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affect the performance of the process.

At the center of our segmentation system is an algorithm which labels pixels
in localized subimages with the feature histogram cluster to which they comrespond,
followed by ‘a relaxation labeling process. However, this algorithm has a teadency
to undersegment by failing to find clusters corresponding to small objects; it -may
also oversegment by splitting intensity .gradients into multiple: clusters, . by finding
clusters for “mixed pixel® regions, and by finding clusters : comresponding -to
microtexture elements. ‘In addition, the relaxation process 'often  destroys fine
structure in the image. Finally, the artificial subimage partitions introduce the
problem of inconsistent cluster sets and the need to recombine the segmentations ‘of
the scparate subsimages into a consistent whole. This dissertation addresses each of
these problems by adding and deleting clusters based on image space information, by
merging regions, and by defining different compatibility coefficients in the relaxation
80 as to preserve fine structures. The result is a segmentation algorithm which s
more reliable over a broader range of images than the simple clustering algorithm.

Solutions to the same segmentation problems were examined via the integration
of different segmentation algorithms (including edge, region, and thresholding
algorithms) to produce a consistent segmeatation. Multi-process integration techniques
wﬁe&ﬂmﬂaﬁchmﬂmofﬁeﬂnﬂmﬂagmmwdbyhdiﬁdualdgoﬁmm
through dynamic integration of the processes themselves. The resulting unified
segmentations from these approaches were generally better than iegmentatiom

vil




ABSTRACT

Integrating Non-Semantic Knowledge
into Image Segmentation Processes

September 1983
Ralf R. Kohle;

BS. Virginia Polytechnic and State University
MS. University of Massachusetts
Ph.D., University of Massachuseits’

Directed by: Professor Edward Riseman

This dissertation develops several techniques for automatically segmenting
images into regions. The basic approach involves the integration of different types
of nonsemantic knowledge into the segmentation process such that the knowledge
can be used when and where it is useful. These processes are intended to produce
initial segmentations of complex images which are faithful with respect to fine image
detail, balanced by a computational need to limit the segmentations to a ‘fairly small
number of regions.

Natural scenes often contain inténﬁty gradients, shadows, highlights, texture,
and small objects with fine geometric structure, all of which make the calculation
and evaluation of reasonable segmentations for natural scenes extremely difficult.

The approach taken by this dissertation is to integrate specialized knowledge into the

segmentation process for each kind of image event that can be shown to adversely

vi



produced by any of the constitueat algorithms.

Finally, the dissertation also describes the Visions Image Operating System
(10S) which made all of the experiments in this dissertation possible. This software
eavironment, driven by an interactive user interface in LISP, -provides a powerful
experimental tool in which - complex image shalysis - algorithms -can be casily
integrated and applied  to images of - different structure and  resolution. The 10S is
currently being used by many image analysis researchers at the University of
Massachusetts and at several other sites involved in industrial, remote seasing, and

medical applications.
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10 INTRODUCTION

11 Research Objectives

- “mpoblemofvinmlpaeepdm-byeompumhoﬁencpﬁtmomagu.~
neﬁmmgeofpmcasinapuﬁﬁomormenuthemeintondmof
diﬂmwehamauwa,whnethemdwagemw build a three
dimensional model of the ‘scene using this segmentation, the image, and prior world'
knowledge. ‘This 'dissestation focusses solely upon the problem' of :

L v g .

Whﬂemewofmdcinfmﬁmmguidethewgmentaﬁonpmh'u
_ mmmm;mhdm,uhwpddmwmmﬁmwm
should probably not 'be based on knowledge of the objects to be recognized. The
view tiken here is that higher level processes, which utilize semantic ‘knowledge,
should" influence “or tune the low level scgmentation processes, but scmantic
knowledge such “as known object ideatities should not be utilized ‘directly by -‘the
segmentation processes. This will, hopefully, remilt in a domain "independent
segmentation system which’canadlybeumedwukeadvmmgeofpdorknovﬂedge
foragive}pdom;nin, e

and’ small ‘objects with fine geometric structure, all of which make the calculatl e
and “evalustion of reasonable segmentations for matural soenes” extremely difficult.

“poth “implicit and explicit’ assumptions sbout the Image, 10" Segmentation

produce good segmentations when the asuniptions o

~

 The approach taken by this dissertation is to integrate special zed” knowledge
5 "the segmentstion process for each kind ‘of image event that can be ‘shown to
M‘ﬁ”"ﬁepﬁmﬂw}d the process. This may be done” by integ .
m“ ?'W@S‘L.mu“. mwm W.lso'ithm, hmﬁn.s‘ ‘*"j@“*m -

This dissertation contains five major components:




2 INTRODUCTION

(1) A software eavironment, specifically designed for dynamic experimentation in
image analysis, was implemented to facilitate the rescarch presented elsewhere
in the dissertation.

(2) Two extensions were made to the Nagin cluster based segmentation algorithm
used in chapter 6. The extensions modified the decision boundary for initial
classification of pixels and the compatibility coefficients used in the relaxation

update algorithm.
B A pamdngm for' development of image: segmentation algorlthms, baud on
qnanutatxve evaluat:on of uegmentations. is pmpond ;

@ A methodology for. the intelligent integmtion of multipla sources of knowledge
into a single leg;mentauon algorithm is explored.” In particular, the selection of
clusters in the Nagin clustering and relaxation algorithm is impraved unng
spatial expeetations about the clusters. . | ‘

(5) The integration’ of multxple -segmentations and tegmenution algontlnm band
on differeat knowledge ‘and different image features is considered. - .

12 Global Context

: Inourresearch segmentanonsarepmducedinthecontatofacomplete
image . interpretation system, called VISIONS ([HAN?75], [HAN78b]), which attempts
tobmldathreo-dxmmonaldesmptlon Mmagaofnatumloutdoormet,
Figure 1 shows: an overview of this system. In VISIONS, the tegmenmuon ‘executive
bmldsanimtmlsegmenmuonofthcme.whxchisthenmedbythemage
interpretation system to build a set of -hierarchically structured hypotheses about the
particular scene based on stored world knowledge. When necessary, these hypotheses
about the semantic content of the scene can be used to produce feedback requests
to the segmentation executive to modify or refine the segmentation. This implies
that the initial segmentation need not be “ideal”, but it must be sufﬁaent!y detailed
toauowthemterpmuonsystcmtoauactgenaalimagepmpetdumordettof
begin goal-directed processing. The primary emphasis of this dissertation is on the.
the startup problem of producing a “reasonable” initial segmentation” without utilizing
generalwmanucdataotspeaﬁcmfomauonabouttheeontenuofthemage .

In the context of the VISIONS image interpretation sym the cegmentation
hanmte:medmte:epresentanonofthemcmwhicbthemwmtydatahas
bmo:gmuzdmtosymbohcsﬂumuumchasregiom,men&,mdvuﬂca
Currently, there is a controversy whether a legmentation is.a necessary .or desirable’
intermediate.” stmcture, and  whether_ there _exists a | physlologlcal analogue of
segmentation ; in human visual processing. " However, _human subjects can pu'eeive
largeunifommevenwbenpmtedwﬂhmagawbichdonotcontah
meaningful or familiar objects, or whea inadequate context makes recovery of the
semantic content of a scene difficult or impossible. This implies that semantic
labeling of the objects in the scene is not necessary to produce a segmeatation and
supports the use of such an intermediate representation in the process of sceae
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4 INTRODUCTION

13 Segmentation and Evaluation

A segmentation of an image is a partition of the picture elements (or pixels)
into disjoint sets of spatially contiguous pixels (referred to as regions). The goal of
the image segmentation algorithms is to produce segmentations for which there is a
high correlation between the entities of the real world (objects, surfaces, and parts
of objects) and the regions of the segmentation. That is, each region in the image
should ideally correspond to at most one object part.!

It is difficult to overstate the complexity of the segmentation problem. In
relatively complex, unconstrained scenes, such as full color outdoor scenes, any
straight-forward  approach is prone to gross errors. Intrinsic characteristics of the
scene such as direct and indirect lighting, varying orientation of surfaces, shadows,
texture, specularity, and noise in the segmentation system (especially due to the
discrete digital representation) make the geaeration of “good” segmentations very
difficult.

One of the goals of this dissertation is to examine potential improvements in
segmentation  processes by integrating multiple sources of image data and
segmentation models into a unified algorithm and to evaluate these algorithms in a

context which utilizes specialized preprocessing and postprocessing to enhance the
performance of the algorithms. In order to evaluate control structures which involve

alternative forms of algorithm interaction and the effect of a particular preprocessing
step, one must be able to evaluate and compare the resulting alternative

segmentations in a quantitative manner.

The problem of segmeatation evaluation is an open problem. It is not
generally possible to produce a “correct” scgmentation of a complex natural scene,
since a “correct” segmentation implies underlying assumptions about the goals of the
segmentation process ([FIR72], [NAGS0D. In this dissertation we discuss the issues
of segmentation cvaluation and propose an appropriate methodology for development
and evaluation of segmentation algoﬁthmsbasedonamofarﬁﬁcialtedimagaof

varying complexity.
14 The VISIONS Image Operating System (I0S)

Another difficulty with both segmentation algorithm development and algorithm
evaluation stems from the computational cost of computing even a single
segmentation for a high resolution image. A reasonable image might contain 512 by
Snpixeh,withthreeeolonandeightbiupercolor at each pixel, for a total of
approximately six million bits. A particular algorithm might perform dozens of
operations at each pixel, where each operation might consist of hundreds of machine

! A “good” scgmentation, typically, would consist of regions such that each region would be
relatively invariant in some image feature while cach boundary between regions would
cxhibit a significant, often sharp, gradient in some image feature.
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instructions. ‘This computational cost makes it virtually impossible to perform a
thorough examination of the parameter space in order to determine the effectivencss
of interactions of muitiple algorithm componeats. In order to facilitate the
development and evaluation of complex segmentation algorithms, a programming
environment for segmentation was developed which supports highly interactive and
dynamic experimentation.

The VISIONS image operating system (IOS) was designed to allow interactive
and flexible construction of segmentation algorithms out of efficient primitives
(referred to as image operators). The IOS is based on the hierarchical “processing
cone” model of Hanson and Riseman ((HAN74], [HANS0). The 10§ provides a
friendly environmeat via LISP for the dynamic experimentation with, and
development of, image segmentation algorithms. The 10S is described in detail in
chapter 2. The I0S was designed and implemented by the author with considerable
support from many other members of the VISIONS research group. Although the
JOS greatly facilitated the experiments presented in this dissertation, it is not
necessary to  understand the IOS implementation in order to understand the
remainder of the dissertation; thus chapter 2 may be skipped.

15 Segmentation Background

Existing image segmeatation algorithms can be divided into two broad classes.
Thefirstc!assattemptstobuildregiomintheimagebaaedondmlhrlﬂuofme
characteristics (or features) of the pixels in the image. The second class can be
viewed as implicitly building regions by locating those edges in the image which
correspond to differences between pixel characteristics. One of the goals of this
dissertation is to integrate these approaches such that both similarity and difference
information is embedded in the segmentation process. Chapter 3 examines several
segmentation algorithms with emphasis on the region and edge segmentation
algorithms utilized in the remainder of the dissertation.

