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ABSTRACT

Plot units present a memory representation particularly well
suited to the task of narrative summarization. The detection of "top
level" plot units and their connectivity from an "affect state map"
enables us to identify the central ideas of a story. A computer
program, PUGG (the Plot Unit Graph Generator) has been implemented
which allows us to derive this information from the affective
structure of the story.

Beginning with a brief introduction to the underlying memory
representation, we procede to describe the mechanisms that enable PUGG
to produce a listing of top level plot units and their connections to
one another. Specifically, we explain how PUGG uses a
read-integrate-predict loop to generate predictions for subsequent
units based on the affective structure previously encountered. These
predictions take the form of demons anticipating the structure of the
unread portion of the affect state map. Plot units are recognized
through a process of demon "movement". Additional features such as
flexible plot wunit definitions and causal link transitivity increase
the power of the program enabling the recognition of more units
displaying greater connectivity. Finally a "micro" version of the
program is presented followed by a complete listing of the set of plot
units currently in use.



TABLE OF CONTENTS

Section One: Memory Representation and Plot Units....ieveeeeeenceessl

I. Memory Representation.......... ce e ececesessassessatesess o0 as 1

II. Affect States and Plot Units.....eeeeeececcnns Ceeetssssenenns 3
Section Two: The Plot Unit Graph Generator......... et reecessennas 8
I. Recognition Module......oe. st esessscesas e st s e e s aes e ess s 9

A. Reading Phase...ceeeereesccessososcssscssssccssosscncssss .9

B. Integration Phase...iceveececrscccccccasns ceessessesesse 13

C. Prediction Phas@....eeeeesesoscesssesscssnssscnss R

1. Demon SEruCtUre..icceeesocescscsosssnsocsosncaccas 15

a Path Structure.....iceeiiiiieinirececnncens 15

b Flexible Plot Unlt Deflnltlons... ..... i

2. Demon Management........... P <

a. Demon Path Reduction........ cesessns O

b. Demon ProgressioN....eiceeeecsscceccsssass 21

c. Demon Migration....ceeeseeecececosososssscessel3

d. Causal Link Transitivity.eeeeeeeoaoes cesee2b

3. Conditionals.....ceeeeecsecccconnnsns B 1

II. Report Module......... e eec s e esecees s aae s e st ass a0 o 33

A. Top Level Unit List..eeeerecenccncccecsonenas ceeccanns 35

1. Identification of Top Level Units........ccce0se 35

2. Dyadic primitiveS...c.eeceeeeeeececnasans e ...36

B. Adjacency MatriX...oeeeeeeeceeeccceccacsnns B X

C. Unit Families.....ieeteieeeneeeeconnns teecsssccenns «ee o 37

D. Connected Subgraphs.......cceeeeiiiireninncnnecscnns 38

Section Three: ConclusSioN....ieieeeeeeeeeeececasesssonssasssonnnsans 38
Seection Four: McPUGG - a Micro Version of PUGG......... ceesesesanas 41
Section Five: Plot Units in Use....eeverienceecncanns et eeseesenans 60

ReferentCes ..ceeeeeeceees e e e s eesssesessnseceseessacsaneeseease R <1+



Section one: Memory Representation and Plot Units

I. MEMORY REPRESENTATION

Memory representation has always been a central concern for
theories of text comprehension. Wh.le it is widely conceded that the
conceptual concept of a text must be stored in memory in some form
other than the original input sentences, there is no general agreement
on exactly what representational techniques must be used. A variety
of approaches have been proposed, ranging from predicate calculus
formalisms [Kintsch 1974, Woods 1970], to case grammars [Rumelhart &
Norman 1975, Fillmore 1968, Winograd 1972, Graesser 1981], to systems
of primitive decomposition [Schank 1975, Wilks 1978, Lehnert 1979].
Each technique continues to attract a following of active
practicioners, although there seems to be psychological evidence for
primitive decomposition over more lexically-oriented representations

[Gentner 1981].

A major impetus in recent research concerns the organization of
large memory representations. A narrative is more than the sum of its
individual sentences: readers supply their own inferences [Rieger
1975, Schank & Abelson 1977, Wilensky 1980], idiosyncratic
interpretations, and personal belief systems [Carbonell 1978] during
the wunderstanding process. It has been estimated that the ratio of
implicit information derived from a narrative to explicit information
present in that text is something like 8:1 [Graesser 1981]. If a text
understanding system (human or otherwise) 1is not generating these
implicit assumptions, it is difficult to say in what sense the text

has been understood.
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As the problems of inference began to demand serious attention,
the notion of an internal memory representation moved further and
further away from sentence-driven propositions. While sentences
continued to provide a necessary starting point, the amount of
conceptual representation generated in response to any given sentence
began to 1look less like a function of that sentence per se, and more
like a function of causal connectivity, goal-oriented behavior, and
expectation-driven knowledge structures. Large memory representations
could be generated in response to simple 3-sentence stories
[Cullingford 1978, Wilensky 1980], and computational models began to
struggle with the organization of multi-layered representations, where
various levels of memory representation specialize 1in describing
physical event sequences, inferred guals for active characters, likely
plans acting in the service of those goals, and affective reactions

for important characters [Dyer 1983].

In the course of investigating complex strategies for
multi-layered memory representations, we developed a 1level of
representation that appears to be particularly well-suited for
narrative text summarization. When one is confronted with the task of
summarizing a narrative, it 1is possible to 1imagine two general
strategies for memory retrieval. On the one hand, we can design some
sort of "brute force" algorithm that examines all the information
available in memory and then procedes to filter that information
according to some extensive set of deletion rules and/or principles of
focus. On the other hand, we might strive to design a memory
representation that somehow makes it very weasy to distinguish the

important central concepts from the peripheral and secondary concepts.
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With such a memory representation, the retrieval algorithms we need
can be direct and simple. This is the approach we have taken in

formulating the representational system of plot units.

II. AFFECT STATES AND PLOT UNITS

A plot unit is a simple configuration built up of three primitive
affect states. In this system wc need only distinguish generally
positive reactions, negative reactions, and the more neutral mental
states associated with desires, goals and plans. These three affect
states will be referred to as (1) +S (positive states), (2) =S
(negative states), and (3) MS (neutral mental states). For each

character of a story, we create an affect state map for that

character, where we record a chronological sequence of affect states
experienced by that character. We expect that much of this
information must be inferred by the reader, so we build this level of
representation "on top of" 1lower levels of representation that
specialize in various inference strategies. The BORIS system provides
a good picture of what these lower 1levels of memory representation

must entail [Dyer 1983].

An affect state map is structureu in part by the chronology of
the affect states experienced, but additional structure is present in
the form of causal links joining pairs of affect states. There are
four causal 1links wused to join affect states, and each link type is
restricted by a syntax that dictates in what ways two states can be
connected. The 1links are (1) motivation links, (2) actualization
links, (3) termination 1links, and (4) equivalence 1links (usually

abbreviated as m-links, a-links, t-links and e-links.) A motivation
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link can only be used to "explain" an MS in the sense that some other
affect state has motivated the MS. So we can have a motivational link
poeinting from a +S to an MS to indicate that a positive state enabled
the mental state. We can alternatively have a motivational link
poeinting from an -S to an MS whenever some negative reaction 1is
driving a goal or plan. And we can also have an MS motivating another
MS when we want to express a subgecal relationship or a goal-plan
relationship. We will not describe the full syntax of our causal
links here, although it is important to note that there are only 15
syntactically correct combinations of state-link-state triples. For a

complete description of the syntax see [Lehnert 1982].

In addition to these four links which are used to connect affect
states for a single character, we also use a cross-character link
(c-link) to connect affect states experienced by two different
characters. 1In this way, a story containing 5 major characters can be
represented by five corresponding affect state maps, with causal
connections between them wherever two characters interact or respond
to one another. The best way to get a feel for the system is by

looking at an example.

Suppose we have a story about John and Mary, in which John asks
Mary to fix a rip in his shirt, and Mary says no. John then procedes
to ask Mary's best friend Nancy for a date. Nancy agrees, and when
Mary finds out about it, she dumps John altogether. Here we have a
story invelving three characters, and a number of c¢ross-character

interactions:
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John Mary Nancy
wants shirt fixed MS‘\\\\\\h
MS doesn't want
a )a. to fix it
+S refuses to
fix shirt
feels hurt, annoyed —S””’//’

m
decides to date MS

MS decides to

& )a, date John
decides to
+S = date John

\\\\\\“ -3 feels hurt,

)M betrayed
MS) decides to

John gets his date

o. dump Jechn
tells John to
forget it
John feels regret(?) =S

This story involves a number of actualized goals as well as a
failed goal when John initially fails to get Mary to fix his shirt.
We see two instances of goal motivation: the first occurs when John
decides to date Nancy, the second when Mary decides to dump John. We
also see some symmetry in the interactions between John and Mary. At
first, Mary does something (refuses to fix his shirt) which affects
John negatively. His reaction then motivates him to actualize a goal
(dating Nancy) which will affect Mary negatively (she feels hurt).
The same pattern is reciprocated when John does something (dates
Nancy) which affects Mary negatively. Her reaction then motivates her
to actualize a goal (dumping John) which will affect John negatively
(he feels regret). These repeated patterns represent instantiations
of retaliatory actions. Since it would be reasonable to summarize

this story as one where Mary got even with John for something he did
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to her, it is crucial for wus to recognize these instances of

retaliation.

