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ABSTRACT

Pmcmiagﬂnﬁgl}inlgageg:::quencee
February, 1984
Daryl T. Lawton
B.S., University of California at Santa Crus
M.S., Ph.D., University of Massachusetts at Amherst
Directed by: Professor Edward M. Riseman

A fundamental problem in motion processing research has been the discrepancy
between the precision and reliability with which image displacements can be de-
termined and the sensitivity of inference procedures to noise and resolution errors.
There are also indications that these inference procedures are inherently unstable
and, in some cases, ambiguous. The approach of this thesis has been to deal with
restricted cases of motion for which the inference of the motion parameters, image

.displacements, and environmental depth, can be combined into a single, uniform,
and mutually constraining computation. These restricted cases of motioﬁ are guffi-
cient for a wide range of real-world tasks, especially since otht;r asﬁocia.ted sensing
devices can be used to ascertain the other parameters of motion. We then apply the
procedure developed for translational motion to local portions of image sequences
to process general sensor motion as if it were composed of in;iependent local envi-
ronmental translations. The resulting representation can considerably simplify the

processing of less restricted and general motion.
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The procedure for processing translational motion robustly combines the de-
termination of image displacements with the extraction of the direction of sensor
motion. We present several experiments showing its behavior in a variety of sit-
uations. We also consider various extensions to this procedure for such things as
developing it as a hierarchical computation; processing translational blur patterns;
dealing with multiple independently moving objects; and using the translational

procedure in the control of an autonomous vehicle.

Results are presented for two other restricted cases of motion: pure sensor
rotation and motion constrained to a known plane. The resulis are similar to the
translational case except that certain simple cases of planar motion are found to be

inherently ambiguous.

We then process less restricted and general sensor motion by applying the pro-
cedure for translational motion processing to local areas of images. This results in a
low level description of motion called the Environmental Direction of Motion Field
(or EDMF) which associates a direction of environmental motion with extracted
image features. This representation can greatly simplify the recovery of sensor mo-
tion parameters. We also develop the constraints associated with object rigidity in
determining the inference of sensor motion parameters, and then show how these

constraints are simplified by information in the EDMF.

We conclude with a summary of the major results of the thesis and mention
future work, chiefly in the areas of architectures for real time motion processing,

and applications to more challenging and specific domains.
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CHAPTER 1

INTRODUCTION

The importance of processing dynamic information is obvious. Change is a basic
and pervasive aspect of reality. Artificial perceptual systems which cannot deal
with such dynamic information will be severely limited. They would not be able to
determine basic causal and structural relations in the environment. They would not
be ahle to move about and directly explore the world. These fundamental concerns,
coupled with recent advances in sensor technology and attainable computing power,

have made image motion processing an active area of research.

The work in dynamic image processing can be roughly divided into two types
of techniques: those for determining the changesin a sequences of ixﬁa.ges and those
for inferring environmental information from these transformations. Much basic
work has been done on determining the displacements of distinguishable image
points over time and inferring sensor motion and environmental depth from these
displacements. A fundamental problem that has emerged in all this work is the
discrepancy. between the precision and reliability with which image displacements
can be determined and' the sensitivity of the inference procedures to moise and
resolution' errors. For example, some of the inference procedures require high order
derivatives to be extracted from the determined image displacements. Additionally,
there: are indications that the problem itself is inherently unstable and, in some
cases, ambiguous.. This has lead to an interesting state of affairs: formulations which
are often elegant but do not work in motion processing of real world sithétions, and
therefore have limited practical application.

1



The approach of this thesis has been to deal with restricted cases of motion for
which the inference of the motion parameters, image displacements, and, to some
extent, environmental depth, can be combined into a single, uniform, and mutually
constraining computation. These restricted cases of motion are sufficient for a wide
range of real-world tasks, especially since other associated sensing devices can be
used to ascertain the other parameters of motion. Finally, we apply the procedure
developed for translational motion to local portions of image sequences to process
general sensor motion as if it were composed of independent local environmental
translations. The resulting representation can considerably simplify the processing

of less restricted and general motion. A brief outline of the thesis follows.

Thesis Qutli

Chapters two and three present background information on motion processing.
In chapter two we review the general problems and previous work in image motion
processing. In chapter three we review the basic structural relations between image

displacements and sensor motion.

In chapter four we present a procedure for processing image sequences pro-
duced by translational motion of a sensor relative to a stationary environment. The
procedure robustly combines the determination of image displacements with the
extraction of the direction of sensor motion. Several experiments are performed
to show the behavior of the procedure in different situations. As a part of the

implementation we develop a simple feature extraction process.

In chapter five we consider various extensions to the translational procedure.

These include developing the procedure as a hierarchical computation to increase



its speed; processing the blur patterns produced by prolonged exposures during
translational motion; dealing with multiple independently moving objects; and using
the translational procedure in the control of an autonomous vehicle by using devices

to stabilige the sensor or directly determine the other parameters of motion.

In chapter six we consider two other restricted cases of motion: pure sensor
rotation and motion constrained to a known plane. The results are very similar to
the translational case except that certain simple cases of planar motion are found
to be inherently ambiguous.