The region algorithm [NAG?79] is based on an initial cluster analysis of image
features in order to determine the likelhood that each pixel “belongs” to each
cluster. After assigning cluster label likelihoods to pixels in image space, an iterative
probabilistic relaxation is performed. The goal is to use the local context at a pixel
to obtain a consistent labelling for each pixel. The edge algorithm [HAN78a] forms
initial edge probabilities based on local contrast betweea adjacent pixels as input to
a probabilistic relaxation algorithm. The updating operator has been developed from
a Bayesian view of the edge patterns which are either consistent or inconsistent with
the formation of continuous boundaries. A third algorithm used in this dissertation
is a segmentation algorithm based on thresholding ([KOH78], [KOHS81]). This
algoﬁthmumedgecontrasttomakethmholdnlecﬁondedﬁominapaxﬁal
integration of the edge and region based approaches. Although these algorithms are
the only major segmentation algorithms employed, the findings and methods of the
dissertation should be easily extrapolated to other segmentation algorithms. Chapter
3 also compares this dissertation with other systems which have taken a relatively
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complete approach to image understanding, as well as to systems which attempt to
use multiple knowledge sources to attack similarly complex problems.

16 Segmentation Algorithm Extensions

Chapter 4 contains two extensions of the Nagin cluster based segmentation
algorithm described in chapter 3. These extensions, while not integrally related to the
theme of this dissertation, do improve the quality of the segmentations produced and
enhance the robustness of the relaxation component. The first modification selects
decision boundaries between clusters heuristically to minimize the number of errors
remaining after the relaxation. The second modification altered the center pixels
eontnbuuontothemlaxauonupdatemchthatthealgomhmcmﬂdbemnedto
preserve dearable geometnes while destroying others.

17 S@mﬂmm

Chapter S examines the difficult problem of segmentation evaluatim 'I‘hk
chapter a methodology for segmentation algorithm development. The
approach apphesalgoﬁthmstoimaguofminmngcomplm beginning with
very simple artificial images, for which quantitative evaluation is possible, and ending
with complex natural scenes which contain all the image characterics which
complicate ‘the real world, but for which meaningful quantitanve negmentation
evaluation is not possible.

18 Wu'wm.wmm

Chapter6developsthemechamsforhtegmnngdﬂamtknawledgemwan
existing segmentation algorithm. This chapter focuses on the selection of clusters in
the Nagin cluster based segmeatation algorithm. We investigate the - addition of
dummamhmagebandmmﬁencybﬂmthewmtdmmandthe
cluster sets. in adjacent subimages. This chapter also - considers. the . .deletion of
dumbasedonexpectauonsaboutthetpaualbehaﬁorofmageregxmfomedby
the clusters. In particular, thealgonthmattemputoidenufydmwhnchgiveﬁn
to micro-texture, ‘gradients, and “mixed pixel” regions. . Finally, a region merging
algoﬂthm based on’ multiple sources of knowledge which could contribute to a'
mergedeamon.hpmented 'memctgcalgoﬁthmpmviduagenenltmneworkin
which many very differeat kinds of knowledge may be uniformly integrated into a,
segnentaﬂonpmm 'Ihismergmgnlgoﬂthmcouldbeeaﬂlye;tendedtouﬁlin
moreeomplexregionmergerulu,indudmgmlubuedonfeedbackﬁomthe
semantic . interpretation system or segmentation executive.  This, .combined
cegmenmion algorithm, which utilizes the componeats described in this clmpm is
shm to provide better and more reliable segmeatations. .
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19 Integrating Alternative Segmentations and Segmentation Algorithms

Chapter 7 investigates scveral alternative approaches to the implementation of
cooperative communication between segmentation processes. This includes simple static
interaction models where results of several algorithms are combined, as well as more
complex iterative or dynamic interaction models. The goal is to use interprocess
consistency to enhance the quality of the segmentation produced. In one example,
the integration of several segmentations using the region merging algorithm of
chapter 6 is shown to produce a segmentation superior to any of the contributing
segmentations.

110 Summary .

Chapter 8 summarizes the results of this dissertation concluding that various
kinds of non-semantic knowledge can be effectively integrated into the segmentation
process to not only increase the quality of the segmentations produced, but more
importantly, to increase the reiiability of the segmentation process. In chapter 6 we
have successfully integrated knowledge about consistent spatial contexts and
predictions about the expected behavior of feature clusters in the image into a single
segmentation algorithm based on region labeling by histogram clusters. In chapter 7
we integrated several segmentation algorithms which are based on different
assumptions about useful information in the image. We believe, it should now be
possible to move toward building an effective scgmentation executive, utilizing the
the approaches, techniques, and strategies presented in this dissertation in order to
dynamically select algorithms, parameters, merge rules, and image features, for
particular images or parts of images, to obtain high quality segmentations.

20 THE IMAGE OPERATING SYSTEM
2.1 Overview of the IOS

The Image Operating System is a complete software environment, built on

LISP, specifically designed for dynamic experimentation in scene analysis. The IOS
was used for all of the experiments presented in the remainder of this thesis.

In order to carry out complex experiments in which various segmentation
algorithms might interact, perhaps using different image features, an eavironment
conducive to such experimentation was needed. This environment is provided by the
Image Operating System designed and implemented by the author with assistance
from many members of the VISIONS research group at the University of
Massachusetts. This image operating system is based on a computational structure
known as a “processing cone” proposed by Hanson and Riseman ([HAN74),
[HANSO]). This structure is specifically designed for hierarchical parallel operations
on two dimensional arrays and is related to the recognition cones of Uhr [UHR72],
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the hierarchical data structures of Klinger [KLI76), the pyramids of Tanimoto
[TAN75], the quadtrees of Rosenfeld [ROS71), [HAY74], [ROSS80], the planning
algorithms of Kelly [KEL71] and Price [PRI71], and the knowledge-directed analysis
of Ballard, Brown, and Feldman [BAL78]. A survey of some of the uses of these
types of structures is found in [BURTS3], [TAN78], and [TANS0)].

The next section describes the processing cone model and the advantages of
this model for image analysis. The remainder of the chapter presents an overview
of the Image Operating System and considers some of the design decisions used to
arrive at this particular system. For a functional description refer to “The Image
Operating System Users Manual” [KOHS84).

22 The Processing Cone

The processing cone is a model for a hierarchical parallel array processing
architecture proposed by Hanson and Riseman ([Han74] and [Han80]). Figure 2
depicts the processing cone structure. At each level of resolution, n, the cone
contains 20 by 2D pixels, with a vector of values, V, stored at each pixel. The
corresponding vector elements V; for all pixels at a given level of resolution can be
considered as a single two-dimensional entity; this slice across the cone is referred to
as a plane. A color image, where each pixel contains a three-element vector of the
red, green, and blue components, would be represented as a set of three planes in
the cone. The cone is hierarchical and each pixel at level n has four unique
descendants at level n+1 and exactly one ancestor pixel at each level n-1 (a >= 1).
If the raw data is at level m, m>n, then one can view a pixel at level n as having

a receptive field of 208 by 200D pixels at level m.

Image operators are functions which are evaluated on a set of argument
planes and which produce one or more output planes. There are three classes of
operations which may be performed in the cone structure: iteration, reduction, and
projection. For iteration, the level of resolution for both the domain planes and the
range plane is the same. Iteration uses values in the spatial neighborhood of a
domain pixel to produce new plane values at the corresponding pixel in the range
planes. For reduction, the level of resolution of the range plane is less than the
level of resolution of the domain planes. Reduction uses values in the neighborhood
of the descendant pixels in the domain plane (level n+1) to produce a new plane
value at the ancestor pixel in the range plane (level n). For projection, the level of
resolution of the range plane is larger than the level of resolution of the domain
plane. Projection uses information from a neighborhood about the unique ancestor
pixels in the domain planes (levels m, 0=<m<a) to produce values at each
descendant range pixel (at level n). These basic operations may of course be
combined in various ways to form more complex algorithms?

3 The implementation of the 10S actually allows for the definition of image operators which
pmduecffsct: of cutput planes. This is mathematically equivalent but more convenient and
more cfficient.
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Local image operations are defined by simple prototype functions on the
neighborhood of a pixel to produce values in the output plane(s). Note that the
output planes may be distinct from any of the input planes; e.g. an inteasity image
might be computed by using the original red, green, and blue input planes to
produce a new intensity output plane. Figure 3 illustrates graphically three simple
examples corresponding to the three different types of image operators:

(1) creating a “median” image by applying a three by three median filter is an
example of iteration,

(2) creating a lower resolution "maximum” image by finding the mnaximum of all
_ descendants of a pixel is an example of reduction,

(3) and finally, creating a locally thresholded ~output plane where the thresholds
are found in a plane of lower resolution than the data is an example of

projection’
Since in general it is not known which operators are needed for particular
applications and/or experimental investigations, a mechanism for dynamically
specifying additional prototype functions (referred to as image operators) must be a
part of any implementation of the cone model.

The cone structure has been shown to be useful for a host of image analysis
problems. The general goals of image analysis include the transformation of a large
spatial array of picture elements (pixels) into a more compact description of the
image in terms of visually distinct syntactic units and their characteristics. The
visual information in the image must be aggregated and labeled with symbolic names
and attributes. The syntactic units most often used are boundary scgments
(connected sets of edges) and regions (connected sets of pixels), but other units are
possible. The characteristics of boundaries include but are not limited to location,
length, contrast, and orientation while region characteristics include size, shape,
location, color, and texture. Image operators for computing all of the above have
been implemented with the VISIONS Image Operating System.

The processing cone seems to be an appropriate model or architecture for
rapidly performing the kinds of processing needed to implement generalized image
processing operations for a number of reasons. The first consideration is that the
pmwssingooneisapamﬂelamyarchitwturethatisparﬁaﬂaﬂyuﬁtedtothe
enormous computational demands of image analysis. With images of reasonable
spatial resolution (512 by 512 pixels) and reasonable color resolution (3 oolors, 8 bits
per color) about six million bits of data must be processed for each image. Many
image segmentation algorithms (such as the relaxation algorithms described in chapter
3) require many iterations over this data to produce a final segmentation. The vast
amount of data to be processed and the eventual constraint of real-time processing

3 Actually this is an example of a combination of jection and iteration since one input
plane is of lower resolution than the data while the ~other input planc is the data to be
thresholded. This operator could have been split into a strict projection of the thresholds
followed by a strict itcration operator to perform the thresholds.

T
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12 The Image Operating System

indicate the necessity of a parallel processing approach.

A second consideration is that image operators can be simply defined. Image
operations within the cone are defined locally by a prototype function which uses
information at neighboring pixels to produce the result at the ceatral pixel. The
image operator is defined as the parallel application of the prototype function to all
pixels in a plane. The parallel approach is especially viable now that advances in
bardware technology may make such array processors economically feasible [Kru80),
[Duf8l]. The prototypical functions provide a mechanism for developing parallel
algorithms. Combinations of these image operators applied within a suitable control
structure are used to implement complex algorithms needed for segmentation and
feature extraction.

o

The cone model also supports inherently hierarchical computations. The cone
structure is very appropriate for aggregation of characteristics at coarser (lower)
levels of resolution and for planning, where low resolution results are used to focus
processing at finer (higher) levels. One receat algorithm which uses the hierarchical
capabilities of the cone is a hierarchical image registration algorithm due to Glazer,
Reynolds, and Anandan [GLAS3].

