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Section 1 lists 12 points which must be addressed by neural models of
sensorimotor coordination. Section 2 addresses the problem of extrapolat-
ing motor output from noisy data or from sensory input. The Pellionisz-
Llinas cerebellar lookahead module addresses this problem for the noise-
free case, and we suggest theoretical and experimental tests of the model:
we then suggest the investigation of neural analogs of the Kalman-Bucy
filter. Section 3 offers a brief exposition of mechanics in atensor framework
to provide the irreducible minimum of mathematical machinery to evaluate
the Pellionisz-Llinds tensor theory of brain function and to suggest fruitful
new hypotheses. Our critique of this theory in section 4 leads us to conclude
that what they offer is based on metaphorical use of terminology from
Euclidean tensors, not on rigorous application of the mathematics of tensor
analysis. The central claim of their theory—that the input is a covariant
intention vector transformed by a metric tensor encoded in the cerebellum
to a contravariant execution vector—has not been substantiated and prob-
ably cannot be substantiated. However, we do point the way to further use
of tensor analysis in the study of neural control of movement. The conclud-
ing section then returns to the points raised in section 1 with a highly
selective survey of models of cerebellum and tectum.

1. A General Perspective on Sensorimotor Coordination

Elsewhere (Arbib, 1981) we have offered an analysis of “perceptual struc-

tures and distributed motor control” which stresses that action and percep-

tion are intertwined in a continuing action-perception- cycle. In general, the

organism does not. simply emit a response after some delay to a single
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sensory stimulus. Rather, it continually acts on the basis of a program of
action, this program depends on a representation of the animal’s relation
to its environment, and as the animal moves the consequent sensory stimula-
tion enables it to update this environmental model. The animal acts to
perceive, and perceives to act. We suggested the relevance of certain concepts
of Artificial Intelligence, and introduced the notions of perceptual schema,
motor schema (analogous to a synergy in the sense of Bernstein), schema-
assemblage, and coordinated control program. We will not rehearse this
analysis here, but rather note a set of problems of sensorimotor coordination.

Point I. The nervous system must work with different coordinate systems.
For example, a target might be represented in sensory terms by a pair of
two-dimensional coordinates (corresponding to the projection of the target
on the left and right retinas), and in motor terms by the joint angles which
will enable the arm to grasp the target. Note that each of these representa-
tions takes 4 coordinates (assuming a 2-segment arm) to specify a point in
3-dimensional space. '

Point 2. Note that the represenfations above are not of a point in absolute
space, but of a point relative to the body. Moreover, the retinal representa-
tion is relative to the eyes, while the motor representation is relative to the
shoulder. Thus the brain must solve the remapping problem not by
implementing a fixed map from sensory to motor coordinates, but rather a
. map which is itself dependent on such factors as eye vergence and accommo-
dation, and turning of the head.

Point 3. Much successful biological control theory offers lumped models
of neural activity which treat such coordinates as if they corresponded
directly to neural activity. However, the first visual code of a target is not
a pair of coordinates, but rather a localized peak of activity in the two-
dimensional manifold of each retina. In some models we can usefully reduce
this peak to its angular coordinates, but this does not imply that there exists
a pair of neurons whose firing rate directly encodes these coordinates. Again,
to maintain a given joint-angle, the brain must specify a complex set of
alpha- and gamma-neuron firing of agonist and antagonist, and there may
be no single neuron whose firing rate encodes the angle.

Point 4. In catching a target, delays within the brain, movement of the
target and inertia of the arm all conspire to force the brain not to compute
arm-coordinates on the basis of simultaneous eye-coordinates but rather to
use prior sensory data to extrapolate where the arm should be in the future

to intercept the target’s trajectory.



SENSORI-MOTOR TRANSFORMATIONS 125

Point 5. But the moving target problem shows that, even at the level of
lumped coordinates, the task of the brain is not simply a transformation
from eye-coordinates to position-coordinates, even with delays. To extrapo-
late the target’s position, we need other parameters of its position, such as
velocity. Moreover, the control signals to move the arm to a desired position
may well difter from those required to maintain that position; e.g. they may
be force signals based on comparing feedback on arm position and velocity
with visually-based signals on target position and velocity.