Affect state maps provide us with a level of representation which
is strictly instrumental to the level we really want to access; we
cannot design a retrieval mechanism for the summarization task at the
level of an affect state map alone. To effectively summarize our
narrative, we must derive a new 1level of representation from the

affect state map. This higher derivative is called a plot unit graph,

and the remainder of this paper describes the derivational process

that allows us to extract plot unit graphs from affect state maps.

Within any given affect state map, we will see configurations of
affect states and causal links that appear with some frequency across
a variety of stories. These configurations correspond to intuitively
recognizable situations, such as intentional problem resclutions,
mixed blessings, perseverence after failure, and so on and so forth.
Some of these configurations require only one character while others
involve two characters (for example, an honored request or a reneged
promise). A few of these are 1listed below to illustrate their

affect-state level encodings:
-3 MS
o E
+ MS +3 e -3
)o. )e Dm
+S =S MS

Intentional Mixed Perseverence
Problem-Resolution Blessing After-Failure
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MS MS
\MS a \+s
a e
+S +S\\\\\\
+S -3
Honored-Request Reneged-Promise

Configurations 1like these are called plot units. We have
identified about 50 plot units, ranging from the 15 "primitive" plot
units consisting of only state-link-state combinations to more
complicated structures involving many affect states and connecting
causal links. These units will typically overlap with one another at
shared affect states, and we often see large plot units "subsume"
smaller unit components when the larger unit contains all the affect
states and 1link types present in the smaller unit. For the purposes
of the plot unit graph, we are only interested in the "top-level" plot
units, that 1is, those wunits that have not been subsumed by larger

units.

To form a plet unit graph, we create a node in the graph for each
top-level plot unit present in the affect state map, and we join two
nodes in the graph whenever their corresponding plot units intersect
at one or more affect states. The structure of this plot unit graph
then reflects the essential connectivity of the top-level plot wunits
found in the affect state map. We can readily examine the graph
structure to see which units are strongly connected (and therefore
central to the narrative), and which units are weakly connected (and
peripheral to the core story). The actual indentification of central

plot units depends on structural features of the graph [Lehnert 19831,
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and may be somewhat more involved than finding the unit or units with

maximal degree. But we will not need to go into those issues here.

The identification of top-level plot units in an affect state map
is an interesting problem in its own right, and one that has been
realized by a computer program, PUGG (the Plot Unit Graph Generator)
which runs in 1linear time. We will now describe the processing
strategies used by PUGG to derive plot unit graphs from affect state

maps.

Section two: The Plot Unit Graph Generator

The Plot Unit Graph Generator takes as input a chronecleogically ordered
list of affect states and their links (an affect state map.) PUGG
processes this memory representation and returns a listing of all the
top-level units and their relationships with one another. This
provides us with the information we need to derive the plot unit graph

structure of the source narrative.

PUGG consists of two independent modules. The recognition module

contains the central core of the program, where the identification of
plot units occurs within a Read-Integrate-Predict (RIP) 1loop. This
routine 1loops continuously, (1) reading a new affect state (2)

integrating this information into what is already known, and (3)

predicting the occurrence of more plot units later in the text. When

all the input data has been read in and the plot wunit identification

is completed, PUGG enters its second half, the report module. This

section prints summary statistics for the set of plot units just
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identified, including a listing of the top level plot units and their

relationships to each other.

I. RECOGNITION MODULE

A. READING PHASE

The recognition module constructs a record for each affect state
as it 1is read 1in. This record contains the affect state's name (a
unique subscripted identifier, i.e. MS2, +S0), the character
experiencing the affect state, a listing of any links tec or from other
affect states and a short comment des.ribing the state. States are
read in chronologically so only previously defined affect states can
be linked to the current state. Let us take the

INTENTIONAL-PROBLEM-RESOLUTION unit as an example:

-S0
L

+ MSO
Ja

+30

When formatted as input to PUGG, the above affect state map becomes:

more more
more state char in- from 1link in out- to link out
states? type links? state? type links? links? state? type links?
-3 Ted n n
y ms Ted y -s0 m n n
y +3 Ted y msO a n y -s0 t n
n

(the description fields have been left off due to space limitations)
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We read the information contained in the affect state map in the
following manner: First, the initial affect state is entered (-S),
followed by the name for the character experiencing that state (for
this example let us suppose the character is named Ted.) Each state is
given a unique name by the reading functions, so that the -S states
entered will be (consecutively) named -SO, -S1, -352, etec. Links into
or out of this state are the next items requested. While there 1is a
link out of -S0 pointing to MSO, this information will not be entered
at this point because MSO has not yet been defined. We will be able

to establish this link shortly, however.

After any links have been entered, the read 1loop asks if any
additional affect states are waiting to be read in. A "yes" begins
the process anew with the next affect state. We read in the affect
state (MS) and character's name (Ted) and again request links into or
out of this affect state. At this point we pick up the M-link into
MSO from -S0. The A-link from MSO to +S0 must wait for the next round
since +S0 has not been created by the recognition module. On the
third and final iteration, the state type (+S) and character (Ted) are
encountered and a new state named +S0 is created. The A-link into +30
from MSO can now be recorded. We can also read in the T-link out of
+30 to -SO0 since -S0 has already been created. When all the data for
one affect state has been entered, PUGG prints a message informing the
user that this state has been created along with whatever associated
information 1is recorded for that state. The recognition module's

trace for the INTENTIONAL-PROBLEM-RESOLUTION unit is included below:



Trace from Recognition Module:

Affect state -s0 has been created.

Name -s0

Char Ted
Links into -s0 from = nil
Links out of -s0 into = nil

Description = (problem)

Affect state ms0 has been created.

Name msO

Char Ted
Links into msO from = ((m . ~s0))
Links out of msO0 into = nil

Description = (idea)

Creating a new plot unit:

Name = unitO

Type problem
Role(s) = (Ted)

Affect States = (msO =-s0)

unit0 SUBSUMES nil

Creating demons looking for:

success-born-of-adversity

fortuitous-problem-resolution

Page 11
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Affect state +s0 has been created.

Name +50

Char Ted

Links into +s0 from = ((a . ms0))
Links out of +s0 into = ((t . =s0))

Description = (success)
Creating a new plot unit:

Name = uniti
Type = resolution
Role(s) = (Ted)

Affect States = (+s0 -s0)

unit1 SUBSUMES nil

Creating a new plot unit:

Name = unit?2
Type = success
Role(s) = (Ted)

Affect States = (+s0 ms0)

unit2 SUBSUMES nil

Creating demons looking for:
fleeting-success
competition

killing-two-birds
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Creating a new plot unit:

Name = unit3
Type = success-born-of-adversity
Role(s) = (Ted)

Affect States = (+s0 msO -s0)

unit3 SUBSUMES (unit2 unitoO)

Creating demons looking for:

intentional-problem-resclution

Creating a new plot unit:

Name = uniti

intentional-problem-resoliution

Type
Role(s) = (Ted)

Affect States = (+s0 -s0 msO0)

unitd4 SUBSUMES (unit1 unit3)

B. INTEGRATION PHASE

As each state is read in it is integrated with those states previously
defined. Cross-referencing links are generated for each link pointing
from A to B so that a corresponding back-pointing link is created from
B to A. Similarly, for each outgoing link coming from the current
state, a corresponding incoming link is established. Thus for the
example given above, when the M-link into MSO from -S0 is read in, a
backpointing M-link into -SO from MSO is created. And when the T-link

out of +S0 to -S0 is entered, a forward-pointing T-link from -SO to
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+50 1is established. These backpointers are not part of the
representational system per se; they merely enable useful processing
during the prediction phase. Having links pointing both up and down
the affect state map allows for a process called "demon movement" to
occur in both directions as well. (Demons and their movement will be

discussed in the next section.)

C. PREDICTION PHASE

At each point in the input stream, the recognition module forms
predictions for what it expects to see next. The affect state
structure previously encountered determines the specific predictions
formed. These predictions are instantiated as demons attached to
their originating affect states. Demons use situation-action rules
[Hayes~Roth and Waterman, 1978] utilizing structural information about
the definitions of plot units. Since complex plot units are built up
from more primitive wunits, the recognition of these smaller units
enables us to anticipate more complex structures. So each time a
primitive unit is identified, a set of predictions (demons) is spawned
listing the structures we would need to encounter in order to

recognize more complex units.

When we first read in the information defining a particular
affect state, we spawn a set of demons looking for the primitive units
based on that state type. Thus, encountering a -S affect state spawns
a set of demons for those primitive units beginning with a -3 state.
In the case of a negative affect state, we create a demon looking for

each of the following primitive plot units: PROBLEM, HIDDEN-BLESSING,
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COMPLEX-NEGATIVE, RESOLUTION, NEGATIVE-TRADE-OFF, EXTERNAL-PROBLEM,
NEGATIVE-REACTION and POSITIVE-REACTION (the last three units having a
"wild-card" initial state: -S, +S or mS.) In the same way, once we've
recognized the primitive unit SUCCESS, we generate a set of demons
whose definitions begin with an instance of this unit. In the example
trace above we see that the creation of a SUCCESS unit results in the
formation of demons looking for the FLEETING-SUCCESS, COMPETITION and
KILLING-TWO-BIRDS plot units. In other words, when we encounter a
SUCCESS plot unit, we predict that we might also find one or more of
these other units. By ordering our unit predictions hierarchically,
we minimize the search time spent considering possible configurations.
We Wwill always consider the basic primitive predictions, but
predictions for more involved configurations will only be loaded when

we've seen enough structure to justify such expectations.

