In fact, the

test using vV, imposes constraints on many error directions. To interpret the effect of

constraining a over a variety of directions, we need to understand the blindness errors
more fully. Equation (1) defines a subspace of the space of all possible error terms, a

subspace containing only errors which cannot be detected using v, no matter how large
those errors might be. If the space of potential error terms is of dimension N, then the
blindness space defined by (1) will have dimension N-1. There exists, therefore, a unique
critical direction €, which is orthogonal to the entire blindness space. A necessary condition
for detecting aé is that it have a non-zero component in the & direction. If not, then aé
lies entirely within the blindness space and so satisfies equation (1).

In general, therefore, an error aé can be written as
aé = a8y + o,

where &, is some direction entirely within the blindness space. The critical value of a for
this error is therefore

al(@d,Vg) = T ° C(Vo) / (a8, + azd,) ° C(¥p)-
By equation (1), the &, term goes to zero,
a(aé,Vg) = T o C(¥g) / apé, ° C(Vp),
and finally by equation (3),
a(@é,Vg) = a6,V / oy)

The sensitivity of a test point Vv, to an error depends therefore on its sensitivity to éc
and to the size of that error’s component along the direction €. An interesting implication

of this is that la (€,Vp) is minimized (over unit length errors) by &. This observation in
turn indicates a simple method of computing &. If the error space E is spanned by a
linearly independent set of functions {é;}, then

5. = 5 [C(To) § ®
i
is the (unnormalized) critical error direction for vy,

The restriction imposed on the error space by a given test point vy can now be
described geometrically. For any V(, there exists some direction &€ which is orthogonal to

8

the solutions of equation (1). In an N dimensional error space, there is an N—1 dimension
(hyper)plane orthogonal to &, and at a distance o (€;) from the origin. Any error term on
the opposite side of the plane from the origin will be detected, since all points on that side
of the plane have components in the &, direction which are larger than a.

As additional tests are performed, an error is undetected only if it is missed on all
tests. Each test contributes another plane in the error space, with the total set of planes
describing a system of linear inequalities restricting the set of untested potential errors. If
the straight line from an error to the origin crosses any of those planes, the error is
detected by the corresponding test point. If all directions were bounded, these planes would
define a convex polyhedron containing the origin and all error terms to which the tests
were not sufficiently sensitive. The greater the volume of this polyhedron, the more
potential error terms remain unchecked.

Figure 2 shows a program which computes the greatest common factor of two
positive numbers by Euclid’s algorithm. Consider the testing of the first “IF” statement. We
will postulate an error space of two dimensions (in order to permit the graphing of the
untested error space). This potential error space will consist of all linear combinations of P
and Q.

If this program is tested with inputs “4” and “6”, then when the “IF” statement is
first encountered, (P,Q) = (4,6). By equation (5), we have €, = 4P + 6Q. Normalizing
gives & = 055P + 0.83Q, and by equation (3),

(* This program computes the greatest common factor *)
(* of two positive integers by Euclid’s algorithm. *
INPUT A, B

- »

IF S = 1 THEN

PRINT A, “ AND ”, B, “ ARE RELATIVELY PRIME.”
ELSE

PRINT “THE GCF OF ”, A, “ AND ”, B, “IS ", S
END IF
END

Figure 2: Euclid Algorithm.

a(6e:Vp) = (S — T) / 8(S.T)
(4 -6)/(055°4 +08 *6)
—027

Figure 3 shows the restriction imposed on the error space by this test as the inequality
whose edge is labeled “1”. As always, the untested errors are those lying on the same side
of the line as the origin. Because this “IF” statement is inside a loop, it is executed several
more times before the program halts. On the second execution of that statement, the
values of P and Q have been exchanged. As a result, & = 0.83P + 055Q and o, = 0277,
resulting in inequality “2” shown in figure 3. On the third iteration of the loop,
(P,Q) = (2,4), resulting in & = 045P + 0.89Q and a, = —045, while the fourth and final
iteration again exchanges the components of &, and changes the sign of a_ adding
inequalities “3” and “4” to the figure. As it turns out, both of these inequalities are
implied by the first two, and so add no new information to the test.

In general, a given direction in the error space might remain unbounded after a
number of tests. If a given error has satisfied (1) for all test points (or, equivalently, if it
lies within the intersection of the blindness spaces for all test points), then none of the
planes will intersect that direction. Expressions which are invariantly equal to zero will, if
in the original error space, always be solutions to (1) and hence those directions will never

Figure 3: Constraints In the Error Space.

10

be bounded. Such invariant expressions will occur quite frequently but should usually be
easily identified. If, for example, the predicate being tested immediately follows an
assignment statement ‘X := f(Y)”, then the expression “X — f(Y)” is invariantly zero at
that statement. Note, however, that substitution of f(Y) for X in the predicate could not
possibly cause an error (assuming f does not involve hidden side effects).

It is also possible that a direction has so far been bounded only on one side, and
that test points have not yet been found which will yield an a; of the opposite sign. A

special case of this situation occurs for errors of the form € = kT for any real number k
(assuming T is in the original error space). It is impossible to obtain a negative a; for this
error. This is because T + kT for positive k and T — kT for negative k must always have
the same sense as T. An example of this is seen in figure 3 where the direction P-Q is
bounded, but Q-P is not.

IV. Assignment Faults

Turning next to domain errors caused by faults in assignment statements, a similar
but more restricted sensitivity measure can be derived. Assume that a block of assignment
statements C has been perturbed by the addition of the error function aé, affecting one or
more variables and yielding an erroneous computation C°. Assume that the path taken by

the test input v passes through computations C,, then the incorrect statements C°, and
finally through additional computations Cp until coming to a predicate T. Does aé cause a
domain error by its effects on T?