In chapter seven we process less restricted and general sensor motion by apply-
ing the procedure for translational motion processing to local areas of images. This
results in a low level description of motion called the Environmental Direction of
Motion Field (or EDMF) which associates a direction of environmental motion with
extracted image features. This representation can greatly simplify the recovery of
sensor motion parameters. We consider different ways of computing the EDMF and
how sensor motion can be determined from it. We present a simple computation
for the case of motion constrained to an unknown plane. We also develop the con-
straints associated with object rigidity in determining the inference of sensor motijon

parameters, and then show how these constraints are simplified by information in
the EDMF.

In chapter eight we summarige the major results of the thesis and mention
future work, chiefly in the areas of architectures for real time motion processing,

and application to more challenging and specific domains.



CHAPTER 1

THE NATURE OF MOTION PROCESSING

Introduction

A general outline of motion processing is shown in figure 1. This figure indicates
a basic control loop in which the changes in a sequence of images are determined and
represented, a model is inferred from these transformations, and the model is used to
predict and constrain the processing of further and ongoing image transformations.

model
predict/ :
constrain infer
image
transformations

Figure 1. The General Structure of Motion Processing



Each of these elements — the image transformations, the inference of the model,
the model itself, and the predictions — typically correspond to several different
Processes and representations which can vary significantly with application. In
this representation, the beginning of the processing is ambiguous because of the
circulor nature of the organigation. This is an aspect of what we will refer to as the
gtart-up problem, and is concerned with whether it is possible to determine image
transformations without an initial model. Generally, there is always an initial
model which is either based upon domain specific information about the type of
image transformations that can be expected to occur, or implicit in the procedures
for determining image transformations by basing them upon general environmental

properties such as continuity of motion and environmental surfaces.

One implication of the start-up problem is that motion processing always in-
volves assumptions about the environment in which it is used. In many applications,
these assumptions are quite specific and task dependent, as in target tracking. In
others, the assumptions are more abstract and the resulting procedures have more
general application, as in the case of constrained types of continuous motion, con-
strained types of environmental objects, or image transformations. A general area
of research in motion processing has been concerned with the analysis of image
sequences produced by rigid body motions in the environment. This problem lends
itself to a theoretical development which does not become overly complex, yet also
reflects a very common occurrence in the real world. A particular image transfor-
mation which this analysis can utilize is also well known — optic flow. This may
be thought of as an almost classical problem in image processing: the inference of
environmental information from the optic flow field generated by rigid body mo-
tions. In much of what follows, the static environment is viewed as a single rigid

body and relative motion is induced by sensor motion.




Optic Flow

Optic flow is the vector field representing the changes in the positions of the
images of environmental points over time. It was introduced by the psychologist
J.J. Gibson [Gibs50, Gibs66, Gibs79] based, to some extent, on his experiences as a
bomber pilot during the Second World War. Gibson was struck with how different
patterns and extents of image displacements could specify critical environmental
information for the control of behavior, such as heading, immediacy of collisions,
and environmental layout. Gibson’s analysis has proven to be extremely suggestive
and stimulating, but incomplete, in two critical aspects. He assumed the optic flow
field was a given and did not deal with the computational difficulties in determining
it. He also did not explicitly (at least initially and never completely) analysze how
environmental information was extracted from the flow field. Both of these problems
have come to form the basis of mpch research by psychologists, psychophysicists, and
researchers in computer vision. It is this latter work, concerning the computation
of optic flow and the formation of environmental inferences from optic flow, upon

which we will focus.

There is some ambiguity in the definition of optic flow in the literature (even
with respect to the phrase iteelf, since optical flow or even optic flows are used).
Some refer to the flow field as being entirely independent of images, and instead
view it as a representation of the changes in environmental directions over time.
To others it is a basic description of image motion determined from image inten-
sity changes and not necessarily related to environmental motions. Both of these
perspectives have validity and the sense to which we are referring should be clear
from the context of whether we are dealing with computing optic flow or forming
environmental inferences from a flow field. A further source of ambiguity is that

gome people refer to the optic flow field as a continuous vector field in which the



vectors are instantaneous velocity vectors, while others refer to it as a field of dis-
crete displacement vectors. Throughout this thesis, we refer to it as a set of discrete

displacement vectors.

Computing Optic Fl

Computing optic flow involves the determination of the displacements of image
points over a sequence of images. There are several problems in this computation
involving the effects of image resolution, the types of dramatic changes in image
structure that can occur- during motion (such as occlusion), and the now well-known
stimulus matching or correspondence problem. To begin with, the notion of an en-
vironmental point corresponding to a distinguishable image point is an abstraction
which is difficult to realize computationally. An image point is actually a small im-
age area which can correspond to an appreciable surface area in the environment.
One aspect of this observation is that actual flow fields do not have an arbitrarily
high level of precision. The flow vector at a point may actually summarize the
composite activities of an area in the environment. Another implication is the
emergence or disappearance of detail as environmental surfaces are approached or
receded from. In such situations, features which are meaningful and trackable at
one environmental distance may no longer be meaningful at another distance. This
provides motivation for the hierarchical procedures for flow field computation that
we discuss below. It also reflects an important assumption applied throughout mo-
tion processing: during motion the image structures will change sufficiently slowly
to allow the changes to be determined, but not so dramatically that correspondence
becomes unrecognizable at successive instants. Often this is not a valid assumption
and reflects another basic problem with Eomputing optic flow. Highly significant
information can be obtained from particular situations at which the optic flow field




becomes non-existent or singular, and thus difficult to compute. These situations
are related to image events such things as occlusion, the motion of specularities, and
the presense of smooth extremal boundaries. Another source of confusing changes

are the wide range of general noise effects in image formation.