1. Demon Structure

a. Path Structure

Demons are records consisting of the name of the demon (unit-id),
the character(s) concerned, a list of the affect states involved, any
subsumed units and, most importantly, the demon's "path." A path is an
ordered 1list of states and links which must be traversed in order for
PUGG to recognize the plot unit in question. [Example:
((-S . ?X) (GIVES . M) (MS . ?X))] Any smaller units which form part
of the definition for this unit are also included in the demon's path.

Each of the items in a demon's path is called a step. Each step
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describing a state or a subunit also indicates which character(s) must
be experiencing the affect states specified in order for the

definition to be realized.

An example should help clarify matters at this point. The
definition for the plot unit FLEETING-SUCCESS is shown below.

MS
Da.

+S
jt

=3

One path for this unit is represented ecs:

((MS" . ?X) (GIVES . A) (+S . ?X) (TAKES . T) (-S . ?X))

where the key words "gives" and "takes" are used to indicate the
direction of the link involved. So here we have a path beginning at
some mental state (MS) for a given character (?X). It then describes
the A-link coming from the mental state to a positive state associated
with ?X (the same character who experienced the mental state). Then
we pick up a T-link coming into the positive state from a negative
state, for the same character. If all these steps can be traversed,

we have an instance of the FLEETING-SUCCESS plot unit.
Alternately, we could define the path for the unit SUCCESS to be:
((MS . ?X) (GIVES . A) (+S . ?X))
and use that in the path for FLEETING-SUCCESS as follows:
((SUBUNIT SUCCESS (?X)) (TAKES . T) (-S . ?X)).

Wherever possible, we use the subunit form of a path 1list. This
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permits us to consider the demon predicting a FLEETING-SUCCESS unit
only when a SUCCESS unit has been recognized, rather than whenever an
MS state 1is encountered. We prefer this reduction because it (1)
keeps demon propagation down to a minimum and (2) increases the
probability of encountering the affect state structures needed to

satisfy predicted paths.

b.) Flexible Plot Unit Definitions

Some pleot units have more than one corresponding affect state map

representation. For example, both maps below are encodings of the

COMPETITION plot unit:

CHAR X CHAR Y CHAR X CHAR Y
MS
MS MS a
MS o +5
a.( a
+3 +S~\\\\\\ &
\\\\\\~_S s
COMPETITION-1 COMPETITION=-2

Whether the losing character experiences a temporary victory which is
then lost (FLEETING-SUCCESS) or an immediate defeat (FAILURE), the
concept of competition is maintained. In such a case we say that we
have a "flexible definition" for the plot unit COMPETITION. We want
either affect state structure to be recognized as an instance of the

COMPETITION plot unit.
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We need two demons for such flexibly defined plot units, one for
each affect state map configuration [1]. The paths for these demons
are listed below:

COMPETITION-1
((SUBUNIT SUCCESS (?X)) (GIVES . C) (-3 . ?Y)
(SUBUNIT FAILURE (?Y))
(SUBUNIT NEGATIVE-REACTION (?Y . ?X)))
COMPETITION=-2
((SUBUNIT SUCCESS (?X)) (GIVES . C) (-5 . ?Y)
(SUBUNIT FLEETING-SUCCESS (?Y))
(SUBUNIT NEGATIVE-REACTION (2Y . ?X)))
By spawning both of these demons when a SUCCESS wunit 1is identified,
the recognition module forms predictions for both forms of this unit.
Units with flexible definitions are often set up to have one
definition as the main or default definition. We can ask the

recognition module to 1look for plot wunits wusing either default

definitions or flexible definitions.

2. Demon Management

All demons associated with a given affect state are stored on the
property 1list for that state. Many demons are active at any point
during the prediction phase of the RIP loop and each will be processed
at least once for each iteration of the 1loop. When a demon
successfully traverses a step in its path we say it "fires." And when
a demon fires, it generates new information (such as the recognition

of plot units) which may be needed by other demons. For example, it

[1] Or three demons if there are three possible configurations, etc.
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may identify a primitive plot wunit needed by another demon to
recognize a complex unit. Therefore, if one demon fires, we cycle
through the 1list of active demons again, reprocessing each to see if

it might fire now that this new information is available.

The recognition module is responsible for updating active demons
associated with affect states and reducing the demon's path to nil
when all its predictions are met. The updating process 1is 1largely
accomplished by moving active demons from one affect state to another.
There are two forms of demon movement: progression and migration.
Progression is the simpler of the two and will be described first, but

before doing so we need to explain how we reduce a demon's path.

a.) Demon Path Reduction

As we read in each new affect state, the information it presents
is compared with that given in each demon's path list. Using the
example path for SUCCESS above for illustration, we note that once we
have encountered an MS state for character JANE, the demon for the
SUCCESS unit is spawned. The first step in this demon's path is
(MS . ?X). Since this matches the information we have just read in,
we can make a binding of JANE to ?X for this demon and the demon
fires. We no longer need this step in the path list so we remove it
leaving a path of just ((GIVES . A) (+S . JANE)), (i.e. we "pop" the
path.) Note that the character binding occurs throughout the entire
demon, rather than in the first step only. When we encounter a +3
state for JANE with an incoming A-link from that previous mental state
we can make another match against the path. We establish a mateh

between the (GIVES . A) step in the path and the A-link we have just
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read in, but before we remove it from the path we want to verify that
the state it points to also matches the one expected by the demon.
Finding that we do indeed have a +3 state for JANE, we now fire the

demon again and pop both steps off the path, leaving a path of nil.

Having reduced the path to nil, we instantiate a SUCCESS unit for
JANE. PUGG maintains a list of all the units it identifies during a
run (the all-unit 1list), so this unit is now added to that 1list. In
addition, all demons for units based on the SUCCESS unit, such as the
demon for FLEETING-SUCCESS, will now be spawned. These demons are

attached to the +S state at the end of the SUCCESS unit for JANE.

Complex units are recognized in a similar fashion, but these
often require additional steps that have not yet been discussed. One
other step type is the subunit step, a notation for each smaller wunit
recognized in the process of indentifying a larger unit. The unit
HONORED-REQUEST serves as a good example here. The affect state

structure for this unit is represented below:

JOHN MARY
MS1
o ) o
+31

Note that this unit is made up of four subunits, namely
EXTERNAL-MOTIVATION, POSITIVE-REACTION and two SUCCESS units. These
subunit steps are included in the path list for the HONORED-REQUEST

demon, shown below:



Page 21

((SUBUNIT EXTERNAL-MOTIVATION (?X ?Y)) (GIVES . A) (+S . ?7Y)
(SUBUNIT SUCCESS (7Y GIVES . C) (+S . ?X)
(SUBUNIT SUCCESS (2?X)) (SUBUNIT POSITIVE-REACTION (?X 2Y)))

b.) Demon Progression

Continuing our discussion of path reduction, we will now see how this
proceeds hand in hand with demon progression, the movement of the
demon from one state in the affect state map to another. The demon
above 1is spawned and placed on the property list for MS2 when an
EXTERNAL-MOTIVATION unit is found for JOHN and MARY. PUGG tests this
path against the information it has so far about the affect state map
and finds that there is a matech so JOHN and MARY are bound to ?X and
?Y, respectively. The path is popped and the demon fires, but it does
not progress, remaining attached to MS2. The resulting path appears
as:
((GIVES . A) (+S . MARY) (SUBUNIT SUCCESS (MARY))

(GIVES . C) (+S . JOHN) (SUBUNIT SUCCESS (JOHN))

(SUBUNIT POSITIVE-REACTION (JOHN MARY)))
When +S1 and the corresponding A-link for MARY are read in, these are
matched against the steps (GIVES . A) (+S . MARY) 1in the path.
Everything agrees so the demon fires and the path 1is popped again.
This demon is then deleted from the property list of state MS2 and
added to the property list for state +S1. In this way, as a demon
progresses through the affect state structure, it is always attached

to the state corresponding to the last item in the path matched.

Meanwhile, other demons have been spawned for the new states read
in. Encountering state MS2 under MARY spawned several demons, one of

which was the demon for a SUCCESS unit. This unit was recognized when
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state +S1 and the A-link were read in and "hooked" onto (placed on the
property list of) its last state (+3S1). Thus, when the
HONORED-REQUEST demon's path has been reduced as above, the next step,
(SUBUNIT SUCCESS (MARY)), may be matched with the SUCCESS unit just
identified for MARY. This step is then removed from the path and the
demon fires and progresses to state +S2. When the state +352 and the
corresponding C- and A-links are read in for JOHN, a similar process
ensues. Units POSITIVE-REACTION (for JOHN and MARY) and SUCCESS (for
JOHN) are identified. We then process the remainder of the demon's
path, matching against John's positive state and verifying the
subunits for John's success and John and Mary's positive reaction.
Again the path 1is reduced to nil and the HONORED-REQUEST unit is

recognized.

In our example above, the plot unit HONORED-REQUEST is said to
"subsume" the smaller units it contains. These units will therefore
not be included in the listing of top-level plot units produced by the
report module. To keep track of subsumed units, we place each subunit
in a "subsumed-list" for any demons that have successfully "picked up"
the subunif [2]. These units are then marked with a "subsumed" flag
(which is placed on the property list for that unit) once the larger

unit has been recognized.

We refer to those steps in the demon's path describing an affect
state type and character as state-bindings, and those steps describing

a link and link type as link-bindings (or S-bindings and L-bindings.)