A domain error will occur only when TeCpeCC,(Vy) has a different sense than

ToCpoCeC, (V). As before, we can argue that one case where this does not occur is when
TeCgeCCy (V) = ToCpgeCeCy (V). (9]

Unfortunately, this equation is not, in general, solvable. There are, however, two important
situations in which it can be solved. First, if the error € involves the value assigned to a
single variable, then € goes undetected when

&0 Cy(Vp) = 0 Q)

or when TeCp is not partially dependent on the variable being computed in C°. (A
function is partially dependent on a variable if a change in the value of that variable results
in a change in the function value, or, formally, if there exists some integer k such that the
kth partial derivative of the function with respect to that variable is not zero [10])
Bquation (7) is a linear equation, and hence solvable, whenever é lies within a vector
space.

The second situation in which (6) is solvable is when ToCg is a linear function of

the variables whose assignments were affected by the error. € may involve assignments to
any number of variables. Then € goes undetected when

1
TeCpoésCp (Vo) = O. ®

This is a linear equation for €, even though € and C, might be non-linear, since these are
replaced by their values at v,

Again, as for predicate faults, an assignment fault may fail to satisfy (6) but still not
cause a domain error if the change in the predicate value is not sufficiently large. The
critical point occurs when

TeCpC:Cy (V) = O.

We cannot solve here for a without restricting T and Cg. In fact, even for relatively
simple forms of T-Cp, a, may not be unique. If, however, T-Cp is linear, then

a; = [TeCgeCCA (Tl / [TCpodsCA (Vo))

This permits the description of the restrictions imposed upon the possible error terms in an
assignment statement whenever that statement is linearly referenced by a later predicate.
These restrictions appear as inequalities forming planar boundaries a, from the origin and
orthogonal to €., the unique unit length vector which is orthogonal to all solutions of
equation (8). The requirement that T-Cg be linear means that we must search for linear
references to the variables assigned in C-.

V. Implications for Testing

With the derivation of the sensitivity measure a, for both predicate and assignment
statement faults, we can now outline the two goals for a successful domain error testing
procedure:

1. Impose bounds on as many error directions as possible.
2. Reduce the size of the bounded region as much as possible.

It is not at all clear what the proper measure of “size” should be for these untested
regions within the potential error space. The most obvious measure would be the volume
of the enclosed region. This is intuitively satisfying, since the volume is a direct measure of
the number of points and hence the number of errors in the undetected region. In its
strictest sense, however, the volume is not a very useful measure. Allowances can be made
for the unbounded directions by initially imposing an implicit bouad, +M, on all directions,
with M being a very large number (probably related to the largest representable number on
a given processor). Even then, however, the volume measure has problems because it is too
easily dominated by a few directions. Consider, for example, the volume of a rectangular
area in which the two dimensions are several orders of magnitude apart. Undetected errors
in that region are most likely associated with the longer axis, but we could reduce the
volume to any target level by squeezing the narrow axis still further. The worst case occurs
when the rectangle has degenerated to a line. The volume would then be zero, yet there

12

would still be errors lying on that line which could be tested. If testing were continued,
and the endpoints of that line segment were moved closer to the origin, this increase in
confidence would not be mirrored by a change in the volume, which would remain a
constant (zero). This worst case can be handled by performing the volume computations in
the largest dimensioned subspace in which the volume is non-zero. Then, for example, the
volume measure of a degenerate rectangle would become the length of the remaining line
segment. This solution, however, does not help in the case where dimensions are orders of
magnitude apart, and it is also not clear what action should be taken when one dimension
of the bounded region is only approximately zero.

For these reasons, a more plausible measure of the size of the untested region is
probably the maximum distance from the origin to any point on the border of the untested
region. A hypothetical testing method which attempted to minimize this measure with each
new test point would always attack those error directions to which the previous tests had
been least sensitive. This would be a very desirable approach. It is worth noting that any
new test point which improves the maximum distance measure must also reduce the volume
(in the largest subspace where the volume is non-zero). The major point of difference
between the methods is the emphasis assigned to different directions which are all capable
of reducing the volume.

For example, a plausible volume-reducing strategy would be to consider each
coordinate axis of the error space in turn. For each axis direction, find a path which is not
blind to that direction (setting aside for the moment the difficulties in actually finding this
path). Then apply any standard numerical method for constrained optimization to find
points within that path domain which reduce «, to an acceptably small level. An
alternative to the use of arbitrary axes would be to choose successive error directions to be
orthogonal to the e.’s for all previous tests.

This strategy, which we shall term coordinate reduction, will indeed reduce the volume
with each test point selected. It may be quite good at initially bounding the error space,
but, depending on the angles of the bounding planes, there can still be untested directions
at arbitrary distances from the origin. Hence coordinate reduction is not optimal with
respect to that maximal distance criteria. In fact, there can and usually will be completely
unbounded directions intersected by none of the bounding planes.