A Users View.

One of the goals of the Image Operating System is to provide a flexible
interactive environment in which a user can easily perform experiments involving
many image operators and images at various levels of both spatial and color
resolution. The system is designed as a research tool for algorithm development of
parallel image processing as opposed to a production image processing system. A
production system must heavily emphasize efficiency while a research system may
favor flexibility, extensibility, and functionality over efficiency. This is necessary since
the function to be performed by the research system is gemerally not as precisely
defined. It should be straightforward to generate an efficient production system
from the research system once the set of image operations to be performed in a
production environment arc determined.

In order to model the processing cone the Image Operating System provides:

(1) the data structures necessary to implement a generalized hierarchical cone
structure,

(2) mechanisms for defining prototypical functions (image operators),
(3) methods for applying image operators,

(4) methods for specifying variable and plane bindings for image operator
parameters and logical planes, and
(5) mechanisms for composing sets of image operators into complex algorithms.
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The system should provide a “friendly” environment for both expericnced and
naive users. The simplicity with which new image operators can be defined and
added to the IOS is one of the critical strengths of this system. An image operator
may be specified without having to consider the spatial resolution of the images to
which it might eventually be applied for three reasons:

(1) operators are written such that (at least conceptually) the operator is defined
locally for parallel execution at each pixel,

(2) references to image neighbors, ancestors, and desceidants arc all referenced
through a pixel centered coordinate system,

(3) and, references to pixels outside the physical image are handled automatically
based on the users choice of access functions. *

Furthermore, images of different data types and ranges can generally be handled
without any extra code in the user function since all access to the image is through
special access functions.* ;

Image operators are written as FORTRAN subroutines with four sections.
The two most important sections are the procedure section, which defines the
computation to be performed by the image operator, and the environment section,
which provides the logical association (bindings or channels) between the logical
planes utilized in the process section and the actual image planes resident in the
execution data base (see below). Figure 4 shows a simplified example of a user
function which computes the vertical and horizontal edge strength (ie. a simple
difference in values of a pair of horizontal and vertical pixels respectively) at each
pixel. The input to the operator is simply an intensity plsde and the output consists
of a horizontal edge strength plane and a vertical edge strength plane.

A pixelcentered coordinate system and correct system handling of boundary
conditions greatly simplify the specification of the prototype image operator since the
image operator generally does not need to compute subscripts for neighboring pixels
or consider special cases for neighboring pixels which fall outside of the image. The
clements in the neighborhood are referenced via a pixel-centered coordinate system;
the center pixel is at row 0 and column O, the right neighbor.is at row 0 and
column 1, while the neighbor below is at row +1 and column 0. Note that the
image operator specification is independent of the level of resolution of the data to
which it will be applied and the data type of the input plane does not need to be
specified. Such image operators can be easily added to the system for any function
desired by the user.

Lo
4 Real and Int operations arc often distinguished both “for reasons of efficiency and
because mmmma thw Image operators would not di o
l;.t:nwu image planes whose type is logical, signed byte, unsigned byte, 16 bit integer, or
integer.
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Subroutine EDCES

Parameter [ntensity=1

Parameter Horlizontal_edg=2
Parameter Vertical_edg=3

Parameter Resolution_level=0

The Image Operating System

intensity input plane

horizontel edge ocutput plane
vertical edge output plane

the relative level of resolution

Compute & one by two edge operstor over thg

intensity input plane.
The output consists of two glanes

The horitontal and vertical edge strengths.

entry EDCES_environment

define the environment in which
the operator edges works

call declare_input_plane( inton‘ituf resolution_level}

call declare_gutput

]
.

the input plane determines the
absolute level of resolution

planel horitontal_edges. resolution_level)

call declare_output_plane vertical_edges. resolution_level)

return

Entry EDCES_process

CIAL LT T T T}

dmmane

the output plancs will de €efined
ot the same level of resolution

This is the actual computation
of the operator at esach pizel.

ir. =1} Definition of neighborhood addressing
H : v = relative rovw ¢ - relative column
ir: O ir: Ole: :
fc.~-1 te: Olc: H
te: : ’
ic: Ot The arguments to get_window_value are
em——ee (1) The plane from which to get & value
(2) The relative rou
(3) The relative column
centers get _window_value( intensity . 0. 0} ! intensity at pigel

righte get-window_value( intensity . 0, 1).

! Intensity to right

belows get _window_valuet intensity . 1, O) ! intensity below

horiz_edge= center - below
center - right

vert_edge=

call set_window_valuet Horiiontal_pdq. 0. 0, horiz_edge)
€all set_windou_value( Vertical_edg., 0. O. vert_edge)

return

the arguments to set_window_value
are identical to get_window_value
with the addition of the value

to set into the plane

Figure 4: Example Prototype Image Operator.
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Embedded within the operating system are mechanisms by which the user can
write simple control functions to compose operators or to control the actual
application of the operators to specified levels in the cone. The control functions
are written in LISP. The programming language LISP is particularly well suited for
an experimental environment, since it is an interpreted language and can therefore
be modified interactively’ Figure 5 shows a simple example of control functions for
an experiment using an edge relaxation system (see Chapter 3). The function
EDGE-RELAX-5 computes the initial probabilities of edges from the inteasity plane
(which was provided in the call) and performs five iterations of edge relaxation. This
function can then be used in an experiment (TEST-EDG-RELAX) which tries to
evaluate the impact of the parameter MAXEDG (used in the computation of the
initial edge probability) on the overall performance of the algorithm.

’I‘heusercanlookattheremltofapenmmumvmousways.bypmﬁng
the actual values found in the result planes, by printing a symbolic edge
representation, by  displaying direction encoded edge intensities on the graphic
display device, or by displaying the original data as a surface whose height is
proportional to the intensity (Figure 6). The ability to interact with the
experimental algorithms and the ability to view the data in many different modes is
extremely important in an interactive experimental environment.

An Implementors View.

The massive amount of data to be processed in image analysis was the
overriding consideration in the design and implementation of the Image Operating
System. The system must apply operators to images whose size might be as large as
224 pixels (more than 16 million pixels). This requirement implies that efficiency is
an important goal in the design of the system. However, as we have pointed out,
since the system is to be used in a research environment, flexibility, functionality,
and ease of use are also extremely important design considerations.

The system was designed and implemented to run on a VAX-11/780 host,
utilizing the virtual memory management provided by the VMS operating system. In
order to improve efficiency, some of the routines are coded in VAX assembly
language (MACRO). In order to enhance functionality, VAX FORTRAN
capabilities, which are not part of ANSI Standard FORTRAN, were used in many

routines. In particular, VAX array and string descriptors were dynamically
manipulated so that arrays and character strings could be allocated dynamically by
the image operators at execution time allowing for more generalized image operators.
Thus, transporting this system to a computer without virtual memory would require
considerable recoding and development of software predictive paging mechanisms.

’ThcchmceotUSPuaconuo!hnguageunmﬁedmmmdctaﬂmthewcuonmthe
control language below
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(setg my-bouse (QET-PLANE ‘mycone ‘houvse 7))

! Oet an imege with 120 pizels on & side (2007) from
plane ‘house’ {n cone file ‘aycone’ calling it ay-hovse

(defun get-initpros (intensity)
(INITPROBE (EDCES (intensity))

This code defines a function called get-initpris
which camputes (nitiel edge prodabilities by
applying the image operator INITPROBS.to the resvit
of the image operator EDCES (defined in figure 4)

‘@0 im0

¢ defun Edge-relar-3 (intensity) ) )
(EDOERELAX (EDOERELAX (EDOGERELAX {EDQERELAX
(EDCERELAX (get-initprobs lntoniltv).
. IR 2R

Edge-relar=S computes five (terations of edge relaczation

on the result of get-initprobs applied. to intensity

(more powerful control constructs are available for both
iteration and recursion in LISP)

[N

¢ detun Test-edg-relasz (intensity macedg!
(set-parameter ‘initprobe-masedg masedp)
(SHOWEOCES (edge-relaz-5 intensity ) ‘((mazval §.01))

Test-edg-relas spplies the edge relacation algorithm

for five iterations. The function INITPROGS vses & parameter
named “initprobs-mezedg” os a threshold. Edges produced by
EDCES are converted to probability 1.0 if they excede .
“initprobs-maredg™. The function Test=edg-relar uses tts
second argument as that parameter SHOWEDCES displays the
result. The parameter "mazval® {s provided to SHOWEDCES

such that a probability of 1.0 is scaled to full brightness
on the displag device.- : -

L L T T Sprapey

(fc-cons ‘Test-edg-rvelas (<« my-house) ‘¢ 5 10 20 20 40 )))

H Now perform the experiment using five different values of
H - mszedg The set of all the results is returned by the function

Figure 5: Experiment Using Image Operator Sequences.
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Figure 7 shows the overall structure of the system. Each of the major
components of the VISIONS IOS is discussed separately below. The user
communicates with the system via LISP functions and an auxiliary menu system.
The operator application executive retricves the user-selected image operators from
the image operator library and applies the operator to the user-selected image in the
execution data base.

In order to have the frequently called image accessing functions be as efficient
as possible, the images to which image operators are applied must reside in the
paging memory of the host in a form allowing for very rapid access. This data
base of images is called the Execution Data Base (EDB). Images to be stored
between executions of the IOS are saved in the Jmage Data Base in a form which
minimizes the storage cost rather than the access time. The Image Data Base is
used only for the long term storage of images and images must be moved into the
Execution Data Base before image operators can be applied to them. Similarly,
computed results can be saved by copying them from the Execution Data Base into
the Image Data Base. Note that the system described here is still under
development; features which are incomplete or unimplemented are so noted below.
However, the system that does exist has been effectively used for several years at
the University of Massachusetts and at several other sites to perform a number of
different image processing tasks including industrial applications, medical applications,
and remote sensing applications.

23 User Interface

The user interface is one of the most important components of an interactive
system. The IOS provides a friendly environment for the dynamic definition of
experiments with various images and image operators. The system contains
comprehensive on-line documentation and prompting mechanisms, automatic record
keeping mechanisms, and powerful error trapping and reporting mechanisms.

Control Langusage.

LISP was adopted as the language for interfacing the Image Operating System
with the user. This was a natural choice for a number of reasons:

(1) LISP has all the powerful control structures that are needed.

(2) LISP is interpretive and therefore permits the dynamic generation of
experiments which would otherwise require a compilation and link step in a
non-interpretive language.