[2] The subsumed-list is simply another slot in the record structure
for demons.
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Thus (MS . ?Y) is an example of an S-binding and (GIVES . C) is and
example of an L-binding. As can be seen from the discussion above,
the various types of steps are processed differently. S-bindings are
matched with data being read in whereas L-bindings and subunit steps
are matched against information stored on the property 1list for the
current affect state. Therefore PUGG must test each step in the path
list to see whether it describes an L-binding step, an S-binding step,
a subunit step or a migration step before attempting to make a

comparison.

c.) Demon Migration

OQur fourth and final step type describes demon migration.
Migration occurs when a plot unit contains a "dead end," a structure
that is necessary in defining the unit, but which fails to connect up
with other elements of the plot unit. The unit NESTED-SUBGOALS

provides a useful illustration of this phenomenon:

MS1

w52
Je)*

+31

+32

The demon for this path must reflect both the entire structure of the
unit as well as the chronological order of the affect states.
Starting with the first affect state (MS1), the next state encountered
is MS2 which is connected to MS1 with an M-link. +S1 is next in line
and this is joined to MS2 using an A-link. But when we encounter

state +S2, we note that there is no connection from this state to +S1.
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Rather, the connection exists back at the beginning of the unit, via
an A-link from MS31. Since demons progress along the graph as they
process the states involved, our demon for NESTED-SUBGOALS is now
attached to state +S1 and unable to make any further matches with the
states being read in. We need to move the demon from +S1 and attach

it to state MS1 so that it can progress down the A-link to +S32.

To accomplish this task we "migrate" the demon from +S1 back to
MS1. Migration is another path structure using L-bindings and
S-bindings to specify how demon movement may occur, only it relies on
previously encountered affect states instead of predicted states. The
path for the NESTED-SUBGOALS unit shows how this feature is included:
((MS . ?X) (GIVES . M) (MS . ?X) (GIVES . A) (+S . ?X)
(MIGRATING ((TAKES . A) (MS . ?X) (TAKES . M) (MS . ?X)))
(GIVES . A) (+S . ?X)) [3]
Here we see that the MIGRATING step is also a record with a path

structure of its own.

The demon processes the path for NESTED-SUBGOALS in the usual
fashion, matching +the S-bindings and L-bindings with the states and
links read in. When the MIGRATING step 1is encountered, the
cross-referencing 1links created during the integration phase are used
to traverse the migration path, moving back up the graph. We
therefore reverse the directionality of the links inside the migration
path, resulting in the L-bindings (TAKES . A) and (TAKES . M) where

[3] This is a "simplified"™ version of the path for this demon. In
actual practice, the path would begin with the MOTIVATED-SUCCESS
subunit and be followed directly by the migrating step. The subunit
SUCCESS would also be included in this path after the last step. The
definition above was chosen to help clarify the process of migration.
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previously we had (GIVES . M) and (GIVES . A). This path is processed
in much the same way as for progression, with the demon firing and
each step being popped (deleted) as matches occur. As the demon
migrates back along the path, it is removed from the property list of
each processed state and attached to the next state in the path. When
the migration path has been completely traversed, the demon rests on
the property 1list for MS1. This reduces the migration path to nil,
and this step is deleted from the NESTED-SUBGOALS demon's path 1list.
The demon now progresses as before traversing the path via

progression, eventually recognizing the plot unit.

d.) Causal Link Transitivity

When two characters react to a given event or share a goal state
we use c-links to connect the corresponding affect states. In the
same manner, we can represent the shared reactions and goal states of
three or more characters. In all cases where affect states are joined
by c-links, these states occur in response to a single event. So if
three characters share a goal state, the affect state map would show
three MS states c-linked together. If two characters have a positive
reaction to an event and a third has a negative reaction to the same
event, the affect state map would show two +S states and one -S state

c-linked across:

BOB SUE ALICE DAVID PENNY JOE

MSO +50

~ ~

MS1 -S1

\MSZ ™~ +S1

Shared goal state Reactions to shared event
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In such cases, the apparent "chronological" ordering of these states
is arbitrary and based only on the left to right ordering of the
characters in the affect state map. All the states in each of the

above graphs represent reactions to the same event.

Given a structure such as the one above representing reactions to
a shared event, we want to establish not only the dyadic units
NEGATIVE-REACTION (David and Penny) and POSITIVE-REACTION (Penny and
Joe), but also the wunit POSITIVE-REACTION for David and Joe. When
such a configuration arises, we want to recognize plot units which
exist between all pairs of characters, not merely those who happen to
be adjacent to each other in the affect state map. We call this

ability c¢-link transitivity. Let's see how we can accomplish this

using the shared event map above for an example.

The recognition module reads in the information needed to create
affect state +SO. It then forms predictions for the primitive plot
units with an initial +3 state by spawning demons for these units.
Among these demons are those for POSITIVE-REACTION and
NEGATIVE-REACTION, the two dyadic primitives which can begin with a +3

state:

POSITIVE-REACTION:

((*2% ., ?2X) (GIVES . C) (+S . ?Y))

NEGATIVE-REACTION:
((*¥2% . 2?2X) (GIVES . C) (-S . ?Y))

(In the first step of the above paths, the symbol *¥?*¥ indicates that

any state can be the initial state for these units.)
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For each of the two paths we bind ?X to David, fire the demon and
pop the path. Next we can match -SO with the negative state predicted
by the NEGATIVE-REACTION demon, instantiating that unit for David and
Penny. But we cannot establish a match for the last step in the path
of the POSITIVE-REACTION demon. Since only the demons attached to the
current state and those states linked directly to it are active, once
we read in state +351 for Joe we will not be able to go back to the
POSITIVE-REACTION demon we left hanging off of +S0. We therefore copy
the demon from state +S0 to state -S0. No matches can be made, so we
make no changes to the demon path. Since +S1 is directly linked to
the state holding this demon, wWe are now able to recognize the
POSITIVE-REACTION plot unit for David and Joe after state +S1 has been

created.

The implementation must proceed in the following manner: When
the recognition module creates an affect state which is c-linked to a
previous state we (1) establish the initial character bindings for
each of the demons attached to the antecedent affect state (which
might already have been done in demons for complex units) (2) copy
these demons from the preceding state to the current state and (3)
process the demons as before. It is important that we only copy the
demons from the antecedent state to the current state, leaving a copy
still attached to the original state. To 1illustrate, consider the

following affect state map:

CAROL KEN DEBRA

\+s1
\+sz

+30
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If we copy the demon predicting the POSITIVE-REACTION unit to +31 but
also remove it from +S0, we will still recognize the POSITIVE-REACTION
unit for Carol and Debra involving states +S0 and +S2. (Recall the
initial character binding of ?X to Carol has already been made when
the demon is copied.) But we will fail to recognize the
POSITIVE-REACTION wunit for Carcl anc Ken since we moved the demon
before its path was compared with the new information Jjust read in
(the e¢-1ink and state +S1). If we leave a copy behind with this state

we can easily pick up the other instance of this unit.

Plot unit transitivity gives rise to one further complication 1in

demon management. Consider the affect state map below:

MIKE BARB PAUL
/+SO
/ +51
+32
m (
MSO
e (
+33
+S4

\ +35

Transitivity permits us to recognize the two POSITIVE-REACTION units
between Mike and Paul in addition to those between Mike & Barb and
Barb & Paul. In turn, these additional units allow us to identify two
instances of the REWARD plot wunit (Mike rewarding Barb and Mike

rewarding Paul).
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m(
MS
e
+S

\+S

REWARD
Demon path for REWARD:

((SUBUNIT POSITIVE-REACTION (?X . ?Y)) (GIVES . M) (MS . ?X)

(GIVES . A) (+5 . ?X) (SUBUNIT ENABLED-SUCCESS (?X))
(GIVES . C) (+S . ?Y) (SUBUNIT POSITIVE-REACTION (?Y . ?X)))

This demon is spawned when a POSITIVE-REACTION wunit is recognized.
Recall that a subunit step 1is processed by searching for a match
against all the plot units hooked to the current state (+32). In this
case we have two POSITIVE-REACTION units attached to +52:
POSITIVE-REACTION (Mike Paul) and POSITIVE-REACTION (Mike Barb).
(Remember that plot units are always hooked to the final state in

their configuration, after being identified).

The syntax constraints on causal links permit only one link of a
given type to enter and 1leave an affect state. Therefore, if we
disallow c-link transitivity, we can only have one POSITIVE-REACTION

unit hooked to a +S state:

? ? ?

+s/. .\+s/.

PERMITTED ¥*% TLLEGAL ¥¥

This feature insures efficiency in processing demon paths. When we

process a subunit step, we compare the information in that step
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against each of the plot units hooked to the current state. If we
find a match with one of these units we can stop our search and ignore
the rest of the 1list. We are guaranteed that only one such wunit can

be hooked to this state.

Once we permit transitivity, however, we no 1longer have this
guarantee. In the example above we have two POSITIVE-REACTION units
that can match wi%h the first step of our demon. Therefore, we must
maintain a separate demon for each match encountered since each could
potentially result in recognition of the REWARD unit. Once this
initial generation of multiple demons is accomplished, the rest of the
processing continues normally. We should note that this generation of
multiple demons occurs for all demons spawned by encountering the

POSITIVE-REACTION unit, not just for REWARD.

Since states joined by e-links represent multiple perspectives of
an event or multiple instantiations of a goal state, we can consider
plot unit transitivity across e-links as well. The implementation is
precisely the same as for transitivity across c-links. Whenever a
state is created that is e-linked to a previous state we make the
appropriate initial bindings and copy over the demons to the next
state. Transitivity across e-links brings up the same concerns and
complications as were discussed for c¢-link transitivity. The
mechanisms that permit us to handle these problems for c-links work

identically in this case.