The maximal distance measure is not without its own problems. The chief difficulty
lies in the unbounded directions, which will tend to dominate this measure. Some of these
will correspond to testable directions, and it does indeed make sense that these should be a
high priority for future testing. Many others, however, can correspond to untestable
directions, as outlined above. To which of these classes a given unbounded direction
corresponds is, in general, undecidable. Even when decidable, it is not clear what should be
done with those directions. They could be assigned an arbitrary bound, « =0, but this may
unwisely turn attention away from those errors which have a component in an untestable
direction, but are still testable themselves due to their other components. If some maximum
acceptable distance can be postulated, then assigning that distance as the bound on
untestable directions would probably be preferable. Once a reasonable way of dealing with
untestable directions is formulated, we can define another testing strategy, maximal distance
reduction, in which the error direction associated with the maximal distance from the origin
is chosen and a test point selected to place a better bound on that direction in the same
manner as was done for the axis directions in coordinate reduction. An interesting variation

13

on this strategy would be to begin by choosing the path to be tested, then choose the
maximal distance direction testable for that path. This variation would be a potent means
for improving a previously selected point, choosing a new point within the same path which
is more semsitive to domain errors. Many proposed testing strategies in fact only specify
paths to be tested without further requirements on the points chosen except that they force
the execution of those desired paths [25). This variation on maximal distance reduction
would be of particular utility when combined with such path selection schemes.

The notion of a maximum acceptable distance is even more important as a stopping
criterion for testing. One possibility is the arbitrary choice of some number close to zero,
10k, with k a reasonably small integer. It should be noted that very small values for o,
can be achieved. If the predicate being tested is inclusive (=, =, or =), then by choosing
points exactly on the border we get a,=0. If the predicate is exclusive, then we can choose

points within € of the border. For reasonably well behaved computations and predicates we
will then have T*°C very small. If € is not too closely related to T, so that we can find a

point within € of the border at which &(V() is reasonably large, then a, will be very small.
In practice, when attempting to minimize a, for a given error and a given path, it will

probably be best to confine the search to the points on or within € of the border, and
simply attempt to maximize €&C over that set of points. While this approach is not

guaranteed to produce the minimum a_ it should produce acceptably small values.

Similarly, an iterative optimization of a, should probably not be overly concerned with

finding the actual minimum, but should halt as soon as reasonably small values are
achieved.

In fact, the maximum acceptable distance may be fairly large. Since the error
directions are normalized, the largest coefficient of any axis component will be *10. If we
expect the coefficients in the predicates to always have magnitude k or greater, then we
will be satisfied by a maximum distance from the origin of k. This is of particular
importance if a predicate expression should always have integer coefficients (k=1.) or
coefficients expressible as rational numbers with small integer denominators.

Some notes about the computational effort required for the strategies outlined above
may be in order. The computation of the blindness directions involves a single solution to a
system of linear equations [9,10]. Because the constraints in the error space form convex
polyhedra, many of the remaining problems relating to the untested errors can be
formulated as linear programming problems. For example, determining whether a given test
point reduces the untested volume is probably best done by using +é, for that point as the
linear evaluation function in a linear program and attempting to show the existence of
(previously) untested points on each side of the new border. Note that since the origin is a
known feasible point, half of this existence proof can be accomplished immediately. Finding
the direction of maximum distance from the origin is a linearly constrained optimization
problem with a quadratic evaluation function. However, since the maximum distance from
the origin must occur at a vertex of the convex polyhedron formed by the constraint
planes, the author has been able to devise polynomial-time algorithms for this purpose. One
such algorithm, bearing a strong resemblance to hidden-line algorithms for computer
graphics, is currently being added to the author’s system for computing blindness errors for
FORTRAN programs.

14
VL. The Domain Testing Method

In this section we will examine the domain testing method proposed by White and
Cohen [6] and modified by Clarke, Hassell, and Richardson [1]. This method is intended to
detect any predicate or assignment domain errors which could have occurred on a
previously selected test path. The method is limited for practical purposes to programs in
which the borders of the path domains are linear functions of the program inputs.

White and Cohen propose choosing N points on each border segment at or mear the
vertices and one point just slightly off that segment, on the open side of the border. They
claim that this strategy, henceforth referred to as the Nx1 strategy, constrains the
perpendicular distance through the off point by which the border might have been shifted
without changing the path taken for any of the N+1 test points.

Clarke et al. point out that the perpendicular distance is not a very meaningful
measure. They propose the volume of test points through which the border might move
without crossing any of the chosen test points as a superior measure. Since this measure
seems a reasonable approximation to the worst-case volume of the input space on which the
border might yield incorrect results (and hence is proportional to the probability of an
input for that path resulting in an error), it does appear to be more reasonable. They then
show that the Nx1 strategy allows this volume measure to be unbounded. To make this less
likely, they recommend that the N test points chosen on the border enclose the centroid
of the border segment. They also define two strategies which perform better according to
their volume measure, the NxN strategy in which N points each are chosen on and off the
border, and the VxV strategy in which a test point is chosen exactly on and just off each
of the vertices of the border segment.

All three of these strategies define their desired testing attributes in terms of the
dynamic structure of the path domains. This makes it difficult to reason back from the test
results to the actual program code, to say exactly what errors in which statements have
been eliminated. To a certain degree, this is understandable since the domain testing
method does not specify which paths are to be tested. It is, however, particularly annoying
that no use or acknowledgment is made of the fact that a given predicate may be
responsible for a number of border segments for a variety of paths, or even for a single
path. Clearly any tests done on one such segment provide information regarding the other
segments. Perturbation testing, on the other hand, ties its information directly to the
statements being tested. This in turn makes it easy to evaluate the effect on one path of
testing a statement along another.

The failure to consider other paths is especially important to the interpretation of
Clarke’s volume measure. This measure would be a true indicator of the probability of a
fault causing an error only if integrated over all paths through the affected statements. In
particular, it is entirely possible that the NxN or VxV strategies might bound the volume
of error-producing inputs for one path, but that the volumes associated with other paths
through one or more of the same statements might still be unbounded. It is difficult,
therefore, to determine how serious a problem is really implied by the failure to restrict
this measure. This difficulty is compounded by the fact that an unbounded volume of input
space may still be a negligible fraction of the entire program input domain. Consequently,
the analysis afforded by perturbation testing, measured in terms of actual faults in the

code, appears to be a more compelling basis for evaluating domain testing.