Point 6. However, the moving target problem is deceptive in that it
suggests relevant sensory information can be lumped into signals encoding
the motion of a single point. Consider the problem of walking down a street
while inspecting shop windows and avoiding bumping into other pedes-
trians, or consider a toad detouring around a paling fence to get a worm
on the other side. In both cases, the relevant stimuli involve complex
spatiotemporal patterns of retinal stimulation which encode objects in
dynamic interrelationship. The brain may or may not have to recognize
these objects as part of the consequent navigation problem. The paper
(Arbib, 1981) analyzes these jssues in more detail.

Point 7. It is a common mathematical assumption that a function (and
certain derivatives) is continuous, if not linear. However, this assumption
is often inappropriate in defining a sensori-motor transformation. Given
the navigation problem of deciding whether to go through a gap of width
d1 or another of width d2, it is clear that if we start with a situation in
which the first gap is the unequivocal choice, and then continually decrease
d1 and increase d2, there will come a point at which the chosen direction
of movement changes discontinuously. Moreover, the system will exhibit
hysteresis—if we now reverse the changes of d1 and d2, the switchover
point will differ, with larger d1 and smaller d2 than in the switchover first
observed. '

Point 8. Different tasks require different control systems, and the coordi-
nation and interwoven activation of these systems. We must understand
how each such system is anatomically localized (or distributed), and how
the parameters of its mathematical description are neurally encoded.

Point 9. A control system may need both short-term memory (of para-
meters related to the current situation: e.g. the mass and moment of inertia
of any object being manipulated), and long-rerm memory (e.g. improved
coordination and “polishing™ of a skill). What processes make the necessary
changes? How are they neurally encoded and stored? We shall use the term
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identification algorithm which provides the controller with estimates of the
parameters of the system currently being controlled.

Point 10. There are many unresolved issues concerning the relation
between ballistic and tracking movements, and of the relation between
feedback and feedforward.

Point 11. Complicating the remapping problem of Point 2 is what might
be called the hierarchical control problem. To visually fixate an object may
require eye movements alone, or head movements, trunk movements, loco-
motion to approach the object, and even manipulation of the object. This
involvement of many motor systems is extremely complex, yet may be
controlled by simple visual feedback: has an interesting feature of the object
been brought into focus?

Point 12. We close this list with the postural stability problem: in control-
ling even a small movement, the brain commonly has to first adjust muscles
all over the body to provide a stable posture for the given movement.

This list is clearly not exhaustive, but it should serve to provide sufficient
perspective for the analysis in the following sections. '

2. Lookahead in the Nervous System

Biological control theory received major impetus from Wiener's (1948)
book on cybernetics, and Wiener’s view of such systems was based on his
earlier study of extrapolation, interpolation and smoothing of stationary
time series. This was motivated by the problems of World War I1 anti-aircraft
gunnery. The problem is twofold: (a) Because an airplane is moving fast,
sightings of its position will be “noisy,” and (b) because the plane is moving
fast, it will have moved beyond its present situation by the time a shell can
intersect its trajectory. (a) yields the problem of interpolation and smoothing
of stationary time series—given a model of the statistical distribution of
errors in measurement, to infer the “best” (by least-mean-square error
criterion) trajectory compatible with the data. (b) yields the problem of
extrapolation of a future point on the trajectory from past values.

If we ignore all problems of measurement errors, the extrapolation or
lookahead problem is easily solved by classical methods of the calculus.
Suppose that f: R->R is a real-valued function for which f and its first
n+ 1 derivatives are defined and continuous on an interval (a, h). Then the
theorem of the Taylor’s series with a remainder tells us that ’

fla+h)=f(a)+ hf(a)+;_:f"(a)+- : -+%:.f "Y(a)+ R, (M
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where the remainder
hn-&l
R, =
(n+1)!

for some 6 with 0< @< 1. Clearly, if |f***"'(x)|< M on the interval (a-
7, a+7n), we have

S N a+ oh) (2)

- lhln+l
IR..I—mM &)

so long as |h| < u. Thus the truncated Taylor series
h? h" )
f(a)+hf(a)+-2—,f"(a)+- ST a) (4)

is a good approximation to f(a + h) if M is not too big, i.e. if [A|"*'M/(n+
1)1 is less than the allowable error in the approximation.