(3) LISP would provide a uniform interface with the semantic interpretation
component of the VISIONS system since the interpretation system is based on
a graph processing language called GRASPER, which is, in tumn, built on
LISP.
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The use of LISP for the entire implementation has the desirable quality of
unifying the system implementation and making the portability of the system much
more feasible. However; for reasons of efficiency a non-interpretive language was
chosen for implementation of the underlying Image Operating System and the image
operators (FORTRAN and VAX-MACRO). Thus, LISP provides flexible user
control and access to the remainder of the underlying system. The interpretive
overhead of LISP is not a liability in the IOS since the vast majority of the
processing cost occurs in the FORTRAN and VAX-MACRO image operators.

Documentation.

This section outlines the documentation tools provided by the VISIONS IOS.
In any system which supports multiple users of varying degrees of sophistication, it is
extremely important to provide on-line documentation and documentation tools.
Since the system is designed to be extended by new image operators, any external
documentation will soon be out of date. Furthermore, the effort required to
manually document the processing applied to an image is considerable if replication
of the results at a later time is necessary- perhaps on another image. In the Image
Operating System these two problems are handled by four documeatation subsystems:
the help subsystem, the prompting subsystem, the menu subsystem, and the history
subsystem.

The Help Subsystem.

The help subsystem provides on-line help for any component of the system,
any image operator included in the basic system, any image operator added by the
user, many error conditions with their possible causes, and examples of image
operators. The help system is hierarchically structured such that only the desired
information is provided in response to a simple help request. The help files are
structured to match the external VAX system documentation structure so that the
help requests can be processed ecither within the Image Operating System or
externally by VAX-VMS. There is one copy of the system help files which is
shared by all users. Each user has unique help files for the image operators which
are not shared. The help files have a straightforward structure and so can be
casily modified by any user; furthermore, the help file for any new image operator
added to the system by the user is automatically linked into the help tree.

The Prompting Subsystem.

The prompting subsystem provides a mechanism by which the necessary
information for invoking a particular image operator can be obtained. This system
permits the explicit specification of the necessary information before invocation of
the operator, the automatic use of defaults for information not specified explicitly,
and dynamic prompting for information when the default cannot generally be
determined apriori. The use of this scheme permits a novice user to simply invoke
an operator and be prompted for only the crucial information needed by that image
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operator. An experienced user can fully control the image operation by specifying
parameters which would otherwise be assigned default values. Note that all
information which may be specified for a given image operator should be
documented in the help system.

The Menn Sobsystem.

The menu subsystem supports the developmeat of comprehensive hierarchical
menuswhichcanbeusedtoeithercequenceeontroldirecdyortobuﬂdplamwhich
can be executed at a later time. The menu system allows evea naive users (without
detailed knowledge of LISP or FORTRAN) to perform image processing experiments
which fall within the domain of some predefined meau.*

The History Sobsystem.

The history subsystem automatically maintains a complete history -of the
processing applied to a given image. All operations applied to all of the ancestor
imagaofd:ceuneutimageammnintainedlnanordcredtme. For each operator,
aﬂpammetavaluqueptaxhthattheopaaﬁonmightberepﬁa}wd.,nc
ordered descendants correspond to the ordering of the input images to the operator.
T‘hesehistoﬁeumcompreuedandnvedwiththeimage.'lhi;pemipthgwgo
knqwaactlyhowagivmmﬂtmobtained. It is also possible to trade time
againndiskwbyuvingonlythehinmyoftheimageandrempuﬁngthe
image when it is needed. Itmaybedesimblctoapplyasequmofopemtiomto
a small subimage to verify the correctness of the sequence of operations in real time
and then use the generated history as a plan to automatically apply the sequence of
operations to the whole image or a different image. Manually maintaining such
detailed processing records is barely feasible, yet a failure to keep such records
may make replication of the result at a later time virtually impossible.’

The Image Operating System reports errors and wamings with appropriately
descriptive messages. The ongoing operation continues for warnings, but coatrol is
returned to LISP for severe errors. It should be impossible to cause processing
errors in the base system which result in termination of the Image Operating
System. In order to extend this protection to image operators added by the user,
an exception handles as provided by VAX-VMS is included in the function
application executive. This handler allows a graceful recovery back to LISP aftes
any unexpected errors within the user image operator. Note that expected errors
(i.c.condiﬁomforwhichtheumoperatorm)wouldbemaﬂeddlreccyqsa
warning or errof.

¢ The menu system is fairly complctely designed, but is, as of yet, unimplemented.
7 The history system is fairly completely designed but unimpicmented.
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When a user operator does fail, the on-line help system actually permits the
user to examine the source code or the listing file (if one exists) to find the code
which produced the error. Often, the VAX-VMS dynamic debugger can then be
used to temporarily patch the function (for the duration of the run) without ever

exiting from the Image Operating System.
24 Data Bases in the IOS

The Image Operating System contains four different data bases. The image
data base (IDB) is used for the long-term storage of images. The execution data
base (EDB) is used for the short-term storage of images necessary for, or images
produced by, image operators. The symbol data base (SDB) serves to communicate
control information and non-image information between components of the system.
The fourth data base is the library of image operators (IOPDB).

As can be seen in Figure 7 accesses to the data bases are made via
specialized accessing functions. These accessing functions help to make the system
modular. Changes in the implementation of any data base in the system affect only
that data base and the corresponding accessing functions. Redefining the external
structure of any of the accessing functions can, however, have repercussions
throughout the system since all calls to the accessing function would have to be
modified. :

The Image Data Base (IDB).

The image data base is a hierarchical data structure for the long term storage
of images at various levels of resolution. The data base is organized to minimize
storage requirement and for convenient indexing for retrieval. The images (often
referred to as “image planes” or just “planes™) are indexed by cone name, image
name, and level of resolution. A cone is a set of related images stored together in
the same file. Each cone is organized into multiple levels of images; images within
a level have the same spatial resolution. Finally, the image name specifies a
particular image in the cone at that level of resolution.

The level of resolution is a power of 2 such that images of maximum size 2"

by 20 pixels can be stored at resolution level n. The actual size of the image is
stored with the image and only that portion of the image is actually maintained
in the cone file. The cone structure also supports several different data types for
the images. These data types include binary-valued images (1 bit per pixel), signed
byte-valued images (8 bits per pixel), unsigned byte-valued images (8 bits per pixel),
half-word-valued images (16 bits per pixel), intcger-valued images (32 bits per pixel),
and real-valued images (32 bits per pixel in a floating point format). The use of
appropriate data types and subimage specifications permits the user to control both
the spatial and magnitude resolution of the saved images and hence the disk space
required to store them. On a system where disk space is scarce, images might be
stored with only the number of bits actually required to store the image. However,
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space conservation requires a coaversion whenever data is transferred between the
IDB and the EDB, with the reduction in performance implied by such a coding
scheme. Therefore, only the data types used by the EDB are currently supported in
the IDB.

For each image in the IDB, a description of the image and its
history are saved with the image. The histories are variable length structures (LISP
s-expressions) which are not dependent upon the particular implementation of LISP.

The IDB accessing functions (IDB-AF) contain functions which transfer images
between the IDB and the EDB. The accessing functions also include user interface
routines for querying the contents of the IDB cenes, creating and deleting cones,
and for deleting images (planes) within cones.

The Execution Data Base (EDB).

The execution data base (EDB) contains images which are input to image
operators and images which are output by the image operators. The data base is
organized to minimize access time for each pixel in an image being referenced.
Images must be moved from the IDB into the EDB before image operators may
access the image. All images in the EDB are exactly 20 pixels by 27 pixels. This
permits pixel address calculations without multiplications. The EDB is allocated in
the virtual memory space of the Image Operating System so that no software paging
is needed. Since most image operators need oanly a small local context to produce
the output values at each pixel and the IOS traversal of the image matches the
storage of the image, very low page fault rates are generally obtained. Predictive
software paging is appealing in such an image processing environment, but typically
would result in a loss of functionality (via restrictions on the order of image
traversal or on the size of the context), or would result in considerable software
overhead if functionality is not sacrificed. Note that this decision limits the
applicability of the current EDB to virtual memory systems such as the VAX.

Currently, a large EDB is allocated apriori, but dynamic extension of the EDB
is possible. Current space management tools permit dynamic allocation, deletion, and
coalescence of the space within the EDB.

When an image operator is applied, the logical image operator input and
output planes are bound to a physical plane in the EDB such that the IDB-AF
called by the image operator can access the image with minimum overhead.

The Symbol Data Base (SDB).

The symbol data base is used to pass coatrol parameters and non-image data
between components of the system. The default variable assignments and prompting
for usersupplied variables are implemented within the SDB and its i
functions. The symbol data base supports a number of data types (logical, byte,
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half-word, integer, real, and character string) as well as multi-dimensional arrays of
these primitive data types. The SDB provides the mechanisms for the dynamic
allocation of these non-scalar parameters (including their descriptors). The SDB uses
VAX descriptors for character strings and arrays for compatibility with other
VAX-VMS software.

It would have been possible to implement the symbol data base directly in
LISP. This would have the advantage that the LISP memory management tools
could be utilized, simplifying maintenance of the tables. Also, temporary bindings

for symbols would pose no special problems. That approach would also minimize
the cost of accessing the symbols in LISP. A number of factors led to the decision

to implement the symbol data base outside of LISP. LISP was not available when
the symbol data base was first needed and modularity favored development of the
SDB as a separate entity. Furthermore, the advantages of LISP memory
management are lost for data types not directly implemeated in LISP and the
version of LISP available did not support any of the array data types discussed
above. The saving of array contexts would also not be handled correctly for
temporary bindings since LISP normally saves the context by simply allocating a new
cell which points to the structure. This would not be adequate since the arrays are
generally manipulated destructively. The solution of copying the entire structure
would be expensive in both time and space. Saving the parameter context is
possible in the current implementation but must be performed explicitly by the user.

2.5 Application of an Image Operator

The image operators utilize a set of input images and a set of
operator-dependent parameters to produce a set of output images. Most operators
are defined locally and the image operator application executive applies that local
definition of the operator at each pixel in the image. Although this application is
actually performed sequentially, there are no theoretical reasons why the
computations could not be performed in parallel at all pixels, given the appropriate
hardware implementation of the cone architecture.

Image operators are composed of four sections: the environment section
(E$ section), the Initializatlion section (I$ section), the procedure section (P$ section),
and the termination section (T$ section). The environment section is executed once
to define the context within which the operator will run. In this section channels
are opened to access the input and output planes for the image operator.
Parameters necessary for the computation of the operator are obtained and the
operator declares itself and its purpose to the system. In short, the environment
needed for the application of the operator is generated.

The initialization section is used to initialize any internal variables used by the
operator. The process section contains the actual definition of the operator.
Finally, the termination section performs any necessary cleanup (ie. closing files) and
sets any output parameters.
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The process section obtains the values at neighboring pixels via functions which
access the execution data base. In order to keep the definition of the operation as
simple as possible, these accessing functions do not fail when pixels outside of the
image are referenced. The accessing function instead returns either zero or the
closest actual image value depending on the accessing function used. For instance,
an operator which computes at each pixel the mean of the 3 by 3 neighborhood
centered at the pixel would utilize an accessing function which returns the nearest
image values for pixels outside of the actual image. The process section does mot
need to consider pixels at the periphery of the image as special cases and in fact no
conditional instruction is needed in the process section of this simple operator.