In order to examine domain testing using perturbational techniques, we note that
domain testing takes a black box view of the functions representing the domain borders. In
effect, a very simple program model is being considered:

input vy

{constrain v}

if TeC(Vg) + esC(vg) ro. 0
then print f;(vg)
else print f5(vy)

The line “{constrain Vg}” allows for the effects of predicates which are encountered prior to
the predicate whose border is being tested. Predicates which are encountered after T can be
ignored, as they cannot possibly affect the interpretation of T, a point which was missed in
[1] and [6] but which can significantly simplify the practical implementation of the domain
strategy. The function C represents the computations performed along the chosen path up
to the predicate responsible for the border being tested. It is not written as an explicit

transformation of the environment (ie. v = C(Vy)) because domain testing is really
dealing with the functions ToC and e°C, both of which are required to be linear (which is
actually less restrictive than requiring that T and C be linear).

This model does not, however, cover all possible predicate errors, since not all
predicate faults are manifested as border shifts. The important exception occurs when
equality operators are swapped with inequalities. If the observed predicate is an equality,
then the Nx1 strategy (and by implication also the NxXN and VxV strategies) will detect the
error. If, on the other hand, the observed predicate is an inequality, the point selection
rules given in both [1] and [6] cannot determine whether an equality operator should have
been used. In order to detect this condition, at least one point should be chosen which is
close to but not on the border, and lies on the accepted side of the inequality (the side
opposite the normal off points). This point need not be an additional test. It can instead
substitute for one of the on points.

Other operator substitutions are either trivially detected or are representable as border
shifts in this model. Substitution of “#” for “=", for example, is trivially easy to detect.
Substitution of < for = involves a border shift by some small e. Substitution of < for =,
on the other hand, is equivalent to aé = —2°T.

In the remainder of this section, we will attempt to evaluate the domain strategies in
terms of their ability to restrict the size of the untested error region. We will be testing
initially for predicate faults in the above program model, with e = aé selected from the set
of linear functions of the program inputs without constant terms, which will be added later.
Since € is a function of the input values, &C = & Equation (2) simplifies, therefore, to

a; = T*C(Vy) / &¥p). ©)

16

For this special case, we can solve immediately for & by remembering that & minimizes o,

for a given V(). This occurs when & is simply the normalized form of Vg,
éc = Vo / |Vo|. (10)

So, when the error space being investigated is expressible entirely in terms of the program
inputs, there is a simple and direct relationship between &, and the test data.

This relationship makes it possible to infer some relationships between the coordinate
and maximal distance reduction strategies proposed in the previous sections and the domain
testing strategies. Beginning with coordinate reduction, choose an arbitrary direction in the
error space. Find the point in the “THEN” subpath domain which minimizes lx | for that
direction, and for any possible sign of a, (choosing arbitrarily if both signs can be
constrained). Then find a second test point in the “ELSE” subdomain which minimizes Il
for the opposite sign (such a point is guaranteed to exist for this class of error terms).
Repeat for any direction & which is orthogonal to the &, of the first test point. Continue,
choosing error directions which are orthogonal to the critical directions of all previous test
data, until it is no longer possible to find new error directions orthogonal to those already
used. This will occur when 2N points have been chosen, half on each side of the new
border.

If the path domain has not been reduced in dimension by previous equality
predicates, this procedure will constrain the entire error space, except possibly in the
direction T-C which, as explained earlier, cannot be constrained in the negative direction. It
is possible, however, that T-C may not be a linear function in the program inputs only,
and will not lie within the space being tested.

If previous equalities have occurred, there will be one unconstrained direction
corresponding to each such equality. These directions must be constrained using different
paths, since there exist no points in this path domain which are not blind to these
directions.

The above procedure seems reasonable from the perturbation standpoint, if our goal is
to eliminate all linear errors involving the program inputs. Now let us consider exactly what
points will be selected by this strategy. Clearly this strategy generates two linearly
independent sets of €.,'s (one set on each side of the new border. Because of the special

relationship between €. and V), it follows that the input points selected in each subdomain
will be in general position. (A group of n+1 points x;,...x, is in general position if the set
of vectors x;—xy, i=1,..,n, is linearly independent. In geometric terms, the n+1 points cannot
be contained in a hyperplane of dimension less than n.) The border segment being tested is
linear, and its edges are linear. Given a direction &, the expression given above for o is
minimized when TeC(V() is minimized and &C(Vy) is maximized. The first occurs when vy
is chosen exactly on the border, if the border itself is in the subdomain, or else within €
of the border if the border itself is not in the subdomain. We then must maximize &C(v)

within a hyperplane lying on or very close to the border. Since this is a linear
programming problem, the solution must occur at (or just € from) a vertex of the border

17
segment.

To summarize, the proposed procedure selects a set of points in general position at or
within e of the vertices of the border segment. If the path domain is of dimension N, the
procedure will choose N points on each side. This of course satisfies the NxN strategy of
Clarke et al. It represents a special case of that strategy in which each on point has a
nearby off point corresponding to the same vertex of the domain border. A similar
procedure could be defined based on maximal distance reduction, and would yield a special
case of the Nx1 strategy. Either of these procedures would successfully impose finite bounds
on all possible linear error directions. It is more difficult to establish that either the Nx1 or
the NxN strategy will, in general, be this powerful.