If all the derivatives involved are continuous at a, then the derivatives
can be estimated with arbitrary accuracy from values of S(x) for x<a, and
so may be assumed known,on the basis of observations made prior to a.
In summary:

THE TAYLOR LOOKAHEAD METHOD

If f and n have the property that 7 can be so chosen that
B"'"M/(n+1)1<e (5)

then the lookahead formula (4) will estimate f(a+ h) for any h with |h|< n
with error at most .

Of course, if we had an explicit formula for J(x) with x in (a, a+ h), we
would not need the lookahead formula. But if we do not know £, how can
be we be sure that the condition (5) holds? Let F, be the set of functions
for which equation (5) holds. All the polynomials in x of degree less than
n+1 surely belong to F,. Hence some further argumeat will be needed to
justify sufficient confidence that a signal belongs to F,. '

Pellionisz & Llinds (henceforth, PL) note that neural delays ensure that
the motor output is delayed relative to the sensory input (assuming,
apparently, a direct stimulus-response relationship), and Wiener's example
reminds us that the effect of a motor command may itself be delayed relative
to the time of the command itself. Thus if we consider a neural system at
time ¢ computing the transformation of an input u to an output v, it should
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compute not
| v(1) =f(u(t)) but rather
v(r+d)=f(u(t+d)) using values of u for times up to t—6 (6)

for suitable delays d and 8. PL essentially adopt the Taylor lookahead
method for solving equation (6), save that ¥ and v are now vector-valued,
rather than real-valued. The formula they use for the multi-dimensional
form of (4) is also complicated by their tensor theory (Section 4), but we
believe that this complication is not necessary for our analysis in this section.
Llinés, Precht & Clarke (1971) studied cerebellar Purkinje responses to
physiological stimulation of the vestibular system in the frog, and found
that different Purkinje cells show zero-, first-, and even second-order time
derivatives of the velocity stimulus. This leads PL to the hypothesis:

THE CEREBELLUM AS A LOOKAHEAD MODULE

The cerebellum implements a sensorimotor transformation with look-
ahead
v(t+d)=f(u(t+d)) based dn values of u for times up to t—8

by taking an appropriate linear combination of Purkinje cell firing represent-
ing the zero-, first-, and second-order derivatives of f with respect to u.

This is an interesting scheme, and deserves careful further analysis.
However, we note that this hypothesis has not been tested. Leaving aside
the complications posed by multidimensionality, we simply note the prob-
lems posed by the one-dimensional case:

(a) PL view the total transformation as given by summing of Purkinje
cell output on cerebellar nucleus (CN) neurons. We do not have experimental
evidence that the mossy-fibre to CN transformation implements a meaningful
sensorimotor transformation f and so, a fortiori, we have no evidence that
cerebellar connectivity represents the Taylor coefficients of f. Again, lacking
such an f, we do not know whether the remainder term R, is sufficiently
small, as in equation (5), to justify a second-order Taylor approximation.

(b) The Purkinje cell ““derivatives™ in (Llinés et al., 1971) are very noisy.
In fact, it is not clear from the records that they are derivatives with any
quantitative precision, even with the reliability afforded by redundancy. It
seems, then, that a careful parametric analysis is required to show that this
lack of precision does not vitiate the lookahead formula. .

Clearly, the PL lookahead module should receive much further study.
However, it is worth noting that the use of the Taylor series has three
theoretical disadvantages: '
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(i) It uses differentiators, which are highly noisy operators and amplify
disturbances. (This can be answered by resolving the issues in (b)
above.)

(ii) It assumes noise-free data, and does not address Wiener's “smooth-
ing of time series” problem.

(iii) It corresponds to an instantaneous dependence of v on u (the
derivatives of u only being used to solve the lookahead problem).
By contrast, motor control usually involves a dependence on the
prior history of u:

" u and v are related by a functional F such that

v(t) depends on u(r) for any and only values of r with r=<1.

