Symbolic Evaluation -~
An Aid to Testing and Verification'

Lort A. Clarke
Debra J. Richardson

COINS Technical Report 8341

Department of Computer and Information Science
University of Massachusetts
Ambherst, Massachusetts 01003

! This paper appears in Softwarc Validation, editor Han-Ludwig Hausen, North Holland Publishing
Company, 1983.

Symbolic Evaluation --
An Aid to Testing and Verification®

Lori A. Clarke
Debra J. Richardson
[
Department of Computer and Information Scicnce
University of Massachusetts
Ambherst, Massachusetts 01003

Symbolic evaluation is a program analysis method that represents a
program’s computations and domain by symbolic expressions. This
method has been the foundation for much of the current research on
software testing. Most path selection and test data selection techniques,
which are two of the primary concerns of testing research, require the
information provided by symbolic evaluation. Symbolic evaluation is
also employed by verification techniques. In addition to formal
verification, several less rigorous verification techniques utilize the
symbolic expressions created by symbolic evaluation to certify program
properties.

In this paper, the general symbolic evaluation method is explained.
Several path selection and test data sclection techniques that utilize the
information provided by symbolic evaluation are then described. Some
informal verification techniques, which also employ this information, are
discussed. Finally, the partition analysis method, which uses symbolic
evaluation to combine both testing and verification is described.

1. INTRODUCTION

The ever increasing demand for larger and more complex program‘s has created a need for
automated support environments to assist in the software development process. One of the
primary components of such an environment will be validation tools to detect errors, determine
consistency, and generally increase confidence in the software under development. Several of
the validation tools being developed employ a method, called symbolic evaluation, that creates
a symbolic representation of the program. This paper describes symbolic evaluation and surveys
some of the testing and verification applications of this method.

Symbolic evaluation monitors the manipulations performed on the input data. Computations:
and their applicable domain are represented algebraically over the input data, thus describing
the relationship between the input data and the resulting values. Normal execution computes
numeric values but loses information about the way in which these numeric values were
derived, whereas symbolic evaluation preserves this information. When further analyzed, this
information provides the basis for several testing and verification methods.

! This work was supportcd by thc National Science Foundation under grants NSFMCS 81-04202 and

For the most part, current testing research is directed at either the problem of determining the
paths, the particular sequences of statements, that must be tested or the problem of selecting
revealing test data for the selected paths. For the path selection problem, techniques such as
program coverage, data flow testing, and perturbation testing have been proposed. For the test
data sclection problem, a number of informal guidelines have been put forth.. Recently there
has been considerable work on developing more systematic test data selection techniques that
can either eliminate certain classes of errors or provide a quantifiable error bound. Many of
_the current path selection and test data selection techniques base their analysis on the
information provided by symbolic evaluation.
1™

Formal verification techniques have usually applied symbolic evaluation techniques to develop
verification conditions. There are a number of less comprehensive verification techniques that
have used symbolic evaluation to certify the correctness of selected program properties. Some
current work is being directed at developing methods that integrate testing and formal
verification, based upon symbolic evaluation. :

The next section of this paper provides a brief overview of symbolic evaluation and an
example is presented to demonstrate the method. The third section describes a number of
ways in which symbolic evaluation aids the testing process. Both the path selection and test
data selection aspects of testing are discussed. The fourth section discusses how the verification
process can utilize symbolic evaluation. Some informal verification approaches are described.

Finally, the partition analysis method, which uses symbolic evaluation techniques to combine
testing and verification, is presented in some detail.

2. SYMBOLIC EVALUATION

Symbolic evaluation provides a functional representation of the paths in a program or module.
To create this representation, symbolic evaluation assigns symbolic names for the input values
and evaluates a path by interpreting the statements on the path in terms of these symbolic
names. During symbolic evaluation, the values of all variables are maintained as algebraic
expressions in terms of the symbolic names. Similarly, the branch predicates for the
conditional statements on a path are represented by constraints in terms of the symbolic
pames. After symbolically evaluating a path, its functional representation consists of the path
computation, which is a vector of algebraic expressions for the output values (including the
values returned by parameters) and the path domain, which is defined by the conjunction of
the path’s branch predicate constraints. For path Pj the path computation and path domain

are denoted by C[P;] and D[Pj], respectively.

The forward expansion method is the most straightforward way to do symbolic evaluation
[CLARS1] and thus is the method described here. Using forward expansion the path
computation and path domain are developed incrementally by interpreting each statement on a
path. After symbolically evaluating a sequence of statements on a path, the symbolic
representation of the path up to that point can be shown. This representation consists of the
current symbolic representation for each variable and the conjunction of the branch predicate
constraints that have been created so far. This conjunction of constraints is called the path
condition, denoted PC, and is used to determine the feasibility of the path being examined.
If, at any point during the symbolic evaluation, it can be determined that the path condition is
infeasible — that is, there are no data for which the sequence of statements could be executed
— then symbolic evaluation of that path can be terminated. Nonexecutable paths are a
common phenomena in programs, especially unstructured programs.

The procedure RECTANGLE, shown in Figure 1, is used to illustrate symbolic evaluation.
Note that the left hand side of the listing is annotated with node numbers so that statements
or parts of statcments can easily be referenced. Paths are designated by the ordered list of
nodes encountered on the path. Path (s,13,4,56,10,f) is an example of an infeasible path.

The symbolic evaluation of the feasible path (s,13,4,5,6,7,896,10f) is described below and
Figure 2 shows the expressions that are generated.

Before interpretation of a path, the path condition is initialized to the value true and the
values of all variables are set to their initial values: the input parameters are assigned
symbolic names, variables that are initialized before execution are assigned their corresponding
constant value, and all other variables are assigned the undefined value “?”. Thus, before
symbolically evaluating a path in RECTANGLE, the variables would be set to the initial
values specified for node s in Figure 2, where variable names are written in upper case and
symbolic names in lower case. -

After initiallizing the variables and path condition, each statement is interpreted, as it is
encountered on the path, by substituting the current symbolic value of a variable wherever that
variable is referenced. Thus, for the assignment statement at node 5 in RECTANGLE, the
current symbolic values of X and F after interpretation of statements (s,1,3,4) are substituted
into the expression on the righthand side, resulting in
AREA = a«f[1] + 2.0+a+f[2] + f[0)].
If AREA is subsequently referenced on the path, then this new value would be substituted for
AREA. For a conditional statement, the branch predicate corresponding to the selected path
is interpreted. Thus when evaluating ncde 1, the branch predicate representing the condition
to go from node 1 to node 3 is the complement of the condition at mode 1. This evaluated
branch predicate is first simplified and then conjoined to the previously generated path
condition, resulting in the path condition
true and not (h > b-a) = (a-b + h < 0.0).

Symbolic interpretation of the statements on a path Py provides a symbolic representation of
the path computation and path domain. The path computation C[P;] consists of the symbolic
representation of the output values. The symbolic representation of the path domain D[Py} is
provided by the path condition. Note that only the input values that satisfy the pé(h
condition could cause execution of the path. i

procedure RECTANGLE (A,B: in real; H: in real range -1.0..10;
F: in array [0.2] of real; AREA: out real; ERROR: out boolean) is
— RECTANGLE approximates the area under the quadratic equation
— F[0] + F{1}sX + F[2]*X*2 from X=A to X=B in increments of H.
X,Y: real; -
s begin
— check for valid input
1 if H> B -~ A then
2 ERROR := true;
else
ERROR := false;
X = A;
AREA := F[0] + F{1sX + F[2]#Xe2;
while X + H < B loop
X=X+ H;
Y := F[0] + F{1pX + F2]+X2;
AREA := AREA + Y;
end loop;
10 AREA := AREA+H;
endif;
f end RECTANGLE;

WVWONAAKNEW

Figore 1: Procedure RECTANGLE.

BT AN
o OPm o
o
I
-~

_3<xm>m=m>

i
g
o

1 PC = true and not (h > b - a)
=(a-b+h=00)

3 ERROR = false
4 x = a
5 AREA = {[0] + f{l]»a + f[2]+as2

= f{0)-+ asf[1] + 2.0+a+f[2]

6 PC=(Ga-b+h=00and (a+h=b)
- =(a-b+h =00

7 X=a+h

'8 Y = f[0) + f{1]*(a+h) + f[2]x(a+h)es2
! = f{0] + af[1] + f[i]sh + ave2+f[2] + 20vasf[2]sh + f[2]shee2

9 AREA = f[0] + a«f[1] + 2.0+asf[2] + f[0] + asf[1]
+ f{l}sh + a=2+f[2] + 20sasf2]sh f[2]shes2
='2.0+f[0] + 2.0va+f[1] + 2.0%a+f[2] + f[1}+h
+ awe2ef[2] + 2.0%a+f[2]sh + f[2]shes2
6 PC=(a-b+h=00)andnot (a +h +h =s0b)
(a—b + h < 00) and (a - b + 20+h > 00)

10 AREA = (2.0+[0] + 20+a+f[1] + 2.0+asf[2] + f[1]h
+ a=2s+f[2] + 20%a+f[2]¢h + f[2]sh*s2) = b
= 20+[0ph + 20vaef[l]sh + 20%aef[2]sh + f{1]shes2
+ aws2¢f[2]+h + 2.0+asf[2]shes2 + f[2]shee3

‘D: (a-b +h = 00) and (a - b + 20sh > 00)
ERROR = false
AREA = 20+f[0}sh + 20+a+f[1]sh + 20sasf[2]+h + f[1]shes2
4 ame2ef[2]sh + 2.0vaef[2]ohes2 + f[2]shes3

Figure 2: Symbolic Evaluation of Path in RECTANGLE.