The image application executive handles the -proper invocation of these four
sections for the operator sclected by the user. The user can specify the subimage
over which to apply the operator as well as the sampling density across the
subimage (which would be desirable for implementing a non-overlapping window of a
reduction operator).

2.6 Suommary

The Image Operating System is one of the most advanced systems available
for image processing today and represents a major, continuing, software development
effort in the VISIONS research group. The system has been operational for several
years at U. Mass. and three other sites. The IOS has been successfully applied to
a number of image domains including natural scenes, biomedical images, Landsat
images, robotics applications, and motion analysis.

The image operating system is a framework within which image processing
algorithms and tools may be developed. During the IOS development the systein
evolved and was improved both by extensions to the actual IOS and by development
of a pool of shared image processing functions. The majority of the software
development effort has been expended toward the development of a shared library
of documented, general-purpose, image operators. The library currently contains
display drivers for different display formats on various display devices, image editing
operators, statistical and feature extraction operators, generalized convolution
operators, various contrast manipulation operators, noise reduction operators, edge
enhancement operators, clustering operators, and classification operators.

In a recent text entitled “Languages and Architectures for Image Processing”,
edited by M. Duff. and S. Levialdi [DUF81] a number of languages and systems for
image processing are presented and compared [MAGS81). The current I0S compares
favorably to all of the languages presented. The VISIONS IOS seems to integrate
many of the strengths of the other image analysis systems. There are two important
characteristics which distinguish the VISIONS IOS from the other image analysis
systems:
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(1) The partitioning of the image analysis problem into interpretive control and
non-interpretive image operators allows for good dynamic control for interactive
experimentation without sacrificing image operator efficiency.

(2) The structure imposed on the image operators simplifies the construction of
these operators to minimize image operator development time and cost.

Fuoture IOS Development.

Further development of the IOS should include the implementation of the
history and menu subsystems. A subsystem to help users interactively program the
prototype image operators is also being developed. Special faster image data base
amng functions are being. developed to impmve the efficiency of many of the
shared image operators. Since the shared operators are used very frequently these
EDBAFs should enhance the I0S’s efficiency considerably.

The major pending modification to the system will distribute the EDB in the
virtual space. Image operators would be subprocesses which would communicate with
the IOS through shared memory (the SDB and sections of the EDB actually used by
the image operator would be shared). This would allow for multiple tasks, such as
an image operator task and a display task, to execute concurrently. This means a
user could initiate the display of a particular image and then initiate the
computation of another image operator on a differeat image without having to wait
for the display operator to complete. The primary advantage of .the new system
wouldnmbedemedﬁomthcmu!mpmmdngapahhty,htﬁomtheshoﬂenmg
of the debug cycle for image operators. In the new system, image operators could
be linked independently without the massive LISP system, allowing the duration of
the debug cycle to be reduced to about five percent of its duration in the current
IOS (ie. from minutes to seconds). It will be possible to test, edit, compile, link,
and retest a new image operator without ever leaving the IOS.

30 BACKGROUND, MOTIVATION, AND CONTEXT

'l'lnschapter should provide all of the neoemrybackgoundfor themmh
coatributions preseated in Chapters 4, 6, and 7. Theehaptuuorganizedintofwr
separate sections. ,

The first section provides some general backgmund into the problem of image
segmentation. Research into picture processing and scenc analysis has - been
pmgusngforalmosttwentyyeanmoekobemdeadbedoneoftheﬁmwe
analysis systems in 1963 [ROB63]. Now hundreds of papers are published each year
on segmentation and image analysis [ROS80b]. This section does mot attempt to
provide a comprehensive review of the field but instead provides some necessary
pointers into the literature for the papers particularly relevant to this thesis.



Background, Motivation, and Context 27

The next section contains a discussion of the approach taken in this
dissertation. This section contains a discussion of another system (Hearsay IT) which
also attempted to integrate knowledge from multiple sources to solve a single
problem.

The third section reviews the few other attempts at integrating several
segmentation algorithms. Chapter 7 addresses this problem in this dissertation.

The fourth and last section describes the particular segmentation algorithms
which were utilized in the thesis. In particular, an iterative clustering algorithm
[NAG79), an iterative edge finding algorithm ([HAN78a]), and a thresholding
segmentation algorithm ([KOH?79)], [KOH81]) are decribed.

31 Characteristics of Segmentation Algorithms

Segmentation algorithms can be classified along a number of different
dimensions. Ome of the most important is a distinction of segmentation algorithms
which are based on edges from those based on regions. The region algorithms form
regions explicitly based on some similarity measure which groups similar adjacent
pixels into regions. Our goal in the VISIONS system is to label regions in the
segmentation with some semantic identity. Given this goal, the edge algorithms may
be viewed as implicitly forming regions by locating the discontinuities or region
boundaries at which large differences between adjacent pixels occur. This difference
in approach to the segmentation problem can result in dramatically different
partitionings of the image. Many of the edge algorithms are reviewed in [HANS0)
and [DAV7S] while many region algorithms are reviewed in [NAG?79), [OHL75), and
[PRI77). An important goal of the current thesis is the integration of these
disparate approaches. Some progress has been made in this area and this work is
discussed in section 3.4 below.

Segmentation algorithms may be based on local or global information for both
edge and region algorithms. Global techniques are used in clustering [OHL75),
[PRI77], [PREG6], [TSU73], [NAG79), or in threshold sclection [KOHSI], [KAT6S],
(WAT74] among others. However, global approaches may be based on assumptions
which do not hold locally, while local approaches may jump to local conclusions
which are incorrect in some more global context.

Some of the problems of global approaches based on feature histograms,
including  the problems of overlapping distributions and hidden clusters, are
addressed in [NAG79]. The two techniques most commonly used to overcome
the problems of the global approach are localization of the global approaches to
arbitrary subimages ([CHO71), [NAG79) and recursive application of the global
segmentation approaches ([OHL7S], [PRI77). Below we provide two simple examples
to illustrate these approaches.
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Let us assume that we are going to segment images using an algorithm which
selects clusters (or peaks) from a histogram of pixel intensities and then labels each
pixel with the cluster label closest to the intensity value of the pixel (ie. a
minimum distance classifier in feature space). Figure 8 shows how localization in
the image space can lead to more reliable cluster selection. Figure 8a shows an
image with a small square on a background with a small but wide intensity gradient
(ie. slow spatial variation). Figure 8b shows the essentially unimodal histogram of
this image. A segmentation based on this histogram would mot be able to
distinguish the square from the background since there is not a separate peak in
the histogram corresponding to the small square. However, if we partition the
image into 16 square subimages of 16 by 16 pixels and segment each subimage
independently, then we can find separate clusters for the small square and the
background. Figures 8 and 8d show the subimage containing the small square and
the corresponding histogram. Clearly the cluster corresponding to the small square
could be found in the localized histogram. Localization is especially useful in
images with small objects but it should be noted that the set of local segmentations
produced must be reconnected into a single global scgmentation (a non-trivial

problem).

Ohlander, Price, and others used recursive histogramming instead of
localization to capture clusters obscured in the global feature histogram. In this
method a cluster is selected and all image pixels are labeled to be in the cluster or
not, thus forming regions in the image. For each large region a histogram is
computed, and if the histogram is not unimodal, a cluster is selected and the
process is recursively applied until all regions are small or unimodal. Figure 9
shows how recursive histogramming can lead to more complete segmentations.
Figure 9a shows an image to be segmented. The figure consists of three rectangles
on a dark background. The two leftmost and adjacent rectangles have quite
different intensities (=30 and p=40) while the right rectangle has an intermediate
intensity (1=35). Figure 9 shows the histogram of the whole image. The first
histogram allows for the separation of the foreground rectangles and the background.
Figure 9 shows the segmentation produced by the global histogram alone. This
segmentation has not separated the two adjacent rectangles on the left. The
recunivescgmentationappmchwouldnowtakeaﬂhrgemgiomofthis
segmentation and apply the same segmentation algorithm to each region. The
histogram of the regions corresponding to the background and the right rectangle
are essentially unimodal and therefore are not segmented further. However, the
region corresponding to the two left rectangles (shown in figure 9d) is bimodal as
seen in figure 9e. Figure 9f shows the final segmentation produced by the
intersection of the segmentation of the global segmentation and the partition of the
left region based on the histogram of figure 9d.

Region algorithms based on global clustering are often subject to gross errors
when clusters are hidden or when distributions overlap in the feature space
(histogram). The use of recursive clustering is often effective, but is particularly
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(a) (L)

() ()

Figore 8: Using Localization in Cluster Based Segmentation.
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{a) (d)

(b) (e)

(¢c) (f)

Figure 9: Using Recursion in Cluster Based Segmentation.
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sensitive to the size of the objects to be detected. In figure 8a the small square
could not have been scparated using recursive clustering since the global histogram is
effectively unimodal. Localization is less sensitive to the size of the object and can
successfully segment the square in figure 8a. Localization is the method used to
overcome the problems of global clustering in the remainder of the thesis.

Edge algorithms are generally considered to be local when the data upon
which they operate is derived from some local differencing operator; however, the
algorithms for producing a segmentation based on edges may have both local and
global components. For instance, the threshold for edge presence in particular edge
algorithms may be defined either locally or globally [HAN78a). There are global
histogram algorithms which detect lines using Hough transforms of edges {HOUG2].
These algorithms perform global clustering of edge location and orientation to locate
collinear segments. The edge algorithm used in the remainder of this dissertation
computes edges using local contrast measures,

Another characteristic of segmentation algorithms is the generality of ‘the
algorithm or the range of image classes to which the algorithms may be effectively
applied. Many algorithms are designed to operate in restricted domains, such as
particular types of biomedical images ([PREG66], [WES75]), or polyhedral blocks in an
environment with controlled lighting ([ROB63], [GUZ68], [WAL7S]). Segmentation
algorithms can be quite effective in these constrained domains since the algorithms
may be selected and carefully tuned by taking advantage of the known
characteristics of the images. Some investigators have used top-down prediction
based on semantic models of the scenes to facilitate the segmentation process
([YAK73], [BAL77], [TEN76)). Semantic information has been used directly for
image segmentation where areas of the image are labeled with potential object labels
and corresponding probabilities [YAK73]. It is doubtful that such schemes for
integrating semantic knowledge directly into the segmentation phase will succeed with
such simple single level approaches when the number of objects in the image domain
becomes very large.

While the use of semantic information to guide the segmentation process has
potential in specialized applications, it is our position that segmentation algorithms
should probably not be based on knowledge of the objects to be recognized. The
view taken here is that higher level processes, which utilize semantic knowledge,
should influence or tune the low level segmentation processes, but  semantic
knowledge such as known object identities should not be utilized directly by the
scgmentation processes. This will, hopefully, result in a domain independent
segmentation system which can easily be tuned to take advantage of prior knowledge
for a given domain.