N

/ 7/
N

y.4

N

/
—>
\
\\
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Figure 2. The Stimulus Matching Problem

The stimulus matching or correspondence [Burt76, Huan81, Thom81, Ullm81]
problem refers to the ambiguity in determining image displacements, and is partic-
ularly problematic with nondistinctive portions of image structures or homogeneous
image areas. The difficulties are simply exemplified by the situation illustrated in
figure 2 which shows a square undergoing a diagonal displacement. The informa-
tion obtainable at a portion of one of the edges only constrains the locally observed
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edge motion to a wide range of potential displacements. The general form of the
stimulus matching problem involves the manner in which local determination of
displacements can result in a globally coherent interpretation of the changes in an

image sequence.

Techniques developed to date for computing optic flow can be grouped into
matching techniques and differential techniques. Both of these techniques have to
deal with the problems just described and are distinguished by the different assump-
tions under which they operate. Both can be expressed hierarchically (though it is
more typical for matching procedures). This allows the procedures to be expressed
uniformly across different image resolutions, and a flow field to be determined by
utilizing required comsistencies between image displacements in images at different

resolutions.

Matching Techniques

Matching techniques can be roughly distinguished by the types of image struc-
tures upon which they operate and the criteria by which matches of image structures
in successive images are determined. Image structures can be ordered by the ex-
tent and the locality of processing required in their extraction and the complexity
of the structural relations in their description. In general, the more abstract the
image structure, the more stable it becomes over a sequence of images because the
ambiguity in determining matches is reduced. For example, if a complete seman-
tic analysis of each image has been performed in a sequence taken from a sensor
moving relative {0 a house, it is easier to match at the level of extracted houses in
the successive images than a less abstract and more local feature level, such as a

vertical edge. There are fewer things to match and they cover an area of the image




10

significantly larger than their potential displacements.

Examples of image structures that have been (or could be) used in motion
analysis, organized in terms of increasing abstraction are distinctive raw image sub-
areas [Agga8lb, Barn80, Dres8l, Hann74, Levi73, Mora8l, Quam71], parameter-
ized tokens describing local image subareas [Hara82, Hara83, Lee82, Prag79), edges
[Agga8la, Burr77, Mart79)], regions [Medi83, Nage77, Nage78, Radi8l, Roac79),
structural descriptions of edges and regions [Brad8s, Jaco80], instantiated environ-
mental surfaces [Will80], and various high level gemantic interpretations [Badl7s,
Tsot80].

Procedures for determining optic flow have generally been restricted to match-
ing features whose extraction involves very little processing and are based on local
image structures and computations. This is a consequence of optic flow being viewed
as a very primitive description of image motion from which much information that is
useful for higher level processes will be derived. From this perspective, flow process-
ing should not be dependent on the processes o which its results will contribute.
Also, when more abstract descriptions are used, although the determinations of
matches becomes more viable, the determination of specific image displacement be-
comes less exact. This reflects a general problem that has been largely ignored by
researchers in motion (with some important exceptions, notably Tsotos [Teot80}):
the mechanisms by which matches at different semantic levels of image descriptors
can be combined into a coherent interpretation of an image sequence. Here, the
matches between lower level image structures could be constrained by the matches
determined at higher levels of surface or semantic description. The same question
is involved in prediction of feature displacements from a model in which the model
may consist of relatively distinct, multilevel information, and is used to constrain

the interpretation and displacements of low level, local processes and features.
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In general, most matching procedures that have been developed do not explicitly
deal with the dramatic-change and resolution problems. Due to the assumption
that most image structures will change slowly over time, if dramatic changes do
occur, they will be reflected by a break-down in the matching processes. The
basic approach to the stimulus matching problem has been to characterize global
properties of the displacement field in a manner which directs the evaluation of
image displacements. This is done in different ways. Matching structures at a
more abstract or symbolic level typically involves matching strings or graph-like
structures. There are solutions to this type of problem using dynamic programming
or heuristic search techniques to minimige some global distortion measure reflecting
the extent of graph similarity [Barr72, Chen82, Hara78, Shap82]. In another form
of match processing typically applied to less abstract features, a global property
such as smoothness or continuity of the displacement field is used to form a local
constraint on the flow field computation. This constraint leads to a local, iterative,
relaxation type procedure in which a given feature displacement must be consistent,
under the criteria of smoothness, with the displacements of its spatially neighboring
features [Barn80, Prag79]. Updating rules take the form of setting a feature’s
estimate of its correct displacement to the average of its neighbors.

Generalized Hough transform approéches to matching [Agga8lb, Ball8l,
O’Rou8l, Davi83] somewhat reverse the relation between local computations and
global field properties when compared to the relaxation-based matching approaches
just described. In the generalized Hough approaches, the properties of a displace-
ment field are parameterized and represented in an n-dimensional histogram to
which the local image measurements contribute. For example, the global structure
of the flow field can be restricted to being a particular type of transformation, such
as an affine transformation in the plane. Each local process for determining an

image displacement evaluates the consistency of its potential displacements with
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the values of the parameters describing each affine transformation (up to some level
of parametric resolution). Globally, the parameter value most consistent with all
of the potential image displacements will have the most favorable evaluation (or re-
sponse in the histogram). Once a global interpretation has been determined, it can

then be refined with increased resolution in the parameter space about the coarse

solution.