A symbolic representation of all executable paths through RECTANGLE is unreasonable since
there is an effectively infinite number of executable paths. This problem exists for any
program in which the number of iterations of a loop is dcpendent on unbounded input values.

One approach to this problem is to replace each loop with a closed form expression that
captures the effect of that loop [CHEA79, CLARS1]. Using this technique, a path may then
represent a class of paths that differ only by their number of loop iterations.

The loop analyiis technique attempts to represent each loop by a loop expression, which
describes the effects of that loop. For each analyzed loop, a conditional expression is created
representing the final iteration count for any arbitrary execution of the loop. The final
iteration count is expressed in terms of the symbolic values of the variables at entry to the
loop. In addition, for each variable modified within the loop its symbolic value at exit from
the loop is created in terms of the final iteration count and the symbolic values of the
variables at entry to the loop.

A loop is not analyzed until all its nested loops have been replaced by their associated loop
expression. At the time of analysis, therefore, each loop' contains only one backward branch,
so each path in the loop can be symbolically evaluated. To initiate the evaluation, an
iteration counter, say k, is associated with the loop. For each variable y, y, represents the

value of the variable y on entry to the first iteration of the loop and y,, k=1, represents the
value of the variable y after execution of the kth iteration of the loop. The body of the loop
is then symbolically evaluated to get a representation of a typical iteration. This evaluation,
suppose it is for the kth iteration, is identical to the normal evaluation process, except that the
symbolic name initially assigned to each variable is its value after execution of iteration k-1 -
that is, the initial value for y is y,_;. This provides a recurrence relation for each y,, k=1,

which is in terms of the values of the variables after iteration k-1. Next, the branch predicate
controlling exit from the loop is interpreted in terms of the values of the variables after
execution of the kth iteration. This provides the loop exit condition, denoted lecy, which
represents the condition under which the loop will be exited after the kth iteration. The first
part of Figure 3 shows the results of this evaluation for the WHILE loop in RECTANGLE.

Next, loop analysis attempts to find solutions to the recurrence relations- for each variable in
terms of the values of the variables on entry to the loop. The solution to the recurrence
relation for y, is denoted by y(k) and represents the value of the variable y on exit from the
kth iteration of the loop. Solutions are found first for those variables that do not reference
other variables whose recurrence relations are as yet unsolved. Once a solution is found for a
variable, it is substituted for all references to it in the remaining recurrence relations. This
process is repeated, if possible, until all recurrence relations are solved. The loop exit
condition lec, is then solved by replacing each y, referenced in the condition by its solution
y(k) and simplifying. This provides lec(k), the condition under which the loop will be exited
after execution of the kth iteration. The second part of Figure 3 provides the solutions to the
recurrence relations for the loop in RECTANGLE. Although not illustrated in this example,
sometimes two subcases must be considered independently: 1) the first iteration of the loop
(k=1), where the recurrence relations and loop exit condition depend on the values of the
variables at entry to the loop; and 2) all subsequent iterations (k>1), where the recurrence
relations and loop exit condition depend on the values computed by the previous iteration.

After solutions to the recurrence relations have been determined, the loop expression can be
created. The loop expression for the loop in RECTANGLE appears in the last part of Figure
3. Bach subcase consists of the loop exit condition and the values of the variables at exit
from the loop. The first subcase in this figure represents the fall-through condition, which
must be included for any while loop or similar loop construct. For this subcase, the values at
entry to the first iteration of the loop satisfy the loop exit condition and provide the values oa
exit from the loop. The second subcase represents one or more iterations of the loop and is
derived from the solved recurrence relations and loop exit condition. Usually, for this subcase,

! Only single-entry, single-exit foops are considered here.

Recurrence Relations and Loop Exit Condition for RECTANGLE
Created by Symbolic Evaluation of kth Iteration of Loop

ARBAk = AREAk_l + Yk'
= AREA,_; + f[0] + f{1]sX; + {[2]sX[=2
Xk = Xk_l + h -
=h + Xp 4
Yy = fl0] + f{1pX, + f[2]eX 2
lec, = not (X; + h < b)
=(-b + h + X, > 00)

Solved Recurrence Relations and Loop Exit Condition for RECTANGLE
AREA(k) = AREA; + sum < i=LXk | f{0] + f[1]¢(b*i+Xy) + fl2]s(hsi+Xp)ee2 >
= AREAj + fl0pk + f{I]skeXg + f2]skeX w2
+ sum < i:=Lk | f{l]shei + f[2]shes2eiss2 + 2.0+f[2]shsieX,; >
= AREA(+ fl0]k + f{1]skeXy + f[2]skeXges2 + f[1)eheke(k-1)2.0
+ f[2]shws2eke(k+1)(2¢k+1)/6.0 + 2.0+f[2]¢heke(k-1)*X(/2.0
= AREA; + [0k + f{IJskeXy + f[2]skeXyee2 — f[1]¢hk/2.0
+ f[1]shek*s2/20 + f[2]*h++2:k/6.0 + f[2]shws2+k+2/2.0
+ f{2]shes2skes3/30 — f2shekeX, + f[2]+hekas2eX,
= AREA + f[0]k ~ f{i}shek/20 + f[1]sksX, + f[1]ehek»+2/2.0
+ f[2]sh#s2+k/6.0 — f[2]shokeX, + f[2]ekeX#s2
+ f[2]shes2+ke2220 + f[2]shekes20X + f[2]shes20k++3/30
X(k) = hek + Xq :
Y(k) = f[0] + f[1]«(hek+Xy) + f[2]s(hek+X)s+2
= f[0] + f{l}shek + f[1]eXy + f[2]shes2skes2 + 20+f[2]shekeX, + f[2]+X;*2
lec(k) = (-b + h + hsk + Xy > 0.0)

Loop Expression for RECTANGLE
case
—fall through
(b + h + Xy > 00):
AREA = .‘\REAO
X = X
Y = Yo
—exit after first or subsequent iteration
(-b + b + Xg = 00) and (k, = min< k | (k=1) and (-b + h + hek + X, > 00) >)
= (-b + b-+ Xy =< 00) and (k. = int(h - Xg/h)):
AREA ='AREAg + f[0]sk, - f[l}ehek /20 + f[1]sk *Xq + f{1]shek ++2/20
+ f[2]ohes2ek /6.0 — f[2]rhek oXq + f[2]+k oX2+2
+ f{2]shee2ek 02720 + f[2]shek ss2#X; + f[2]shes2ek ++3/3.0
X = hek, + X, _
Y = f[0] + f{1pXy + f[1]shek, + f[2]sXges2 + 2.0+f[2)shek oX; + f[2]ohwe2ek 2
endcase

Figure 3: Loop Analysis of RECTANGLE.

the final iteration count, call it k., is represented in terms of the minimum k, k = 1, such
that the loop exit condition is true, and the value for each variable y at exit from the loop is
represented by y(k.). In this example it is possible to precisely represent k. by int(b/h — Xy/h).

The loop “expression is a closed form representation capturing the cffects of the loop. Thus,
the nodes in the loop can be replaced by a single node, annotated by this loop expression.
Later, when such a loop is encountered during symbolic evaluation, each subcase in the loop
expression must be considered in the symbolic cvaluation process. The resulting symbolic
expression may be composed of a number of subcases. Figure 4 provides the path domains
and computations for RECTANGLE, where path Py represents the class of paths with one or
~ more iterations of the loop.

As one might expect, there are several problems associated with loop analysis. Obtaining the
solutions to the recurrence relations is not always straightforward and sometimes may not be
possible. Complications arise in several situations. In particular, the interdependence between
two recurrence relations may be cyclic — y may depend on x, which depends on y ~ in which
case the recurrence relations cannot be solved. Problems also arise when conditional execution
occurs within the loop body, causing conditional recurrence relations. This results in a more
complicated ldop expression, provided these recurrence relations can even be solved. Thus,
loops often cause an explosion in the size and complexity of the global representation of a
routine. Nested loops exacerbate this problem. In addition, determining consistency of a PC
incorporating a loop exit condition may also be problematic. This is due to the possible
representation of a final loop iteration count in terms of conditional expressions or a minimum
value expression, or both. Deciding the existence of these minimum values is essentially
proving routine termination. When none of these problems arise, however, the loop analysis
technique provides a general evaluation of a loop that is very useful. In practice, not only
can loops often be represented in a closed-form, but many loops are variants of common
patterns. Recognizing these pattems [WATE79] may be easier and more efficient tpan
invoking general axiomatic and algebraic mechanisms to solve recurrence relations. ,

Py : (s,1,2)
D[P : (a-b + h > 00)
C[P;] : AREA =17
ERROR = true -

Py : (s,1,3,4,5,6,10,1)
D[P,J:(a—b+hs0.0)and(a-b+h>0.0)
= false == infeasible path s+

Py (5134,56,7896)".100) |

D[P3]:(a—b+hso.0)and(kc=lnt(—alh+blh)

C[P,] : AREA = (f[0] + asf[1] + 2.0vasf[2] + f(O]k, - f{1]sh+k 2.0 + asf[i]sk,
+ f1]shek ++2/20 + f[2]shes2¢k /6.0 - asf[2]shek, + ass2+f[2]*k,
+ f[2]ehee2¢k +02/2.0 + asf[2]ehek o2 + f[2]shes2¢k ++3/30) = b ,

= f{0}sh + aef[l}sh + 20easf[2]oh + f[OJshek, + aef[l]shek, — f[1]she+2+k /2.0
- asf[2]shes2ek_ + awe2ef(2shek, + f{1]shes2ek 4220 + f[2]shes3+k /6.0
+ avf[2]shes2ek o2 + f[2]shes3ek 2220 + f[2]shwe3sk ++3/3.0
ERROR = false

Figure 4: Path Domains and Computations for RECTANGLE.