Before attempting to prove that these strategies do indeed constrain all linear error
directions, it is interesting to consider the shapes of the resulting untested regions. The
proposed procedures will yield a set of linearly independent €.’s for the various test points.
While these critical error directions will be independent, they will not in general be
orthogonal, unless the path domain features vertices lying at right angles to each other with
respect to the origin. In fact, the polyhedra enclosing the untested errors will tend towards
flattened, pancake-like figures (hyper-pancakes?) composed of two sets of nearly parallel
planes. This arises from the fact that the constraint planes are orthogonal to the critical
error directions, but these critical errors are directly based on the input points. If the path
domain does not include the origin, the angles over which the vectors v may range will

be limited. This limit (and hence the “flatness” of the untested space) grows more severe as
the domains selected become smaller or more remote from the origin.

A successful test data selection strategy should constrain each of N linearly
independent error directions on both signs. This does not mean, however, that 2N tests are
required. In a two-dimensional input space (N=2), the simplest closed figure is a triangle.
Hence all directions could be covered by a triangle, defined by only three test points. In
three-space (N=3), the four sides of a tetrahedron will suffice, and so on. By implication,
we could in fact be satisfied with N+1 test points. In fact, any N+1 test points forming
such a closed figure in the error space would satisfy the maximal distance reduction
scheme, since the maximum untested distance from the origin would occur in those
directions which must still be unbounded until the first N+1 points have been chosen. It is
tempting, therefore, to wonder whether the Nx1 strategy of Cohen and White might not
suffice.

To see that, in fact, the Nx1 strategy does bound all error directions, we begin by
noting that the N on points are in general position. Assume for the moment that the
hyperplane containing the border being tested does not pass through or within € of the
origin. Then the on points and the origin are in general position, and we conclude from
(10) that the N critical directions are linearly independent. The set of planes must therefore
cover all directions for at least one sign, in the sense that for any direction &, either +& or
—& intersects one of the constraining planes. If, therefore, the constraint imposed by the off
point intersects each of these N planes and lies on the “other side” of the origin, then it
will result in a completely closed figure defining the untested errors.

18

Consider a hypothetical on point at the intersection of the border being tested with
the vector from the origin to the off point. A unique such point must exist, since the

border does not pass through the origin. Since (V) = V/I¥l, this hypothetical on point
has the same & as does the off point. The on points are associated with the same sign of

o, as if they were slightly off the border on the closed side. The off point, however, lies

on the open side of the border, giving it a different sign for T>C(V). Consequently, the
off point and the hypothetical on point have opposite signs for a.. Since the off point is
required to lie inside the projection of the polygon formed by the N on points, the €.’s for
the on points has a positive component along the &, for the off point. By equation (4) we
conclude that the off point bounds the critical directions for each of the on points, but
with the opposite sign. Hence all directions in the error space are constrained on both
signs.

Next consider what happens when the border passes through the origin. The N on
points are still in general position, but the on points and the origin are not. By implication,
the éc are no longer linearly independent. One of the on points is essentially useless. The
remaining N—1 points and the off point are, however, in general position with the origin.
By the arguments given in the previous paragraphs about test points in general position, we
can claim that the untested region is bounded on all but one side. However, if the border
TeC passes through the origin, it must be a linear function of the program inputs only.
Hence ToC is in the error space. Since, as we have observed earlier, T°C can be bounded
on only one sign, there must always be one open side to the untested region. Hence we
conclude that even in this case, the Nx1 strategy has performed properly, in the sense that
it has bounded as many linearly independent directions as possible.

If the border being tested does not pass exactly through the origin, but does pass
extremely close to it, it is theoretically possible to choose an off point close enough to the
border that the analysis of the first case applies. In practice, the finite resolution of the
space of input space may not permit this, but in such cases one of the bounds on the
direction TeC would be so large that for practical purposes the analysis for the border
passing through the origin may be taken as correct.

Having shown that the Nx1 strategy constrains all possible linear errors, the same can
be shown for NxN by noting that the N off points constrain all directions which are also
constrained by a hypothetical off point at the centroid of those off points. Since the Nx1
system formed by the centroid and the N on pcints constrains all possible linear errors, so
does the original NxN system.

The use of N-1 fewer points does not imply that the Nx1 strategy is the best possible
strategy for detecting linear errors. The results of Nx1 will probably not be significantly
improved upon when a completely closed untested region has been found, since in practice
we expect to achieve very small a.’s. In fact, the NxN method might be worse than the
Nx1 method when closed regions can be obtained. When a completely closed region cannot
be attained, the angles at which the constraints intersect may be crucial. Consider a pair of
angles in a two-dimensional error space as shown in figure 4a and 4b. The volume (area)
of points enclosed as a function of the distance along the untestable direction depends
greatly on the degree of the angle. The same can be said for the distance between the

19

Figore 4: Variation in Volume With Angle.

two lines. Consequently both the volume and the maximal distance measures of an
untested region depend strongly on the angles at which the constraints intersect. The ideal
case is illustrated in figure 4c, in which the parallel constraints restrict the size of the
component any error might have in the detectable direction without being detected. How
can such parallelism be guaranteed? It cannot be obtained with only N constraints; in fact
2N-1 constraints would be required. Two constraining planes will be parallel only if they

are generated by the same €. This in tumn requires that the inputs be chosen in pairs, v

and kv, such that v is on and kv, is off, with k being very close to 1. This defines a
simple refinement of the NxN strategy, and is equivalent to the special case of NxN in
which the off points are chosen to correspond to the same vertices as do the on points.

Is the extra confidence imparted by NxN worth evaluating N—1 additional test points?
Without a doubt, the gain is not on the same order of magnitude of importance as having
imposed some finite bound on each detectable direction. Beyond that simple observation,
only experimentation and experience can indicate whether the extra effort is worthwhile.
Since, however, the NxN strategy so closely approaches the ideal of figure 4c, it does seem
safe to dismiss the even more costly VxV strategy as unjustifiable.