»

ifferential Technigues

Differential techniques are based on direct measurements of intensity changes
perpendicular to an image gradient in order to determine one component of the op-
tic flow at a point. These measurements are expressed as a function of the temporal
changes in image intensity and the image gradient at a point. The other componeat
is then determined by using an additional constraint derived from assumptions con-
cerning the global structure of the flow field. These generally involve smoothness
of the flow field or the type of transformations that can describe the displacement
field. In a manner similar to the matching techniques, these constraints can be de-
veloped computationally as local, iterative processes in which global consistency is
achieved via propagation similar to solutions of diffusion equations [Horn80, Glag81,
Glaz83a, Terz83]. In a few applications [Fenn79, Thoms8l], the local measurements
can also be integrated by their independent contributions to a global histogram
which expresses the parameter values of particular types of image transformations.
Differential techniques can also be used to roughly constrain the motion of bound-
aries [Marr79] without trying to derive the optic flow. These constraints can be
used to get rough qualitative motion information along closed contours, such as

expansion, image motion in a rough direction, or the occurrence of rotation.
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The key attributes of differential techniques is that they are based on very
local, simple computations that may be performed at a low level of processing,
They are also based on some unrealistic assumptions that show up when these
techniques are uniformly applied to actual image sequences. These assumptions
concern smoothness and often linearity in the image intensity gradients, limited
extents of motion, and the constancy of image brightness over time. The smoothness
assumption breaks down at surface occlusion boundaries, or wherever dramatic
image changes occur such as at reflectance boundaries. Differential techniques
also tend to produce dense fields, whose value is not clear, especially since the
interpolation is performed in a manner that may adversely affect the inference of
motion parameters. Researchers are focusing on some of these problems: Schunk
[Schu83] has tried to characterige the effects of occlusion so that the computation of
image displacements are selectively shut off in such areas. Nagel [Nage83], Hildreth
[Hild82], and Kearney [Kear82] are working with more complex image gradients and
integrating the components of information to the degree they provide unambiguous
displacement information at boundaries.

Hierarchical Process]

A basic paradigm in computer vision is the use of hierarchical representations
and processes [Burt82, Hans80, Rose83, Tani80, Uhr78]. This allows different
resolutions and scales of image events to be handled uniformly, Additionally, the
consistent agreement among hierarchically organiged processes is a basic control
strategy for a wide range of high and low level interpretation tasks. Hierarchical

processing can produce significant computational reductions, wherein results from
processing performed rapidly at lower resolutions of image information are used to
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direct and constrain more detailed and extensive processing of higher resolution
image information. Given the increase in computational requirements over static
image processing, hierarchical mechanisms are extremely important in real-time

motion processing.

The use of hierarchical processing in motion typically involves representing an
image at different filtered spatial frequencies and using the processing at lower spa-
tial frequencies to constrain the processing at higher spatial frequencies [Burt82,
Glaz83b, Grim81, Lucasl, Wong78]. The matches determined for the larger spatial
structures in an image are used to initialize the computation for the displacements
of the smaller structures. In hierarchically organized processing, the resolution
problem is handled implicitly by representing an image sequence at multiple res-
olutions simultaneously. The stimulus matching problem is dealt with by taking
advantage of the fact that matches have a tendency to be less ambiguous at lower
spatial frequencies because there are fewer gross image structures and they are large
relative to their potential displacements. However, the problems of dramatic change
associated with flow field computation affects hierarchical processing because image
structures may appear and disappear at different levels of resolution and errors pro-
duced at a lower image resolutions can propagate to the higher resolution images.
Some filtering schemes [Burt83, Glag83b] have been proposed to deal wi)th this in-
herent problem by detecting the occurrence of a failure in the matching procedure
and shutting off the initialization of image displacements in the higher resolution

images.
atio

Work in the inference of environmental information from flow fields has gen-
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erally been restricted to the case of rigid body motion or linked systems of rigid
bodies [Webb81]. There is very little general understanding in the interpretation
of non-rigid environmental motions. Often, such work is task dependent as in the
interpretation of image sequences of moving cloud formations and beating hearts
[Tsot80].

The problem of inferring environmental information from a flow field produced
by rigid body motion is often termed the shape-from-motion problem (i.e., how
to determine the shape of objects or environmental depth from a fiow field or a
sequence of flow fields); or, somewhat confusingly, the motion-from-motion problem
(i.e., how to determine the parameters of object or sensor motion from a flow field
or sequence of flow fields). Theoretically, these problems are equivalent, though
there are practical difficulties in inferring one from the other.