The classic Wiener-Hopf technique answers all three objections, and thus
offers a technique for providing the least-mean-square estimate of the whole
trajectory of v by applying a kernel to the data on u. The Wiener-Hopf
technique assumes that signals u(¢) have a certain stationary stochastic
property S on the average, instead of assuming that they belong to F,. The
Kalman-Bucy filter is mathrematically equivalent under the stationary
environment, but is dynamic. It works when the stochastic property S is
unknown or even changing slowly: at each time ¢, it receives u(t—8) as
input, uses it to update an internal state which encapsulates stochastic
information about the past history of u relevant to the extrapolation of v,
and then provides its current estimate of v(z+d) as output. It is adaptive
in this sense.

[ Bibliographical Note: Hopf & Wiener (1931) developed their factoriz-
ation method to solve a problem of radiative equilibrium in stars; Wiener
modified the method to apply to problems in smoothing and prediction in
a classified report of 1942, released in 1949 Levinson (1947) provides an
excellent exposition of Wiener's theory, accessible to readers with a knowl-
edge of complex variables and Fourier integrals (Wiener, 1933). For original
presentations on the Kalman-Bucy filter, see Kalman (1960), Kalman &
Bucy (1961); a useful exposition may be found in Rhodes (1971).]

Clearly, the theoretical advantages of the Kalman-Bucy filter do not
imply that it provides the operating principle for any region of the brain.
It thus seems reasonable that future research on the neural lookahead
problem should both further analyze the PL cerebellar lookahead module—
both theoretically and experimentally as in (a) and (b) above—and also
look into possible neural analogues of the Kalman-Bucy filter for realistic
motor control problems. For other neural approaches to lookahead, see
Fujita (19824,b) and Sutton & Barto (1981 ). They are related to the technique
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of adaptive systems in which the system can be modified on the basis of
supervision in terms of signals from a teacher. ‘

3. A Brief Outline of Mechanics in a Tensor Framework

PL have offered a “tensor theory of the cerebellum” (Pellionisz & Llinés,
1979, 1980a,b, 1981, 1982a,b). PL speak of the neural encoding of spatial
coordinates as constituting a hyperspace whose geometry is largely
unknown, but certainly non-Euclidean. One would thus expect their theory
to rest on the tensor analysis of manifolds (*smooth” geometric spaces)
which are not Euclidean. However, we are convinced that their entire theory
rests on analogies with (not applications of theorems from) the restricted
theory of tensors on Euclidean spaces. Thus their “tensor theory of the
cerebellum™ would be better named “the Euclidean tensor metaphor for
cerebellum”. As such, it is a theory in its own right. However, our critique
in section 4 will show that this theory has serious gaps and is not supported
by experiment. Nonetheless, a theory may be valuable if it stimulates further
work. In this case, the PL theory stimulates us to consider what a theory
of cerebellum (or, more generally, neural control of movement) would look
like that does use the powerful machinery of (non-Euclidean) tensor analy-
sis. We thus devote the present section to a general exposition of tensor
analysis. This account may seem to unduly burden the mathematical patience
of the reader of the Journal of Theoretical Biology. However, it provides the
irreducible minimum of mathematical machinery which must be understood
if the reader is to evaluate the PL tensor metaphor of brain function, and
see the possibilities for further use of tensor analysis in brain theory.

With this, we now look at the mechanics of a system whose state-space
is a manifold rather than a Euclidean space. In classical mechanics, we
distinguish the configuration of a system from its state. For example, the
configuration would specify the position of each component of the system,
while the state would specify both the configuration of the system and the
momentum of each component. The point is that the future states of a
system are completely determined by its present state (for specified external
forces)—clearly, the present position of a car does not determine its position
5 seconds later, unless we also know its velocity, subject to specified external
forces. We thus have a space S of states, a space M of configurations, a map

mS-M (1

such that m(s) is the configuration of a system in state s, and we have that °
for each state s, and time f, there exists a unique trajectory s: T - S which’
assigns a state s(f) in S to each time ¢ in T and which has the property
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that s(#)=s, Newtonian mechanics not only gave us the concept of
state-determined trajectories, but also showed us that these trajectories could
be obtained by integrating differential equations

$(1) =f(s(1), F(1)) 2

expressing the rate of change of state s( t) at time ¢ as a function of the
state s(¢) at time ¢ and the external force F(r) applied to the system at
time ¢

In the early development of mechanics, the state space was a (subset of)
some Eutlidean space, i.c. every point in S could be given.a sequence
(x1,...,x,) of real numbers as its coordinates, and the distance between
two points x =(x,, ... »Xa) and x'=(x{,... » Xn) Was given by the formula