The above discussion has concentrated on errors which were linear functions of the
program inputs only. Most discussions of the domain testing strategies have in fact been
couched in terms of linear functions of program inputs and constants [1,6], a more common
interpretation of phrases like “domain errors in linear borders” [6]. Adding constant offsets

20

to the error space results in an error space of dimension N+1. A closed figure in this
space would require at least N+2 constraints, so it might seem as if the Nx1 strategy could
be immediately dismissed. However, with the addition of constants to the error space, T-C
is always in the error space and so only N+1 independent directions can possibly be
constrained. The arguments used above when the border passed through the origin are
applicable here to show that Nx1 (and by implication, NxN) suffice to bound regions in
this error space also. In this space, none of the on points are redundant.

To summarize, both White and Cohen’s Nx1 scheme and the NxN scheme of Clarke
et al for domain testing achieve the principle goal of imposing a finite limit on the size of
all possible linear (in program inputs and constants) errors in linear predicates. The NxN
scheme will usually give smaller bounds, but it is not clear whether the difference is
significant. These schemes will also detect all operator substitutions if one of the on points
is moved slightly off of and to the accepted side of the border.

VII. Extensions of Domain Testing

An important characteristic of perturbation testing is that the power of a set of test
data to detect perturbing functions (errors) is largely independent of the complexity of the
statement being tested, depending instead primarily on the properties of the chosen space of
potential errors. In [10], for example, this characteristic was employed to demonstrate the
usefulness of Howden’s algebraic testing to a much wider variety of programs than
originally believed [4]. It is natural to ask here whether similar extensions can be justified
for domain testing. In particular, do the Nx1 and NxN strategies suffice for finding linear
errors in non-linear borders, and can they be extended to cover non-linear errors?

When the predicates being tested can yield nonlinear borders, we may still be
interested in detecting any linear errors, if only as a prelude to testing for higher-order
perturbations. Both the Nx1 and NxN schemes can be extended to non-linear borders by
emphasizing the need for the on points to be in general position and to be spread widely
apart, and recognizing that the vertices where borders intersect may not be the best
locations. For example, the predicate “IF X*2 + Y**2 < 1.” could result in a path domain
with no vertices at all! By way of contrast, the procedure for coordinate reduction given
near the start of the previous section translates into non-linear domains without change,
providing an example of how the search for the on points can be formulated.

If the border is non-linear but the space of potential error functions is linear (with
constants), the function ToC cannot lie in the error space. Consequently, N+2 points will be
required to finitely bound all errors. Obviously the Nx1 strategy is not sufficient for linear
errors in non-linear predicates. Can it be “patched up” by the addition of one more point?

Figure 5 shows a variety of test points chosen near a non-linear border. The points
ON;, ON,, and OFF represent “normal” choices of the Nx1 strategy. In an N dimensional
input space, the N points ON; will be in general position and hence will impose finite
bounds on N linearly independent error directions. This leaves two more bounds to be
imposed.

21

Figure 5: Testing for Linear Errors in Non-inear Borders.

Any N points can be contained in an N-1 dimension hyperplane. Consequently
there must exist some linear function h such that h(ON;) = O for all i from 1 to N (figure
5). Since h is linear, it is a potential error term, and by definition all the on points are
blind to h. Hence h is unbounded on both signs, accounting for both of the error
directions still to be covered.

If the off point is chosen within the same hyperplane defined by the on points
(possible because the border is non-linear), it is useless for our purposes. It is therefore
desirable to expand the requirement that “all on points be in general position” to “the on
and off points must be in general position.” Then h(OFF) will be non-zero, and the point
OFF will bound one sign of h.

Recall that

a.(h,OFF) = T'C(OFF) / h(OFF).

The desired final test point, then, should have a different sign than OFF for TC or for
h, but not both. In terms of the figure, this means that desired point must lic on the
other side of the border, or on the other side of the plane h(Vvy) = 0, but not both. The
two off points required to detect linear errors, therefore, must be chosen so that one point

is between the border and the plane of on points, and the other point lies outside of both
the border and the on point plane.

The NxN strategy fares no better in this domain. If, as recommended in the previous
sections, the off points are very close to the on points but on the other side of the border,
all the off points will lic on the same side of both the border and the on point plane. An
additional point lying between the two would still be required. Once again the only
advantage offered by the NxN strategy is the near parallelism of opposing constraints. If
the off points are not chosen in the recommended manner, that advantage is lost, and
there is still no guarantee that any of the off points will fall between the border and the
on point plane.

22

If we wish to test for non-linear errors in non-linear borders, it is unlikely that the
distribution of required points in the input space will appear geometrically significant.
Equation (9) is still valid for computing a,, but € is no longer a linear function. The goal
for choosing the first n points (where n is the dimension of the error space) must still be
the generation of a linearly independent set of €.s, so that all error directions will be
bounded on at least one sign. Choosing these points on or near the border and choosing
additional points just across the border should still tend to give nearly parallel constraints,
but it is possible that these pairs of constraints will be on the same sign. This occurs
" whenever & locally approximates T*C. This unfortunate occurrence can easily be detected

by simply checking the signs of the a.’s, and a new point selected to bound that direction,
but the new constraint need not be even approximately parallel to the constraint bounding
the other sign.

An analogue of the Nxl1 strategy is not easily obtained for non-linear errors. We
could start by choosing the first n points in the same manner as in the above paragraph,
then solving for the maximal distance direction and choosing a final point to restrict that
error direction. The principal difficulty appears to be that the maximal distance direction
may not be unique due to the existence of local invariants, necessitating a trial-and-error
search for a direction which is constrainable.

