A.I. AND THE LEARNING OF
MATHEMATICS
Edwina L. Rissland®
Department of Computer and Information Science

University of Massachusetts
Amherst, MA 01003

Technical Report 83-40



A.I. AND THE LEARNING OF MATHEMATICS:

A TUTORIAL SAMPLING

Edwina L. Rissluand¥
Department of Computer and Information Science
University of Massachusetts
Amherst, MA 01003

@ copyright 1983

Prepared for the Conference on Instructional Implications of Research on
Mathematical Problem Solving, o>un Diego State University, June 3-5, 1983.

*Preparation of this paper was supported in part by grants SED 80-19328
and IST-8017343 of the National Science Foundation. Any opinions, -
conclusions or recommendations expressed are those of the author and do
not necessarily reflect the views of the National Science F.undation.



Page 2

INTRODUCT ION

In this paper, I discuss studies of mathematics made from an A,I.
(Artificial Intelligence) point of view. There is a spectrum of work in
this area that ranges from studies whose purpose is solely to understand
better the learning of mathematics to studies whose purpose is to perform
a mathematical task without human involvement or consideration, Such a
spectrun reflects the purposes of A.I. researchers themselves: those who
use A,I. as an approach to study cognition and understand it better to
those who use A.I. to build systems to do tasks without making claims
that the manner in which the programs perform says anything about the way

humans perform the task (see, e.g., [Samuel 1983; Schank 19831]).

In this paper, I divide the work to be discussed into the following
categories:

1. A.I. conceptual analyses of mathematical tasks

2. A.I. process models to explain mathematical behaviors

3. A.I. programs to do math.uatics somewhat 1ike a mathematician

4, A.I. programs to do mathematics without claims of similarity to
mathematicians

This paper by no means covers all the papers of relevance in A.I.,
Cognitive Science, and Mathematics Education. Rather it is a sampling of
work which I consider interesting and indicative of what csn be done in
each of the categories. It is a sampler to give the reader an idea of
what has been done already and to help a researcher outside of A.I. find

entry points into the literature.



Page 3

Some of the programs discussed are not new; they have been selected
because they are "classics". Scme of the work discussec is not really
A.I,; it is included because it is the sort of study necessary before one
can build an A.I. program — they are what I call one's "epistemological

homework" .

I have not tackled the vast literature on problem solving per se; it
is too extensive to review well in a paper of this scope and it is not
necessarily directed at the concerns of this workshop, namely, mathematics
and education. I also have not ventured into areas related to mathematics
like physics and computer programming; one would be well-advised to take
a look at the work done in these areas by researchers such as Larkin,
deKleer, Simon in physics and Soloway and colleagues in programming. I
will not say much about programs in the fourth category. These programs

are not particularly relevant to this audience.

Throughout this paper the reader will find various ¢terms from A.I.

For a discussion of such basics of A.I., see the Handbook of Artifical

Intelligence [Barr and Feigenbaum 1981, 1982; Cohen and Feigenbaum 19821].




Outline of Rest of Paper

The topics and research to be discussed are:

I. A.I. conceptual analyses of mathematical tasks

1.

2'

3.
u.

Davis on Mathematical Understanding
Matz's work on High School Algebra
Schoenfeld on Heuristics

Rissland on Understanding Understanding Mathematics

II. A.I. Process Models for Mathematical Tasks

10
2-
30

u.

Bundy's work on Equation Solving
Brown and Burton's work on BUGGY
Vanlehn's work on Repairs to Bugs

Rissland's work on Constrained Example Generation

III. A.I. Programs to do Mathematics Somewhat like a Mathematician

Slagle's SAINT program
Lenat's AM program
Selfridge's COUNT program

Mitchell's LEX program

Page 4



Page 5

I. A.I. CONCEPTUAL ANALYSES OF MATHEMATICAL TASKS

1. Davis' Work on Mathematical Understanding

Bob Davis and his co-workers at the Curriculum Laboratory at the
University of 1Illinois have amassed an extraordinary body of material on
children learning mathematics ranging from arithmetic to calculus, for
example [Davis et al. 1978; Davis and McKnight 1980]. Their studies
over the past ten years have involved extensive, thorough and sensitive
protocol analyses of students working problems. They have concentrated on
giving an elucidation of skills by attention to student mistakes and
misconceptions. In their explanations, Davis et al. have concentrated on
discussing the mathematics involved rather than specifying or building a
detailed camputational model. In their discussions of the processes and

knowledge, they have used ideas, like "frames" and "subgoals", from A.I.

They have not pushed their work in the direction of developing a
conceptual framework for mathematics; rather they have probed deeply into
the mathematical tasks themselves and used, when appropriate, A.I. ideas
of others. Their work offers an extensive base on which others can build;

see, for example, the discussion of Matz below.

To give the reader an idea of Davis work, we present an example
typical of his project's work taken fram his recent final report [Davis et
al. 1982]. It is a discussion of subtraction taken from a discussion
arguing for the need for careful analysis of skills and not just
superficial consideration of right and wrong answers a la "drill and

practice".



Page 6

"One of our studies [Davis and McKnight 1980] dealt with a
third-grade girl, Marcia, who subtracted

7, 0

by writing

Marcia was convinced that she had performed the subtraction correctly.
...What does this have to do with understanding?

....What has made the remediation so difficult in Marcia's case is
that she believes

1. She has learned the subtraction algorithm carefulty and well (and
she has, provided there are no zeroes in "inside" columns in the
minuend);

2. She always gets correct answers by using this algorithm (and she
does — again, provided there are no zeroes in the "inside"
columns in the minuend);

3. She is using the same algorithm for

7, 002
-25

that she uses for, say,

It is, of course, this third belief that causes the trouble. But,
unfortunately, one cannot really say whether Marcia is correct, or
not, in this belief. There are two possible rules that she might be
using:

a) When necessary, "borrow' from the next digit on the left
(in the minuend);
or else
b) When necessary, "borrow'" from the nearest non-zero digit
on the left (in the minuend).

No case had previously arisen that would distinguish between
these two rules. (Indeed, the theory of "knowledge" which underlies
our work suggests that probably Marcia had not formulated her "rule"
so precisely that such a distinction could be described.)



Page 7

Davis in his discussion places great emphasis on the problem of
retrieval and matching in understanding. Again his project has gathered
the kind of evidence that has and can be capitalized on in A.I. work.
For instance, he discusses the valid and invalid retrieval of the axiom
("the 2zero product principle") "AxB=0 ===> [A=0 v B=0]" and its
mis-generalization as "AxBz=k ===> [A=zk v B=k]", [Davis et al. 198] at
pp. 39, and 94, 95. This is exactly the sort of mathematical behavior
that Matz describes in terms closer to those of A,I. In his discussion of
retrieval, Davis suggests that the problem Marcia has is related to an

incorrect, or rather an incamplete, retrieval of relevant knowledge.

Davis is making links with A.I. by using their conceptual constructs
to describe what he sees in his work, for instance, he uses the notions of
"slots" and "frames" to address the retrieval problenm. He use 8
"procedures" and "sub-procedures" to describe the heirarchical nature of
plans and skills like those involved in synthetic division. I chose the
excerpts on subtraction and the zero product principle because they enter

the work of Matz and van Lehn described below.

Davis also uses the ideas of "planning" and "critics", which are
central in A.I., to describe what he sees in his students like Marcia. 1In
particular, Marcia lacks, or is not using, the "size" critic for numbers
that says that if one has about seven thousand dollars and spends
twenty-five dollars, one should NOT end up with about five thousard
dollars. (An A.I. critic or "demon" is a process that is always watching

what is going on and when it sees samething of interest, it "shouts".)



Page 38

2. Matz's work on High School Algebra

Matz discusses how systematic errors in high school algebra problem
solving are the result of resonable, although unsuccessful, attempts to
adapt known procedures to a new situation by applying what she calls

"extrapolation" techniques [Matz 1980; 19821.

Matz discusses that many common errors arise framn one of ¢two
processes:
1. inappropriate use of a known rule as is in a new situation;
2. incorrect adaptation of a known rule to solve a new problem.
In particular with regard to the second class of error, she is interested

in:

-—
.

errors generated by an incorrect choice of an extrapolation technique;
2. errors reflecting an impoverished base knowledge;
3. errors arising during the execution of a procedure.

Particularly interesting is her discussion of extrapolation technique
errors of generalization and 1linear decomposition, In the class of
linearity errors are those errors resulting from overgeneralizing a
distribution rule. These are typified by:

SQRT(A+B) = SQRT(A) + SQRT(B)
In such errors a composite algebraic expression is decomposed linearly by
distributing its top-most operator. The following table is taken fram her

paper [1982]:



Page 9

TABLE 1
Generalized distribution

Correct
AB+C)=AB+AC

A(B-C)=AB-AC

1

+C _C_'
A(

B+C
A A
{ABY = A’B* more generally, (AB)"=A"B"
JIABY=VA+vB more generally, (AB)/"=(4)""(B)""

1 1 B
- = — — v = —
B-0) (B)Y+ A 1{C) equivalently,

Incorrect

JIA+B)>VA+VB

(A+B)}>A*+B?
A(BC)>AB+AC

A A A

B-C B'C
250b$2a+2h

20 2°2*

She generalizés the;éwerrors inw thr;ée scgeﬁés, one of which isr:ﬁ
Oxay) ==> X A 0OY.

It is based on the past experience that the distributive law worked

successfully in past problems, so why not use it again. This is exactly

the sort of retrieval problem that Davis is discussing. Incorrect

retrieval and application of this schema results in mistakes typically

involving square roots and powers.