In the purest sense, the path domain and path computation are all that need be provided by
symbolic evaluation. To do further analysis, however, it is desirable to simplify the symbolic
representations and to determine the consistency of the PC.

Simplification can be done by converting the symbolic expressions into canonical forms. There
are several available algebraic manipulation systems [BOGE75, BROW73, RICHT8] that can be
used to accomplish this simplification. A canonical form for the symbolic value of each output
- parameter might be one in which like terms are grouped together and terms are ordered first
by degree and then lexically. The PC .might be put into conjunctive normal form and each
relational expression put into a canonical form. This canonical form might be one in which
the constant term is on the right-hand-side of the relational operator and the left-hand-side has
the same form as that for an output parameter. To enhance readability, we have simplified

the output from symbolic evaluation to these canonical forms in all the examples given in this
paper.

As noted above, only a subset of the paths in a program are executable and, therefore, it is
desirable to determine whether or not the PC is consistent. One approach to this problem
employs a theorem proving system. We refer to this as the axiomatic technique since it is
based upon the axioms of predicate calculus. Another approach, referred to as the algebraic
technique, treats the PC as a system of constraints and uses one of several algebraic methods
- such as a gradient hill-climbing or linear programming algorithms - to solve this system of
constraints. The ATTEST system [CLAR76,78], for example, uses a linear programming
algorithm [LAND?73] and thus employs the algebraic technique. The advantage of choosing this
technique is that a solution is provided when the PC is determined to be consistent. This
solution serves as test data to execute tie path. Both the axiomatic and algebraic techniques
\:vork well on the simple constraints that are generally created during symbolic evaluation. No
method, however, can solve all arbitrary systems of constraints [DAVI73]. In some instances,
PC consistency or inconsistency can not be determined; the symbolic representations for such a
path can be provided, but whether or not the path can be executed is unknown.

3. TESTING APPLICATIONS

Testing research has evolved from primarily gathering information about a program to
analyzing that information so as to detect errors or provide a guarantee that certain classes of
errors cannot occur. For the most part, testing research has divided the testing -process into
path selection and test data selection componcats. This division is baged on the recognition
that, in general, it is impractical, if not impossible, either to test all paths through the program
or to test all inputs to a path. Thus criteria for selecting a subset’ of paths and criteria for
selecting a subset of the input data for those paths are needed. The basic goal is to select
paths and test data that will detect errors or guarantee their absence over the whole program.
This section describes several path selection and test data selection techniques and emphasizes
how these techniques utilize symbolic evaluation.

3.1. Path Selection

Three criteria for selecting paths that have typically been used for program testing are
statement, branch, and path coverage. Statement coverage requires that each statement in the
program occurs at least once on one ‘of the selected paths. Likewise, branch coverage ‘requires
that each branch predicate occurs at least once on one of the selected paths and path_coverage
requires that all paths be selected. Branch coverage implies statement coverage, while path
coverage implies branch coverage. Thus, these three measures provide an ascending scale of
confidence in testing. Given a reliable method of test data selection, path testing would
constitute a proof of correctness. Since path coverage implies ‘the selection of all feasible paths
through the routine, attaining path coverage is usually impractical, if not impossible.

It is generally agreed that branch coverage should be a minimum criteria for path selection.
Achicving even this level of coverage is not always straightforward. Statically gencrating a list
of paths that satisfy this criterion usually results in a number of infeasible paths being selected.
Data flow techniques that attempt to generate only feasible paths by excluding inconsistent
pairs of branch predicates have been shown to be NP complete [GABO76). Thus, symbolic
evaluation is a useful technique for aiding in the selection of executable paths. The ATTEST
system [CLAR76], for example, uses a dynamic, goal-oriented approach for automated path
selection whereby each statement on a path is selected, based on its potential for a selected
coverage criterion. When an infeasible path is encountered, ATTEST chooses one of the
alternative statements. When there i$ more than one consistent alternative, the choice is based
on the selected coverage criterion [WOODB80].

Unfortunately, branch coverage is easily shown to be inadequate; no matter what test data is
selected for these paths, many simple, common errors will go undetected. Several stronger
criteria have been proposed for selecting paths that fall between the two levels of reliability
and expense associated with branch testing and path testing. Some alternative criteria simply
limit loop iterations. The EFFIGY system [KINGT76] generates all paths with a bound specified
on the number of loop iterations. The ATTEST system strives for statement, branch, or path
coverage but- attempts to select paths that traverse each loop a minimum and maximum
number of times. . Howden has proposed the boundary-interior method for classifying paths
[HOWD?75]. With this method, two paths that differ other than in loop iterations are in
different classes. In addition, two paths that differ only in loop traversals are in different
classes if
1. one is a boundary and the other an interior test of a loop;
2. they enter or leave a loop along different loop entrance or loop exit branches;
3. they are boundary tests of a loop and follow different paths through the loop;
4. they are interior tests of a loop and follow different paths through the loop on their first
iteration of the loop. '
A boundary test is one which enters the loop but leaves it before carmrying out a complete
traversal and an interior test carries out at least one complete traversal of the loop. A set of
test data is considered to cover all classes if at least one path from each class is exercised by
the test data. Again, symbolic evaluation is useful for determining a set of feasible paths that
satisfy the loop criterion. Moreover, when loop analysis is successful in creating a closed form
representation of the loop, then this representation provides a snapshot of the paths that satisfy
the selected loop criterion.

An alternative to the use of control flow as the determining factor in path selection is the use
of information concerning the flow of data through the routine. Data_flow techniques
[LASK79, NTAF81, RAPP82] require the selection of some subpath(s) from a definition of a
variable to a use of that variable. Rapps and Weyuker [RAPP82] have described a partial
ordering on a family of data flow techniques for path selection. Figure 5 shows this partial
ordering as well as its relation to statement, branch, and path coverage. As an example of
the application of these techniques, consider the flow chart in Figure 6. Use coverage requires
the selection of some subpath from each definition of a variable to each use of that variable.
The following paths, therefore, satisfy use coverage: (123568, (1245,28). Du-path
coverage, on the other hand, requires the selection of all minimum loop subpaths from each
definition of a variable to any use of that variable. In addition to the two paths above, the
path (12,35,7,8) must be selected because it includes a subpath from the definition of Y at
node 3 to its use at node 8. Note that there is one more path, (1,2,4,56,7), that would need
to be selected to satisfy path coverage but mo additional flows of data are to be gained by
testing that path. Although the data flow path selection techniques can be applied
independently, a number of infeasible paths will be generated unless data flow analysis and
symbolic evaluation techniques are paired together. '

C-usc

ﬁ coverage
c-usc(p-use) .

coverage
path = du-path — use def
coverage coverage coverage coverage

p-use(c-usc)
' coverage

%-usc : branéh 3statcmcm

coverage coverage coverage

Figore 5: Data Flow Testing Criteria.

& _rad

Figare 6: Data .I"low Testing Example.

In addition to using control and data flow information, path selection techniques have been
developed that relate directly to the elimination of potential errors in program statements.
Perturbation_testing [HALES2, ZEIL83] attempts to compute the set of potential errors in
arithmetic expressions that cannot possibly be detected by testing only the current set of
selected- test paths, regardless of the- test' data selection techniques employed for those paths.
Perturbation testing derives a set of characteristic expressions that describe the undetectable
perturbations (errors). This information can be used to select additional paths that must be
tested in order to detect possible perturbations. As an example, consider the flow chart in
Figure 7. Along path (...,13,.) the value of Z is the same as the value of 2¢X at node 3.
Any error in the predicate at node 3 that can be represeated by k » (Z — 2+X), where k is a
constant, could not be detected along path (..,13,..). For instance, if the branch predicate at
node 3 should have been Z - X > Y, the emor would not be detected. Along path
(...23,..), however, this equality does not hold and thus the crror would be detected. In

general, another proposed path will be a useful test if, and only if, it eliminates onc or more
expressions describing undetectable perturbations. The perturbations of a statement can be
represented by using modified symbolic evaluation techniques. Perturbation testing is currently
being implemented as an extension to the ATTEST symbolic evaluation system.

32. Test Data Selection

Symbolic evaluation, like most other methods of program analysis, does not actually execute a
routine in its natural environment. Evaluation of the path computation for particular input
values returns numeric results, but because the environment has been changed, these results
may not always agree with those from normal execution. Errors in the hardware, operating
system, compiler, or symbolic evaluation system itsclf may cause an erroncous result. It is thus
important to test the routine on actual data. In addition, testing a routine demonstrates its
run-time performance characteristics.