There have been significant milestones in formulating solutions to these prob-
lems in motion processing research. One set of results has dealt with the minimal
conditions that are necessary for determining object shape and sensor motion in
terms of the number of flow vectors acrose an image sequence [Fang83b, Lawt80,
Meir80, Roac80, Ullm79, Webb81, Yen83]. In this work, researchers derive vari-
ous sets of simultaneous nonlinear equations whose solution would constitute the
appropriate inference. Since these equations cannot be solved directly, various
optimigation procedures are required. In another set of formulations developed
prim'a.rily by Nagel [Nage81] and Prasdny [Pras81), the inference of sensor motion
parameters is expressed as a search through the rotational subspace of the total set
of rigid body motion parameters. Prazdny’s development is rather geometrical and
Nagel’s is more algebraic, but they are basi;:ally similar. In 1981, Tsai and Huang
[Tsai82], simultaneously with Longuet-Higgins [Long81], developed a closed form
solution which could be solved by direct means.
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Given these developments over the past several years, it is somewhat alarming
that none of the techniques have been successfully applied to flow fields computed
from anything like realistic image sequences. In fact, only in the recent work of
Huang and Fang [Fang83a, Fang83b] and Jerian and Jain {Jeri83| has there even
been an explicit evaluation of a procedure on such images. This work has shown the
particular difficulties familiar to motion researchers: extreme sensitivity to noise and

resolution, dependence upon the type and extent of motion, and general instability.

A possible exception to these difficulties may be a procedure recently developed
by Rieger and Lawton [Rieg83, Lawt83]. The technique is restricted to recover-
ing the parameters of sensor motion relative to a stationary environment and is
based upon the fact that the decomposition of a flow field into its rotational and
translational components can be directly obtained at image positions where a signif-
icant depth variation occurs in the environment [Long80], such as at some occlusion
boundaries. This results in a very simple analysis which does not involve solving
unstable equations. The basic practical difficulty assoéiated with this technique is
that it is dependent on the analysis of a flow field at occlusion boundaries where the
flow field tends to be most errorful. Dealing with this effect requires a computation

which may reduce the precision of the inference of the sensor motion parameters.

There are many reasons, not all of which are fully understood, why the infer-
ence of motion parameters and environmental depth has been difficult. Some of the
formulations involve image measurements, such as higher order derivatives of an
instantaneous vector velocity field which are difficult to obtain and are also quite
noise sensitive when applied to discrete image sequences [Praz80, Long80]. There
are also many cases of motion which are inherently ambiguous. One of these is dis-
cussed in chapter VI of this thesis and concerns a rather typical case of terrestrial

motion in which the rotational and translational field components are nearly impos-
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gible to separate. In recent work concerning the interpretation of images containing
multiple independently moving objects, Adiv [Adiv84] appears to have found cases
in which independently moving objects with different parameters of motion, can,
when considered together, result in a globally consistent, but incorrect, interpre-
tation. Another problem affecting shape from motion formulations is the baseline
effect which is common to stereo. The baseline effect expresses that the resolution
and accuracy of depth inferences are a decreasing function of the distance between
the sensor locations at which images are formed. For motion, where the sensor
displacements are generally small between successive instants, the environmental
inference would tend to be poor, but could be compensated by the availability of

more and more images over time.

There has been almost no stability analysis of the systems of equations for in-
ference from optic flow. Along these lines, recent work by colleagues and myself
[Stee83] has given empirical indications of the instabilities in the inference proce-
dures under certain conditions. We have been exploring the use of a highly parallel
array architecture for inferring motion parameters from flow fields. This processing
amounts to sampling and evaluating 200,000 points in the five dimensional space
of determinable rigid body motion parameters at near video rates. This roughly
shows the appearance of the error surface these system of equations may describe.
What this work indicates is that the space is very bumpy and jagged, full of local

optima, that would make solutions difficult, especially in the presence of noise.

There have been several responses to these difficulties. One approach has been
to utilize optimization procedures which are based on global evaluation of the ex-
pressions for the inference of motion parameters from flow fields instead of lacal,
iterative optimization procedures. Examples of these approaches are the work with
generalized Hough transforms [Adiv84, Ball8l] aud the procedure involving highly
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parallel architectures mentioned above [Stee83). Some researchers are beginning to
perform an explicit analysis of the stability of the different solutions [Shaw83], while
others are trying to develop qualitative inference techniques which are hoped to be
more robust [Thoms83], and still others are beginning to investigate the inference
of motion and shape from image transformations other than optic flow, such as
the analysis of contour shape changes [Davig2). Currently, much of this work is

preliminary.

Another response to these inadequacies has been to deal with restricted cases
of motion. Here too, the work has been limited in application to realistic image
sequences with principle results having been achieved by Williams [Will80] and
Dreschler and Nagel [Dres8l]. These restricted cases of motion can be of signifi-
cant practical use, since in many cases some of the parameters of motion can be
determined by other sensing devices. Additionally, general motion can be locally
interpreted, temporally and spatially, as consisting of certain restricted types of

motion.

In the research presented in this thesis, we will develop procedures for various
cases of restricted motion, and show how to use the procedures for translational
motion to locally interpret more general motion. In this regard, it is useful to sum-
marige related work in vanishing point extraction and translational motion process-
ing. The determination of the vanishing point in a static image is closely related
to determining the direction of translation. In perspective projection, parallel lines
in the environment map onto lines radiating from the vanishing point in the image.
For translational motion, the environmental motion paths correspond to the par-
allel lines in the perspective case. Techniques for extraction of a vanishing point
have been explored by Kender [Kend79], Nakatani (Naka80}, and in a more general
framework by Ballard [Ball81]. The use of the Hough transform in this work is sim-
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ilar to the global sampling of the error measure developed in chapter IV. It would
be interesting if the determination of edges could be combined with the determi-
nation of the vanishing point, in a manner similar to the concurrent determination

of image displacements and the translational axis in the work presented in chapter
Iv.