Another common way to generalize a schema is to replace specific
constants by variables as in the "zero product principle" described above
in Davis' work. This is based on the typically valid assumption that the
numbers involved in a procedure are incidental. Unfortunately, O is the
well-known counter-example to this heuristic. Consider the following
problem:

(X=3)(X-4) = 0
(x-3) =0 or (X-4)=0
X=3 or X=4
generalized to:
(X=3)(X-4)

X-3) =7 or (x:-u
X=10 or X=11

7
) =T



Page 10

It is an excellent example of a good straﬁegy going awry. It 1is exactly
the kind of strategy one would build into an A.I. 1learning program;
however such a program would need a means (for instance, through "critics"
or "generate and test" methodolcgies) to prune away false generalizations.

Nevertheless, it would be the right kind of thing to try.

Matz's work is an example of research into the cognitive aspects of
mathematics which seeks explanations in terms of A.I. concepts such as

rules and procedures.

3. Schoenfeld's work on Heuristics

Alan Schoenfeld has devoted much of his research to discussing
heuristics and their role in problem solving,. for instance [Schoenfeld
1978]. He has been particularly interested in whether such high-level
strategies can be taught to college undergraduates [Schoenfeld 1980]. His
work, while not pushed to the 1level of description favored by A.I.
researchers nor explicitly couched in A.I. terms, is an example of the
kind of in-depth discussion needed to explicate a topic, heuristies, which
A.TI. researchers often assume explained by its mere mention. Heuristics
are used heavily in A.I. work (for instance, in expert systems 1like
MYCIN) and play a very key role in the work of Slagle and Lenat, described
below in Section III. For these reasons, I include Schoenfeld's work in

this section.

In his 1980 MAA article Schoenfeld poses the questions:

1. "Can we accurately describe the strategies wused by 'expert'
mathematicians to solve problems?"

and

2. "Can we teach students to use those strategies?"



Page 11

He answers in the affirmative, as I and others 1like Davis would. He
discusses the complexity of using a heuristic strategy like the oft-cited
"find an analogous problem" heuristic and the inherent difficulties of
carrying it out: which analogous problem, by what analogy, in what
representation? Even the heuristic "If there is an integer parameter,
look for an inductive argument”" can be difficult to implement, especially
for students, who often operate at the "syntactic®™ and not "semantic"
level of understanding. Such heuristic strategies are really labels for a
collection of more detailed procedural and descriptive knowledge and
further (sub-)strategies. Recognition of this complexity is often missing

in problem-solving discussions, even those of that great master Polya

(19731,

In his 1980 article, Schoenfeld outlines a problem-solving strategy

which uses modules to perform:

problem analysis

argument design

problem exploration

solution implementation

solution verification
He presents a flowchart-like schematic outline of his problem-solving
strategy (Fig. 2, P. 800) and describes aspects of each of these
components. Some of the "modules" in his schema could be forced to a

descriptive 1level which would be implementable; some need much more

specification,.

More recently [Schoenfeld 1983a, bl, he has been interested in
exploring issues in the analysis of protocols and describing
problem-solving behavior, especially its "control® component. He

distinguishes three types of knowledge ingredients of problem-solving:



Page 12

1. resources —- typically domain-specific knowledge such as facts and
algorithms, routine procedures and heuristics, representations and
other knowledge possessed by the individual which can be brought to
bear on the problem at hand;

2. control -- planning, monitoring, assessment, "metacognitive" acts, and
other ingredients related to the selection and mplementation of
tactical resources;

3. belief systems -- about self, the enviromment, topic and mathematics,
which influence an individual's behavior.

These are elaborated in his 1983 AERA paper [Schoenfeld 1983bl. This
paper contains a nice example (p. 8) of problem-solving which not only
illustrates his points but also provides an example of how specific
examples (like "reference" examples) enter into the problem-solving

process.

A laudatory aspect of Schoenfeld's work is the inquiry into the
nature of strategies and control-level knowledge. Too often such
high-level knowledge is glossed-over in favor of tactical or algorithmic
knowledge because it is easier to grapple with, in the sense of being more
describable or implementable because of its step-by-step frcus. Yet it is
strategic level knowledge —-— or control —- that is critical to learning

both in people and machines; this theme will be apparent in Section III.



Page 13

4. Rissland's work on Understanding Understanding Mathematics

Rissland, in her 1977 Ph. D. thesis, sought to elucidate how one
understands a mathematical theory 1like eigenvalues or continuity. She
posed the question, "What is it that I know when I understand a body of
mathematics well?", The answer is couched in terms of a mapping-out of
the knowledge in a scheme of "“spaces", which are semantic networks of
frame-like items 1linked together through various sorts of relations
[Rissland 1978a, b, 1980]. The description of the conceptual framework
relies heavily on computer science notions 1like data base items and

pointer structures.

An application of this work, never implemented, was to have been an
interactive enviromment for the professional mathematician to explore and
retrieve information in a theory, such as real analysis, and an
enviroment built on the professional's to help a neophyte learn how to

explore and understand.

Rissland's elucidation of understanding contains the following main

ingredients:

1. spaces of items and relations, such as Examples-space, Results-space
and Concepts-space; :

1. items are strongly bound clusters of information: for instance,
the statement of a theorem, its name, its proof, a diagram, an
evaluation of its importance, and remarks on its 1limitations and
generality;

2. spaces are sets of similar types of items related in similar ways:
for instance, proved results and their 1logical dependencies
constitute Results-—-space.

2. a taxonomy of epistemological classes of items based on their role in
teaching, learning and understanding, and worth ratings of items based
on importance;




Page 14

3. detailed laying out of item-frames for each of the principle type of
item (example, result, concept);

4, detailed discussion of links between items: in-space 1links between
items within a space (like constructional derivation between example
items) and across—-space ("dual") links;

"Understanding" involves enriching one's store of knowledge, particularly
inter-frame and inter-space connections. The following is a list of

questions which "prompt and probe" understanding [Rissland 1978bl]:

1. What is the statement of this item. The setting?

2. Do I understand the statement? Should | review or examine the
ingredient concepts, especially the important ones and those to which |
have previously not done justice?

3. What is a picture or diagram for this item?

4. Am lrcasonably comfortable with thisitem’s immediate predecessors?
Arc there any predecessors on which | should bone up? Or remember
to come back to?

5. Do | know any dual items for this item, such as counter-examples,
model cxamples, reference examples, culminating results, basic
results, etc.? Am | aware of the important ones? Should | peruse some
of the others?

6. Can | say what is the gist ol this item? OF its statement? OF its
demonstration?

7. What is it good for? Why should 1 bother with it? What is its
significance Lo the theory as a whole?

8. What is the main idea of its proof, construction or procedure? Arc the
details important? If so, can | summarize them?

9. Isthere some way | can fiddle with this item? Perhaps check out a few
Lest cases?

10. What happens il'l perturb its statement? Does it generalize? Is it true in
other settings? Can it be strengthened by dropping some hypotheses or
adding some conclusions. If not, why not: can | cite a counter-example
and can | pinpoint what goes wrong? I[ so, is the new demonstration
similar or dilferent from the original. Is it much harder? Should 1 just
be aware that it exits, and forget about the details until | need them?

I1. Can [ sce how this item fits in with the development of the theory as
developed in the approach | am taking? What about other
approaches? Is this item important or critical or is it simply a stepping-
stone or a peripheral embellishment?

12. Can I close my eyes and visualize or describe this item’s connections to
other items in the theory, to the theory as a whole, to other theories?
Have | secen anything like it before?

Clearly this list of questions is rather long and one should not attempt to
answer all of them at once. But oneshould try to pick oll as many questions as
possible on an initial try, and if the item is important and worth the eflort,
come back to the list several times. Through work directly with the item and
indirectly with other items, one eventually answers most of the yuestions. The
last question is a keystone to understanding ina deep way and should be given
a try during the very first exposure to an item and repeatedly thereafter.



Page 15

In essence the idea is that items, which include results, concepts,
examples, goals and strategies, are cohesive clusters of information and
that there are important relations between them. Each space of items plus
relations describes a different aspect of knowledge. Another important
point is that one can taxonomize items on the basis of how they are used
in learning, doing, teaching and understanding mathematics. The following

describes these ideas as they relate to the "examples-side" of mathemtics.

An example, by which is meant a specific situation, case or
experience, 1is comprised of many aspects or pieces of information: a
name, taggings and annotations as to epistemological class and importance,
lists of pointers to other examples from which it is constructed and to
whose construction it contributes, the process of how it is constructed, a
schematic or diagram, pointers to items like definition= and theorems in
other spaces, statements of what the example is good for or how it can be
misleading, sources of further information about the example. Examples

are linked through the relation of constructional derivation of how one

example 1is built from others. Examples plus this relation constitute an

Examples-space.

When one considers the different effects and uses examples can have
with respect to teaching, learning and understanding, one can distinguish
different "epistemological” classes. There are similar analyses for

results and concepts.

It is important to recognize that not all examples serve the same
function, For instance, expert teachers and learners know that certain
perspicuous ("start-up") examples provide easy access to a new topic, that
some ("reference") examples are quite standard and make good

illustrations, and that some examples are anomalous and don't seem to fit



Page 16

into one's understanding. Thus, one can develop a taxonomy:
(a) start-up examples: perspicuous, easily understood and easily
presented cases;
(b) reference examples: standard, ubiquitous cases;
(e) counter examples: limiting, falsifying cases;
(d) model examples: general, paradigmatic cases;
(e) anomalous examples: exceptions and pathologies.