Given a particular path through a program to be tested, a test data selection technique
provides guidance in the selection of test data for that path. The symbolic representation of a
path can be used as the basis on which to select such data. - The most straightforward
technique simply examines the PC to determine a. solution — that is, test data to execute the
path. As noted previously, SELECT [BOYE75] and ATTEST are two symbolic execution
systems that generate such test data by using an algebraic technique for determining PC
consistency.

In addition to purely random methods, several efyor-sensitive heuristics have been proposed.
Myer’s error guessing [MYER79], Foster’s error-sensitive test case analysis [FOST80], Weyuker’s
crror-based testing [WEYUS]], and Redwine’s engincering approach [REDWS&3] provide
guidelines for selecting test data to detect likely errors. Each approach is based on examining
the statemeats in a program or an informal description of the intent of the program.

More systematic techniques have been proposed that appear to capture the ideas underlying the
error-sensitive heuristics by characterizing potential errors in terms of their effects on a path.
For these techniques, errors are classified into two types, computation errors and domain_errors,
according to whether the effect is an incorrect path computation or an incorrect path domain.
A domain error may be cither a path selection error, which occurs when a program incorrectly
determines the conditions under which a path is executed, or a missing path error, which
occurs when a special case requires a unique sequence of actions but the program does not
contain a corresponding path. A number of test data selection™ techniques focus on the
detection or either domain or computation errors. These techniques analyze the symbolic
representations created by symbolic execution and select data for which the path computation
and path domain appear semiitive to ermrors. A difficult problem, which must be addressed by
these techniques, is the possibility that an error on an executed path may not produce
erroneous results; this is referred to as coincidental correctness. For an example, note that the
second multiplication operator in statemeat 5 of RECTANGLE should be an exponentiation
operator. If this statement is only executed when A=00 or 10, then the actual resulting value
and the intended value agree. Although this is a contrived example, coincidental correctness is

o=

Figure 7: Peturbation Testing Example..

a common phenomenon of testing. A goal, therfore, is to minimize the occurrence of
coincidentally correct results by astutely selecting test data aimed: at exposing, not masking,
errors.

In RECTANGLE there are five errors, onc computation error, three missing path errors, and a
path selection error. As noted above, the first error is caused by an erroneous computation at
statement 5; statement 5 should be AREA := F[0] + F1}+X + F[2]*X*s2. The second and
third errors are caused by an erroneous check for a valid input value for h when a > b (the
input check is only correct if a < b). If a > b, then h must be negative (error two) and its
absolute value must be less than a — b™error three). Both errors two and three are missing
path errors. Moreover, h cannot be zero, regardless of the relationship between a and b or an
infinite loop results; this is the fourth error, which is also a missing path error. A correct
check for valid input follows:

if(A>BandH20.0)or(A<BandHS0.0)then

ERROR := true;

else if (abs (H) > abs (B — A)) then

ERROR := true;
Another situation, which might be considered a fifth error, occurs when a + Int(-a/h + b/h) =
h < b, since the area under the quadratic is computed beyond the point specified by b. A
more accurate algorithm would add in the area of a smaller rectangle on the last iteration of
the loop (or subtract the excess upon exit). In the ensuing discussion it is shown how four of
these five errors are detected by test data selection techniques.

Computation _testing techniques select test data aimed at revealing computation errors. One
'approach analyzes the symbolic representations of the path computation. This approach is
based on the assumption that the way an input value is used within the path computation is
indicative of a class of potential computation errors. Analysis of the symbolic representation of
‘the path computation reveals the manipulations of the input values that have been performed
to compute the output values. In general, a path computation may ‘contain arithmetic
manipulations or data manipulations, which are inherently sensitive to different classes of
computation errors. Guidelines have been proposed for selecting test data aimed at revealing
computation errors that are considered likely to occur for both types of path computations
[CLARS3). One of these guidelines states that each symbolic name corresponding to a
multiplier in the path computation should take on the special values zero, one, and negative
one, as well as nonextremal and extremal values. Note that such a selection of values for A
would reveal the first error. .

There have been some theoretical results showing that more rigorous computation testing
techniques can guarantee the absence of certain types of computation errors when the path
computations fall into well-behaved functional classes. For example, there are a few techniques
that can be applied if the symbolic value for an output parameter is a polynomial. For a
univariate polynomial with integer coefficients whose magnitudes do not exceed a known
bound, a single test point can be found to demonstrate the’ correctness of that polynomial
[ROWLS1]. Alternately, for a univariate polynomial of degree N, N+1 test points are
sufficient [HOWD?78]. Probabilistic arguments have been made for reducing this number
without sacrificing must confidence [DEMI78]. Similar results have been provided for
multivariate polynomials. '
When the path computations fall into specialized categories, the computation testing guidelines
can be tuned to guide in the selection of an even more comprehensive set of test data. For
example, if a path computation involves trigonometric functions, then guidelines dependent upon
their properties should be exploited. In RECTANGLE, an example for which an extended set
of guideclines are required is the Int function that appears in the computation of AREA. Data
should be selected so that the dropped remainder that results from applying the Int function is
both zero and nonzero. Data satisfying this extension would- alert the tester to the poor

termination condition (the fifth error).

Domain_testing techniques [CLAR82, WHIT80] concentrate on the detection of domain errors
by analyzing the path domains and selecting test data on and slightly off the closed borders of
each path domain. If the correct results are produced for each of the on and off test points,
the border must be “close™ to the correct border. An undetected border shift can orly occur
if the on test points and the off test points lic on opposite sides of the correct bordsr. The
undetectable border shifts are kept “small” by choosing the off test points as clos: to the
border® being tested as possible. In fact, with the proper selection of on and off test points, a
quantified error bound measuring “the set of clements placed in the wrong domain by an
undetected border shift can be provided. Figure 8 illustrates a border shift, where 5 is the
given border, C is the correct border, and the sct of elements in the wrong domain it shaded.
The border shift is revealed by testing the on points P and Q and the off points U and V,
since V is in the wrong domain. For a border in higher dimensions, 2¢v (where v is the
number of vertices of the border) test data points must be selected for best results. A
thorough description of the domain testing technique and its effectiveness is provided in
[CLARS2). Figure 9 shows the test data sclected for the paths in RECTANGLE to satisfy the
domain testing technique. The only closed border is (a — b + h =< 00). If extremal values
of 1000 and -1000 are assumed for the inputs A and B, this border has six vertices. The
figure indicates whether each datum is an on point or an off point (on or above the border).
Four of the five errors in RECTANGLE are revealed by domain testing. Error one is
detected by execution of any of the on points. Error two is detected by either of the two off
points (a = 1000 and b = 9999 and h = 001) or (a = -9999 and b = -1000 aad b =
001). Error four is detected by either of the two on points (a = 1000 and b = 100.0 and h
= 00) or (a = -1000 and b = -1000 and h = 00). The inaccurate termination condition
(error five) is revealed by testing cither of the off points (a = 1000 and b = 9899 and h =
-10) or (a = 9899 and b = -1000 and h = -10). The third crror is a missing path error
that will not be detected by domain testing. This error occurs whea (a > b) and (b < 0.0)
and (abs(h) > a — b), which implies that a — b + h < 00; this describes points in the domain
but not on the closed border and thus will not be selected by domain testing.

iv:!'-"

g A
53 PN,
b Far X 2TEY . -
PR Nl Kt ~

et
el I e
TS WS
e ST T

Filgure 8: Domain Testlng Strategy.

Conditions for en points for (a — b + b = 00)

a = 1000 and b = 990 and h = -10
a=90andb = 1000 and h = 10
a = 1000 and b = 1000 and h = 00
a = -1000 and b = -990 and h = 10
a = -1000 and b = -1000 and h = 0.0
a=-90and b =-1000 and h = -10

Conditions for off points for (a — b + b = 0.0)
a = 1000 and b = 9899 and h = -10

|

a =901 and b = 1000 and h = 10
a = 1000 and b = 9999 and h = 001
a =-1000 and b = -9901 and b = 10
a = -9999 and b = -1000 and h = 001
a=-9899 and b = ~1000 and b = -10

Figure 9: Conditions for Satisfying Domain Testing Strategy for RECTANGLE.

Existing domain testing techniques are aimed at the detection of path selection errors. As
illustiated in the example, missing path errors may not be detected by such techniques. A
missing path error is particularly difficult to detect since it is possible that only one point in a
path domain should be in the missing path domain; the error will not be detected unless that
point happens to be selected for testing. When a missing path error corresponds to a missing
path domain that is near a boundary of an existing path domain,| then the error may be
caught by domain testing techniques, as occurred in RECTANGLE for errors two and four.
Missing path errors cannot be found systematically, however, unless a specification is employed
by the test data selection method, as is done by the partition analysis method [RICHS8Ia].

In sum, the symbolic representations created by symbolic evaluation appear to be quite useful
in determining what test data should be selected in order to have confidence in a path’s
reliability. This is a promising, yet relatively new, resecarch area that should be explored
further.