However, the general utility of e-=link transitivity is not as
clear as is the case for c-links. With c-links, we know that all the

linked states are.really referring to a single event, but e-linked
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states may refer to different "surface" events arising from the same
base event or goal state. For example, if you reapply to a college
after having been rejected, you have actually performed two separate
acts (application-1 and application-2). But the underlying goal state
is the same - to go to «college. This aspect raises questions
concerning the application of e-link transitivity to all possible

cases.

3. Conditionals

For many of the possible plot units, the corresponding demon's
path does not specify a unique affect-state structure. For example,
the plet unit PROMISE has the path:

((SUBUNIT EXTERNAL-MOTIVATION (?X . ?Y)) (GIVES . C) (+S . ?X)

(SUBUNIT POSITIVE-REACTION (?X . ?Y) (SUBUNIT SUCCESS (?X)))
Both of the two affect-state maps shown below satisfy the description
of this unit as given by the above path. The map for PROMISE-1 is the
correct version. It is important that the recognition module not
identify structures such as that for ¥PROMISE-2 as the plot unit

PROMISE.

PROMISE-1 ¥PROMISE-2

In this example, a simple check on the number of affect states present

in the map is sufficient to preclude the bogus structure from being
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identified as the unit PROMISE. When we stipulate that the map for
this path must contain only three affect states, the only possible
structure is the correct one shown for PROMISE-1 above. This test
must therefore be included as a part of the demon for the PROMISE plot

unit.

A few plot unit pairs differ from one another by only the
presence or absence of a single link. Such is the case with the units

INTENTIONAL-PROBLEM-RESOLUTION and FORTUITOUS-PROBLEM-RESOLUTION shown

below.
-S

=3
DL DL
4 MS t MS
Da»
+3

+3
INTENTIONAL~ FORTUITOUS-
PROBLEM-RESOLUTION PROBLEM-RESOLUTION

Here, only the presence of the the A-link from the MS to the +S state
distinguishes INTENTIONAL-PROBLEM~-RESOLUTION from
FORTUITOUS-PROBLEM-RESOLUTION. It is necessary, therefore, to insure
that this A-link is not present before we 1identify the
FORTUITOUS-PROBLEM-RESOLUTION plot unit. Again, a test specifying
this condition is needed as part of the demon for

FORTUITOUS-PROBLEM~-RESOLUTION.

We call such a test a conditional and in all instances it is
executed iny after the demon's path has been reduced to nil. 1In
cases where we must count the number of affect states making up a
certain structure, this can only be known after the entire structure

is traversed. And in the case of the FORTUITOUS-PROBLEM-RESOLUTION
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unit, the conditional must insure that there is no A-link entering the
+S state, the last state in the unit. This test cannot be executed
until this 1last state is recognized as being part of the plot unit,
which does not occur until the last step for this demon's path has
been processed and removed. Furthermore, there is no point in even
making the test unless we know that all the other requirements for
recognizing the wunit have been met. This will only be true when the

demon's path has been reduced to nil.

II. REPORT MODULE:

When every affect-state has been entered and all the plot wunits
in the text have been recognized, PUGG shifts control to the report
module. Here summary statistics on the units found and their
relatives are produced. Below is a trace produced by the report
module. The narrative and corresponding affect state map wused for

this trace are also shown.

John was thrilled when Mary accepted his engagement
ring. But when he found out about her father's illegal mail
order business, he felt torn between his love for Mary and
his responsibility as a policeman. When John finally
arrested the old man, Mary called off the engagement.



Affect State Map

MARY JOHN
Mary loves John MSO MS1
engagement &C +S0 +S1
-S0
MS2
t +52

arrest made -S1”’/””ﬂ

4
wants revenge MS3

+(
+33

breaks engagement

Trace from Report Module:

-S2

)e

S
)/

There are 5 top-level plot units:

The adjacency matrix:

1 unit0 = success (linda)

2 unit6 = intentional-problem-resolution (bill)
3 unit12 = sacrifice (linda)

4 unit15 = fleeting-success (bill)

5 unit16 = retaliation (linda bill)

O0=0==
~0==0
0=0-0
-==00
~0000
Name = unitQ
Type = success
Role(s) = (linda)
Affect States = (+s0 ms0)
Name = unité6
Type = intentional-problem~resolution
Role(s) = (bill)

Affect States = (+s2 -s0 ms2)
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John loves Mary
engagement

discovers crook
wants to enforce law

makes arrest

engagement off
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Name unit 12

Type sacrifice

Role(s) = (linda)

Affect States = (+s3 ms3 +s0)

Name unit 15

Type fleeting-success
Role(s) = (bill)

Affect States = (-s2 +s1 ms1)

Name = unit16

Type = retaliation

Role(s) = (linda bill)

Affect States = (-s2 +s3 ms3 -s1 +s2)

Unit Families:

1 Degree = 1 Relatives = (3)

2 Degree = 1 Relatives = (5)

3 Degree = 2 Relatives = (1 5)

4 Degree = 1 Relatives = (5)

5 Degree = 3 Relatives = (2 3 4)
Masterlist:

((1 1 3) (225) (3135) (4u5)(523145))

Connected Subgraphs:
(1 3514 2)

A. TOP LEVEL UNIT LIST

1. Identification of Top Level Units

The first step in this procedure is to identify all the top-level
plot units from among all those that have been identified. Each unit
which was subsumed by another plot unit was so marked by the
recognition module with a "subsumed" flag placed on that unit's
property list. Eliminating these units from the all-units list gives
us the top-level unit list, a listing of those plot units not subsumed

by any other unit.
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2. Dyadic primitives

The second step is to check for the inclusion or exclusion of
dyadic primitives at top level. These particular units (EXTERNAL--
MOTIVATION, EXTERNAL-PROBLEM and EXTERNAL-ENABLEMENT) vary in their
usefulness at the top level from story to story, therefore we may want
to include them in some cases and exclude them in others. For
narratives where the affect-state map yields many two character plot
units they may add little to the structure of the top-level plot unit
graph. For other stories, however, the interactions between
characters may be important, but not structured in such a way as to
form plot units. Here the inclusion of these dyadic primitives can
help preserve the connectivity of the top-level wunit graph. To
indicate haw we want these units treated for this particular case, we
use a global variable to set a flag. Checking this flag, the report
module either deletes these primitives from the top-level unit iist or
lets them remain. In general, we prefer to exclude the dyadic

primitives from top level.

Referring to the trace produced by the report module above, we
see that many different statisties are produced, starting with the
number of top-level plot units. Each unit is then identified by
listing its name (UNITO, UNIT6), type (SUCCESS, SACRIFICE) and
characters involved (Linda, Bill). Units, 1like demons, are record
structures and each of +these pieces of information is stored in a
separate slot in the record. Additionally, a fourth slot lists those

affect-states making up the unit in question.
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B. ADJACENCY MATRIX

Following this, the adjacency matrix is generated. Using a brute
force intersection search, the affect-state slots for all the units
are compared. Each intersection (where two units share an
affect-state) is noted and output as a circle. A dash represents no
shared states. Naturally, each unit will intersect with itself, thus

the adjacency matrix will always have a solid diagonal.

A more detailed listing of each top-level unit comes next. In
addition to the information presented before, the affect states
comprising each plot unit are 1listed. Again, this information is
easily obtained by simply fetching it from the appropriate slot in the

record for each unit.

C. UNIT FAMILIES

To generate the unit families, a "masterlist" of related units is
constructed. Every wunit has a separate "relatives-1list" in the
masterlist, and when a shared state 1is found, we include the
intersecting unit in the appropriate relatives-list. Thus, referring
again to the trace from the report module above, since wunit 1 is
related to itself and unit 3, both are included in the relatives-list
for unit 1. Using the masterlist, the unit families information is
easily produced. The degree of a particular unit is given by the
number of elements in the relatives-list, not counting that unit.

Listing these other elements gives us the relatives for that unit.
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D. CONNECTED SUBGRAPHS

The list(s) of the connected subgraphs for a narrative (those
portions of the top-level plot unit graph which have a path connecting
all the units in that section) is produced last. This is generated by
taking each top-level plot unit and checking its relatives-list to see
who it is related to. These relatives are then checked for their
relatives, and so on, until all the relatives for a particular unit
are identified. By keeping track of those units we encounter during
this search, the connected subgraphs lists are formed. In the example
above, all the top-level units are related and so there 1is only one
connected subgraph. This will not be the case for all narratives,

however.

Section three: Conclusion

We have seen how PUGG (the Plot Unit Graph Generator) takes an
affect state map and produces a listing of the top level plot units
present and their inter-relationships. Plot units are identified by
the recognition module using a Read-Integrate-Predict loop. Data on
each affect state is read in and integrated with any previously
defined states. Using this information, we can form predictions for
expected states and units. These predictions take the form of demons
anticipating the structure of the unread portion of the affect state
map. Manipulating demons through progression and migration, we can
recognize the plot wunits present in the narrative. Flexible unit

definitions and transitivity of plot 4nits across c¢- and e-links
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increase the power of the recognition module and permit identification
of units otherwise overlooked. When recognition of plot wunits is
completed, the report module produces summary statistics for the set
of plot units just identified. This listing of each of the top 1level
plot wunits and how they are related and connected to each other is

used to generate the top level plot unit graph structure.