Start-up examples are simple, easy to understand and explain cases.
They are particularly useful when one is learning or explaining a domain
for the first time. Such examples can be generated with minimal reference
to other examples; thus one can say they are structurally uncomplicated.
A good start-up example is often "projective"™ in the sense that it is

indicative of the general case and that what one learns about i. can be

"lifted" to more complex examples.

Reference examples are examples that one refers to over and over
again. They are "textbook cases" which are widely applicable throughout a
domain and thus provide a common point of reference through which many
concepts, results and other items irn the domain are (indirectly) linked

together.

Counter—-examples are examples that refute or 1limit. They are

typically used to sharpen distinctions between concepts and to refine
theorems or conjectures. They are essential to the process of "proofs and

refutations", described beautifully by Imre Lakatos [1976].

Model examples are examples that are paradigmatic and generic. They
suggest and summarize expectations and default assumptions about the

general case. Thus, they are like "templates" or Minsky's "frames".



Page 17

Anomalous examples are examples that do not seem to fit into one's
knowledge of the domain, and yet they seem important. They are "funny"
cases that nag at one's understanding. Sometimes resolving where they fit

leads to a new level of understanding.

An example of applying this classification scheme for an introductory
study of continuity from the domain of real function theory might
classify: the function f(x)=x as a start-up example; f(x)=x¥*¥2,
f(x)=e**x as reference examples; f(x)=1/x as a counter-example; "f(x)
with no gaps or breaks" as a model example; and f(x)= sin(1/x) as an
anomalous example. The first example, f(x)=x, is also a reference example
(the "identity" function). Thus, such a classsification need not be
exclusive. The anomaly sin(1/x) will most 1likely become a favorite
counter-example as one understands that a function can fail to be
continuous in at least two ways, that is, by having gaps and breaks and by
failing to settle down to a limit. Thus, such a classification is not
static, Increased understanding will of course lead to qualifications on
the above model of a continuous function, although it will still serve to

summarize one's expectations.



Page 18

II. A.I. PROCESS MODELS FOR MATHEMATICAL TASKS

1. Bundy's work on Equation Solving

Alan Bundy, of the University of Edinburgh, in connection with his
work on automatic theorem proving, looked at the processes involved in
solving algebraic equations. He described high-level processes which
account for the 1line-to-line transitions in solving equations for an

unknown [Bundy 1975, Bundy and Silver 1981, Borning and Bundy 19811].

Bundy calls his high-level processes "strategies"; they are

1. 1isolation

2. collection

3. attraction

4, cancellation

5. removing nasty function symbols

The first three constitute what he calls the "basic method".

Bundy's analysis is an example of research pursued for A.I.
purposes, here automatic theorem proving, which is very relevant to the
study and explication of mathematical expertise in humans. It provides a
detailed description in "hard" computational terms of a skill and provides
an opportunity for use in mathematics education since his descripcors and
procedures are readily understandable. One could easily talk to a class
working on equation solving using his ideas of strategies and basic

methods. In fact, I would recommend exactly that.

An example to illustrate his analysis is the following:

1. 1n(x+1) + 1ln(x-1) = 3

eevesesl(i)
2. 1n[(x+1)(x-1)] = 3

eeseees(ii)
3. 1ln(x*%2 - 1) =3

cereeeos(iii)
4, x¥%2 _ 1 = e¥¥3



Page 19

oo-n.o.(iV)
5. x¥¥2 - e¥¥3 4
N 4 2]

6. Xx = SQRT(e¥*¥*341) or x = -SQRT(e*¥3+1)

In his analysis of the above sequence of equations, Bundy is
interested in explicating what happens in between the lines, that is, the
transitions and transformations used. He points out that many of the
solution steps are not shown and that one is using more than the usual
axioms of the real numbers (this last observation stems fromi his concern
about automatic theorem proving in which the prover must have access to
such knowledge). For instance, any prover must have a wealth of knowledge

on how to perform simplification. (As Bundy discusses there is no

universal standard of simplification: what is simpler in one context is
not necessarily so in another). Regarding this point, he considers step

(ii), the transition from line 2 to line 3:

"[Wle will speculate that the axiom
(u+v) (u-v) = uk*2 - y#¥*2
was used, producing
In(x*%2 _1%%2) = 3
and that the simplification step, from this equation to line 3. was
omitted.

Bundy's analysis of the above goes as follows:

"We look first at the end of the solution, lines 3 to 6. In 1lire 3,
for the first time the equation contains only a single occurrence of
the unknown, x. From here on the solution is straightforward. The
next three steps consist of stripping away the functions surrounding
this single occurrence of x until it is left isolated on the left hand
side of the equation. Each step consists of identifying the outermost
(or dominant) function symbol on the 1left-hand-side, recovering the
axiom which will remove it from the left-hand-side and insert its
inverse on the right-hand-side, and then applying this axiom. We will
call the strategy which guides these three steps isolation... It can
be regarded as the basis of nearly all work in equation solving

..As with simplification, mathematicians often omit isolation steps
from their written protocols, crowding as many as three or four steps
into the transition from one line to another.



Page 20

We next look at line 2:
2. 1n(x+1)(x-1) =3

This contains 2 occurrences of x, so isolation is not applicable.
However, we can see step (ii) as preparing for isolation (our
emphasis), by achieving a reduction in the number of occurrences of x
from 2 to 1. This is done by applying the identity:

(u+v)(u=v) = uk¥2 - y**2,
This is an example of our second strategy, which we call collection,
namely, when there is more than one occurrence of the unknown, try to
find an axiom which will collect occurrences together,

Finally we look at line 1 and step (i).
1. 1In(x+1) + 1n(x=1) = 3

The two occurrences of x cannot be immediately collected, presumably
because a suitable axiom was not stored. We can however prepare ..for
collection (our emphasis) by moving them closer together, so that more
identities will match the term containing them both. This is what
happens in step (i)....The strategies of moving occurrences closer
together to increase their chances of collection, we call attraction.

When the above three strategies are combined in this way we call the
resulting equation solving strategy, the basic method.

[Bundy 1975 at page 17].

Bundy now proceeds to turn describe his three strategies in
computational terms. This involves, for instance, providing "harder"

definitions of "term" and the notion of "closer".

For instance, in his discussion on collection (p. 21):

"If the two occurrences are on the same side of the equation this will
be a term called the containing term, otherwise it will be the whole
equation, We deal with the former case first. The containing term
must now be replaced by another term containing one occurrence of the
unknown, say X, so we must look for an axiom, say A, which will do
this. We can easily build up a description, which A must obey.
(i) A must be an identity, i.e., an expression of the form:
81 = s2 or B --> 81 = s2, where B is called its precondition.
(ii) One of the variables, say u, mus occur either
(a) twice in s1 and once in s2
or (b) twice in s2 and once in si
without loss of generality we will assume case (a).
(iii) s1 must match the containing term, with u being instantiated to x.
If A obeys parts i) and ii) (a) of the above description we will say
that it 1is useful to collection, left to right, relative to u. If A
obeys parts i) and ii) (b) we will say that it is wuseful to
collection, right to left, relative to u.




Page 21

«..[E]l.8.,
sin 2u = 2.sinu.cosu

is useful to collection, right to left, relative to u.
(u+v)(u=-v) = u¥*¥2 _ y*¥2

is useful to collection, left to right, relative to u.

Bundy forces all three strategies, isolation, collection and attraction,
to this degree of specificity in computational terms. He then gives two
more examples of equation solving, one involving trigonometric functions,
the other a general quadratic, to illustrate his strategies. The latter

is included as an appendix to this paper.

Bundy's last major point concerns the removal of "nasty function
symbols" in equation solving. Examples of nasty symbols in this context
are radicals and inverse trig functions like arcsin. Bundy provides a
hierarchy of niceness/nastiness. In removing nasty symbols, he identifies
and describes three major strategies:

1. cancellation
2. collection
3. inversion
The end result of such an analysis in the case of a rationalizaton goes as

follows:

1. V5x-25 - V-1 =2 1

ceeeeess(i)

2.Y5x-25 = 2 +Yx=1 isolation
'.‘.Q...(ii)

3. 5x=25 = (2+Y%=1)%¥2 inversion
.......'(iii)

4, 5x-25 = 2%¥%2 4+ 2. 2U%=-T + @/x-1)%*%#2 | cancellation

-oo‘oot.(iv) o
5. 5x=25 = 4 +4 Vxe1 + (x-1)

ceseeeeslV)
6. 4x-28 = uqﬂx—1

cesessea(vi)
7. Vx=1 = (x-=7)%%2 isolation
cevesess(vii) J inversion

8. x=1 = (x-T)%*%2



Page 22

Eliminating radicals, the process of "rationalization", is a
paradigmatic example of removing a nasty function symbol. Reproducing
Bundy's analysis here would take too much space. One comment on these
processes is that they now apply to function symbols rather than unknowns.
For instance, one tries to get occurrences of a function and its inverse,

like sin and arcsin, closer together.

2. Brown and Burton's work on BUGGY

To account for student errors in simple procedural skills 1like
subtraction Brown and Burton [1978; Burton 1982] proposed “the Buggy
model”, In that model, studert errors are seen as symptoms of a '"bug",
that is, a discrete modification to a correct procedural skill., For
example, the bug "O-n=n" accounts for the errors in both of the following

subtraction problems:

500 312
-65 =243
565 149

The bug dictates that when the top digit in a c¢olumn is 0, write the

bottom digit as the answer.