32 Scgmentation Executive Components
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In Chapter 2 it was shown that simple image operators could be easily
implemented in the Image Operating System. These operators can perform simple
calculations in parallel for each pixel, producing result pianes at the same level of
resolution (iteration), at higher levels of resolution (projection), or at lower levels of
resolution  (reduction). These operators alone do not constitute a segmentation
algorithm. Rather, we define a segmentation algorithm as a sequence of such
operators which can accept an image and a set of parameters as input and produce
a segmentation as output.

Segmentation processes are defined as instantiated scgmentation algorithms. A
segmentation process can be executed only a‘ter the sclection, via some strategy, of
a segmentation algorithm, appropriate image featuges which determine the input data
(c.g. raw red, saturation, intensity, etc.) and appropriate algorithm-specific parameters.

A complete segmentation computation could consist of a composition of several
segmentation processes, with pre-processing and/or post-processing  algorithms. One
preprocessing algorithm used in our research attempts to correct for noise due to
digitization [OVE?), while another uses color information to correct boundary
blurring [PRA80]. One post-processing algorithm suppresses very small regions, while
another (an iterative expand and contract algorithm) closes small gaps in an edge
segmentation in order to form closed boundaries [PERS0].

In our effort to develop intelligent and effective segmentation strategies, it will
prove helpful to characterize the constituent image operators according to their
function. Some of the image operators introduce new hypotheses into the
representation based on the image data; these include operators which generate
hypotheses about cluster membership, or the probability of the existence of an edge
between each pair of pixels. There are other image operators which update
segmentation hypotheses based on local constraints, e.g. the relaxation operator for
edges attempts to organize local edges into continuous global boundaries.

There are also image operators which abstract several hypotheses at some level
of resolution into a single more global hypothesis at a coarser level of resolution.
Other image operators project abstracted hypotheses to hypotheses at higher (finer)
levels of resolution. For instance, an operation might aggregate high resolution
edges into a straight boundary hypothesis at low resolution. The low resolution
boundary hypothesis could then gemerate edge hypotheses or increase the confidence
of existing edge hypotheses for the implied constituent edges at the higher level of
resolution in the cone. It is the above characterization of image operators that
leads us to view our scgmentation system in terms of other systems which solve
complex problems by a hypothesis and test paradigm involving multiple knowledge
sources such as Hearsay-II.
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33 The Hearsay-II Analogy

The task we have defined for a segmentation executive includes the
construction and control of the hierarchy of processing structures described above.
A certain similarity exists between the task of the segmentation executive and other
systems designed to coordinate multiple, independent, cooperating knowledge sources
such as Hearsay-ll [ERMS0] in speech understanding, or the VISIONS scene

interpretation systems in image understanding ((HAN74], [HAN78b)).

The Hearsay model had a large number of independent knowledge sources
which communicated through a global common data structure called a blackboard.
Each knowledge source had a limited view of the world state represented in the
blackboard and each knowledge source was considered to be both “incomplete” and
“errorful”. No single knowledge source could solve the eatire problem alone, and
even the partial results produced by a knowledge source might have been incorrect.
It was assumed that other knowledge sources would supply the missing information,
while the incorrect hypotheses would be corrected or ignored during the
interpretation as evidence accumulated.

The knowledge sources were data invoked and were scheduled when a
particular data event in the blackboard occurred. The scheduler focussed the
attention of the system by ordering operations on the scheduling queue according to
an evaluation based on the expected effect of performing the operation. The
scheduler would ignore operations in portions of the utterance which were
well-understood since little new information could be gained by the application of
these operations. The scheduler would normally choose to concentrate on arcas
adjacent to unambiguous portions of the utterance since these well-understood
sections formed “islands of reliability” which could greatly constrain the search. In
Hearsay-ll it was found that when hypotheses at the lower levels of understanding
(ic. phonemes) improved even slightly, the overall performance of the system
improved markedly; the search space was considerably reduced and the correct paths
were evaluated earlier in the search.

This last finding implies that it is important to produce the best possible
scgmentations to enhance the performance of the semantic interpretation system.
The primary influence of Hearsay-Il and other such systems on this thesis does mot
arise from their system architecture, but from the overall approach to the problem
of deciding between alternative competing hypotheses produced by incomplete and
error-prone  knowledge sources. The parallel nature of the low-level image
processing architecture makes focus of attention in the image space less important,
since the image operators are applied in parallel to the eantire image' In our

® This assumes that parallel hardwarc cxists to cxccute the image opcrators. Spatial focus of
attention is of considerable concern in a sequential implementation since it has a
tremendous impact on processing time and cost. The conc hierarchy can be used to
implement coarse resolution plans to limit processing to some portion of the image.
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implementation of the segmentation executive, the focus of attention mechanisms
decide which segmentation processes (or KS's) to apply and whea. The high
pmoessingcostofpafomingthementaﬁonpmiudﬁaeonﬁdaablemin
making scheduling or KS selection decisions.

How do KS's in Hearsay-II relate to our segmentation processes? One major
difference is in the size of the KS’s. The segmentation processes are tightly coupled
sets of image operators which generate new hypotheses throughout the image while
Hearsay’s KS's are small, relatively efficient, and generate a very few hypotheses
which are usually restricted to a small portion of the utterance. As in Hearsay-Il,
interactions between algorithms must take place via a common interface. In Hearsay
this interface was .a hierarchical structure containing bypotheses known as a
blackboard. For segmentation processes the processing cone serves this function.
Unlike Hearsay, image operators are not data-invoked (invoked automatically by the
generation of new hypotheses or the modification of old hypotheses).

34 Attempts at Reconclling Edges and Reglons

One of the expressed goals of this thesis is to integrate the knowledge
encoded in several algorithms or scgmentation processes to geacrate better
segmentations. There are several possible approaches to the integration of the region
and edge algorithms. This section briefly reviews other work which implicitly or
explicitly attempts to combine both region and edge information.

. One interesting approach is to define appropriate models of image formation
based on both region and edge information. The slope facet model proposed by
Haralick models the image as a large number of small parameterized facets (bilinear,
quadric, or higher order surface patches of the intensity or other feature surface).
Edges are found when adjacent facets have significantly different parameters, while
regionsmaggregatedby-gmupingfamﬁthdmihrpanmm Region and edge
detection are based on standard statistical measures (analysis of variance) [HARM).

This dissertation  attempts to integrate edge and region information by
integrating edge information into the region algorithm, by integrating segmentations
produced by the independently computed region -and edge based algorithms, and by
dynamically integrating the region and edge algorithms. :

The building of segmentation processes includes the selection of algorithm
specific parameters. Selection of these parameters should consider region information
for edge algorithms and edge information for region algorithms. A number: of
region algorithms based on thresholding the image have utilized gradient or edge
information (including [WES78], [KAT65], [WAT74], (MIL7?8], [MIL79), and [KOHSI).
Kohler [KOHS1] contains a comparative evaluation of these methods.
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Some very preliminary experiments with dynamic interaction of segmentation
processes have been  reported by Webster [(WEB79]. This work independently
proposed a model of process interaction which is strikingly similar to the model
proposed in this thesis (in chapter 7 below). Webster closely coupled a region
relaxation algorithm and an edge relaxation algorithm’ Inter-pixel edge probabilities
were substituted for compatibility coefficients, thus allowing the edge algorithm to
influence the region hypotheses. Region label hypotheses were designed to influence
the edge algorithm by averaging the probability that adjacent regions are labeled
differently into the edge probability between the pixels.

The results reported by Webster were not encouraging since no significant
improvements in the segmentation due to process .interaction were found. The
failure to find improvement may have been due to a number of factors. The
algoﬁthmwastestedonalingletatmc(aunallsquamonauniform
background) with different levels of additive noise. This kind of image does not
exhibit any of the complex image characteristics (such as intensity gradients,
non-gaussian texture, and fine image structures) which are difficult for region based
algorithms to deal with. This implied that the edge hypotheses could provide little
help to the more reliable region hypotheses and, therefore, the quality of the
resulting segmentation would not be improved. The lack of improvement may also
bave been due to a failure to tune the edge algorithm independently and a failure
to consider the relative contribution of the region and edge components during the
interaction process.

35 The Region Algorithm

The cluster-based region algorithm used in the remainder of this dissertation is
a variation of a relaxation algorithm developed by Nagin [NAG79]; exteasions to this
algorithm are discussed in chapter 4. This algorithm is based on the assumption
that the regions in an image will form distinct clusters in feature space (a histogram
of the feature values). Regions are formed by identifying clusters in feature space
and ultimately labeling each of the pixels with one of the cluster labels.
Adjacent pixels will be aggregated into the same region if they have identical labels,
i.e. they belong to the same cluster.

The algorithm has two phases. In the first phase cluster centers are located
in the feature space and for each pixel a probability of cluster membership for each
of the possible clusters is computed. The clusters selected will be referenced by
the label set L={i | 1<=i<=m} where m is the number of clusters detected. In this
thesis, only one dimensional histograms are used for finding feature clusters,
although it is possible to look for feature clusters in higher-dimensional feature
spaces (in particular [NAG79] uses 2 dimensional histograms and [COL78] uses
unsupervised n-dimensional clustering). The initial label probabilities for cluster

* The region relaxation system is very similar to [NAG79] and the ed em is
similar to [HANBO). N g i
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affiliation at a given pixel were determined in a straightforward manner using the
normalized inverse distance of the pixel feature value to each of the selected cluster

centers. Coy

The second phase of the algorithm is a probabilistic relaxation process m@q
which updates the cluster label probabilities at each pixel based on a five-neighbor
context (the four adjacent pixels and the center pixel itself). The aeighborhood

will be referred to as the set N. 'l'heconmbutionofmhndghborxeNtoeach-

cluster label i at the center pixel is defined to be:
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where Py(j) is the curreat probability that neighbor x is eomectly labeled j, and
(i) is the compatibility coefficient which reflects the support for label i -at the
center pnxel given that neighbor x is correctly labeled j. The compan’bihty
coefficient is based on the compatibility between label i at the ceater ‘pixel- with
label j at neighbor x in the initial cluster label distribution. The relative support" for
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Normalization of these contributions via the standard relaxation formula from
Rosenfeld [ROS76] allows the computation of a new probability for label i at the
central pixel ( P.() ) as follows: N
. ;7::s,:“7».1
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assigned the highest probability cluster label. Note that there have been a. vaxiay
ofupdanngformulaspmposedandthmmavanetyofamoachuforspedtylng
the compatibility coefficients. In [NAG79] the eompatibilines are ‘estimated fmm the
original probability “distribution of cluster labels and do ‘mot change during” the'
relaxation phase. It has been shown that in some instances these image-depenrieii‘
distributions - capture - important contextual - information that allows image
structures to be preserved within the segmentation.

Nagin used localization to avoid missing clusters. The image is divided into

small subimages (typically 16x16 or 32x32 pixel subimages) and the algorithm is
independently applied to all subimages. The histogram for cluster selection is
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computed over a subimage which extends 25% in ecach direction beyond the
subimage in which the segmentation is computed. This is done in order to reduce
the risk of missing clusters corresponding to objects which straddle the inter-subimage
boundaries. The result of this processing is a set of segmentations, one for each
subimage, which must be combined into a single segmentation. Nagin integrated
these segmentations by merging regions across subimage boundaries. The criterion for
merging was based on a measure of the difference between the populations of pixels
belonging to the candidate regions in a narrow band along the sub-image boundary.
Because the merge decision is local, it is possible to indirectly link two very
different regions into the same region via a chain of regions, each of which is only
slightly different from its neighbors in the chain. This is particularly noticeable when
the two very different regions being merged happen to lie in the same subimage.
These merge errors are often due to missing clusters in some subimage, a problem
addressed in chapter 6.