" 172
d(x, x') = (‘ZZ' (x;— x:)’) . ‘ (3)

Let us denote by E” this Euclidean n-space. The derivative $(¢) could then
be seen as also being a vector in -E ", given by the formula

£(1) <lim ‘(”'"z —s(h) | {4)

Representing the force F as an m-dimensional vector, then, the function S
of the differential equation (2) is of the form J:E"XE™> E" which assigns
to each state s in E" and force F in E™ another value, f(s, F), which is
in the state space E" but which can also be regarded as a rate of change of
state, '

side-by-side exposition of the modern and the tensorial treatment, see
Spivak, 1970.)

Suppose that the constraints on the system are such that the states do
not “fill out™ a region of Euclidean space but rather lie on a “curved space™
or manifold. (In Fig. 1, we fepresent such a manifold as a curved surface
embedded in Euclidean 3-space, but relativity theory has taught us the
importance pf _consitering manifolds which are intrinsically curved but
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FiG. 1. Here we see two examples of the fact that the derivative at s, of atrajectory s: I+ M
is not an clement of M but an element of the tangent space T, at so.

which are to be viewed as “full spaces” in their own right rather than as
subspaces of a Euclidean space.) Consider any trajectory passing through
the point s,. It is clear from Fig. 1 that the $(1) for the trajectory lies not
in the manifold but in the tangent plane at s,. It is a “coincidence” that for
flat (i.e. Euclidean) manifolds the tangent space can be identified with the
manifold as in our discussion of §=E". B

Let us consider a patch U of manifold M in the neighborhood of s,. We
can set up a local coordinate system as shown in Fig. 2 so that each point

L3

FIG. 2. The local coordinate system in the aeighbourhood U of x induces a pair of unit
vectors which provide a basis for the tangent space T, atx
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in U is uniquely specified by a pair of coordinates (x', x?), the values there
of the variables x' and x? respectively. (Note: We could just as well have
chosen a different coordinate grid around U the important point is that
once the grid is chosen, each point in U is uniquely specified by its
coordinate values, and different coordinate vectors in the chosen system
cannot describe the same point of U.) We see that the choice of coordinates
near x induces a corresponding set of coordinates on the tangent space
T.—here d/ax' is the unit vector tangent to the curve through x in the
direction of increasing x'; similarly 9/0x? is the tangent vector for a-unit
increase in x°. These vectors provide a basis for T, as a vector space, though
clearly they need not be orthogonal.

The situation generalizes (though we omit many of the mathematical
niceties). We say a manifold M is n-dimensional if each point x of M lies
in a neighborhood U in which points are uniquely specified by an irredun-
dant n-dimensional vector (x',..., x") of real numbers. Then with éach
point x we associate a tangent space T, and (given the choice of coordinates
near x) we set up a basis 3/ax’, ..., 3/3x" where 8/dx' is the unit vector
tangent to the curve of increasing x* through x.

We have an important restriction: it may be that two “charts” (neighbor-
hoods) U and U with coordinates (x', ..., x") and (&', ... , ¥")—note that
n must be the same in the two charts—overlap. We then require that the
change of coordinates be smooth and ‘unequivocal on the overlap U n U,
Let x be a point in the overlap. Then we can express its U coordinates as
a function of its U coordinates, writing %'(x", ..., x"). We require that at
each such point, the n? partial derivatives

=i
:%(x', veey X™)

exist, and that the determinant of the matrix |3%'/3x’|, called the Jacobian,
be non-zero. (We say that the Jacobian is non-singular.) This implies that
the change of coordinates in both directions is well-defined, so that given
the coordinates of a point in one system we can solve uniquely for its
coordinates in the other system.

Note that if x is in U and U, we have the same T, considered as an
abstract space, but the U-coordinates induce a basis 8/ax', ..., a/ax", while
the U-coordinates induce a basis /%", . . . , 3/9%".