BUGGY is a computerized game based on the diagnostic interactions
between a student and a teacher., The computer plays the part of a student
who has a bug. The challenge to the user is to find the bug; BUGGY
presents examples of the "student's" incorrectly done homework problems.
The user/diagnostician describes the bug. The conjectured diagnoses is

then tested with more examples of problems done by the student.



Page 23

The main thrust of the BUGGY work is thus the diagnoses of bugs with
the assistance of a computer program (which can be seen as a gaming
environment). This leads (hopefully) to an improvement in the skill of
the diagnostician, like a student teacher. BUGGY therefore can be used to
explore such high-levels skills as hypothesis formation, strategic
knowledge, debugging, and theory testing through examples. Brown and
Burton feel that their BUGGY work provides a language for both teachers
and students to talk about their work and that this is a good thing. This
tenet also underlies the work of Rissland and Bundy; Papert elsewhere has

often addressed this issue [Papert 19801.

The BUGGY work was motiviated in part in response to the often
incorrect assumption that student errors are "random" or that students do
not follow procedures very well, The BUGGY work suggests quite the
opposite: students are often too faithful to procedures. Such
conclusions have also been reached by Davis and his colleagues, and

Piaget, long beforehand.

Often the manifestations of a "buggy" procedure do not permit easy
diagnoses; it 1is easy to see something is awry but much harder to say
exactly what. For instance, Brown and Burton challenge their readers to

diagnose the bug in the following series of subtraction problems:

9 8 6 8 9 1. 1 87
o T S A et I S L
LR S TR 1T R



I et W

S

*FORGET/BORROW/OVER/BLANKS:
" 8 * H ! H 1

Page 24

The bug here is that every time there is a carry, the student is simply
Wwriting down the carry and forgetting about the units digit. This student
also had this same bug in his multiplication skill. Thus bugs can
piggyback on subprocedures into higher level procedures and cause bugs in
these as well. Remediation of the higher-level skill would require
remediation of the 1lower one much like the debugging of procedures in

computer programming often requires the debugging of subprocedures.

The theme here is the breakdown of skills into simpler and more
primitive sub-skills. For instance, in ordinary additic» primitives might
be recognizing a digit, writing a digit, etc. The analysis of a skill in
terms of such primitives is a standard A.I. approach; it is seen in the

work of Selfridge and Briars and Larkin discussed below.

BUGGY makes its diagnoses by picking a bug from approximately one
hundred known bugs by comparing the student's answers with the output of
each bug run on the test problems. The initial hypothesis set contains
any bug that explains at least one of the student's bugs on the problem as
a whole (as compared to an error in a single column). This initial
hypothesis set is reduced by finding and removing primitive bugs that are

completely subsumed by other primitive bugs.

The information BUGGY uses is summarized in "bug comparison" tables

such as:

99 353 633 81 4769 257 6523 10 15 10 05 10038 10060

79 342 221 17 0 121 1283 6 2336 33 T g u3?9 98 7083

20 11 412 64 4769 96 5243 39 779 995 696 5719 9962 6907
udent answers:

- - - 98 - 418 - 169 738 1095 706 14319 10078 7097

139 ! R4 8E® 15719 10062 7007
®STOPS/BORROW/AT/ZERO: :
* # # ) 1 ] 49 ] [ XX K X X ] 6719 10062 7017
#DIFF/0-N=N:
# * ) #* ! * t * 1 839 1 | [ X X 9978 !
SADD/INSTEADOF/SUB
11 178 695 854 #xw # #%% 7803 167 13851 1083 714 14357 10158 7095




Page 25

Thé problems with the correct answers appear at the top. Student answers
appear on the next line with a "-" indicating a student correct answer.
Each of the remaining line contain the name of a bug and information
regarding the running of the subtraction procedure with that bug. For
these lines, a "¥¥¥" jndjcates the bug predicts the student's incorrect
answer; n"¥n  jndicates both the student and the bugged procedure got the
problem right; a "!" indicates the bugged procedure gave the correct
answer but the student did not; a number entry is the answer the bugged
procedure would get when it is different from both the student and the
correct answer. Thus "#n" and Uw¥k%¥n  apre  confirming evidence for the
student having a bug -- both are producing the same results —- and "!" is

disconfirming evidence.

Using such evidence, BUGGY then rates each bug according to how well
it explains the student bug. The system does this by means of a "symptom"

vector that contains information such as the number of U“k#¥ng,

In their work, Brown and Burton discuss many of th: subtleties that
may occur, such as: (1) some bugs are caused by performance lapses (e.g.,
the student copies a number wrong); (2) some bugs are due to errors in
subskills (e.g., errors in standard subtraction fact table like 10-2=3);
(3) bugs can act in concert and thus one bug can hide the existence of
another (e.g., the "smaller-from-larger" bug will hide any bug in the

borrowing procedure).



Page 26

3. VanLehn's Repair Theory

Given that bugs in procedural skills do occur, a natural question to
ask is "How do they arise?" Matz has given some answers with her analysis
of over-generalization. VanLehn and Brown offer another explanation by
generating '"bug stories" that describe how a particular bug could arise
[Brown and VanLehn 1980]., Their work, which deals with subtraction

errors, is a natural extension of Brown and Burton's.

The Repair Theory explanation for the origin of bugs is as follows:

"When one has unsuccessfully applied a procedure to a given problen,
one attempts a repair. The need to make a repair ix often triggered
by a procedure (or sub-procedure) reaching an impasse by which is
meant a state in which it cannot execute. One tries to remedy the
impasses by applying repair heuristiecs, of which the following are
considered:

1. skip

2. quit (the procedure)

3. swap vertically (the subtrahend and minuend entries)

4, dememorize

VanLehn and Brown experiment with the principles of their theory by
taking a production-rule representation of a standard school subtraction
algorithm, performing deletions on it to create buggy procedures, and then
running the repair theory. They are in no way claiming that the incorrect
procedures are generated by one forgetting or deleting 1lines from a
correct procedures; these incorrect procedures are just a means to study

the repairs.

To give the reader an idea of Repair Theory, we 2nr oduce Figure 1

from the VanLehn and Brown article (p. 387):



Page 27

REPAIR THEORY
The syntax is:
Goal (goal's arguments) Satisfaction Condition: goal’s satisfaction condition
: {rule’s condiions) ~> nile’s oction

other rules for achieving the goal...

The rules for the version of subtraction used in this paper are:

Sub() Satisfaction Condition: TRUE
L: - (ColScquence RightmostTopCell

RightmostBortomCell RightmostAnswerCell)

Colsizquence (TC)BC AC) Sadsfaction Condition: (Blank? (Next TC))

(SubCol TC BC AC)
L3: ~> (ColScquence (Next TC) (Next BC) (Next AC))
Snb(ll-‘:l (TCBC AC) Satisfaction Condition: (NOT (Blank? AQ)

. {(Blank? BC)} ~> (WriteAns TC AC)
Ls: (Less? TC BC)} —> (Borrow TC)
Lé: ) (DIff TCBC AC)
BOI‘I’E;I (TC) Sau)sfacﬁon Condition: FALSE

H (BorrowFrom (Next TC))

L8: - (AddloTC)
BorrowFrom (TC) Satisfaction Condition: TRUE

L9: {(Zero? TC)} —> (BorrowFromZero TC)

Lo {J- (Decr TC)
BorrowFromZero (TC) Satisfaction Condition: FALSE

L1k > (Write9 TC)

Ll12: - (BorrowFrom (Next TC) )

TC. BC and AC are variables. Theirmmesmmneumonicformeirconunu.whichhappcnmbe
‘the top. bouom and answer cells of a column.

The primitive actions and their associated preconditions are listed below. All of their arguments are
cells. The actions expecting digits in cenain arguments have - precondition that those cells not be
blank.

Diff - Subtrects the digit contained in its second argument from the digit conwined in its first
argument and writes the result in the third argument. The second argument can not be larger than
the first argument.

Decer -~ Subtracts one from the digit contained in its argument and writes the result back in the
same ccll. The input digit must be larger than 2zero.

WriteAns ~ Writes the digit contained in its first argument in its second argument.
Add]0 - Adds ten 10 the digit contained in its argument and writes the result back in the same cell.
Write9 ~ Writes a nine in is argument.  The cell can not be blank originally.

Figure 1. A GAO graph for o stondard version of subtraction




Page 28

"When a rule is deleted, its sister rules will often be executed in
its place, which frequently leads to an impasse. For example, when L4
of Figure 1 has been deleted, and the procedure is run on the problem
27
-4

an impasses is reached in the tens column because the interpreter
choses L6, the only rule that applies given that L4 is gone. Running
L6 results in calling the primitive action Diff. Diff takes a column
difference by taking the difference of its first two arguments'
contents and writing the result in the cell pointed to by the third
argument. But Diff has a precondition that neither of its arguments
be blank. Since this precondition is violated when Diff is called on
the tens column, the procedure is at an impasse. This impasse can be
repaired in a variety of ways. For example, the procedure could
simply do nothing instead of take the column difference (the "no-op"
repair heuristic). Control would return from Diff, and ultimately the
procedure would terminate normally leaving 3 as the answer., This way
of repairing the impasse generates the bug Quit-When-Bottom-Blank.

They describe several bugs generated by repairs to procedures with

incorrectly deleted 1lines. For instance, if L5 (from Figure 1) is

deleted.