36 The Edge Algorithm

The edge algorithm used in the remainder of this thesis was developed by
Hanson, Riseman, and Glazer [HANS0] (this work evolved from a similar algorithm
by Prager [PRA79]). No modifications have been made to this algorithm and except
as discussed in the section on dynamic segmentation process interaction below, the
algorithm utilized was identical to that presented in [HANSO].

The edge algorithm is an iterative algorithm which attempts to organize local
edges into continuous line segments which correspond to region boundaries. The
edge algorithm consists of a sequence of image operators which generates a set of
local edge hypotheses, followed by a relaxation sequence which modifies the edge
hypotheses based on constraints in a local context around the edge hypothesis. In
this algorithm edges are considered to exist between pixels as suggested by
[HAN78b) and [PRA79).

To generate the initial edge hypotheses the algorithm first uses two simple
one-by-two edge masks to measure both the horizontal and vertical local edge
contrast at each pixel. These initial edge hypotheses, based solely on absolute local
contrast, are then locally scaled by an image operator which normalizes the edge
contrast based on a function of the highest local contrast in an 11 by 11
neighborhood of the edge. The initial edge hypotheses are also adjusted by an image
operator which collects a set of parallel non-zero gradient edges of the same
direction of contrast into a single more global boundary. This “gradient collection™
process overcomes some of the problems of using the very local one-by-two edge
mask. At this point, initial edge hypotheses are represented as a probability that an
edge should be present in the final edge segmentation at that location.

The second phase of the algorithm is an iterative relaxation process across the
plane of edge hypotheses. Using assumptions about good line continuation, the
probability of each edge is updated on the basis of possible boundary continuation
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on either side of the edge. Figure 10 shows the ten equivalence classes vij of edge
contexts considered by the relaxation operator, where i and j represent the number
of edges present to either side of the central edge. In a given edge context we
estimate the probabilities that this edge context is an instantiation of each of these
equivalence classes. In the Vg case the central edge has no support from any of
its neighbors, while in the Vg and Vi3 cases the central edge is not needed for

good continuation and to the extent that we believe the current edge context to be
an example of one of these cases the probability of the central edge is decreased
toward zero. If we beliecve an edge context to be an example of class Vg;, then
the edge is one of three possible continuations of the extant neighboring edge, one
of which should exist. In this case the probability of the central edge is increased
slightly. If we believe the edge context to be an example of the classes Vy;, Vi,
or Vi3, then the central edge is necessary for good continuation and the probability
of the central edge is increased toward one. The remaining cases are ambiguous in
terms of what is required for good continuation and have no effect on the
probability of the central edge. Additional information used in the updating
includes the consistency of the edge’s direction (i.c.. the signs of the gradients) and
the alternative parallel locations for placement on either side of the edge.

The edge relaxation is typically terminated after about 20 iterations. Figure 11
shows a typical result of this algorithm on a natural outdoor sceme. Figure 1la
shows the original intensity image, Figure 11b shows the initial edge probabilities,
and Figure 1lc shows the resulting edges after 2 itcrations of relaxation and figure
11d shows the result after 20 iterations. Note that although many of the
discontinuities in the image have been properly located, the segmentation often does
not form closed regions which correspond to real world structures. Some additional
processing is clearly needed before this segmentation can be properly utilized by a
semantic interpretation system which requires closed regions.

3.7 The Thresholding Segmentation Algorithm

Another algorithm used later in this dissertation is a multi-threshold
segmentation algorithm [KOH78], [KOH81]. The algorithm selects a threshold for a
given image such that the average intensity gradient across all boundaries detected
by the threshold is maximized. This selection is accomplished without search by
simultaneously computing the expected average contrast (gradient) for each possible
threshold. Additional thresholds can be identically selected after any edges detected
by previously selected thresholds have been eliminated from the computation.

This algorithm, like the region algorithm, is guaranteed to form closed
boundaries and is based on global measurements across the image. It is like the
edge algorithm in that the threshold selection is based on local contrast information
rather than similarity information as the region algorithm is.
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Figore 10: Equivalence Classes for Edge Contexts in the Edge Relaxation Algorithm.
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Figure 11: Edge Relaxation Algorithm Segmentation Result.
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40 MODIFICATIONS TO THE CLUSTERING ALGORITHM

Two modifications have been made to improve the performance of the Nagin
cluster based scgmentation algorithm. These are necessary and significant
improvements to the region clustering algorithm which forms the primary
segmentation process around which chapter six of this dissertation is centered. The
first modification altered the computation of the initial cluster affiliation probabilities
to reduce the classification error rate after relaxation. The second modification
altered the definition of the compatibility coefficients such that the cluster label
probabilities do not diverge in a manner dependent on the absolute magnitude of
the compatibility coefficients.

”
4.1 Modification of Initial Probability Computation

The region algorithm selects feature space clusters and then associates a
probability vector with each pixel. The component eclements of the probability
vector, which represent the likelihood that the pixel is a member of the respective
clusters, are inversely proportional to the pixel’s normalized distance to ecach of the
cluster centers in the feature space. Given n cluster centers C; to C,, and a pixel
with feature value i (eg. intensity = i) then the probability component for cluster m
would be given by:

1/ Dy,

T 1/Dy
1<a<a

where D;, is the feature space distance (eg. intensity difference) between cluster
center C, and the feature value i. The values of the probability vectors are
modified by an iterative updating process and the best label for a pixel is defined
to be the most likely cluster label after relaxation. Note that a maximum likelihood
classification could be carried out on the initial probability vectors, which is
equivalent 0 a minimum distance classifier, since the maximum component of the
probability vector always corresponds to the closest cluster center.

P(m) = 41

It is well known in pattern recognition [DUD73] that a minimum distance
classifier is not always optimal. Since we have no knowledge of either the number
of underlying distributions in the histogram or their form, a theoretical analysis
seems intractable. However, another heuristic decision boundary at the valleys
between the cluster peaks has been widely used [PREG66),(OHL75]. Figure 12a shows
a simple image composed of two gaussian regions of different sizes and feature
distributions (background w = 30, o = 40, and foreground p = 42, o = ).
Figure 12b shows the feature histogram with the minimum distance decision
boundary (at a), the valley decision boundaries (at b)* while figures 12c and 12d

¥ Figure 12b also shows the hecuristic decision boundary (at c) presented below.
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(b)

Figure 12: Decision Boundary Selection: Example 1.
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show the initial segmentation based on the minimum distance and valley decision
boundaries respectively. Use of the valley decision boundary bhas reduced the
number of misclassified pixels from 221 to 16. This strongly suggests the use of the
valley decision boundary if one assumes all errors have equal cost. However, in the
context of the relaxation algorithm, all errors do not have equal cost since the
probability updating may correct some errors. Figures 12f and 12g show that after
30 iterations of relaxation the minimum distance classifier (used by Nagin) resulted
in 9 mis<classified pixels while the valley decision boundary resulted in an almost
entirely correct segmentation. In this example, the valley decision boundary results
in fewer errors both before and after the relaxation process.

There are cases for which the valley classifier is inferior to the minimum
distance classifier after relaxation, as shown in figure 13. Figure 13a shows a
foreground region (n = 42, o = 30) on a darker background (p = 30, o = 30).
The foreground region has a large perimeter to area ratio. Figure 13b shows the
histogram of figure 13a with the minimum distance and valley decision boundaries
marked at ‘a’ and ‘D" respectively (the heuristic decision boundary proposed below is
shown at ‘c). Figures 13c and 13d show the initial labeling of the pixels using the
minimum distance and valley decision boundaries respectively. Figures 13f and 13g
show the corresponding labeling after 30 iterations of relaxation. In these cases the
minimum distance classification led to 12 errors after relaxation, while the valley
decision boundary classification led to 41 errors.

The better performance of the minimum distance decision boundary in this last
example seems to be due to two factors: (a) the significant difference in the sizes of
the regions and (b) the large ratio of perimeter to area for the smaller region.
Spatially adjacent errors in the interior of a region may not be corrected by the
relaxation since they mutually support each other’s incorrect label. Likewise, errors
on the boundary of a region may have support for their incorrect label from the
neighboring region. In this example, the selection of the valley decision boundary
shifted the decision boundary toward the smaller cluster with a relatively high
perimeter to area ratio, and therefore increased the number of errors which were
difficult to correct in the small region. The probability of spatially co-occurring
errors clearly increases as the same number of errors are squeezed into a smaller
and smaller region. The probability of errors on the boundary of the region also
increases with the perimeter to area ratio.

In cases such as the one above, the minimum distance decision boundary is
preferable, yet, for many cases the valley decision boundary is preferable. A
heuristic was proposed to move the decision boundary away from the smaller of the
two populations to reduce the probability of spatially co-occuring errors in the
smaller region. The heuristic was designed to move the decision boundary from the
valley boundary toward the minimum distance boundary by an amount proportional
to the difference in the sizes of the populations and the degree to which the
populations overlapped. The heuristic decision boundary, simply based on the
histogram, was defined to be:
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(a)

(b)

Figure 13: Decision Boundary Selection: Example 2.
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D“ﬁﬂ%ﬁ;“"%mﬂ 1A )« DOpa - Dy + Dya 42

where Dpq and Dyq are the minimum distance and valley decision boundaries
respectively, V is the feature frequency found at D 4, while Hl and H2 are the
feature frequencies at the cluster ceaters. The V term is a crude estimate of the
population overlap, while Hl and H2 are crude estimates of the population sizes.
The resulting segmentations before and after relaxation are shown in figures 12¢ and
12h and 13¢ and 13h for the two example images.

In the case of figure 12 the heuristic decision bound is very close to the valley
decision boundary (at i=40 rather than i=41) and results in one emor after
relaxation. In the case of figure 13 the heuristic decision boundary was placed
halfway between the valley and minimum distance decision boundaries (at i=37
‘where valley decision boundary selected i=39 and the minimum distance boundary
was i=35). In the second case, the minimum distance boundary resulted in 12 errors
after relaxation, the valley boundary resulted in 41 errors, and the heuristic
boundary resuited in only 3 errors.

42 Modification of Center Pixel Compatibilitics

In the Nagin relaxation algorithm each neighbor of a pixel to be updated has
a distinct set of compatibility coefficients which define how that neighbor influences
the probability update at the ceatral pixel. All of these compatibility coefficients are
determined from the initial probability distribution of the image based on a
correlation measure. However, the choice of compatibility coefficient for self support
of the ceatral pixel in Nagin's algorithm was somewhat ad hoc:

: 1 if i=j o
= 44
-1 otherwise

Ihusecuondeﬁnaobjacuva(ortherdaxaummtemsofthealgonthmsbehavior
in particular .image geometrics at coavergence or partial convergence, and then
determines the appropriate central pixel compatibilities which will attain these
objectives. This methodology provides understanding into the bebavior of the
relaxation calgorithm in certain partially converged cases and therefore permits
precise control of the relaxation algorithm in these cases. The analysis of the
ceatral pixel compatibility cocfficients was suggested by the method of analysis used
by Richards, hndgrebe.Swmn[RIC&O]inthedetaminanonofappropmneighbor
waghuforeachplxelinadiffmtrdmtionalgonthm .