VIIL. The Static View of Domain Testing

The discussion of domain testing in the previous section concentrated on possible
errors in the function computed by the program without discussing the faults in the source
code which could be responsible for those errors. Such an approach seems logical if the
purpose of testing is to demonstrate the correctness of the program function, but such
demonstrations are not, in general, possible. Concentration on the program function seems
much less appropriate when the goal of testing is the increase of confidence in the program
by the elimination of certain classes of errors. Simple, plausible faults in the source code
can result in errors in the program function that run the gamut from subtle alterations on
a few inputs to massive changes over the whole input domain. Confidence seems best
associated with the knowledge that the actual code is either correct or that the correct
code would be “implausibly” different from the programmer’s original creation. Therefore
we should like to know whether domain testing can be counted on to eliminate some large
class of “plausible” faults in the source code.

Another reason for shifting the focus of this discussion from the dynamic program
function to the static code is that a given fault may be encountered along a number of
different paths. Faults to which one path is blind may be detectable along a different
path. In addition, test data intended to constrain the set of untested errors for one
statement will usually provide constraints for other statements encountered in the course of
executing that data.

With regard to domain testing then, the following questions can be posed: After
domain testing along one path, what possible faults remain untested? Is the full domain
testing procedure required for every test path through the statements being examined? How
should the additional test paths be chosen?

23

To simplify the following discussion, we will postulate the existence of a program P
to be tested. P will have variables X and Y whose values are computed and assigned by P.
In addition, P may have “input variables” A and B which are used to accept values from
the input stream but which are not afterwards altered by P. Such input variables can also
arise as parameters passed to P and never reassigned new values within P. The significance
of input variables is that they provide a link to the earlier discussion of domain testing,
which is defined in terms of functions of the program inputs. Faults written with X and
Y, on the other hand, are only indirectly related to the program inputs through the partial
function computed along the chosen test path, a relationship which can change with each
new path. This distinction is drawn here for the sake of discussion, though it need not
exist in real programs for the conclusions to be valid.

Consider first testing a predicate in P for faults taken from a postulated error space
E. Assume that a path has already been subjected to domain testing designed to detect all
predicate errors from a class Binp- For the sake of simplicity, we will assume that either

no equality restrictions occurred on that path, or else that just enough points were chosen
along some other path to constrain any error directions left unbounded due to equalities.

Suppose that some fault € from E remains unbounded. There are a number of possibilities:

1. € might be a function of A and B only. If, however, € ¢ Einpv then it would

have been bounded by the previous domain test. Hence € must lie in E but
not Einp- One solution might be to domain test for a more general class of
errors. Alternatively, coordinate reduction of € on the same path (or on a

different one) could be applied to select a pair of points to bound €. Simply
conducting the same level of domain testing on a different path is not a

reasonable solution, since if detection or constraint of € was not guaranteed on
the first path, it would not be guaranteed on another path.

2. e might be a function of X and Y only. Let C; be the computation for the
path tested up to the point where the predicate was encountered. €°C; is a

function entirely of the inputs A and B. If e°C; is not zero for every point
in the path domain, then we are back to the previous case, this time with the
error term e°C,. If the path is blind to e°C; (ie., €C; is zero over the
entire path domain), then clearly another test path must be chosen. Applying
domain testing to this second path would be overkill, since only two new points
are needed to bound € on both sides. Furthermore, the second path may fail
to bound € for the same reasons as the first. It appears more economical to
apply coordinate reduction in order to bound e.

3. Finally, € may be a function of both regular variables and input variables.
Such faults will be missed quite frequently because for each variable there exists
a function describing the computation performed to compute that variable’s
value along the path being tested. Thus for the variable X there is some
function fy(A,B) such that X = fy(A,B) for all A and B in the path domain.

The expression “X — fx(A,B)” is therefore untestable for all points in this path

24

domain. The derivation of all such expressions is described in [8,9]. If another

path is selected to be tested for which e is detectable for some points, there
will be a new function, gx(A,B) describing the function assigned to X on this

new path. Thus the fault “X — fx(A,B)” will be constrained only if the error
“(gx — fxXNA,B)” is testable. If this error is in Einp’ domain testing along the
second path suffices, but if not then we are back to the first case. Even when
domain testing suffices, it is likely to be more effort than using coordinate

reduction to find the two points required to bound €.

Should domain testing ever be done on more than one path through a particular
predicate? The above discussion stacked the deck somewhat against domain testing by
postulating only a single untested error direction. When a number of directions remain
untested, additional domain tests seem more plausible. From the above arguments however,
it seems safe to say that domain testing should be abandcned in favor of concentrating on
particular error expressions whenever the number of directions remaining to be tested is
significantly less than the dimension of E'an' which in turn is less than the number of
points chosen by domain testing for each path. In addition, it seems safe to say that
domain testing should be abandoned whenever the domain test set for the previous path
fails to significantly reduce the number of remaining untested directions, since that failure
implies that the interpretations of the remaining directions are tending to fall outside of

Einp'

The arguments presented in this section for predicate faults can be extended to
assignment faults as well. Consider a path passing first through computations C,, then
through an erroneous block of computations C°, and finally through additional computations
Cg and ending at a predicate T. As before, we will be interested only in those cases
where ToCp is a linear function of the variables affected by C°. If TeCg is not linear,
there may exist other predicates along the path in question or to which that path can be
extended which do yield linearity. If no such linear uses of C° can be found, then a,

cannot be computed, although the set of blindness directions can still be found, in order to
show which directions are completely untested. The tester should also be alert to the
possibility that paths can be found through output statements which depend upon the
variables assigned in C°, so that C° can also be examined for computation errors as
described in [10]. Where both domain and computation errors are being assessed for the
same space of possible assignment faults, any error direction considered detectable as a
computation error may be considered to be constrained with a,= 0 for both signs.