This is the rule that says to borrow when the top digit is too small.
If L5 is deleted, then L6, the rule for processing ordinary columns,
will be executed on every column, including larger from smaller (LFS)
columns where one ought to borrow. LFS columns violate a precondition
of the Diff (the action <.lled by L6), namely that the first input
number be 1larger than the second input number. This precondition
violation is an impasse, and the problem solver is called to repair
it.

Several bugs can be generated by repairing the impasse:

The "no-op" repair heuristic (which says to skip the operation whose
precondition is violated) leads to the bug "Blank-Instead-of-Borrouw"
which simply does not write an answer in the LFS column;

The "quit" repair causes the subtraction process to halt at the first
LFS column; ,
The "swap vertically" repair generates the interesting
“"Smaller-From-Larger® bug which results in the absolute difference
entered as the answer in LFS columns;

The "dememorize" bug of answering 0 in all LFS columns (i.e., m - n =
0 when ndm) is so called because it involves the inverse of
"memorizing" which involves learning of the fact table and semantics
of subtraction.



Page 29

VanLehn points out that not all deletions 1lead to impasses; some
repairs generate bugs which have never been observed in student subjects;
and that a repair to one impasse can lead to a second. All of these are
issues involving control. For instance, the second, over-generation of
bugs, means that the repair proposed must be constrained. VanLehn also
discusses the role of "crities" in a generate-and-test architecture of the
repair generator to filter down the proposed repairs. In connection with

repairs, he offers a taxonomy of repair heuristics.

The Repair Theory of vanLehn and Brown is a good example of
"principled" modelling of human mathematical behavior. Once vanLehn and
Brown select their approach of repairs, they stick to it (and. do not
introduce ad hoc repairs to it) to see how far it can be pushed and how it
squares with the observed data. It provides a detailed accound of
mathematics in a narrow area by an account which is most 1likely
transferrable to other tasks. Of course, using their approach in other
tasks would involve background work on, for instance, the domain-specific

procedures, impasses, and repairs in the new area.

4, Rissland's work on Constrained Example Generation

Almost all episodes of learning -- whether by person or machine --
depend on having a rich store of examples (worked and posad problems,
specific cases, etc.); see for instance the discussion of Mitchell's,
Selfridge's and Lenat's work in Part III., Without the experience gained
by consideration of examples, learning, understanding, skill acquisition,
proving theorems, debugging programs, etc. all come to a halt (or cannot
even begin). Despite the central role played by examples, they are often

overlooked or taken for granted. Yet, any expert teacher knows not only



Page 30

the value of examples but also that not all examples serve equally well to
make a point or provide a test case and what often distinguishes one

example from another is the properties it possesses.

Thus with regards to 1learning and teaching, one does not pick
examples at random: they are generated for a purpose -- like giving
evidence for or against a conjecture —— and thus are usually (carefully)

chosen to possess certain desired properties or constraints.

Rissland calls this process of generating examples that meet
prescribed constraints "Constrained Example Generation" or "CEG" [Rissland
1980, 1981; Rissland and Soloway 19801. The CEG model is based upon
observations of humans working problems in which they are asked to
generate examples satisfying certain constraints. It incorporates three

major phases: RETRIEVAL, MODIFICATION, and CONSTRUCTION.

When an example is sought, one can séarch through one's storehouse of
examples for one that matches the properties desired. If one is found,
the example generation problem has been solved through RETRIEVAL. In
retrieval, there are many semantic and contextual factors -- like the last
generated example -- and therefore one is not merely plunging one's hand
into an unorganized knowledge base. Thus even though retrieval sounds

simple, it can be very complex.

However, when a match is not found, how does one proceed? In many
cases, one tries to MODIFY an existing example that is judged to be close
to the degired example, or to have the potential for being modified ¢to
meet the constraints. Often the order of examples selected for
modification is based on judgements of closeness between properties of
known examples and the desiderata, that is, how "near" the examples are to

what is sought.



Page 31

If attempts at generation through modification fail, experienced
example generators, like teachers or researchers, do not give up; rather
they switch to another mode of example generation, which we ecall
CONSTRUCTION. Under construction, we include processes such as combining
two simple examples to form a more complex one and instantiation of
general model examples or templates to create an instance. Construction

is usually more difficult than either retrieval or modification.

General Skeleton of the CEG Model

CEG has subprocesses for: Retrieval, Modification, Construction,
Judgement, Control

Presented with a task of generating an example that meets specified
constraints, one:

1. SEARCHES for and (possibly) RETRIEVES examples JUDGED to satisfy the
constraints from an EXAMPLES KNOWLEDGE BASE (EKB); or

2. MODIFIES existing examples JUDGED to be <close to, or having the
potential for, fulfilling the constraints with domain-specific
MODIFICATION OPERATORS; or

3. CONSTRUCTS an example from domain-specific knowledge, such as
definitions, general model examples, principles and more elementary
examples.

In examining human protocols, one sees two types of generation: (1)
retrieval plus modification; and (2) construction. That is, one does not
necessarily try first retrieval, then modification, then construction;
sometimes construction is attempted straightaway. Clearly, this model
needs many other features to describe the CEG process in its entirety;

more details can be found in Rissland 1981].




Page 32

To give the reader an idea of the richness and complexity of the CEG
process, we present here a synopsis of a CEG problem taken from the domain
of elementary function theory. The problem is:

Give an example of a continuous, non-negative
functlon. defined on n all the real numbers such that it

has the value 1000 af at the point x=1 and that the area
under its curve is less than 1/1000.

Most protocols for this question began with the subject selecting
a function (usually, a familiar reference example function) and then
modifying it to bring in into agreement with the specifications of the
problem. There were several clusters of responses according to the
initial function selected and the stream of the modifications pursued.
A typical protocol went as follows [Rissland 19801]:

"Start with the function for a "normal distribution". Move it +to
the right so that it is centered over x=1. Now make it "skinny" by
squeezing in the sides and stretching the top so that it hits the
point (1, 1000)."

"I can make the area as small as I please by squeezing in the sides
and feathering off the sides. But to demonstrate iuct the area is
indeed less than 1/1000, I'11l have to do an integration, which is
going to be a bother."

"Hmmm. My candidate function is smoother than it need oe: the
problem asked only for continuity and not differentiability. So
let me relax my example to be a "hat" function because I know how
to find the areas of .riangles. That is, make my function be a
function with apex at (1, 1000) and with steeply sloping sides down
to the x-axis a little bit on either side of of x=1, and 0 outside
to the right and left. (This is OK, because you only asked for
non-negative.) Again by squeezing, I can make the area under the
function (i.e., the triangle's area) be as small as I please, and
I'm done."”

Notice the important use of such modification operations as
"squeezing", "stretching" and "feathering", which are usually not
included in the mathematical kit-bag since they 1lack formality, and

descriptors such as "hat" and "apex".



Page 33

Another thing observed in all the protocols is that subjects make
implicit assumptions -- i.e., impose additional constraints -- about
the symmetry of the function (i.e., about the line x=1) and its maximum
(i.e., occurring at x=1 and being equal to 1000). There are no
specifications about either of these properties in the problem
statement. These are the sort of tacit assumptions that Lakatos [1976]
talks about; teasing them out is important to studying both

mathematics and cognition.



Page 34

III. A.I. PROGRAMS TO DO MATHEMATICS SOMEWHAT LIKE A MATHEMATICIAN

1. Slagle's Symbolic Automatic Integrator (SAINT)

One of the classic programs in A.I. is Slagle's program written in
1961 as a doctoral dissertation to perform indefinite integration. SAINT
(Symbolic Automatic INTegrator) performed at about the level of a good
freshman calculus student [Slagle 1962]. A successor to SAINT was Joel
Moses' SIN program which has evolved into the highly successful MACSYMA
system which can perform exceedingly complicated symbolic mathematics and

is used by the professional mathematics commmunity.

The integration problems that SAINT could handle involve a class of

elementary functions, defined as followed:

any constant is an elementary function

the variable is an elementary function

the sum of elementary functions is elementary;

any elementary function raised to ar elementary function as a power;

a trigonometric function of an elementary function

a logarithmic or inverse ¢trigonometric function of an elementary
function;

OV W N -
¢ o o o

SAINT works as follows when given a problem:

1. it determines whether the integrand is one of 26 standard forms, that

~is, when it 1is a substitution instance of a standard form like INT

2%%xdx is an instance of INT c*¥*xdx. If so the answer can be given
immediately;

2. 1if not of standard form, it is tested to see if it is amenable to a
well-defined transformation which, when applicable, 1is wusually
appropriate, such as factoring the constant outside the integral,
interchaning finite summation and integration, making a 1linear
subsitution. There are eight transformation rules.

3. 1if not of standard form, the integral is tested to see if it is
amenable to a heuristic transformation which is a transformation that
usually helps with the solution. There are ten heuristic
transformations, the most useful of which is the "derivative-divide"
rule described below.