4. VERIFICATION APPLICATIONS , .

Formal verification methods use symbolic evaluation techniques to assist in proving the
correctness of programs. Typically, input, output, and loop invariant assertions must be
supplied. Verification conditions are then created by symbolically evaluating the code between
two adjacent assertions. These verification conditions must then be shown to be true based on
the semanitics of the programming language and any required application-dependent axioms.
This process [FLOY67, HANT76, HOAR71, LOND75] and a number of related approaches to
verification have been frequently described in the literature and will not be discussed here.

Instead, this section discusses some alternative verification approaches. First, some less
comprehensive verification techniques that are used to detect or certify the absence of
particular program properties are described. Then partition analysis, a method that integrates
testing and verification is presented in some detail. Although still based on symbolic
evaluation, this method uses a quite different approach to verification. One of the advantages
of this method is that it can be applied to a number of different types of specification and
design languages.

4.1. Certification

The symbolic representations that are generated for a path can quite naturally be used for
certification. The path computation often provides a concise functional representation of the
output for the entire path domain. Normal execution, on the other hand, only provides
particular output values for particular input values. Examination of the path computation as
well as the path condition is often useful in uncovering program errors. In RECTANGLE, for
example, examination of C[P;] would most likely reveal the erroneous use of multiplication
rather than exponentiation in statement 5. This method of certification is referred to as
symbolic testing [HOWD?76). Symbolic testing is a particularly beneficial feature for scientific
applications, where it is often extremely difficult to manually compute the intended result
. accurately due to both the complexity of the computation and the number of significant digits
required for the input values.

Symbolic evaluation can also be applied in certifying the absence of specific types of program
errors. At appropriate points in a routine, expressions describing error conditions can be
interpreted and checked for conmsistency with the PC just as branch predicates are interpreted
and checked. Consistency implies the existence of input values in the path domain that would
cause the described error. Inconsistency implies that the error condition could not occur for
any element in the path domain. While normal execution of a path may not uncover a
potential run-time error, symbolic evaluation of a path can detect the presence or certify the
absence of some errors for all possible inputs to the path.

The ATTEST system automatically gencrates expressions for predefined error conditions
whenever it encounters certain program constructs. For instance, whenever a nonconstant
divisor is encountered, a relational expression comparing the symbolic value of the divisor to
zero is created. This expression is then temporarily conjoined to the PC. If the resulting PC
is consistent, then input values exist that would cause a division by zero error and an error
report is issued. If the resulting PC is inconsistent, then this potential run-time error could not
occur on this path. After checking for consistency, the expression for the error condition is
removed from the PC before symbolic evaluation continues. ‘

Path verification of assertions is another method of certifying the absence of errors. Instead of
predefining the error conditions, user-created assertions define conditions that should be true at
designated points in the routine. An error exists if an assertion is not true for all elements of
" the path domain. When an assertion is encountered during symbolic evaluation, the
complement of the assertion is interpreted and conjoined to the PC. Inconsistency of the
resulting PC implies that the assertion is valid for the path, while consistency implies that the
assertion is invalid for the routine.

Checking error conditions during symbolic evaluation provides conclusions about the occurence
of that error on a specific path, and likewise for the validity of user-provided assertions.
When certification is done for all (classes of) paths, conclusions can be drawn about the entire
routine. Thus, if a routine is annotated with assertions that specify the intended function of
the routine and these are shown to be valid for all paths, the correctness of the routine has
been verified.

42. The Partition Analysis Method

A specification provides an independent description of the external behavior of a procedure and
thus provides an alternative, and usually more abstract, representation to which an
implementation of the procedure can be compared. The partition analysis _method incorporates
information derived from such a specification with information derived from the corresponding
implementation to assist in determining program reliability. This information is embodied in
the procedure partition, which is derived by applying symbolic evaluation techniques to both

the specification and the implementation. The procedure partition describes the similarities and
differences between the two representations. The procedure partition divides the set of input
data for the procedure into subdomains so that the clements of each subdomain are treated
uniformly by the specification and processed uniformly by the implementation. By forming
these subdomains, the procedure’s domain is decomposed into more manageable units, as is the
task of evaluating program reliability. Information related to each subdomain is used to verify
consistency between the specification and the implementation for the subdomain. Traditionally,
program verification approaches have been limited to specifications that are intimately tied to
. the implementation. Partition analysis, while borrowing from these verification techniques,
accepts an independent specification andithus is applicable with most of the proposed software
development methodologies [BAUE79, CAIN75, SILV79, WARN74, WIRT73, YOUR75]. In
. addition to verification, the subdomains are used to guide in the selection of test data. Most
testing methods select data based only on the program structure and thus test the actual
behavior of the implementation rather than its intended behavior. By basing test data selection
on the procedure partition, however, partition analysis derives a set of test data that
characterizes both the specification and the implementation, and consequently both the intended
and actual behavior. Finally, the verification and testing processes of partition analysis enhance
each other; the testing of some clements in the procedure subdomain may assist in verification,
while the verification process may direct the selection of test data.

In Figure 10, a specification is given for a procedure that determines whether a number is
prime. This specification of PRIME was developed by formalizing the simple mathematical
properties of a prime number. An implementation of PRIME in Ada [WEGNS0] appears in
Figure 11. This implementation makes use of several facts that improve on efficiency. The
procedure PRIME is used to illustrate the partition analysis method. In the remainder of this
section, the formation of the procedure partition for PRIME is described and then the
application of partition analysis verification and partition analysis testing are discussed. The
full application of partition analysis to PRIME is provided elsewhere [RICHS81b).

42.1. Construction of the Procedure Partition

As is evident in the PRIME example, a specification and an implementation are intended to
be descriptions of the same function at different levels of abstraction. To facilitate a
comparison of these two descriptions, the partition analysis method uses symbolic evaluation
techniques to decompose both descriptions into functional representations, called the specification
partition and the implementation partition. If the specification and implementation have the
same domain and codomain and are defined for the same values, then the two descriptions of
the procedure have consistent interfaces and are said to be compatitle. For the following
discussion, we assume that compatibility holds, although minor violations of compatibility can be
handled by partition analysis with appropriate modifications [RICHS1c]. The specification and

procedure PRIME(N: in integer inset {2..}) return boolean =
— PRIME returns true if N is prime or false if N is not prime

s begin
return case
1 N=2-
2 true; ‘ .
3 otherwise -
— if N has no factor = N-1, N has no factor
4 forall< i: integer inset {2.N-1} | (N mod i # 0) >;
endcase;
f end PRIME;

Figure 10: Specification of PRIME.

function PRIME(N: in integer range 2.max’int) return boolean is
— PRIME returns true if N is prime or false if N is not prime
FAC: integer;
ISPRIME: boolean;
begin
imeod2=OorANmod3=0dgen
— if N is even and N # 2 or N is divisible by 3 and N # 3, N is not PRIME
2 ISPRIME = (N < 4);
else
— if N is odd, any FACtor. of N is odd
— if N is not divisible by 3] N has no FACtor in sequence 9,1521....
— if N has no FACtor = sqrt(N), N has no FACtor
— loop checking for FACtors in the sequence 5,7,11,13,17,19,...
ISPRIME := true;
FAC := §;
while FACss2 =< N loop
if N mod FAC = 0 or N mod (FAC+2) = 0 then
ISPRIME := false;
exit;
else”
8 FAC := FAC + 6;
endif;
9 endloop;
endif;
10 return ISPRIME;
f end PRIME;

(S]

NONWn e Ww

Figure 11: Implementation of PRIME,

implementation partitions are combined to form the procedure partition, which forms the basis
for comparison of the specification and implementation within the partition analysis method.

Symbolic evaluation of the implementation P provides the jmplementation partition, which is the
set of domains and computations of the (classes of) paths in P,

{ (D[Py], C[P;D 1 1=I=N }.
The implementation partition of PRIME is shown in Figure 12. Symbolic evaluation and loop
analysis techniques have been extended to be applicable to several specification languages
[COHES2, GOURSI1, RICHSIc]. Using these techniques, a feasible sequence of statements
through a specification, referred to as a subspec, is evaluated in terms of symbolic names
assigned to the input values. A specification can then be decomposed into a finite set of
(classes of) subspecs. Each subspec Sy is described by a subspec domain D[S;] and a subspec
computation C[S;]. The specification partition that represents a specification S is the set of
domains and computations of the (classes of) subspecs in S

{ DSy}, CISpD ! 1=I=M }.
Figure 13 provides the specification partition of PRIME.