Now let us return to mechanics. Leaving implicit. the specification of
forces (as we may do if the force is dependent on the state rather than time
or an external control), we may write the differential equation for a system
whose state-space is.the manifold M in the form

$(t)=£(s(t))
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where s(¢) is a point in M, and s(t) is thus a vector in T,(,, the tangent
space at s(t). Thus f assigns to each point x in M a value f(x) in T,. We
call such a map a flow on M. In coordinate form the value f(x) is a vector
in T, and so can be written in terms of the basis 8/ ax',...,8/ax", say as

d
ax"’ (©)

)= X+ L)

- Note that it is important that the set of coordinates be irredundant, that the
tangent space be n-dimensional for the same n as the number of coordinates,
and that 3/ox',...,3/ax" then form a basis for T, It is this property of
being a basis that lets f(x) uniquely determine the coordinates
fY(x),...,f"(x) in equation (6). . .
We may make the dependence on the choice of coordinates in U explicit
in equation (6) by writing :

) =1, .. .,x")%+. (. .,x")ﬁ-;. 6"

Suppose, though, that we had chosen a different set. of coo'rdiﬁhtes
(%',...,%") in some neighborhood U of x. Then we could express f in
these coordinates as

Il on 9 ne=l n 0 ”
= . —+...+ ces Sy

FE)=F'E, . ) gt A ) (6")
'where we use f to stress the different numerical dependence of the com-

ponents of f with respect to these new coordinates.
How are these two coordinate systems related? We have

e o
and then
£ P #0510
- ‘g‘,'_f'(x', . ..,x")-£7 ,,
n n g/
SRR %a—i_-;
=é' (')f_l g—x;;f‘(x', ey x")) ff—,.
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Then, since the 9/3%’ form a basis, we may conclude that
n afl
SR, L2 =3 S0 X, (8)
i=1 09X
We thus conclude that a flow on a manifold is a contravariant vector where

Definition. A set of n functions A' of the n coordinates (x',...,x") are
said to be the components of a contravariant vector if they transform
according to the equation

- n afl
V- —A'
A ’§| ax‘ (9)
(when A’ and A’ are evaluated at coordinates corresponding to the same
point x of the manifold) on change of coordinates from (x',...,x") to
(x',..., ®"). :

Note that the change of coordinates maintains the dimensionality n of the
manifold. Correspondingly, we have the definition

Definition. A set of n functions. B; of the n coordinates x' are said to be
the components of a covarialt vector if they transform according to the
equation

= 2 ax' -
B _,).:. PYTh (10)
on change of coordinates from x' to %'

Such vectors are the coordinate representation of cotangent fields. A
cotangent field assigns (in an appropriately smooth way) a cotangent p, to
each point x. Here cotangent is not used in the trigonometric sense. Rather,
Px is a linear map from T, to the real line R. Thus if f; and f7, are two
tangents at x, and A and A’ are arbitrary real numbers, we have - :

Px(AL+ ML) = Ap (£.)+ A'p(fL).

Let (B,,..., B,) be the coordinate representation of a cotangent Px at x
with respect to the coordinates x' When a tangent f(x) at x has the
coordinate representation (A',..., A"), where A= f!(x) as is shown in
equation (6), the cotangent Px operating on f(x) yields a scalar Px(f:) by

P(fx)=L BA'

If we represent p, as a row vector B = (By,...,B,) and f(x) as a column
vector A=(A,,...,A,)?, where T denotes the transposition, p.(f.) is the
inner product BA of these vectors. It is easy to check that, when the
components of £, transform in the contravariant manner, equation (9), the
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components of p, do indeed transform in the covariant manner, equation
(10), retaining the inner product p.(f;) =X BA' =¥ B/A' invariant.

Note well that with respect to general transformation of coordinates, the
coordinate vectors (x', ..., x") do not themselves form either a covariant or
contravariant vector. For example, we have
n ail ‘

=Y

j-lgx (11a)

only for linear transformations, not for the general changes of coordinates that
define contravariance.