Page 35

To give the reader an idea of how SAINT works, we present the example

from [Slagle 19621]:

As a concrete example we sketch how SAINT solved

zl
f =

in eleven minutes. SAINT’s only guess at a first step is to try substitution:
¥ = arcsin x, which transforms the original problem into

siné y
.[ costy dy

For the second step SAINT makes three alternative guesses:

sinty

= 4
costy dy f tant y dy
sint

B. By trigonometric identities f ﬁ dy = f cot~t y dy

A. By trigonometric identities [

24

TFaa-a *

SAINT immediately brings the 32 outside of the integral.
Alter judging that (A4) is the casiest of these three problems SAINT
guesses the substitution z = tan y, which yields

f(;an‘ydy= f%dz

SAINT immediately transforms this into

C. By substituting z = tan (y/z) / :i::;‘l'dy = / 32

1 2 d
[(m1+e+rhp)dsm —st B [ ooy

Judging incorrectly that (B) is easier than

dz
142

SAINT temporarily abandons the latter and goes off on the following
tangent, By substituting z = cot y,

[oottyay = | 7020 / PTG
Now SAINT judges that
[ dz
142

is casy and guesses the substitution, w = arctan z which yiclds [ dw. Im-
mediately SAINT intcgrates this, substitutes back and solves the original
problem, :

z4 . . - .
f T=9% dz = aresin z + 14 tan® arcsin z — tan arcsin z




Page 36

One of the noteworthy mechanisms in SAINT was the use of an "and-or"
goal tree. Each integration problem can be treated as a goal which
involves the solution of other integration, i.e., subgoal, problems. When
there are alternatives, each of which would suffice, to achieving a goal,
this represents an "OR" branch in the tree. When there are necessary

subgoals, each of which is needed, this represents an "AND" branch.

By use of a "goal stack", Slagle maintains the "focus of attention"
in his problem solver. Each time there is a new task to be done, it is
added to the goal stack. For instance, an "algorithmlike" or heuristic
transformation wusually adds goals to the goal stack. Satisfying goals
allows the stack to be reduced. Slagle maintains two goal stacks, one of
whiech is the "heuristic goal list" of goals which are neither of standard
form nor amenable to standard algorithmlike transformations. This is like

keeping a list of things to do.

Part of the determination of the amenability of a goal to a
transformation is a 1list of characteristics which include function type
(like rational, algebraic, etc.), and a measure of the depth of the

deepest functional composition in the integrand.

The most  successful heuristic in Slagle's program was
"derivative-divide" which searches for a subexpression s(x) in the
integrand g(x) such that s'(x) divides g(x) and results .:. an expression
with fewer factors and then makes the substitution u=s(x) in the
integration. For instance, in x INT exp(x¥**2) dx substitute x¥¥2, SAINT

actually discovered the substitution u=exp(x¥*¥2),



Page 37

There are several points to be made about SAINT which are relevant to

the mathematics education community:

1. the skill involved in a task like integration can be explicated in
procedural terms;

2. much skill knowledge can be described in terms of rules of an if-then
nature;

3. Slagles program illustrated the use of goals, heuristics, and
knowledge representation,

SAINT was tested on a total of 86 problems, 54 of them chosen from
MIT final examinations in freshman calculus, and correctly solved all but

two. The most difficult were:

o sec2t J X4
5 dt and 7573 dx
1 + sec't - 3tan t, (1 -x)

B ————— ———— e

2. Lenat's AM program

Lenat's doctoral dissertation program AM (Automated Mathematician) is
a knowledge-based program which discovered mathematical concepts [Lenat
1977, Lenat and Davis 1982]. Provided with a rich arsenal of heuristics
concerning discovery and interestingness, and a basis of concepts in set
theory, it developed concepts in elementary number and set theory, 1like
"prime", Lenat's program has the themes of strong knowledge-based
programming, heuristics encoded as if-then rules and an agenda mechanism

to control the focus of attention on things to do.



Page 38

AM is a program which expands a knowledge base of mathematical
concepts. Each concept is stored as a frame data-structure. Creating a
new concept frame is the principle task for AM; this activity involves
setting up a new data structure for the concept and filling in the slots.
Filling in a slot is accomplished by executing a collection of relevant
heuristic rules. The possible things for AM to do -- like setting up a
new concept and filling in a concept slot — are kept track of by the A.I.
mechanism known as an "“agenda". AM looks at the agenda of things to do
and selects the next task on the basis of considerations such as its
importance and interestingness. Filling in a slot, like "Fill-in examples
of primes" is an example of a typical task. A heuristic rule is relevant
if executing it brings AM closer to satisfying the task. Relevance is
determined a priori by pre-determined connections between the heuristic

and the slot it effects.

Once a task is chosen from the agenda, AM gathers relevant heuristic
rules and executes them. Then AM picks a new task. There are three kinds

of effects from such execution:

1. slots of concepts get filled in, for instance a heuristic relevant to
filling in an example slot is:
To fill in examples of X, where X is a kind of Y. Check examples of
Y;s some of them might be examples of X as well. For instance, to
fill in an example for the "prime number" concept, AM would consider
examples of the "number" concept.

2. new concepts are created, for instance a heuristic relevant to this
task is:
If some (but not most) examples of X are also examples of Y,
Then create a new concept defined as the intersection of the concepts
X and Y.

3. new tasks are added to the agenda, for instance by execution of the
heuristic:
If very few examples of X are found,
Then add the following task to the agenda: "Generalize the concept
Xn,



Page 39

The knowledge of mathematical concepts is encoded in a network of
about 115 frames; each frame has several slots describing different
aspects of the concept like its NAME, DEFINITION, EXAMPLES,
GENERALIZATIONS, SPECIALIZATIONS, and  WORTH. AM uses about 250
heuristics. A heuristic (which turned out to be quite puwerful) is that

dictating the examination of extreme cases.

AM has roughly 40 heuristics that deal with the creation of new
concepts. Some are general and apply to any concept; others apply only
to functions and relations. The general heuristics include: (1)
generalization through such mechanisms as dropping a condition or changing
a constant to variable; (2) specialization; (3) exception handling, for
instance, if a concept has a negative examples, AM might create a new
concept whose instances are the negative examples. Methods that apply to
functions and relations include generalization, specialization and

inversion.

To give the reader an idea of how AM works, the following is an
excerpt from Lenat's thesis [Lenat and Davis 1982, Chapter 2] describes
the run in which AM discovered the concept of "prime". (NB. AM does not
have any natural language fluency; what follows is a transcript that was
edited by Lenat to improve its readability.)
¥%Task 65:%%

Filling in examples of the following concept: "Divisors-of",
3 Reasons: (1) No known examples for Divisors—of so far.
(2) TIMES, which is related to Divisors-of, is
now very interesting.

(3) Focus of attention: A<M recently defined Divisors-of.

26 examples found, in 9.2 seconds. e.g.: Divisors-of(6)={1 2 3 6}



Page 40

*%Task 66:**

Considering numbers which have very small set of Divisors-of
(i.e., very few divisors).

2 Reasons: (1) Worthwhile to look for extreme cases.
(2) Focus of attention: AM recently worked on Divsors-of.

Filling in examples of numbers with O divisors.
0 examples found, in 4.0 seconds.
Conjecture: no numbers have 0 divisors,

Filling in examples of numbers with 1 divisors.
1 example found, in 4.0 seconds, e.g.: Divisors-of(1)={1}
Conjecture: 1 is the only number with 1 divisor.

Filling in examples of numbers with 2 divisors.
24 examples found, in 4.0 seconds, e.g.: Divisors-of(13)={1 13}
No obvious conjecture., This kind of number merits more study.
Creating a new concept: "Numbers-with-2-divisors",

Filling in examples of numbers with 3 divisors. .
11 examples found, in 4.0 seconds, e.g.: Divisors-of(49) = {1 7 49}

All numbers with 3 divisors are also Squares. This kind of number merits more study.
Creating a new concept: "Numbers-with-3-divisors"

#%Task 67 %%

Considering the square-root of Numbers-with-3-divisors.

This session was preceeded by AM's discovery of multiplication and
division; this 1lead to the concept of "divisors of a number". AM found

examples of this concept, in particular AM investigated exteme cases, that

is numbers with very few or very many divisors. AM then was ready to
discover "primes". As Lenat states, "AM thus discovers Primes in a
curious way. Numbers with O or 1 divisor are essentially nonexistent, so
they're not found to be interesting. AM notices that numbers with 3
divisors always seem to be squares of numbers with 2 divisors (primes).
This raises the interestingness of several concepts, including primes." AM
then goes on to use the concept of prime in generating various conjectures
like "unique factorization" which arise out of the heuristic to ask if the

relation between a number and its divisors is a function.



Page 41

Lenat's AM is an example of a strongly knowledge-based A.I. program
which can do quite interesting tasks -- the sort of tasks that if a person
did them, one would say that there was intelligence involved. It is a
good example of an A.I. program which starts with knowledge and power and
is able to generate new knowledge. Thus, AM's strengths are as an A.I.
program; Lenat's remarks about its psychological validity are less
compelling. However, his program is a very good demonstration of the

power of heuristics, knowledge representation and agenda mechanisms.

3. Selfridge's COUNT Program

Selfridge's COUNT program was designed to explore the issue of
learning through a teacher challenging a student to solve problems. This
work is at the opposite end of the spectrum from Lenat's: whereas Lenat
uses a strong knowledge-based approach rich with control and search
heuristics, Selfridge's program starts with minimal knowledge and has a

very simple control structure.

The task for the COUNT program is to count the number of characters
in a string. The program initially possesses a few '"primitive
capabilities" from which it is to derive a capability, i.e., learn how, to
count. COUNT's problem is to learn how to count the number of letters in
a string. It has available to it a register ("N"), the position of a
pointer ("PTR") and the length of the string ("LENGTH"). Its primitive
capabilities affect those three data. The capabilities are:

INCREMENT DECREMENT  EXCHANGE LEFT RIGHT
REPEAT N TIMES
INCREMENT and DECREMENT affect the register N; EXCHANGE interchanges two

letters in the string; LEFT and RIGHT affect the pointer; REPEAT causes



Page 42

a capability to be repeated until it cannot be performed, N TIMES causes

a capability to be repeated N times, where N is the value in the register.