The specification and implementation impose two partitions on a procedure, which *represent
two ways in which the procedure may be divided. It is not surprising to find a subspec
domain and a path domain that are equal. The testing and verification of the -subspec and
path computations can then be considered over this subdomain as a whole. On the other
hand, there are often differences between these two partitions; a subspec domain may overlap
with more than on: path domain or vice versa. Such a discrepancy may be due to an error.
Alternatively, this may not be indicative of an error, but rather occurs because the .specification
is a more abstract description of the problem than the implementation. PRIME provides an

Py (s,1,2,10,9)
D[Pl]: ((int(n/2)»2 ~ n = 0) or (int(n/3»3 — n = 0))

Py: (s,1,3,4,5,9,10,1)

D[P,): (n < 25) and (int(n/2)*2 - n # 0) and (int(n/3)*3 - n # 0)

C[pPy): true

P;: (s,1,3,4,(5,6,8),5,6,7,9,10,6)

D[Py): (o = 25) and (mt(an)tZ -n# 0) and (int(n/3)*3 - n # 0)
and exists< k.: l ((int(n/(6+k ~1))*(6+k ~1) ~ n = 0)

or (int(nl(6=tkc+l))-(6*kc+l) -0 = 0)

and forall< k:= 1.k.~1 | (int(0/(6+k-1))*(6+k-1) — n #+ 0)

and (int(n/(6+k+1))*(6sk+1) — n # 0) and (36+k*s2 + 60+k - n =< -25) > >
C[Py): false

Py: (5:1,3,4,(5,6.8)*,59,10,0)
D[P): (o = 25) and (int(22)»2 — n # 0) and (int(n/3)»3 — n # 0)
and exists< k,:= 1.. | (int(@/(6+k ~1))*(6+k-1) — n # 0)
and (int(n/(6+k +1)}(6%k,+1) — n # 0) and (36+k *2 + 60k, — n > -25)
and forall< ki= 1.k -1 | (int(o/(6+k-1))*(6+k-1) — n # 0)
and (int(n/(6+k+1))+(6*k+1) — n # 0) and ((36%k=2 + 60+k — n < - 25) > >
Clpy: true

’ Figure 12: Implementation Partition of PRIME.

S;: (s,1.2,9)
C[S;): true

S 6349
D[S, (=3)

C[Sy)): forall< ii= 2.n-1 | (int(nfip}i — n # 0) >

Figure 13: Specification Partition of PRIME.

excellent illustration of the variation that can occur between the different levels of abstraction.
The one element in the “N = 2” subspec domain and some of the elements in the “otherwise”
subspec domain, those for which N is divisible by 2 or 3, are grouped in the “N mod 2 = 0
or N mod 3 = 0" path domain, hence a path domain overlaps with more than one subspec
domain. The other elements in the “otherwise” subspec domain, those for which N is not
divisible by 2 or 3, are in the remaining path domains, hence a subspec domain overlaps with
more than one path domain.

It is clearly not adequate to use cither the specification partition alone or the implementation
partition alone as the basis for demonstrating program reliability. Both partitions must be
considered or potentially useful information is lost. The procedure partition, which takes into
account both the specification and the implementation, is constructed by overlaying, or
intersecting, these two partitions. Each subdomain so formed is the set -of input.-data for
which a subspec and a path are mutually applicable. These subdomains are constructed by

taking the pairwise intersection of the set of subspec domains and the set of path domains.
The nonempty intersection of a subspec domain D[S;] and a path domain D[Py] is referred to

as a procedure subdomain, and denoted Dpy - that is, Dyy = D[S} N D[Pj] #+ @. To help
conceptualize the formation of this partition, Figure 14 shows a hypothetical example of the
procedure subdomains that would result by overlaying partitions of the specification and
implementation domains. -

Associated with each procedure subdomain are two computations, the subspec computation and
the path computation, which are intended to specify equal output values for all elements to
which they both apply — that is, all. elements in the procedure subdomain. The computation
difference C;y for a procedure subdomain Dy; is the difference between the subspec

computation C[S;] and the path computation C[py) - thus, C,y = C[§}] - C(Py). In general,
the computation difference is a vector, where each component is derived by subtracting a
component in the path computation from the corresponding component in the subspec
computation. Thus, for the output value z, Cpz = C[Sf]z - C[Pj)z. In procedure PRIME,
for example, the only output value is for the parameter PRIME and the computation
difference for a procedure subdomain Dy is Cy.PRIME = C[S;}PRIME - C[P;]PRIME.

The procedure partition is composed of the procedure subdomains and the associated
computation differences,

The procedure partition created for PRIME appears in Figure 15. The procedure partition
provides the basis for the application of both verification and testing techniques within the
partition analysis method. Each procedure subdomain and its associated computation difference
are of interest and should be verified and tested independently of the rest of the procedure
partition. Procedure subdomains appear to be the largest units of input data that can be
analyzed independently; yet they provide a practical decomposition of the testing and
verification process.

422. Partition Analysis Verification

Partition analysis verification attempts to determine consistency between an implementation and
a specification. To realize the function described by the specification, the implementation must
compute the specified output values for each input value in the domain. This property is
referred to as equivalence.

partition into partition into
subspec domains path domains

(o)
T

Flgure 14: Hypothetical Proceduore Subdomalns.

partition into
procedure subdomains

Dll = (n = 2)
Cyy = (true) - (n < 4)

(n = 3) and ((int(n/2)*2 — n = 0) or (int(n/3)*3 — n = 0))
= (forall< i:= 2.n-1 | (int(nfi)*i - n # 0) >) - (0 < 4)

Dy
Ca
Dy, = (o = 3) and (n < 25) and (int(n/2)*2 ~ n # 0) and (int(n/3}*3 ~ n # 0)
Cp = (forall< i:= 2.n-1 | (int(n/ijsi — n # 0) >) - (true)
-

Dy3 = (n = 25) and (int(n/2)»2 - n # 0) and (int(n/3)*3 - n + 0)

and exists< k,:= 1.. | ((int(n/(6+k-1))*(6+k.-1) — n = 0)

or (int(n/(6+k.+1))6+k.+1) — n = ()

and forall< k:= 1.k -1 | (int(n/(6+k-1))»(6*k-1) — n # 0)

and (int(n/(6+k+1))(6+k+1) — n # 0) and (36sk=s2 + 60sk — n = -25) > >
= (forall< i:= 2.n-1 | (int(nfip*i — n # 0) >) — (false)

Cx
Dyy = (n = 25) and (int(n/2»2 - n # 0) and (int(n/3)*3 — n # 0)
and exists< k.:= 1. | (int(n/(6+k~1))*(6+k~1) - n # 0)
and (int(n/(62k.+1))(6+k +1) — n # 0) and (36+k +s2 + 60sk, — n > -25)
and forall< k:= 1.k -1 | (int(n/(62k-1)}*(6+k-1)- n # 0)
and (int(n/(6*k+1))*(6+k+1) — n # 0) and ((36+k=*2 + 60+k — n < - 25) > >
Cy = (forall< it= 2.0-1 | (int(n/fipi — n # 0) >) - (true)

Figore 15: Procedure Partition of PRIME.

Definition: Given a specification S: X - Z and an implementation P: X - Z, with

D[P] = DIS], P is equivalent with S if for all x € D[S], P(x) = S(x).
Equivalence between a procedure implementation and a specification implies that the
implementation is correct with respect to the specification. This property can be related to
“the procedure partition. Given an input vector x, supposc x € Dyy — thus, x € D[S[] and
x € D[P;] and subspec S; and path Py are applicable for this input vector. Then S(x) = P(x),
if and only if the subspec S; and the path P; compute equal output values -~
C[Si}(x) = C[P5}(x). The subspec computation C[S;] and the path computation C[P;] are equal
when restricted to their mutual procedure subdomain Dy, if for all x € Dyy, Cpy(x) = 0; this
is denoted Cpy | Dy = 0. The equivalence of an implementation and a specification can thus
be restated in terms of the equality of the computations over procedure subdomains.

Given a specification S: X - Z and an implementation P: X - Z, with

D[P] = D[S}, P is equivalent with S if and only if for all I and J, 1<I<M and

1=J=N, such that D[S;] N D[Py] # &, Cy | Dy = 0. ‘
Thus, equivalence can be demonstrated in terms of the procedure partition by proving that for
each procedure subdomain, the corresponding subspec and path computations produce equal
values for all elements of this mytual procedure subdomain. .

The equality of the subspec computation C[S;] and the path computation C[Py] over the
procedure subdomain Dyy is determined by demonstrating whether or not each component of
the associated computation difference Cpy is zero when it is restricted to the procedure
subdomain. In many cases, the simplification of the computation difference Cpyz reduces that
expression to zero, in which case the two computations C[S{]z and C[Py]z are symbolically
identical and thus equal over any domain. Two computations C[S}z and C[Pj)z are also

equal over the associated procedure subdomain Dyy if the condition defining Dyy implies that
the computation difference Cpyz is zero. Proving that Dpy - Cpy | Dyy = 0 is attempted
through the application of proof techniques such as those employed by program verifiers.

The process of applying partition analysis verification to the procedure PRIME is relatively
complicated, primarily due to the properties that are used in producing the efficient
implementation. Just the proof developed for procedure subdomain D,; is discussed here and
shown in Figure 16. In this proof the computation difference C,; will clearly vary depending

on whether (n < 4) or (n = 4). This prompts the further division of the procedure
subdomain into two subsets — D,;,, which contains those elements in D,y for which (n < 4),

and D,y,, which contains those elements in D, for which (n = 4). The proof is then done
in two parts, Dy;, -~ Cy; = 0 and Dy, ~ Gy = 0. The condition defining D,;, implies that
the sequence 2.n-1 contains only the element 2 (thi; fact is denoted 2la-1 in the proof) and
also that (trunc(n/2»2 — n # 0) (21a-2). These tvo facts imply that forall < i: = 2.0-1 |
(trunc(nfipi — n # 0) > is true (21a-3). The condition defining D,;, also implies that
(n < 4) is true (21a-4). The facts denoted by (21a-3) and (21a—4) imply that C;; =0. A
similar proof is generated to show that Dy, - Cy; = 0. The two proofs serve to demonstrate

that Dy - Cn = 0. Because this proof was contingent on the further division of the
procedure subdomain, it is reasonable to suspect that the differences between the subspec and
path computations may vary between the subsets of the procedure subdomain. It is thus
important to test elements in both subsets of the procedure subdomain. In general, whenever
partition analysis verification must divide a procedure subdomain into subsets and prove that
the computation difference is zero over each subset independently, partition analysis testing is
directed to select test data from each such subset of the procedure subdomain.