However, there is a restricted form of tensor analysis used for Euclidean
(vector) spaces (Bowen & Wang, 1976; Coburn, 1955). In this case, a
coordinate system is obtained by choosing a basis (a set of n linearly
independent—but not necessarily orthogonal—vectors) for the -.n-
dimensional vector space under consideration. If the basis comprises the
vectors by, . . . , b, then the corresponding coordinates of a vector x comprise
the numbers (x',..., x") such that

x=%'b,+...+x"b, . (11b)

In this Euclidean tensor theory, the only admissible change of coordinates
is to give a new basis b,, ..., b,—and then there exists a non-singular matrix
A =[a)] such that the new coordinates (£',...,%") of a vector x are related
to the old ones by

=7 ax , , (11¢c)
J=1
In this case, it is clear that 35//3x' = a} and that with respect to this restricted
set of linear transformations, the coordinate vector (x',...,x") does form
a contravariant vector. :

We next turn to the notion of a metric tensor [see, ¢.g. Spain (1953) for
further details]. We know that in Euclidean space the distance ds between
two points (x',...,x") and (x' +y', ..., x"+y") (where the y' are
infinitesimal) is given by [recall equation (3)]

ds’= (") +...+ (")

More generally, there are many manifolds M with the property that the
distance ds between neighboring points with coordinates x' and x!+y'
(where the y' are “infinitesimal”) is given by the quadratic differential form .

a*=Tgpy (2
LV
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where the g, (1=, j=n) are functions of x‘ subject only to the restriction
that g, the determinant of the matrix |g,|, is never zero. If such 8y eXists,
we say M is a Riemannian manifold and call g, the metric tensor for M.

Returning to the Euclidean case, suppose that our coordinates
(x',..., x") are taken with respect to a basis by, ..., b,, and that b,,..., b,
are themselves expressed as coordinate vectors

b=(bj,..., b))
with respect to an orthogonal basis e, . .., e,. We then know: that

x=Y x'b=Y (Z x'bf)ek.
i=] k=i \jm)
But we know from vector space theory that the square of the length of
a vector is just the sum of the squares of its components with respect to
any orthonormal basis

=3 (): x‘b:‘)z

k=1 \i=

=5 (z b:‘b,")x‘x‘.
4J

k=1

Hence, in this Euclidean case g, is independent of x‘, and is given by

gy= Y blbf (Euclidean) (12b)
k=]
In the Euclidean case, then, a vector x' is of unit length (a meaningless
concept in a general manifold) if ¥, , gyx'x’ =1, and two vectors x and y’
are orthogonal if ¥, , g,x'y’ =0. More generally we know from the theory
of Euclidean vector spaces that if e’ are the coordinates of a vector e of
unit length, and if x' are the coordinates of a vector x (with respect to the
same basis) then the length of the projection of x upon the ray defined by
e is given by the scalar product

x.e=Y g;x'e’ (Euclidean). (12¢)
Y]

More generally, of course,
x.y=§g,,x'y’=|xl.]ylcoso, : - (12d)
- where cos 6 is the angle between the two vectors x and ).

Returning to the general case, manipulations akin to those préqeding
equation (8) verify.that g, is a covariant tensor of the second order, i.e. that
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it transforms according to the rule

_ ax* ax' N
8"—E‘ 3% o o , (13)

Since det (|g;|) # 0, we may form the inverse, which we write gY, so that

n
jZl g 8" = LH (14)
where 6 is the Kronecker delta: sk=1if i=k; else 5% =0. We also refer
to g’ as the metric tensor—the use of superscripts preventing ambiguity.
It is readily checked that g is a contravariant tensor of the second order, i.c.
ax' ax’ |
/=% ——8" (15
& Z‘.ax" ax' (1 )
We next note the process of “lowering the superscript” or “raising the
subsc_:ript," respectively. If Al is a contravariant vector we define the associate
of A’ to be the covariant vector

L J n ’
A= Z gU,Aj. (16)
j=t .
Similarly, we define
B'=Y g'B (17)

and say that the contravariant vector B' is associate for the vector B;. Note
_that these operations are inverse to one another:

T g'A =él g’ (ki_l 81&‘4*)

j=1

n n n
- 5 (£ stan)ar= £ shat=
k=1 \j=1 k=1

We see that this association generalizes the passage between a column
(contravariant) vector and its (covariant) transpose (row) vector in a
Euclidean vector space [set g" = 5Y and recall the discussion following
equation (10)]. In fact, if we associate with gy the inner product T, X T.»R
defined by (A|B)=X guA‘B', then we see that A induces a covariant vector,
that is, a linear map T~ R, whose components arc given by the right-hand
side of equation (16a). This covariant vector operates on B to yield (A|B)=
T AB' so that it is precisely the associate of A. :
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