Williams [Will80] was the first to develop algorithms for interpreting natural
complex images produced by an optic sensor translating relative to environmental
objects. This work consisted of two processes: one for inferring the direction of
translation given environmental depth information and the other for inferring depth
given the direction of motion. These Pprocesses used an error measure describing the
consistency of depth information and the inferences of feature motion along image
displacement paths. His work indicated that thege two processes, for inferring depth
and the direction of motion, could be combined.

The primary weakness of Williams’ work was the hecessary restriction to planar
surfaces at one demonstrated orientation. Additionally, in the case of unknown
environmental depth and translation, the processing is quite complex — involving
segmentation, resegmentation, and coordinating the processes for inferring depth
and for inferring the direction of translation. The method we develop in chapter
IV requires no restrictions on the orientation of surfaces or shape of environmental
objects, and involves only a simple procedure for evaluating an error measure. It
also indicates that the direction of sensor motion should be determined prior to, or

concurrently with, environmental depth.



CHAPTER I

DISPLACEMENT FIELD STRUCTURE

Introduction

In this chapter we review the relations between sensor motion relative to rigid
body objects and the structure of the corresponding field of image displacements.
Basic results from kinematics [Whit44] and geometry [Coxe61] allow arbitrary rigid
body motions of the camera to be decomposed into a rotation about its focal point
followed by a translation. This permits image motions to be described as consisting
of two components: a rotational and a translational field. The rotational field con-
tains information concerning sensor orientation relative to the environment, while
the translational component contains information concerning environmental depth
and the relative displacements of the sensor and environmental objects. This de-
composition forms the basis of procedures for recovering camera motion parameters

from displacement fields [Nage81, Prag8l].

Describing Rigid Body Motion

In this section we review some basic terminology for describing image and envi-
ronmental motion, the particular coordinate systems employed, and how rigid body

motions are described in terms of sensor motion.

20
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It is necessary to have terms for describing the motion of features in an im-
age sequence and the corresponding motion of environmental points. We define an
Image Displacement Vector to be a two-dimensional vector describing the displace-
ment of an image feature from one image to the next. An Image Displacement
Field is the set of image feature displacement vectors for successive images. An
Image Displacement Sequence indicates the positions of an image feature over sev-
eral successive images. Though we are dealing with discrete image sequences, it is

often possible to describe the continuous curve along which an image feature point

is moving. This curve is called the Image Displacement Path.

Corresponding to image motions we use a set of terms for describing environmen-

tal motions. An Environmental Displacement Field is the set of three-dimensional

vectors indicating the positions of environmental points at successive instants. An
Environmental Displacement Sequence indicates the position of an environmental
point over several successive instants. An Environmental Displacement Path de-

scribes the three-dimensional curve that an environmental point is moving along

for a particular motion.

Coordinate Systems

We utilize two coordinate systems in this exposition: a fixed system based on the
environment and another based on the sensor. The fixed environmental coordinate
system is a Cartesian coordinate system. The sensor coordinate system (or camera

model) is referred to throughout this thesis and consists of a planar retina embedded
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in a three-dimensional Cartesian coordinate system (X,Y,Z), with the origin at
the focal point and the optical axis aligned with the positive Z— axis (figure 3). The
X and Y axes correspond to the gravitationally intuitive horizontal and vertical
directions, respectively. The image plane is parallel to the XY plane and located
at a distance of one focal length along the Z axis.

Pmi

Focal
Point

Image Plane

Figure 3. Camera Model.

Positions in the image plane are described using a 2-D coordinate system with
the axes A and B aligned with the X and Y axes of the camera coordinate

system, respectively. The origin of the image plane coordinate system is determined
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by the intersection of the image plane and the Z— axis. The vector P, refers to
the position of an environmental point in the sensor coordinate system and the
vector Ip,; refers to the position of the intersection of the ray of projection for
Pp,; with the image plane. The first index of these vectors ig used to specify a
particular image from a sequence of images. The second index specifies a particular
environmental point. Setting the focal length to one, the relations between Pn;,

Zmi , and positions in the image plane determined by perspective projection are:

Prii = (Zmis Ymis Zms)

Ioi = (Gmiy bniy 1) (1)
Imc' = z_"".., y_mt:’ l)
Zms Zmi

Prni = Zpilong

The position and the orientation of the sensor relative to the environmental
coordinate system at time ¢ is described by the vector P(t) and the matrix O(t),
where P(t) is the position of the origin of the sensor coordinate system at time ¢,
and O(t) describes the orientation of the sensor coordinate system by its direction
cosines. The matrix O(t) is obtained by translating the sensor coordinate system
to the origin of the environmental coordinate system and detérmining the angles
between the axes of the two coordinate systems. Denoting the coordinate axes
of the camera coordinate system as (X.,Y.,2.) and those of the environmental
coordinate system as (X,Y, Z) yields:
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cos(X, X.) cos(X,Y.) cos(X,Z.)
O(t) = | cos(Y,X.) cos(Y,Y:) cos(Y,Z.) (2)
cos(Z,X.) cos(Z,Y.) cos(Z,2.)