The teacher starts out by being shown a "world state" which consists
of a string of letters, a pointer position and a value in N. The teacher
then describes a new world state which it wishes COUNT to achieve (this is
the "posed problem"). For instance, the teacher might ask COUNT to get
the register N to be zero. By a sequence of posed problems and COUNT's
discovering how to do them, COUNT can build up new capabilities (which are
sequences of prior capabilities) and can eventually, if taught, count the
number of letters in the string. Actually the counting problem is just a
pre-problem to learning how to reverse the letter string -- a much harder

problem.

One important point of COUNT is that the teacher gets COUNT to do
more not by programming it but by challenging COUYT to discover new
capabilities. This is much the situation with children and other
learners: one cannot "make" the learner do the skill, but rather must
challenge the learner to develop the needed skills., (Think of getting a
child to pitch —- first, the child must learn to throw; or a horse and

rider to jump a four foot fence...)

The sequence of posed problems must challenge but not overwhelm the
program (the same would be true of children and horses). Overwhelming in
the case of COUNT means exceeding its search resources. The program uses
"pblind breadth-first™ search to discover a sequence of actions that solve
a possed problem: first search all the capabilities on the current menu;
then search all pairs; then all triplets, etc. The current menu consists
of the primitive capabilities plus any new ones that the teacher has

caused the program to add. This is done by asking t-e program to save



Page 43

what it has done in the successful solution of a posed problem (it is
given a name of the teacher's choosing). Thus, new capabilities only get
added in response to success on a posed task. COUNT provides a
demonstration that a program can learn without highly sophisticated
control techniques, but the subtlety comes in the selection of problems to

pose.

The following is an excerpt of a session to teach COUNT how to count.
COUNT presents a tableau of its world state and the teacher responds by
posing a new world state:

ABCDE N=16
~ (Ptr= 4 Length= 5)

TYPE PROBLEM:

*
0

*

The order of specifying the posed world state is: (1) the new string;
(2) the new value in N; (3) the new pointer position. An asterisk
indicates the teacher doesn't care about the value. In this first
problem, the teacher 1is solely interested in getting the register to be
Zero, N=0 and doesn't care about the actual letters in the string nor the
position of the pointer.

COUNT responds to this first challenge:

I think I've got it.
Yes, it works. Shall I try it again? Y or N: N.

Here's new status. Pose problem again. If you don't like
status, Type S (and return).

ABCDEFGHI N=6
~ (Ptr= 3 Length= 10)

The most streamlined way to teach COUNT to count is:



Page u4i

1. zero out the register N (call it "NZERO")

2. move the pointer all the way to the left and zero out the register
("INIT")

3. move the pointer one letter right and add one to N
("MOVE-RIGHT-AND-ADD")

4, count the number of letters in the string

Thus at the end of teaching COUNT to count, four new capabilities (NZERO,
INIT, MRA, COUNT) have been added to COUNT's repertoire of capabilties.
Note, most people end up with more capaibilties on the menu simply because
they too are performing a "search" of problems to pose and solutions for
COUNT to remember. It is possible to impede COUNT by asking it to
remember too many capabilities because this causes an increase in the size

of the space COUNT must search for answers to new problems.

Selfridge's program provides a laboratory to study issues in learning
like the role of the teacher, posed problems, search. He does not claim
the humans necessarily learn like COUNT (with emphasis on search). He
does claim that humans do need exercise and evaluation of their
capabilities to learn. One could claim that early learning -- when one is
like an infant with regards to a task -~ might very well be something like
COUNT for what else can one do but ¢try with what capabilities one
possesses. The other end of the learning spectrum is a program like
Lenat's where the learner has a vast, rich, well-structured body of
knowledge to bring to bear on new problems. Note that regardless of the
kind of learning, the examples, data and experiences involved are
critical. I would claim that without a rich body of examples there can be

no learning.



Page 45

4, Mitchell's LEX program

Tom Mitchell has built a program LEX to Learn by EXperimentation in
the domain of symbolic integration, the same domain as Slagle's much
earlier work [Mitchell 19831]. Where Slagle's SAINT was endowed with
certain heuristics, like "derivative-divide", which it used in its task of
doing integration problems, the task of Mitchell's LEX is to learn such
heuristics. In other words, LEX's task is to learn the kind of knowledge

that made SAINT powerful.

Mitchell's work on LEX is an application .of his idea of "version
spaces” which he developed in his doctoral thesis [Mitchell 19781].
Version spaces are a mechanism to represent the range of incompletely
learned heuristics in terms of the possibilities spanned by the most
specific case and the most general case of successful application of the

heuristic.

Mitchell is attacking a central and classic problem in A.I., namely
"learning". It is relevant to the concerns of this paper because some of
its methods can be transferred to the teaching of mathematics; in
particular the notion of refining one's notion of a heuristic on the basis
of "positive" and "negative" examples. LEX thus forms a bridge between
the concerns of Schoenfeld and those of Slagle, Lenat and the A.I.
learning community. It also is another case in point on the ubiquitous

role of examples.

LEX acquires and modifics heuristics by iteratively cycling through
the processes of: (1) generating a practice problem; (2) using available
heuristics and other knowledge to solve this problem; (3) analyzing and
critizing the search steps in obtaining the solution; and (4) proposing

and refining new domain-specific heuristiecs. LEX, 1like other A.I.



Page 46

programs, starts out with some initial store of domain-specific knowledge
as well as an architecture embodying general knowledge about learning,
representation, control, etc. Its initial domain-specific knowledge
consists primarily of two sorts, much like SAINT:

1. operators -~ these include heuristic "algorithmlike" (to use Slagle's
term) transformations as well as "book knowledge" 1like common
anti-derivatives and standard transformations. The operators are
stored in "If-Then" format, where the "If" clause contains the
conditions necessary for application of the operator, and the "Then"
contains the result of the application. For example:

1. OP1: INT r.f(x)dx ===> r .INT f(x)dx

2. O0P2 (Integration By Parts):
INT u dv ===> uv - INT v du
(This is represented as INT f1(x)f2(x)dx, where f1(x) corresponds
to u and f2(x)dx corresponds to dv.)

3. OP3 1.f(x) ===> f(x)

4, OPY4 INT f1(x)+f2(x) dx ===> INT f1(x)dx + INT f2(x)dx

5. OP5 INT sin(x) dx ===> -cos(x) + C

6. OP6 INT cos(x) dx ===> sin(x) + C

2. a type heirarchy -- which lays out the relationships between major
types of domain items, like functions, which LEX must manipulate. LEX
derives much of its power to learn from this heirarchy which
essentially captures the notion of generality in LEX's domain. For
instance the specific functions sin, cos and tan are ¢trig functions
and 1ln and exp are expln functions; ¢trig and expln functions are
transcendental functions. The identity function, constant function,
integer exponent are monomials which in turn are polynomials.

LEX's task is to learn when a heuristic should be applied and how.
For instance, in the case of Integration by Parts ("IBP"), LEX is to learn
how to "bind" the u and the dv. As any who has learned or taught calculus
knows there 1is some art in choosing the u and the dv; LEX is trying to

discover and express that art.

The LEX program contains four modules: Problem Solver, Critiec,
Generalizer, and Problem Generator. Their functions are as follows:

1. Problem Solver tries to solve the problem at hand with its available
store of operators, including the current status of its heuristics;

2. Critic analyzes the trace of a successful solution to glean positive
and negative instances., A positive instance is a problem state on the
way to a successful solution; a negative instance is on a path that
led away from the solution;




Page 47

3. Generalizer rewrites its knowledge of heuristics on the basis of what
the Critic tells it: it squeezes in from the most general statement
of the heuristic on the basis of negative instances and pushes out
from the most specific on the basis of postive instances;

4, Problem Solver poses new problems to solve which will help to further
refine knowledge of the heuristics.

For instance, suppose LEX is trying to learn IBP (that is, refine OP2
to narrower classes for f1(x) and f2(x)) and has been posed the problem:

INT 3x sinx dx

At the completion of one cycle, IBP has been refined and is narrowed
to a range of possibilities from:

"most specific" : Apply IBP with u=3x and dv=sin(x)dx

"most general": original form of OP2 (with f1(x) and f2(x) )
This range is represented by a version space that captures all the
intermediate possibilities 1like:

Apply IBP to INT 3x trig(x) dx with u=3x and dv=trig(x)dx

Apply IBP to INT poly(x) cos(x) dx with uspoly(x) and dv=cos(x)dx

Apply IBP to INT kx trig(x) dx with wu=kx and dv=trig(x)dx (k an

integer)

Eventually LEX homes in on an intermediate case.

One lesson for mathematics education from this work is to mimic the
learning cycle of LEX. That is, make it an explicit task fir students to
learn "what should be the u and what should be the dv" and discover this
by trying problems -- albeit wisely chosen -- of positive and negative
force to narrow down on the answer. Another more implicit message is that
domain-knowledge such as LEX's heirarchy of types is exceedingly powerful
and should be made explicit to students; this is a point made by

Rissland.



Page 48

Note that LEX still isn't clever enough to know to group INT
(sinx)**2 4+ INT f(x)dx + INT (cosx)**2 to take advantage of the obvious
identity and arrive at X + INT f(x)dx. Because it does not have concepts
like "even integer" and "odd integer", it can't learn some of the usual
tricks involving integrals of powers of sin and cos (which involve one
trick when there exists an odd power and a different one for both even

powers).