Partition analysis verification is a variation on symbolic testing [HOWD77]. Symbolic testing
involves examining the symbolic representations of the path domains and computatnpns
Partition analysis verification, however, compares these representations with those derived from
the specification.

Partition analysis verification uses standard proof techniques to determine the equality of
computations restricted over a domain. In general, this problem is undecidable and thus
‘partition analysis verification suffers some of the same drawbacks as other verification
approaches. Most verification approaches decompose the implementaton into sequences of
statemants and employ standard proof techniques to show that assértions are true at poiats
between these sequences. By so doing, failure to prove a single assertion may cause failure to
show that any of the implementation is correct. When partition analysis verification fails to
prove the equality or inequality of the associated computations for a procedure subdomain, it
does not affect the proofs for other procedure subdomains. When proof techniques do fail,
testing can provide some assurance of the equality of the computations or find examples of
their inequality. .

Most verification methods [DEUT73, FLOY67, KING69, LOND75] prove that the,
implementation is consistent to assertions, which serve as the specification of the procedure’s
intended behavior. These assertions, however, are seldom developed independently of the
implementation; rather they are associated with the structure of the implementation (as in
loop invariant assertions). Partition analysis verification, on the other band, is designed to use
an independent specification that most likely would have been written in one of the
pre-implementation phases of the software development process. Recent experimental results
suggest that partition analysis verification is capable of detectmg fairly subtle inconsistencies
between two descriptions of a procedure.

Dy;: (n = 3) and ((int(n/2)»2 - n = 0) or (int(n/3)3 — n = 0))
Gt (forall< i:= 2.0-1 | (int(n/i)«i - n # 0) >) - (0 < 4)

PARTITION ANALYSIS VERIFICATION:
Dy, (n = 3) and ((int(n/2)22 - 0 = 0) or (int(n/3y*3 — n = 0)) and (n < 4)
= (n = 3) and ((int(n/22 ~ n = 0) or (int(n/3p*3 — n = (0))
. Dogp: (0 = 3) and ((int(n/2p2 — n = 0) or (int(n/3)*3 — n = 0)) and (n = 4)
= (n = 4) and ((int(n/2)*2 - n_ = 0) or (int(n3}*3 — n = 0)) '
Proof of Dzla B CZI = 0:
(n = 3) - 2.0-1 = 2)
(o = 3) - (int(n/2p2 — n # 0) |
(21a-1) and (21a-2) ~ forall< i:= 2.n-1 | (int(n/ipi — n # 0) >
(n =3)~(n <4
(21a-3) and (21a—4) - Dy, ~ Cy; = (true) — (true) = 0
Proof of D21b - Ql = Q:
(o = 4) - (2 <n-1) and (3 < n-1)
(21b-1) and ((int(n/2»2 — n = 0) or (int(n/3}*3 - n = 0)) -
exists< i:= 2.n~-1 | (int(nfi}si — n = 0) > ~
not forall< i:= 2.n-1 | (int(nfiyi — n + 0) >
(n = 4) - not (n < 4) '
(21b-2) and (21b-3) = Dy; ~ Cyy = (false) — (false) = 0
Proof of Dy; -~ Cyy = 0: ‘
(21-1) and (21a-5) and (21b-4) - Dy; - C; = 0 o
|
PARTITION ANALYSIS TESTING:
Domain Testing Criteria:

(@21-1)

(21a-1)
(21a-2)
(21a-3)
(21a—4)
(21a-5)

(21b-1)

215-2)
(21b-3)
(21b—4)

N=3 - on (n = 3), off (n = 4),

on (int(n/3p3 — n = 0), off (int(n2*2 — n = 0)

"N =2 - - off (n = 3)

N =4 - on (n = 4), on (int(n/2y+2 — n = 0),

off (int(n/3)*3 — n = 0) '
N=35 - off (int(n2)+2 — n = 0), off (int(n/3)*3 — n = 0)
N =6 - on (int(n/2)*2 — n = 0), on (int(n/3)*3 ~ n = 0)
N =7 ~ off (int(n/2p2 — n = 0), off (int(n/3}3 — n = 0)
N = 996 - on (int(n/2*2 — n = 0), on (int(n/3)*3 — n = 0)
N = 997 - off (int(n2)*2 - n = 0), off (int(n/3}*3 — n = 0)
N = 99 - on (int(w3)3 - n = 0), off (int(n2)*2 — n = 0)
N = 1000 - on (int(n/2)*2 -~ n = 0), off (int(n/3*3 -~ n = 0

Computation Testing Criteria:

N=3 - C[S3] = C[Py] = true, minimum n, maximum iteration of forall
N =4 ~ C[S;] = C[P,] = false, minimum iteration of forall
N = 1000 - maximum n

Figure 16: Partition Analysis of PRIME (Procedure Subdomasin Dyy)-

4.23. Partition Analysis Testing

Within the partition analysis method, the verification process is complemented by the astute
selection of test data on which the implementation should be executed. Partition analysis
testing constructs a test data set by selecting data from each subdomain of the procedure
partition. The symbolic representations of a procedure subdomain and the associated
computations are employed to direct the selection of this test data. Partition analysis testing
thereby draws on information describing both the intended and actual function of the
procedure. To increase the likelihood of detecting errors, partition analysis testing employs
computation and domain testing techniques. Figure 16 shows the test data selected for
procedure subdomain D,; of PR along with the reason each datum was selected. Figure
17 shows all the test data ‘selected for PRIME by partition analysis testing.

The application of computation testing to the procedure partition involves selecting data based
on an analysis of the computation differences. To demonstrate the run-time properties, it is
important to select test data for which the path computation itself is sensitive to error.
Further, there is always a chance (a very good one at that) that the subspec computation is
incorrect, thus test data for which it is sensitive to error must also be selected. Selecting
sensitive test data for both computations may draw attention to an error that o ight otherwise
remain undetected. Thus, the computation testing techniques are applied to both the subspec
computation and the path computation as represented in the unsimplified form of the
computation difference.

Dy: Domain Testing Criteria:
N=],N=2,N=3
Computation Testing Criteria:
N=2 ‘

Dy;: Domain Testing Criteria:
N=2,N=3,N=4N=5N=6N =7,
N =96, N =997, N = 999, N = 1000
Computation Testing Criteria:
N =3,N=4 N = 1000

o

Dy,: Domain Testing Criteria:
N=2,N=3
Computation Testing Criteria:
N=5N=23 ’

Dyy: Domain Testing Criteria:
N=2,N=25N=27,N=35N = 49,
N =81, N =899, N = 91, N = 997
Computation Testing Criteria:
N =25 N = 91 :

Dyy: Domain Testing Criteria:
N=24,N=27,N=289 N =28N =997

Computation Testing Criteria:
N =27, N =997

Figure 17: Partition Anslysis Testing of PRIME.

The application of domain testing to the procedure partition involves analyzing the procedure
subdomains and selecting test data near the boundaries of those domains. Since each border
of a path domain boundary is a border of some procedure subdomain, testing the borders of
the procedure subdomains necessarily tests the path domain borders. By testing the borders of
the procedure subdomains rather than simply those of path domains, the differences between
the path domains.and the subspcc domains ar¢ also tested. Moreover, the testing of procedure
subdomains enables the detection of missing path errors as well as path selection errors
(assuming the specification is correct).

Partition analysis testing has been shown to be a powerful testing method [RICHS2]. The
reasons for this are three-fold. First, it integrates several complementary testing techniques.
Second, the sclected test data appropriately characterize the procedure based on both the
implementation and the specification. As such, it is one of the few testing methods to
address missing path errors. Third, the testing and verification processes are integrated within
partition analysis so that they might complement and enhance one another.

S. CONCLUSION

In this paper symbolic evaluation is described and demonstrated on two examples. Symbolic
evaluation is of iriterest because it is widely used to aid in testing and verification.

For the path selection aspects of testng, symbolic evaluation is useful in determining path
feasibility for the control and data flow criteria. It is also being used in the analysis employed
by perturbation testing. It is interesting to note that path selection and symbolic evaluation
' have a symbiotic relationship. Symbolic evaluation is used to guide the selection of paths,
which are then symbolically evaluated. Thus, adaptive systems, where path selection and
bolic evaluation dynamically interact, must be considered. |
Several test data selection techniques are being developed that select data based on an
examination of the symbolic representations created by symbolic evaluation. Both computation
and domain testing techmiques have been developed using this approach. While the initial
work in this area is quite promising, it is clear that better, as well as more integrated,
techniques must be devcloped.

Formal verification techniques have always employed symbolic cvaluation methods to help
formulate the verification conditions that are to be proven. There are several less
comprehensive ways in which verification can be done in the context of symbolic evaluation.
Another alternative is the partition analysis method, which is a verification technique that is
applicable to a wide class of specification and design languages. Moreover, the basic method
integrates testing and verification.