The Nagin center pixel compatibilities lead to considerably different behavior
of the relaxation algorithm when the initial probabilities were very ambiguous or
very clear. Empirically, when the initial probabilities were very close to 0 or 1,
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then the magnitudes of the compatibility coefficients were large. In this case, the
four neighbors overpowered the self support of the central pixel and the relaxation
tended to destroy fine structures. If the initial probabilitics of the best and second
best labels were roughly the same for most of the pixels, then the magnitudes of
the compatibility coefficients were quite small and the relaxation update was
dominated by the central pixel. In this case, even isolated mislabeled pixels could
survive the relaxation process.

Thus, one of the reasons Nagin's method did not always perform effectively is
because it did not properly balance the influence of the ceatral pixel with that of
the other ncighbors. The analysis below makes the assumption that certain
geometries (such as long thin regions) are to be preserved by the relaxation process.
This assumption gives rise to a set of constraint inequalities which may be solved
for the values of the ceater pixel compatibility coefficients such that when local
convergence is reached (i.c. probabilitics for cluster labels are 0 or 1 in some image
neighborhood) the desired geometry of labels remains stable.

In this analysis, we define two constraints on the relaxation process:

(1) The stability constraint.
A pixel which has converged to label x will remain converged to label x when
at least one of its necighbors is also converged to label x. A pixel is

convergedifthcprobabilityofitsbmlabelisl.

(2) The effectiveness constraint.
Apixelshouldnotbeallowedtoremainconvcrgedtolabelxifallofits
neighbors are converged and none are labeled x.

The stability constraint guarantees that one pixel wide, fine structures will be

ed and that two pixel regions are possible in the final segmentation. If two
supporting neighbors were required for stability, then it would not be possible for
one pixel wide fine structures to have the probabilities of their labels guaranteed to
be stable since they might then erode from the end of the structure. When there
are different geometries of labels whose stability is desired, a similar derivation is
possible, although there is no guarantee that a solution will exist for other sets of

constraints.

The effectiveness constraint guarantees that no isolated pixels will survive the
relaxation process at convergence." This condition guarantees that every coaverged
pixel is part of a stable structure. Several alternative, less restrictive, definitions of
the effectiveness constraint are also reasomable. It may not always be possible or
desirable to have such a strong effectiveness constraint. The three other possible
effectiveness constraints would guarantee that an isolated pixel would not remain at
convergence only if at least either 23, or all four neighbors have converged to the

" By 'isolated we mean none of the pixel’s neighbors are converged to the same label as the
pixel.
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Modifications to the Clustering Algorithm 4

same label. Note that all of these constraints are identical in the two label case.
The theory does not guarantee that a pixel will converge to the same label as one
of its neighbors, only that the pixel will not converge to a Iabel different from
every neighbor; however in practice, this is almost always the case.

For both the effectiveness and stability constraints, the particular constraint
selected might be a function of the image domain, but the analysis presented below
could be similarly derived for any of the possible constraints.

If the neighborhood is converged and the central pixel is labeled i, then that
label will be maintained if the relaxation update equation (3.3) does not decrease the
value of P(i). From equation 33 we can see thyt this condition holds whenever

1 + qgfi) = 1
T P (1T 9@ 45
jeL

Since the sum all P(j) for all j in L is 10, the denominator of this inequality is a
weighted average of the (1 + q(j)) terms. This means that the label i will be
preserved if and oaly if q(i) is greater than the weighted average value of all q(j)
for j in L. This is certainly true when q(i) >= q(j) for all other labels j (that is
when the current label has more support than any other alternative label). Let us
use Py(y) to denote the probability that pixel x should be labeled y.2 Figure l4a
shows the neighborhood used in the update equation for the case of two clusters.
The following section shows how the center pixel compatibilities may be found to
satisfy the stability constraint in the case of two labels. Section 422 extends the
argument to multiple labels and section 423 derives the effectiveness constraint for
these cases. Finally, section 424 extends the method to certain partially converged
neighborhoods. Section 425 compares the region relaxation algorithm using the
new ceater compatibilities to the Nagin algorithm in a simple experiment.

Stabllity Coustraint - The Two Label Case.

We will initially restrict ourselves to the case of two labels in the neighborhood. If
we assume that the update neighborhood is locally converged (probabilities of all
labelsmOorl),thenq(j)foreachlabeljeanbcdmpliﬁeddnce!’x(y)=lor
Py(y)=0. For the case shown in figure 14b the relaxation update equation terms for

g‘lz and ggzz can be expanded as follows:

B The notation used for the acighbors is as follows:
¢ - ceater pixel
r-pixeltol;lzght
1 - pixel to
u - pixel above (up)
d - pixel below (down)
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Figore 14: Center Compatibility Coefficlents: Converged Example Cases.
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q1) = rg(1.1) + (1)) + (1,2) + ry(12) + r,(12) 4.6
q(2) = 14(2,0) + 12,0) + (22) + ry(2:2) + 122) 47

As discussed above, all compatibilities for the neighbors are constants computed from
the curreat image, thus allowing us to solve for the center compatibilities in the
inequality q(1) >= q(2):

48

n(22) - n(12) + 1,22) - r(12)
'c(lpl) © rc(ztl) >=

+ 120) - 1LY + 1,22) - 1,(12)

The pixel which supports the central pixel could, of course, appear at any of the
other neighbors and all four possible orientations must be considered. Thus, a
similar derivation using the cases of figures 14c-14¢ yields three additional
inequalities for r.(1,1) - 1 (2,1) which must be satisfied if the stability of the label
geometry in any orientation is to be guaranteed. The value for rc(i) is arbitrarily
assigned to be zero. We can thea solve for re(2,1) which simultaneously satisfies the
four directional inequalitics. By reversing the labels in figure 14b, we can solve for
the r.(1,2) coefficient.

The Stability Constraint - The Muoltidabel Case.

Extension to multiple labels is fairly straightforward. Note that in inequality
48 each .neighbor introduced exactly two terms for the q(1) >= q(2) inequality.
Figure 14g is an example where a third label is seen in the neighborhood. The same
constraint -inequality (q(1)>=q(2)) can be used to derive additional constraints on
r.(1,2):

4.10

n(23) - 713) + 1,22) - 1,(12)
tc(l-l) © rc(ztl) >=

+ rd(z'l) * td(l’l) + ru(zﬁz) * tu(lﬂ)

As can be scen, the only terms which have changed (betweea inequalities 4.8 and
4.10) correspond to the neighbor with the third label. It is clear that the maximum
of these term pairs would be the more restrictive constraint. Let us define L as
thesetofnllnlabelsand[)(asthesetofallnlabekexcludingthebealabelof
the ceatral pixel, then the maximum constraint imposed on the q; >= qy inequality
by neighbor x would be:
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MAX ( ,(22) - r,(12) ) 41
zelX

Generalizing to other neighbors with different labels produces the fnllowing
constraint:

MAX (f(22) - n(12))

z e LX
+ MAX (r{22) - r,(12))
zelX
Wy -2y >= [ . a2

+ 14(2,0) - 14(1,0)

';" MAX ( ru(z-z) - rn(lsz) )
zelX

Asabove,therearestillatotaloffourconmmuforachlabelpmr(oneforench
possible direction of support, corresponding to figures 14b - 14e). ' an

Given our approach to the specification of compatibility coefficients, all the
coefficients on the right hand side of equation 4.12 are imago-dependent ‘and
calculated directly from the joint probabnhnes of spatmlly adjacent labels. - Then,
combining all image dependent constants in 4.12 into the xmage dependent constant
Ozandmmmgrc(i,t)=00necanrcwmemequahty4.lzas ’ ; R

121 <= G, i 413

Ettecdveneu Oonstralnt.

- We must also ensure that the effectxvenm constraint, which guarantees that
isolated unwpponed labels should not remain at ‘convergence, is satisfied as. well:’ in
this ‘case we want the updated value of P, to decrease. From equation® 33 "we ca’h
see that this is true whenever it

_1 + gfi) < 1
T Pi)° ( 1+ q()
- jeL '

5 - 1434

Again, the denominator of this form is the weighted average of (1 +. q(j)) for all j
in L. lfwehaveq(n)<q(j)forallythenthisformwillbelessthanoneandthe
eenualpuelwnllnotremamconvergedatlabeli To satisfy this constraint- in the
two label cases such as that shown in figure 14g we must have q(1) < q(2). ln
this case, we have
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q(1) = 1(1,1) + 13(12) + n(12) + r,(12) + 1(1.2) 4.15
@) = 1(2,)) + 14(22) + 122) + 1, (22) + 1(2.2) 4.16

Again, solving for the center compatibilities we obtain:

4.17

n(2.2) - n(12) + 1(22) - 1,(1,2)
(1)) - 1(2,)) <

+1922) - 14(12) + 1, 22) - 1,(12)

This form may also be generalized to the multiple label case (in the same manner
as the previous case) yielding the inequality:

MIN (5(22) - r(12) )
zelX

+ MIN  (rf22) - 1(12) )
zellX
(L)) - 1, 2,)) < 418

+ MIN (14(22) - 14(12) )
zelX

+ MIN ( r,(22) - ru(lvz) )
Z €

Aguin, under the assumption that the (i) compatibilities are image dependent
constants, the right side of this equation (including the 1.(1,1) term) may be
combined into the image depeadent constant C; and rewritten as:

20 > C; 419

This, together with the result of the previous section, yields a bounded interval in
which r,(2,1) must lie in order to satisfy both constraints:

C; < 121) <= C,. 420

For 1(2,1) less than C;. an isolated label could remain converged through the
relaxation process, while for 1:(2,1) greater than C, one pixel wide structures could
be destroyed. When 1(2,1) is close to Cy, the relaxation has strong inertia (the
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magnitude of the center pixel’s influence is large) and the relaxation will barely
keep isolated pixels from converging. When r(2,1) is close to C) the relaxation has
less inertia and the relaxation will barely maintain converged, one pixel wide, fine
structures. At the weak extreme the relaxation may not change the labeling of
some incorrectly labeled pixels while at the strong extreme fine structure might be
obliterated long before local convergence is reached. Since the actual values of C1
and C2 are dependent on the image, the interval may in fact be empty for some
images and cluster set combinations, making it impossible to simultaneously satisfy
both constraints.

Partlally Converged Neighborhoods.

One can gain further understanding of the bebavior of the updating process for
different values of ry(2,1) in the interval (C; , Cp] by considering some slightly
more complex cases in which local convergence is not complete. In figure 15a the
three neighbors supporting label 2 are converged, yet the central pixel and the pixel
supporting the current label of of the central pixel have a probability x for label 1
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