The simplest case of analyzing domain errors due to assignment faults occurs when
C’ (and C) is a single assignment statement. Then, replacing C* with C — aé gives

T°CB°C’°C A(Vo) = (T°CB°C = CI.T°CB°é)°C A(VO).

This may be viewed as a transformed program in which we are now concerned with
detecting a predicate fault oToCpeé which has been added to a correct predicate with
function TeCpeC to yield an incorrect predicate TeCgeC”. Then all of the previous
arguments for predicate faults hold here as well, provided that aTeCpgoe is not identically
zero. Since € affects only a single variable, this in turn means that TeCg must make a
non-trivial reference to the affected variable. Given that TeCg is linear, non-trivial means

25

simply that the coefficient of the affected variable in the linear function TeCy must be
non-zero. '

When C and C° involve assignments to more than one variable, then the major
change in the above is that the requirement that aT°Cgeé be non-zero is no longer trivial.

For any given &, this is easily verified, but in order to assess the impact of a test point on

the entire space of errors it is mecessary to solve the linear system TeCpeé = 0 [8]. This
system governs the combinations of simultaneous perturbations to different variables which
can be detected. For example, if TeCg = X — Y, then any fault which adds the same
error term to both X and Y goes untested. This is entirely a function of the path being
tested rather than the points chosen for that path, so the domain testing rules for choosing
points contribute nothing to the detection of these faults. In many cases, however, a given
test point may pass through so many predicates (and output statements) that all these faults
will be detectable for at least one predicate, making the behavior of domain testing
equivalent to the case of single assignment statements. Failing that, additional paths should
be chosen which, if possible, differ only after the assignment statements being tested. These
paths should be tested at the same level as the original one (i.e., domain testing if the
path they were based on was the first one tested, or coordinate reduction if it was a later

path), until all the solutions to ToCgé = 0 have been eliminated as in [89].
IX. Conclosions

The theories underlying perturbation testing can be expanded to evaluation of
individual data points as well as entire paths. This expansion has been done in part in [10],
to discuss computation errors. In this paper the theory is extended to domain errors.

For both predicate and assignment faults, it is possible to derive the set of error
directions to which a given input is blind. The computational effort involved is simply the
solution of a single linear equation, even though the errors and program constructs in
question may be nonlinear. For those errors to which the input data was not blind,
sensitivity measures can be derived which limit the possible size of those errors. These
sensitivity measures divide the space of possible errors into tested and untested regions, with
the untested region described as a system of linear inequalities.

The combination of these new measures with standard optimization techniques opens
up new possibilities for testing strategies, either alone or in concert with established path
selection techniques. Two new strategies have been described, coordinate reduction and
maximal distance reduction, which differ in the choice of new error directions for which
improved sensitivity will be sought.

The notion of constraining the untested error space can be used as a tool for
analyzing other testing strategies. The different approaches to the domain testing strategy as
introduced by White and Cohen [6] and as later modified by Clarke et al. [1] can be
shown to be closer in error detection capability than expected. Both the Nx1 scheme [6]
and the NxN scheme [1] place finite bounds on the size of all possible linear errors in
linear domain boundaries. though the NxN scheme will usually result in somewhat smaller
bounds. Both schemes require the addition of one more test point to place finite bounds on

all possible linear errors in non-linear domain boundaries.

Domain testing on a single path cannot guarantee the detection of all faults in
program predicates and assignment statements, even for linear classes of possible faults. As
additional paths are chosen, the effectiveness of domain testing decreases, suggesting that
domain testing should be restricted to early choices of test paths.

X. Bibliography

1. L. A. Clarke, J. Hassell, and D. J. Richardson, “A Close Look at Domain
Testing”, IEEE Transactions on Software Engineering, vol. SE—8, no. 4, 380390,
July 1982

2. W. E. Howden, “Methodology for the Generation of Program Test Data”, IEEE
Transactions on Computers, vol. C—24, no. 5, 554—560, May 1975

3. W. E. Howden, “Reliability of the Path Analysis Testing Strategy”, IEEE
Transactions on Software Engineering, vol. SE-2, no. 3, 280-215, Sept. 1976

4. W. E. Howden, “Algebraic Program Testing”, Acta Informatica, vol. 10, 53—66,
1978

S. S. Rapps and E. J. Weyuker, “Data Flow Analysis Techniques for Test Data
Selection”, Proceedings of the Sixth International Conference on Software
Engineering, 1982, IEEE Computer Society, 272—-278

6. L.J. White and E. I. Cohen,"A Domain Strategy for Computer Program
Testing” JEEE Transactions on Software Engineering, vol. SE—6, no. 3, 247-257,
May 1980

7. S.J. Zeil and L. J. White, “Sufficient Test Sets for Path Analysis Testing
Strategies”, Proceedings of the 5th International Conference on Software
Engineering, IEEE Computer Society, 184—191, 1981

8. S.J. Zeil, Selecting Sufficient Sets of Test Paths for Program Testing,
Ph.D. dissertation, 1981, Ohio State University, also technical report
OSU-CISRC-TR-81-10

9.

10.

S. J. Zeil, “Testing for Perturbations of Program Statements”, IEEE Transactions
on Software Engineering, SE-9, No. 3, May 1983, pp. 335-346

S. J. Zeil, “Perturbation Testing for Computation Errors”, Seventh International
Conference on Software Engineering, March 1984, IEEE, also University of
Massachusetts Technical Report 83-23, July 1983