D ing Rigid Body Moti

There are some basic results in kinematics which allow arbitrary rigid body
motions to be expressed as consisting of a rotation about an axis positioned at an

arbitrary point followed by a translation. These are stated as

A rotation about any axis is equivalent to a rotation through the
same angle about any axis parallel to it, together with a simple
translation in a direction perpendicular to the axis. The converse
is also true, the rotation of a rigid body about any axis, preceded
or followed by a translation in a direction perpendicular to the axis,
are together equivalent to a rotation of the body about a parallel
axis (Whit44).

Thus, the orientation of a body will change the same for parallel axes of rotation
with the same extent of rotation, regardless of where they are positioned. This
implies that the axis of rotation can be positioned anywhere 8o long as it is followed
by the appropriate translation. Thus, we can canoniic;a'lly describe sensor motion as
an initial rotation about an axis positioned at the origin of the sensor coordinate
system (bringing the sensor into the same orientation atm}lcceasive instants) followed
by a translation (bringing the sensor in coincidence at the successive instants). This

will also decompose an image displacement field into a field produced solely by the
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rotation of the sensor and a field produced solely by the translation of the sensor.

Each of these fields contains different information.

More specifically, given the sensor at successive positions and orientations (P(¢),
O(1)) and (P(t+1), O(t+1)), its motion is described as an initial rotation about
the origin of the sensor coordinate system described by the matrix R such that
O(t+1) = O(t)+R, followed by a translation T with respect to the environmental
coordinate system such that P(¢t+1) = P(t) x T. Thus,

Ot) ' xOt+1)=R (3)
1 o o0 o
0 1 o0 o
=T
o o0 1 o
P(t) Pt) P(t) 1

Let us consider rotational fields that are produced by rotation about an axis
containing the origin of the sensor coordinate system. The basic property of such
fields is that the image displacements are totally a function of image position and can

yield no information concerning environmental depth. That is, given the position

of an image point at time ¢ and the sensor rotation R, its position at time ¢ + 1
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is determined.

To describe the general structure of rotational flow fields, consider the image
displacement path generated by a particular image point under sensor rotation. In
figure 4a we see an axis of rotation positioned at the origin of the coordinate system
and a ray of projection determined by some image point I,,;. The effect of the
rotation will be that the ray of projection will generate the surface of a cone. The
image displacement path for the rotation of this image point will then be determined

by the intersection of this cone with the image surface, i.e. a conic section.

il
il

&

Figure 4a. Rotational Displacement Paths. The figure on the left shows
the intersection of an image plane with the cone determined by the axis of
rotation positioned at the focal point and a given image position vector.
The figure on the right shows the resulting conic image displacement path.
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One should note that for points along the same ray of projection, the image dis-
placements under a given rotation will all be the same. Thus, there is no basis upon
which to infer environmental depth under rotational motion because the angles be-

tween rays of projection remains fixed.

Now let us consider sensor rotation analytically with the axis of rotation rep-
resented as a unit vector R = (R., Ry, R;). For any environmental point P =

(z,y,2), we can describe the cone generated by the rotation to be:

= cos(f) = }:—'R- (4)

where @ is the angle between R and P. To determine the image displacement
paths, we expand this equation with 2z set to 1 (corresponding to the location of

the image plane):

c=w’%”: | (5)
z2+yt+1 '

By squaring both sides and reorganising terms, this equation may be expressed as

an implicit function in the general form of a conic:

F(z,y) = (B2 - &) + (B ~ &) + 25(R. )

+2y(RyR,) + 2zy(R. Ry) + (R2 — ?) =0 (6)




28

The partial derivatives of this equation yield the tangents to the image displacement

path:

"_“'a(’;;!’). = 22(R? — ¢) + 2(R. R.) + 2y(R. R,) (7
"’F(:;y) 2y(R2 ~ &) + 2y(Ry R:) + 25(R. Ry)

Note that for the rotational axis aligned with the Z axis, R = (0,0,1) substitution

into equation 6 yields

1 .
z2 4+ y’ =3 1 (8)
This describes a family of circles in the image plane centered at (0,0,1) and indexed

by the particular values of ¢ in the range 0 to 1 (figure 4b). For the rotational axis
R = (0,1,0) substitution into equation 6 yields

- = - )

This describes a family of hyperbolas indexed by values of ¢ in the range 0 to 1
(figure 4c).



Figure 4b. Displacement Paths for Rotations about the (0,0,1) axis.

Figure 4c. Displacement Paths for Rotations about the (0,1,0) axis.
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Translational Field Properti

For purely translational motion the sensor orientation is fixed relative to the
environmental coordinate system and the motion is described by an axis of trans-
lation. The image displacement paths are determined by the intersection of the
translational axis with the image plane. If the translational axis intersects the
image plane on the positive half of the axis, the point of intersection is called a
Focus of Expansion (FOE) and the image motion is along straight lines radiating
from it. This corresponds to sensor motion towards visible environmental points.
If the translational axis intersects the image plane on the negative half of the axis,
the point is called a Focus of Contraction (FOC) and the image displacement paths
are along straight lines converging towards the FOC. This corresponds to camera
motion away from visible environmental points. The intersections of axes parallel
to the image plane are points at infinity and thus may be considered to be either
an FOE or FOC in opposite directions. This ambiguity is one reason we refer to
the directions of motion determined by the translational axes themselves instead of

the intersections with the image plane.