An example of one cycle of LEX starting with the problem INT 3x
cos(x)dx results in the flow of information and a version space summarized
by the following figure (Fig . 6-5 from his paper in [Michalski,

Carbonell and Mitchell 19831):

PROBLEM
GENERATOR

Version space of a proposed heuristic
S: J 3x cos(x) dx -> Apply OP2

with v = 3ix, and

dv =

J 3x cos(x) dx cos bx) ax
G: J f1(x) f2(x) dx -> Apply OP2
with u = f1(x)
and dv = f2

GENERAL I ZER

One of the suggested

PROBLEM
SOLVER

J 3x cos{x) dx

OP2 with
u = 3x,

dv = cos(x) dx

3x sin(x) - J 3sin(x) dx positive training instances:
\\ J 3Ix cos(x) dx -> Apply OP2
0P . with u = 3x, and
) dv = cos d
3x sin{x) - 3 J sin(x) dx () e
CRITIC
0OP5

3x sin(x) + 3cos(x) + C

Figure 6-5: The learning cycle in1ex.




Page 49
IV. CONCLUSIONS

My purpose in presenting the above dozen samples of research was not
only to give the reader an idea of what A.I.-style research is and
pointers into the relevant literature but also to show, by example, that
many questions central to A.I. research are central to mathematics
education., In particular, both fields are interested in questions such
as:

1. How do we learn?

2. What is understanding?

3. What is the knowledge involved in mathematical expertise?
4, How can we describe and represent such knowledge?

5. How can we impart such knowledge to students?

I believe that the tools of A.I., in particular those of‘ knowledge
representation, process description, and planning/control, provide a
useful kitbag for the mathematics educator in grappling with such
questions. A.I. concepts make it easier to describ> what we know and
intuit about learning and, if we want, to experiment and test out our
ideas by implementing them as programs. This expressive power makes it
possible to de-mystify and describe our knowledge: how it is structured,
stored, acquired and refined. Applying this approach to expert
mathematical problem-solving is especially relevant to mathematics
education since by better understanding and describing such knowledge, we

should be better able to transfer it to our students and thereby help them

improve.

Another "epistemological” lesson A.I. teaches is that it is very
important to attend to '"meta" and "tacit" knowledge: for example,
strategies for understanding and non-formal aspects of mathematical
knowledge. A.I. programs have demonstrated that such knowledge is

central to machine intelligerce. This can be taken as a strong hint that



Page 50
it might also be vital to human intelligence.

As mathematicians and educators, we may not be satisfied with the
descriptions and programs of A.I. but they do give us a place to begin,
even if only in reaction and criticism. A.I. offers existence proofs
that important mathematical skills can be understood and detailed. A.I.
programs, while they might not prove the necessity of certain ingredients
of knowledge, can demonstrate sufficiency. While A.I. programs do not
prove psychological validity for such detailed models, they can be used to
empiriéélly evaluate and test the sensitivity of models. And they provide

a rigorous medium for testing out ideas.

A.I. thus offers the mathematics education researcher a body of
concepts with high expressive power, demonstrations of the value of "meta"
and tacit knowledge, a rigorous medium for testing out ideas about
learning and some strong hints about what is important for learning in
humans. A.I. has taught us not to be afraid to tackle hard questions
such as what constitutes expertise. We should take courage from this. In
such research, the important point is not to be exactly right the first
time, but rather to begin and then to evolve. I believe the same is true,

by the way, for (A.I.) programs. A.I. offers us a way to begin.



Page 51

References

Barr, A., and Feigenbaum, E. A., (Eds.) The Handbook of Artificial
Intelligence. Volumes 1 and 2, Wm. Kaufman, Inc., Los Altos, CA,
1981.

Borning, A., and Bundy, A., "Using Matching in Algebraic Equation
Solving". Proceedings International Joint Conference on Artificial
Intelligence (IJCAI-81). Vancouver, B. C., 1981.

Brown, J. S. and Burton, R., "Diagnositc Models for Procedural Bugs
in Basic Mathematical Skills", Cognitive Science, Vol.2, 155-192,
1978.

Brown, J. S., and vanlLehn, K., "Repair Theory: A Generative Theory
of Bugs in Procedural Skills", Cognitive Science, Vol. 4, 379-426,
1980.

Bundy, A., Analysing Mathematical Proofs (or reading between the
lines). Research Report DAI No. 2, Department of Artificial
Intelligence, University of Edinburgh, 1975.

Bundy, A., and Silver, B., "Homogenization: Preparing Equations for
Change of Unknown". Proceedings International Joint Conference on
Artificial Intelligence (IJCAI-81), Vancouver, B. C., 1981.

Burton, R.R., "Diagnosing bugs 1in simple procedural skills",
Intelligent Tutoring Systems. In Sleeman and Brown (Eds.) Intelligent
Tutoring Systems, 1982.

Cohen, P. C., and Fegeinbaum, E. A. (Eds.) The Handbook of

Artificial Intelligence. Volume 3, Wm. Kaufman Inc., Los Altos, CA,
1982.

Davis, R. B., Young, S., McLoughlin, P., The Roles of "Understanding"
in the Learning of Mathematics Curriculum Laboratory, University of
Illois, Urbana/Champaign, April 1982.

Davis, R. B., Jackson, E., and McKnight, C., "Cognitive Processes in
learning algebra." Journal of Children's Mathematical Behavior, 2, No.
1, 1978.

Davis, R. B., and McKnight, C., "The Influence of Semantic Content on
Algorithmic Behavior ", Journal of Children's Mathematical Behavior,
Vol. 3, No. 1, 1980.

Feigenbaum, E. A., and Feldman, J., (Eds.) Computers and Thought.
MeGraw-Hill, New York, 1962.

Lakatos, I., Proofs and Refutations. Cambridge University Press,
1976.

Lenat, D. B., Automated Theory Formation in Mathematics, Proceedings
International Joint Conference on Artificial Intelligence, MIT,
Cambridge, Mass, 1977. Available from Wm. Kaufman, Inc., Los Altos,
CA.




Page 52

Lenat, D. B., and Davis, R., Knowledge-Based Systems in Artificial
Intelligence. MecGraw-Hill, New York, 1982.

Matz, M., "Towards a process model for high school algebra errors",
In Sleeman and Brown (Eds.) Intelligent Tutoring Systems, 1982,

Matz, M., "Towards a Computational theory of Algebraic Competence",
Journal of Children's Mathematical Behavior, Vol. 3, No. 1, 1980.

Michalski, R. S., Carbonell, J., and Mitchell, T., (Eds.) Machine
Learning. Tioga Publishing Company, CA, 1983.

Mitchell, T. M., "Learning and Problem Solving". Proceedings
International Joint Conference on Artificial Intelligence (IJCAI-83),
Karlsruhe, West Germany, 1983. Available from Wm. Kaufman, Inc.,
Lost Altos, CA. :

Mitchell, T. M., Version Spaces: An approach to concept learning.
Ph. D. thesis, Stanford University, December 1978. Also report
STAN-CS-78-711, Stanford University.

Papert, S., Mindstorms. Basic Books, New York, 1980.

Polya, G., How To Solve It. Second Edition, Princeton University
Press, 1973.

Rissland, E. L., Constrained Example Generation, Technical Report
81-24, University of Massachusetts, Amherst, MA, 1981,

Rissland, E. L., "Example Generation"™, Proceedings Third National
Conference of the (Canadian Society for Computational Studies of
Intelligence, Victoria, B.C., May 1980.

Rissland, E. L., "The Structure of Knowledge in Complex Domains". .in
Chipman, Segal and Glaser (Eds.), Thinking and Learning Skills:
Research and Open Questions, Lawrence Erlbaum Associates, 1984.

Rissland, E. L., The Structure of Mathematical Knowledge. Technical
Report No. 472, MIT Artificial Intelligence Laboratory, August 1978.

Rissland, E. L., "Understanding Understanding Mathematics", Cognitive
Science, Vol. 2, No. 4, 1978.

Rissland, E. L., and E. M. Soloway, "Overview of an Example
Generation System", Proceedings First National Conference on
Artificial Intelligence, Stanford, August 1980.

Samuel, A. L., "AI, Where it has been and where it is going".
Proceedings International Joint Conference on Artificial Intelligence
(IJCAI-83), Karlsruhe, West Germany, 1983. Available from Wm.
Kaufman, Inc., Los Altos, CA.

Schank, R. C., "The Current State of AI: One Man's Opinion". Al
Magazine. Vol. 4, No. 1, 1983.

Schoenfeld, A.H., "Beyond the Purely Cognitive: Belief Systems,
Social Cognitions, and Metacognitions as Driving Forces in



Page 53

Intellectual Performance", Cognitive Science, 7, 329-363, 1983a.

Schoenfeld, A.H., "Theoretical and Pragmatic Issues in the Design of
Mathemtical ‘Problem Solving' Instruction". Paper presented at the
1983 Annual Meeting of the American Educational Research Association,
Montreal, Canada, April 1983b.

Schoenfeld, A.H., "Teaching Problem Solving  Skills", American
Mathematical Monthly, 87, 794-804, 1980.

Schoenfeld, A.H., "Presenting a strategy for indefinite integration",
American Mathematical Monthly, 85, pp. 673-671, 1978.

Slagle, J. R., "A Heuristic Precgram that Solves Symbolic Integration
Problems in Freshman Calculus". In Feigenbaum and Fledman (Eds.)
Computers and Thought, 1962.

Sleeman, D., and Brown, J. S., Intelligent Tutoring Systems.
Academic Press, New York, 1982.