PUGG was first implemented on a DEC-1060 at Yale University by
Wendy Lehnert at the same time that Michael Dyer was developing the
BORIS system [Dyer 1983]. BORIS was designed to integrate multiple
knowledge structures that had been proposed by various researchers at
Yale in the period from 1975 to 1980. While many computer programs
had been implemented to investigate each of these knowledge structures
in isolation, BORIS was the first attempt to bring them all together
to study the control problems of complex inference systems. As a
sideline, the BORIS project was also interested in the role of affect
in narrative text comprehension. It was clear that a number of
inferences required knowledge about human emotions, but no
computational models had been proposed to account for this class of
inference. Our desire to examine problems of inference relating to
affect resulted in the representational techniques of affect state
maps and plot units. Only after these lcvels of memory representation
had been suggested, did we realize their importance for text

summarization.

Shortly after the completion of the BORIS project, Lehnert moved
to the University of Massachusetts, where PUGG was reinstated on a
VAX-780 under VMS. At that time, Cynthia Loiselle began to embellish

the existing code, making it possible for us to experiment with c-link
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and e-=link transitivity. Flexible wunit definitions were also
implemented at this time, and new plot unit definitions were added to
our universal dictionary of proposed plot units: In its current
implementation, PUGG reads its data from files containing affect state
' maps, although it can also be set up to allow interactive input.
Through the use of signalling flags and varied data bases (which store
the demon definitions) we can enable or disable PUGG's ability to
handle any of c¢-link transitivity, e-link transitivity and flexible

unit definitions.

At this time, a large library of affect state map encodings and

resulting plot unit graphs is being established with the help of JoAnn

. Brooks and John Brolio. With this data we are testing various

hypotheses about encoding conventions and plot wunit recognition
heuristics. In a related effort, Malcolm Cook 1is working on an
interface between PUGG and MUMBLE [Mc.onald 19831, so we can follow
through on the generation of English sentences to complete the full
summarization précess. We do not currently have the facilities to
automate the generation of affect state maps at UMass (this would
involve bringing up another system 1like BORIS), but we are
nevertheless making significant progress with the problems that arise

given the existance of an affect state map.
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Section four: McPUGG

a Micro Version of PUGG

McPUGG was prepared in an effort to make more
understandable the processing mechanisms used by PUGG, the Plot
Unit Graph Generator. For that reason, we have chosen to Kkeep
that part of the program which we feel demonstrates its major
source of computational power -- the subsumption of plot wunits
which occurs 1in recognizing more complex units in order to
ascertain the top-level plot units in a narrative. 1In order to
retain this ability, many other features of the full program

have been eliminated in this microc version.

Notably absent is the ability to process texts for more
than one character. While most of the complex plot units are
two-character units, we feel that processing power of PUGG can
be amply demonstrated in narratives involving only one
character. All link types (with the -exception of ¢c-links,
naturally) can still be handled, so most of the primitive units
are still able to be recognized (although they are not all
included in this version of the program). Also absent is the
ability to process multiple links in or out of a given affect
state. To simplify control, only one link in and one link out
are permitted per affect state. Again, while this does decrease
the number of units that can be recognized, the remaining units

are still sufficiently interesting.

The primitives and complex units we selected to go with
McPUGG are only those necessary to process the demonstration

text included below. One obvious and fairly easy exercise for
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anyone working with this code would be to add new unit
definitions to the ones already present.: The given units
provide enough complexity so that many aspects of PUGG's
processing power can be demonstrated. Specifically, the ability
to subsume complex units as well as primitives is shown in the

run on this text, as well as PUGG's ability to handle all 1link

and state types.

Other features missing from this version include migration,
conditionals checking and c-link and e-link transtitivity. The
latter would not be an easy feature to add as many changes would
need to be made to the data structure manipulation and flow of
control of the program. The other two would make reasonable

projects, requiring varying amounts of work and changes.

Below is the story used for the demonstration run, its
affect state map, the input encoding used by McPUGG, the trace
of this run and the resulting top 1level plot unit graph.

Following that is the program and support functions.

John had some time off from work and wanted to have a
great vacation. He had carefully saved his money and
made all the arrangements for an exciting ¢trip to
Bermuda. But no sooner had he arrived at his hotel
when he discovered that his pockets had been picked
and he only had $50 left for his whole vacation! At
first, John was terribly disappointed and thought he
would be forced to return home, but he decided to make
the best of things and found a store that would rent
him a tent and sleeping bag. John spent the rest of
his vacation camped out on the beach and had such a
wonderful time he vowed he'd go camping again on his
next vacation.
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Affect state map for above story:

+S:> has time off work
m
MS wants a great vacation
a
e +S) goes to Bermuda
{
-S loses money
)m
e[~ MS decides to camp out
@
+S) has a great time

Input encoding for McPUGG:

+s n n (has time off work)
y ms y +s0m n (wants great vacation)
y +s y msO a n (goes to Bermuda)
y =5 n y +s1 t (loses money)
y ms y -sOm y msO e (decides to camp out)
y +s ymsl a y -s0 t (has a great time)
n

Trace of McPUGG on above input:

Affect state +s0 has been created.

Name = +s0

Links into +s0 from = nil

Links out of +s0 into = nil
Description = (has time off work)

Affect state msO has been created.

Name = msO

Links into msO0 from = (m . +s0)
Links out of msO0 into = nil
Description = (wants great vacation)

Creating a new plot unit:
Name unitO

Type enablement
Affect States = (msO +s0)

unit0 SUBSUMES nil

We we e we W we

+s0
msO
+S1
-s0
ms1
+s2



Creating a demon looking for:
enabled-success

Affect state +s1 has been created.

Name = +s1

Links into +s1 from = (a . msO0)
Links out of +s1 into = nil
Description = (goes to Bermuda)

Creating a new plot unit:

Name = unit1

Type = success

Affect States = (+s1 ms0)

unit1 SUBSUMES nil
Creating a demon looking for:
fleeting-success

Creating a new plot unit:

Name unit2

Type enabled-success
Affect States = (+s1 msO +s0)

unit2 SUBSUMES (unit1 unit0)

Affect state -s0 has been created.

Name = -s0

Links into -s0 from = nil

Links out of -s0 into = (t . +s1)
Description = (loses money)

Creating a new plot unit:
Name unit3

Type loss
Affect States = (=-s0 +s51)

unit3 SUBSUMES nil

Creating a new plot unit:

Name uniti
Type fleeting~-success
Affect States = (-s0 +s1 msO)

unit4 SUBSUMES (unit3 unit1)

Page U4



Creating a demon looking for:
starting-over

Affect state ms1 has been created.
Name = ms1
Links into ms1 from = (m . =s0)
Links out of ms1 into = (e . ms0)
Description = (decides to camp out)
Creating a new plot unit:
Name = unith
Type = perseverence
Affect States = (ms1 ms0)

unit5 SUBSUMES nil

Creating a new plot unit:
Name = unité
Type = problem
Affect States = (ms1 -s0)

unit6 SUBSUMES nil

Creating a demon looking for:
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success-born-of-adversity

Creating a new plot unit:
Name = unit7
Type = starting-over
Affect States = (ms1 msO -s0 +s1)

unit7 SUBSUMES (unit5 unit6 unitd)

Affect state +s2 has been created.

Name = +s2

Links into +s2 from = (a . ms1)
Links out of +s2 into = (t . -s0)
Description = (has a great time)

Creating a new plot unit:
Name = unit$8
Type = resolution
Affect States = (+s2 -s0)

unit8 SUBSUMES nil
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Creating a new plot unit:

Name = unit9

Type = success

Affect States = (+s2 ms1)

unit9 SUBSUMES nil
Creating a demon looking for:
fleeting-success

Creating a new plot unit:

Name unit10

Type = success-born-of-adversity
Affect States = (+s2 ms1 -s0)

unit 10 SUBSUMES (unit9 unité)
Creating a demon looking for:
intentional-problem~resolution
Creating a new plot unit:
Name unit 11

Type intentional-problem-resolution
Affect States = (+s2 -s0 ms1)

unit 11 SUBSUMES (unit8 unit10)
There are 3 top-level plot units:

Number = 1

Name = unit2

Type = enabled-success

Affect States = (+s1 ms0 +s0)

Number = 2

Name = unit7

Type = starting-over

Affect States = (ms1 msO -s0 +s1)

Number = 3

Name = unit11

Type = intentional-problem-resolution
Affect States = (+s2 -s0 ms1)
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Unit Families:

1 Degree = 1 Relatives = (2)
2 Degree = 2 Relatives = (1 3)
3 Degree = 1 Relatives = (2)

Using this information we can then produce a top-level plot unit

graph by hand:

enabled-success
starting-over

intentional-problem
resolution

We should say a few words about the support environment
needed to run the following code for McPUGG. Many very useful
but nonstandard functions and macros are used and they deserve a
quick mention. Several references exist where the reader may
obtain further information on their use and implementation.
They are listed below.

1. [AI] Charniak, E., Riesbeck, C. and McDermott, D.,

Artificial Intelligence Programming, Lawrence Erlbaum
Associates, 1980.

An extensive library of programming tools commonly used by
Al researchers.

2. [ICU]l Schank, R. and Riesbeck, C., Inside Computer
Understanding, Five Programs Plus Miniatures, Lawrence

Erlbaum Associates, 1981.

A good reference for the reader wishing to learn more of how
natural language understanding systems work. The chapter on
Lisp explains many of the support functions used here.
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3. [UCI] Meehan, The New UCI Lisp Manual, Lawrence Erlbaum
Associates, 1979.
A reference manual describing the PDP-10 Lisp 1.6 system
developed at Stanford University, the University of
California at Irvine and Rutgers University containing
detailed explanations and definitions for many of the
functions we use.