For the most part, current research is addressing the issues of path selection, test data
selection, and verification as independeat topics. It is clear, however, that these topics are
closely related and eventually should be integrated into a software development environment.

REFERENCES

BAUE79 FJL. Bauer, M. Broy, . R. Gratz, W. Hesse, B. Krieg-Bruckner, H. Partsch,
P. Pepper, and H. Wossner, “Towards a Wide-Spectrum Language to Support
Program Specification and Program Development,” Program_ Construction, Lecture
Notes in Computer Science, Springer-Verlag, 1979.

BOGE75 R. Bogen, “MACSYMA Reference Manual”, The Mathlab Group, Project MAC,
Massachusetts Institute of Technology, 1975.

- BOYE7S RS. Boyer, B. Elspas, and K.N. Levitt, “SELECT-A Formal System for Testing

and Debugging Programs by Symtolic Execution”, Proceedines of the ternational

BROW73
CAIN75
CHEA?9

CLAR76

CLAR78

CLARSI1

CLARS2

CLARS3 -

COHES2

DAVI73
DEMI78
DEUT73

FLOY67

FOST80

GABO76

GOURS1

HALES2

HANT76
HOARN
HOWD75
HOWD76
HOWDT?

HOWD?78
KING69

Conference on Reliable Software, Apnl 1975, 234-244.
WS. Brown, Altran User’s Manual, 1, Bell Telephone Laboratorics, 1973.
S.H. Cain and E.K. Gorden, “PDL —~ A Tool for Software Design,” Procecdings of

the National Conference on_Computers 75, 1975, 271-276.
TE. Cheatham, G.H. Holloway, and J .A Townley, “Symbolic Evaluation and the

Analysis of Programs”, 1EEE Transactions on Software Engineering, SE-5, 4, July
1979, 402-417.

L.A. Clarke, “A System to Generate Test Data and Symbolically Execute
Programs”, IEEE Transactions on Software Engineering, SE-2, 3, September 1976,
215-222. -

L.A. Clarke, “Automatic Test Data Selection Techniques”, Infotech State of the

Art Report_on_Software Testing, 2, September 1978, 43-64.

L.A. Clarke and DJ. Richardson, “Symbolic Evaluation Methods - Implementations
and Applications,” Computer Program Testing, North-Holland Publishing Co.,
B.Chandrasekaran and S.Radicchi (eds.), 1981, 65-102.

L.A. Clarke, J. Hassell, and DJ. Richardson, “A Close Look at Domain Testing”,

IEEE Transactions on Software Engineering, SE-8, 4, July 1982, 380-390.
L.A. Clarke and DJ. Richardson, “A Rigorous Approach to Error-Sensitive

Testing”, Sixteenth Hawaii International Conference on_System Sciences, January
1983.

D. Cohen, W. Swartout, and R. Balzer, “Using Symbolic Execution to Characterize
Behavior,” ACM SIGSOFT Rapid Prototyping Workshop, Software Engineering
Notes, 7,5, December 1982, pp.25-32.

M. Davis, “Hilbert’s Tenth Problem is Unsolvable”, American Math. Mon., 80,
March 1973, 233-269.

R.A. DeMillo and RJ. Lipton, “A Probabilistic Remark on Algebraic Program
Testing,” Information_ Processing Letters, 7, June 1978.

L.P. Deutsch, “An Interactive Program Verifier”, Ph.D. Dissertation, Umversxty of
California, Berkeley, May 1973.

R.W. Floyd, “Assigning Meaning to Programs,” Proceedings of a Smngsmm in
Applied Mathematics, 19, American Mathematical Society, 1967, 19:32.

Communications _of the ACMI, 14, 1, January 1971, 39-45.

K.A. Foster, “Error Sensitive Test Case Analysis (ESTCA)”, IEEE Transactions on
Software Engineering, SE-6, 3, May 1980, 258-264.

HN. Gabow, SN. Maheshwari, and LJ. Osterweil, “On Two Problems in the

Generation of Program Test Paths”, IEEE Transactions on _Software Engineering,

SE-2, 3, September 1976, 227-231.)
JS. Gourlay, “Theory of Testing Computer Programs,” Ph.D. Thesis, University of
Michigan, 1981.

A. Haley and S. Zweben, “Development and Application of a White Box Approach
to Integration Testing,” Workshop on Effectiveness of Testing and Proving Methods,
Avalon, California, May 1982.

SL. Hantler and J.C. King, “An Introduction to Proving the Correctaess of
Programs,” Computing_Surveys, 83, September 1976, 331-353.

C.AR. Hoare, “Proof of a Program: FIND,” Communications of the ACM, 14,1,
January 1971, 3945.

WE. Howden, “Methodology for the Generation of Program Test Data”, IEEE

Transactions on_Computer, C-24, 5, May 1975, 554-559.
WE. Howden, *“Reliability of the Path Analysis Testing Strategy”, IEEE

Transactions on Software Engineering, SE-2, 3, September 1976, 208-215.
WE. Howden, “Symbolic Testing and the DISSECT Symbolic Evaluation System™,

IEEE Transactions on Software Engineering, SE-3, 4, July 1977, 266-278.
W.E. Howden, “Algebraic Program Testing”, ACTA Informatica, 10, 1978.
J.C. King, “A Program Verifier,” Ph.D. Dissertation, Camnegie-Mellon University,

Pittsburgh, PA, September, 1969.

KING76
LAND73

LASK79

LOND?75
MYER79
NTAFS81
RAPP82
REDW&3

RICH78
RICHS8]1a

RICHS81b

FJCH81¢

RICH&2
ROWLS1

SILV79
WARN74
WATE?9
WEGNS0
WEYUS1
WHITS0
WIRT73
WOOD80
YOUR?5
ZEIL83

J.C. King, “Symbolic Execution and Program Testing”, CACM, 19, 7, July 1978,

385-39%4.

AH. Land and S. Powell, FORTRAN Codes for Mathematical Programming, Jokn
Wiley and Sons, New York, New York, 1973. A
J.W. Laski, “A Hierarchical Approach to Program Testing,” Department of Systems
Design, University of Waterloo, . Waterloo, Ontario, Canada, Technical Report

NoSSCFW130779.

RL. London, “A View of Program Verification,” Procecedings International

Conference on Reliable Software, April 1975, 534-545.

GJMyers, The Art of Software Testing, John Wiley __Sons, New York, New

York, 1979.

S.C. Ntafos, “On Testing With Required Elements,” Proceedings of COMPSAC ‘1,

November 1981, 132-139.

S. Rapps and EJ. Weyuker, “Data Flow Analysis Techniques for Test Data

Selection,” Sixth International Conference on_ Software Engineering, October 1982.

S.T. Redwine, “An Engineering Approach to Test Data Design,” IEEE Traansactions

on_Software Engineering, SE-9, 2, March 1983, 191-200.

DJ. Richardson, L.A. Clarke, and D.L. Bennett, “SYMPLR, SYmbolic Multivariate

Polynomial Linearization and Reduction”, University of Massachusetts, Department

of Computer and Information Science, Technical Report 78-16, July 1978.

DJ. Richardson, L.A. Clarke, “A Partition Analysis Method to Increase Program

Reliability”, Fifth International Conference on Software Engineering, March 1981,

244-253.

DJ. Richardson, “Examples of the Application of the Partition Analysis Method,”

Department of Computer and Information Science, Umvemty of Massachusetts,

TN-48, August 1981.

DJ. Richardson, “A Partition Analysis Method to Demonstate Program Reliability,”

Ph.D. Dissertation, University of Massachusetts, September 1981.

DJ. Richardson and L.A. Clarke, “On the Effectiveness of the Partition Analysis

Method,” Proceedings of the IEEE Sixth International Computer Software and

Applications Conference, November 1982, 529-538.

JH. Rowland and PJ. Davis, “On the Use of Transcendentals for Program

Testing,” Journal of the Association for Computing Machinery, 28,1, January 1981,

181-190. _

B.A. Silverburg, L. Robmson, and KN. Levitt, “The Languages and Tools of -

HDM,” Stanford Research Institute Project 4828, June 1979.

JD. Wamier, “Logical Construction of Programs,” Van Nostrand Reinhold Co.,

New York, 1974. '

R.C. Waters, “A Method for Analyzing Loop Programs”, JEEE Transactions on

Software Engineering, SE-5, 3, May 1979, 237.247.

P. Wegner, mming with Ada: An troduction

Examples, Prentice-Hall, Inc., 1980.

EJ. Weyuker, “An Error-Based Testing Strategy,” Computer Science Department,

New York University, New York, New York, Technical Report 027, January 1981.

LJ White and El. Cohen, “A Domain Strategy for Computer Program Testing”,
ransactions_on_Software Engineering, SE-6, 3, May 1980, 247-257. ..

N Wmh “Systematic Programming,” Prentice-Hall, Englewood Cliffs, Ncw Jemey

1973,

JL. Woods, “Path Selection for Symbolic Execution Systems » PhD. stcrtanon,

University of Massachusetts, May 1980.

E. Yourdon and LL. Constantine, “Structured Design,” Yourdon Press, New York,

1975.
SJ. Zeil, “Testing for Perturbations of Program Statements,” JEEE Transactions on

Software Engineering, SE-9, 3, May 1983, 335-346.

Means of Graduated