Additionally, a few functions and global variables specific to

our dialect of (CLisp) are used. These are also noted

below. The following is a list of these support utilities, a

brief explanation of their use and a list of references which

may be of help for the reader not familiar with them.

Name

*INFILE

ASSOC

DEMON:UNIT-ID

DEX

FOR

INCR

INTERSECTION

LET#*

LOOP

MACRO

MSG

References

Al

(Clisp)

AI, ICU, UCI

ATl

Al

AI, ICU

UCI

AI, UCI

(CLisp)

AI, ICU

AI, ICU,

ICU, UCI

Ucl

Description

Assignment macro

Global variable for the
current input file

See references
Functions of this form
are access functions
into record structures

Expands macros at time
of definition

Iterative looping macro

Consecutively increments
given variable

Same as INTERSECT in AI

LET with sequential
rather than simultaneous
variable binding

Iterative looping macro

Same as DM in these
books

Useful printing macro



NEWSYM AI, UCI
OPENI-CHECK-LIB (Clisp)

PROP

RECORD-TYPE Al

REMOVE-ELEMENT ICU, UCI

Page 49

Creates unique atoms

Opens a file as an input
file

Identical to GET, but
with reversed argument
order

Constructs a record data
type. See text for
description of records
and related functions.

Same as REMOVE in these
books

The following section contains the code for McPUGG, some support

functions and a data base of complex plot unit definitions.
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EERRRKRRRRRRRNA%X%% SUPPORT/HELPER FUNCTIONS #¥%%E¥%e¥¥%EXEANEEXX

Searches through LST (a list of lists) until it finds a list with
CAR VAR and returns the CDR of this list (the value bound to VAR)

(dex binding (var 1lst)
(edr (assoc var 1lst)))
; Used to CONS a new VALUE onto the PROPERTY list for ITEM
(dex add-to-plist (item property value)
(:= (prop property item)
(cons value ¥-¥)))

; Retrieves the information stored on the DATA p-list for the given
; STATE. This information is in the form of an A-STATE record.

(macro state-data (state)
*(get ,(cadr state) (quote data)))

; The following three functions are particularly dependent upon the
; CLisp dialect of LISP.

; This version of NEWSYM evaluates its argument.

(defun newsym (sym)
(let (count (add1 (or (get sym 'sym-count) =1)))
(putprop sym count 'sym=-count)
(make-atom (string-append sym count))))

; A function to run McPUGG on its demo story:

(defun micro-run nil
(reset)
(driver "bermuda.dat")) ; VMS file name

RESET clears the property lists for the atoms representing the
various affect states and units generated in the course of a
recent PUGG run. Such a function is almost mandatory when more
than one run is to be made.

“e we we we

(dex reset nil
(mapcar '(ms -s +s unit)
(lambda (x)
(loop (initial num (get x 'syu=-count))
(while (and (numberp num) (greaterp num -=1)))
(do (wipe (make-atom (string-append
(make-string x) (integer-string num))))
(setq num (sub1 num)))
(result (putprop x =1 'sym-count))))))
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“e we we

; REEARXRAXRXRXARNA® AFFECT STATE MAP CONSTRUCTION ¥¥¥¥¥EXRKEXXEXNERX

The information we need to maintain for each affect state is
stored in a record structure with slots for the NAME of the
affect-state, its TYPE, the LINKS coming INTO and OUT of that
state and the states they link up to as well as a short
DESCRIPTION of that state.

e we e we woe

; IN-LINKS and OUT-LINKS are LINKAGE records, DESC is a list.

(record-type a-state aff-st (name type in-links out-links desc))
(record-type linkage nil (link-type . state))

; An output function, verifies the information just read in for each
; new affect state.

(dex dump-state (affect-state pointer)
(msg t t "Affect state " pointer "™ has been created." t

t 5 "Name = " (a-state:name affect-state)
t 5 "Links into " (a-state:name affect-state)

" from = " (a-state:in-links affect-state)
t 5 "Links out of " (a-state:name affect-state)

" into = " (a-state:out-links affect-state)
t 5 "Description = " (a-state:desc affect-state)))

ACCEPT-STATE gathers the information needed for each affect state
then generates reverse pointing links for the links just read in.
Any existing demons are processed and demons for new primitives
are created.

“eo wo we wo

(dex accept-state nil
(let* (state-type (read)
pointer (newsym state-type)
links-in (collect-links)
links-out (collect-links)
description (read)
affect-state
(putprop pointer
(a-state pointer state-type
links-in links-out description)
‘data))
(dump-state affect-state pointer)
(add-out-links (a-state:in-links affect-state) pointer)
(add-in-links (a-state:out-links affect-state) pointer)
(process-demons pointer)
(spawn-startup-demons pointer)))
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; COLLECT-LINKS checks first to see whether any links exist for this
state and direction. If so, the corresponding state and link type

: are read in and formatted into a LINKAGE record structure.

’
(dex collect-links () ; Only previously defined a-states can be used
(let (any (read))
(cond ((eq any 'y) (:= state (read))
(:= link (read))
(linkage link state)))))

; ADD-IN-LINKS and ADD-OUT-LINKS generate opposite-direction links
; for each link-state pair read in.

(dex add-in-links (linkage-list ptr)
(cond (linkage-list
(:= (a-state:in-links
(state-data (linkage:state linkage-list)))
(linkage (linkage:link-type linkage-list) ptr))
(process-demons (linkage:state linkage-list)))))

(dex add-out-links (linkage-list ptr)
(cond (linkage-list
(:= (a-state:out-links
(state-data (linkage:state linkage-list)))
(linkage (linkage:link-type linkage-list) ptr))
(process-demons (linkage:state linkage-list)))))

DRIVER controls the operation of McPUGG. New affect states are
read in until the end of the file is reached. As states are being
created, units are identified. When this processing is completed,
the REPORT function prints the top-level units found and their
relationships. CLisp file handling conventions are used here.

we ws we we we

(dex driver (file)

(let (*infile (openi-check-1lib file)
all-units nil
all-unit-ids nil)

(loop (initial another nil)
(do (accept-state)
(:= another (read)))
(until (eq another 'n))
(result nil))
(report)))

RERRERKXRXXRXRXRXXXXXN%%®E DPLOT UNIT DEMONS ¥HRERXXEXXRXXEXEXRXRXERH

Demons are data-driven using record structures that progress
across affect states. Any a-state may have one or more active
demons associated with it, stored under the property DEMONS.

e Wwe we W we

(record-type demon active (path unit-id a-states subsumed-units))
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; a PATH in a DEMON is a list of S-BINDINGs, L-BINDINGs, and
; SUBUNITS

(record-type s-binding nil (s-type))
(record-type l-binding nil (dir . l-type))
(record-type subunit subunit (input-unit))

; Demons for the primitive units are generated using the following
; data structure. This structure gives the PATH for the demon, its
; UNIT-ID, and NIL fillers for the A-STATES and SUBSUMED-UNITS slots.

(:= primitives

'((success (((ms) (gives . a) (+s)) success nil nil))
(problem . (((-s) (gives . m) (ms)) problem nil nil))
(enables (((+s) (gives . m) (ms)) enablement nil nil))
(persev . (((ms) (takes . e) (ms)) perseverence nil nil))
(resolut (((=-s) (takes . t) (+s)) resolution nil nil))
(loss « (((+s) (takes . t) (-s)) loss nil nil))))

; The names of the primitives spawned for each affect state type
; are stored on the property list for that state type under
; SEED-DEMONS.

(defprop ms (success persev) seed-demons)
(defprop +s (enables loss) seed-demons)
(defprop -s (problem resolut) seed-demons)

; For each primitive unit on the SEED-DEMONS list above, we spawn a
; demon and place it on the DEMONS property list for that affect
; state.

(dex spawn-startup-demons (state)
(let (type (a-state:type (state-data state)))
(for (x in (get type 'seed-demons))
(do (add-to=-plist
state 'demons
(apply demon (binding x primitives)))))))

A unit (primitive or complex) is instantiated whenever the path
of a demon is reduced to NIL. When instantiation is ready to
take place, the demon will be associated with its most recently
touched a-state which then becomes the "hook" for that unit
instantiation. The exhausted demon places a UNIT structure on
the HOOK p-list, may add one or more complex unit demons to the
DEMONS p-list, and is finally itself removed from the DEMONS
p-list. The UNIT record structure records a unit name generated
by NEWSYM, the unit type and an a-state list containing all
a-states within the unit instantiation.

WO We We MO W W W W we W

(record-type unit nil (unit-name unit-type aff-states))
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; When a unit is created, we invoke the following function

; to add new demons to the DEMON p-list:

(dex demon-gen (ptr unit-type) ; PTR points to where UNIT is hooked
(cond ((get unit-type 'spawns)
(let (spawned-demon (apply demon (get unit-type 'spawns)))
(msg t t "Creating a demon looking for: ")
(msg t 30 (demon:unit-id spawned-demon))
(add-to-plist ptr 'newdemons spawned-demon)))))

; DUMP-UNIT is an output function that gives us the name, unit type
; and included affect states for each new unit created. This
; function is also used in the REPORT section of the program.

(dex dump-unit (unit)

(msg t 5 "Name = " (unit:unit-name unit)
t 5 "Type = " (unit:unit-type unit)
t 5 "Affect States = " (unit:aff-states unit)))

UNIT-GEN creates a unit instantiation when a demon is exhausted.
To simplify the recognition of top-level units, UNIT-GEN marks a
subsumption flag on the p-list of any units that are properly
contained by the new unit. These will be useful when we compute
our top-level units at the end of the story representation.

“e v we we woe

(dex unit-gen (dem ptr) ; PTR shows the a-state we're currently at
(let (newunit (unit (newsym 'unit)
(demon:unit-id dem)
(noduples (demon:a-states dem))))
(for (x in (demon:subsumed-units dem))
(do (putprop x t 'subsumed)))
(add-to-plist ptr 'hook newunit)
(msg t t "Creating a new plot unit:" t)
(dump-unit newunit)
(msg ¢t £t 3 (unit:unit-name newunit) " SUBSUMES "
(for (x in (demon:subsumed-units dem)) (filter x)) t)
(demon-gen ptr (demon:unit-id dem)) ; add new demons
(:= all-units (cons newunit ¥-%¥))
(:= all-unit-ids (cons (unit:unit-name newunit) ¥-%))))

; PROCESS~DEMONS cycles through the list of demons attached to the
; given affect state. If any of them fire then the entire list is
; re-processed.

(dex process-demons (ptr)
(loop (result nil)
(initial ¥*p-flag¥* t)
(while ¥p-flag¥)
(do (nullpaths ptr) ; TEST-DEMON resets ¥P-FLAG¥
(:= ¥p-flag¥* nil) ; if a demon goes off
(:= (prop 'demons ptr )
(for (x in (get ptr 'demons))
(filter (test-demon x ptr)))))))
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; The first step in the path of the given demon is checked to see
; if it is a SUBUNIT step (default is an L-BINDING/S-BINDING step
; type) and the appropriate action is taken.

(dex test-demon (dem ptr) ;y a nil return kills the demon
(cond ((is-subunit (car (demon:path dem)))
(testsub dem ptr))
(t (testlink dem ptr))))

TESTLINK is called when the first step of the demon path is either
an S-BINDING or an L-BINDING. The 1st case of the COND handles
L-BINDINGs, the 2nd case handles S-BINDINGs. In the 2nd case we
assume we're at a legal a-state, so we only have to add the affect
state to the list this demon is maintaining and pop the path.

In the 1st case, we assume we have an L-BINDING/S-BINDING sequence.
We check for the L-BINDING link-type,the S-BINDING state type, and
then tackle the bindings to first check for consistency and then
add new bindings if necessary.

Ve Wwe We We we W we we we

(dex testlink (dem ptr)
(let (path (demon:path dem) newstate nil)
(cond
((or (and (eq (caar path) 'gives) ; case 1
(eq (cdar path) (car (a-state:out-links
(state-data ptr))))
(:= newstate (cdr (a-state:out-links
(state-data ptr)))))
(and (eq (caar path) 'takes)
(eq (cdar path) (car (a-state:in-links
(state-data ptr))))
(:= newstate (cdr (a-state:in-links
(state-data ptr))))))
(cond ((eq (a-state:type (state-data newstate)) (caadr path))
(:= (demon:path dem) (cddr ¥-%¥))
(:= (demon:a-states dem) (cons newstate ¥-¥))
(add-to-plist newstate 'demons dem)’ ; progress to
(:= *¥p-flag* t) ; next state
(cond ((null (demon:path dem)) nil)
(t dem)))))
((memq (caar path) '(ms +s =-s ¥7¥)) ; case 2

(:= (demon:path dem) (cdr ¥-¥))
(:= (demon:a-states dem) (cons ptr ¥-¥))
(:= ¥p-flag¥* t)
(cond ((null (demon:path dem)) nil)
(t dem)))

(t dem)))) ; no action taken
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When the first step in a demon's path is a SUBUNIT step, TESTSUB
compares it to the list of units HOOKED to the given affect
state. If a match is found, the affect states for the matched
unit are added to the demon's list, the unit is placed on the
subsumed-unit list for the demon, and finally the demon's path
is popped. ¥P-FLAG¥* is reset so that we will cycle through all
the demons again.

Ve Ve We We we we we

(dex testsub (dem ptr)
(let (u-type (subunit:input-unit (car (demon:path dem))))
(loop (result dem)
(initial 1 (get ptr 'hook))
(while 1)
(until (and (eq u-type (unit:unit-type (car 1)))
(progn (:= (demon:a-states dem)

(append
(unit:aff-states (car 1))
%))
(:= (demon:subsumed-units dem)
(cons (unit:unit-name (car 1))
¥_%))
(:= (demon:path dem) (cdr ¥-¥))
(:= *p-flag¥* t))))

(next 1 (edr 1)))))

; NULLPATHS moves through a list of demons, processing those
; which have null paths, and then eliminating them from the
; p-list.

(dex nullpaths (ptr)
(putprop ptr nil 'newdemons) ; this p-list may be reset by
(putprop ptr ; UNIT-GEN if EXHAUSTED is
(for (x in (get ptr 'demons)) ; called inside ALIVE
(filter (alive x ptr)))
'olddemons)
(:= (get ptr 'demons) (append (get ptr 'newdemons)
(get ptr 'olddemons))))

; ALIVE returns those demons to NULLPATHS which have not yet had
; their paths reduced to NIL.

(dex alive (dem ptr)
(cond ((null dem) nil)
((exhausted dem ptr) (cleanup dem) nil)
(t dem)))

; A demon is EXHAUSTED if its path has been reduced to NIL.
; When this occurs, a plot unit is created by UNIT-GEN. This
; action may add demons for more complex plot units to the
; p-list for PTR.
(dex exhausted (dem ptr)
(cond ((null (demon:path dem))
(unit-gen dem ptr)
t)
(t nil)))
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When a demon is EXHAUSTED, we check over every affect state
contained in the unit just recognized. For each of these
states we get rid of any demons with null paths. This prevents
duplication of plot units.

we we we we

(dex cleanup (dem)
(for (x in (noduples (demon:a-states dem)))
(do (:= (prop 'demons x)
(for (y in (get x 'demons))
(filter (cond ((null (demon:path y)) nil)
(t ¥2)))))))

ERRERRREE R R ERERERERRRRRR RN RN RR AR AR R XXX ERRREXRXRR R

REPORT MODULE
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The REPORT function employs two manners of presenting the data
on the top level plot units recognized above. First, each
top-level unit is numbered and listed as before, then a list of
the top-level units, their degree and their relatives is given.

“o we we we

(dex report nil
(let (unit-list (reverse
(for (x in all-units) (y in all-unit-ids)
(filter (cond ((null (get y 'subsumed))
X))))))
(:= state-=1lst (for (x in unit-list)
(save (unit:aff-states x))))
(msg t t "There are " (length unit-list)
" top-level plot units:" t t)
(let (n 0)
(for (x in unit-list)
(do (msg t " Number = " (incr n)) (dump-unit x)
(msg t))))
(msg t t)
(dump-info state-lst)
(msg ¢t t t)))

; Creates a list of numbered elements from the given 1list.

(dex make-1list (lst)
(let (n 0)
(for (x in 1lst) (save (cons (incr n) x)))))

; This data structure holds a list of affect states (A-LIST) for a
; given top-level plot unit (specified by NUMB).

(record-type numbered-list nil (numb . a-list))
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The affect states for each top-level plot unit are listed in
STATE-LIST, created above by REPORT. By conductiong a simple
intersection search, the related units (those which share
affect states) can be identified.

“e we weo wo

(dex gather-relatives (lst)
(for (x in 1st)
(save (cons (numbered-list:numb x)
(find-relatives x 1st)))))

(dex find-relatives (x 1lst)
(for (y in 1lst)
(filter (cond ((intersection (numbered-list:a-list x)
(numbered-list:a-list y))
(numbered-list:numb y))))))

; We cycle through the STATE-LIST outputting the top-level unit
; number, degree and relatives.

(dex dump-info (state-list)
(msg t t "Unit Families: " t t)
(loop (result nil)
(initial master (gather-relatives
(make-list state-list)))
(while master)
(do (msg t (numbered-list:numb (car master))
" Degree = "
(sub1
(length (numbered-list:a-list
(car master))))
" Relatives = "
(remove-element
(numbered-list :numb (car master))
(numbered-list:a-list
(car master)))))
(next master (cdr master))))
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COMPLEX PLOT UNIT SET FOR MICRO-PUGG
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Each complex plot unit is based on a primitive or other complex
plot unit. These are given as the first SUBUNIT step for each
PATH. These "plot unit definitions" are demon structures that
are stored on the SPAWNS p-list for the basic units (those given
in the first SUBUNIT step.) When the basic unit is recognized,
these definitions are retrieved and placed on the DEMONS p-list
for the current affect state.

(defprop success (

((subunit success) (takes . t) (-s) (subunit loss))
fleeting-success nil nil) spawns)

(defprop fleeting-success (

((subunit fleeting-success) (gives . m) (ms)
(subunit problem) (subunit perseverence))
starting-over nil nil) spawns)

(defprop enablement (

((subunit enablement) (gives . a) (+s)
(subunit success))
enabled-success nil nil) spawns)

(defprop problem (

((subunit problem) (gives . a) (+s) (subunit success))
success-born-of-adversity nil nil) spawns)

(defprop success-born-of-adversity (

((subunit success-born-of-adversity) (subunit resolution))
intentional-problem-resolution nil nil) spawns)
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Plot Unit Definitions

. *5-
The following pages contain a listing of the set of plot units

currently in use.
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