Given the direction of translation and the image displacements of a set of en-
vironmental points, the relative depths of these points can be computed by solving
the inverse perspective transform [Roge76]. Relative depth can also be simply in-
ferred from the position of a feature and the extent of its displacement relative to

an FOE or an FOC. This relation is expressed as

AD - AZ (10)
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where Z is the value of the Z component of an environmental point at time ¢ +1,
AZ is the extent of environmental displacement along the Z axis from time ¢ to
time ¢+ 1, D is the distance of the corresponding image point from the FOE or
FOC at time ¢, and AD is the displacement of the image point from time ¢ to time
t+1. Thus, the Z value of an environmental point can be recovered from image
measurements in units of AZ, or what has been termed Time-Until-Contact by
Lee [Lee76, Lee80] (figure 5a and 5b). To the degree that the sensor displacement

can be accurately monitored, absolute depth of surface points can be computed.
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Fi 5a. Relation between relative environmental depth and the ex-

tent of image displacement with respect to the FOE/C.
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Figure 5b. The FOE/C is determined by the intersection of the image
plane with the translational axis.
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The effects of composite image motions produced by sensor rotation and trans-
lation can be analyged as follows for an image feature I,,; which undergoes a
displacement D to position I,; at time n (figure 6a). The motion can be de-
scribed as an initial displacement R to a position J,,; due solely to the rotation
of the sensor, which is followed by a displacement T from J,,; to I,; along the
translational displacement path determined by the straight line containing image
points Jy,; and the FOE determined by the translational parameters.
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Figure 6a. Composite Field Structure.
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Figure 6b. Error Measure from Composite Field Structure

These structural properties will be used to develop measures describing the
consistency of a given image displacement with hypothesiged sensor rotation and
translation parameters (figure 6b). As above, for an image point In;, the rotational
parameters induce an image displacement to some position Jm;. This point and
the FOE corresponding to a particular translational axis, determine an expected
translational displacement path. The angle between this displacement path and the
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vector I; — J,n; corresponds to the discrepancy between the image displacement
and the hypothesiged values of the sensor motion parameters. We will utilize this
measure to evaluate motion parameters with respect to determined displacement
fields in chapters VI and VII. This local consistency measure has also been used in
generalized Hough transforms so that each image displacement vector can scale jts

vote against a particular set of motion parameters corresponding to the extent of

this determined angle [Stee83].



CHAPTER IV

PROCESSING TRANSLATIONAL MOTION

In this chapter we present a procedure for processing image sequences produced
by translational motion. The computation robustly combines the determination
of the translational motion parameters, image displacements, and environmental
depths of visible surfaces. The procedure consists of two basic steps: Feature
Extraction and Search, The feature extraction process finds small image areas which
may correspond to distinguishing, and therefore trackable, parts of environmental
objects. The direction of translational motion is then found by a search across
hypothesized FOE/C positions to determine a set of image displacement paths for
the extracted features which minimiges an error measure of total feature mismatch
along these displacement paths, and also yields consistent displacements for the

features.

The feature extraction process finds distinctive points which are positioned at
points of high curvature along contours determined by simple processes such as
thresholding, zero-crossing extraction and local contrast measurements. Particular
forms of the feature extraction process can lead to effective and very rapid compu-

tation on proposed image processing architectures.

The search process minimiges an error measure defined over a unit sphere, with
each point on the sphere corresponding to a different direction of sensor translation.

A given direction of translation constrains the motion of extracted image features

36
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to straight lines which radiate from or converge onto a single point in the image
plane. Thus, the error measure associates a point on the unit sphere, corresponding
to a particular translational axis, with a number describing the degree of total
feature mismatch along the displacement paths determined by the translational
axis. Experiments have shown this error measure to be smooth and with a distinct
minimum in a large neighborhood about the correct translational axis. This allows

simple search methods to be effective.

We present several experiments showing the results of applying the procedure
in various situations. The experiments indicate that it is robust and applicable to a
wide range of real world image sequences. In the next chapter, we review particular
extensions for implementing the procedure in a hierarchical computational frame-
work, dealing with independently translating objects, translational blur-streaks,

and implications for autonomous navigation.
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Extraction of Interesting Points

The feature extraction process is used to determine small areas (referred to as
image points or features) in an image that are distinct from their respective neigh-
boring areas. This distinctiveness limits the potential matches of these image areas
in suceeding images and suggests the possibility that these points may be trackable
over time. These image features may also reflect a correspondence to actual and
significant features in the environment, such as points of high curvature on object
boundaries, texture elements, surface markings, etc. However, there are some fea-
tures, termed false features, which may be selected but which result from noise,
occlusion, and light source effects and have behavior which is currently difficult to
interpret. Features can be represented either as arrays of numbers extracted as a
subimage directly from an image, or as parameterized tokens describing local image
properties. We refer to features exclusively as small arrays of data values centered

at some point in an image at some time ¢.

Following Moravec [Mora77, Mora8l], the method of feature extraction used
here is based upon finding image areas which are significantly different than their
neighboring areas. Using correlation measures bounded between 1 (for perfect
correlation) and 0, the distinctiveness of a feature is 1 minus the best correlation
value obtained when the feature is correlated with its immediately neighboring areas
(excluding correlation with itself). Good features can then be selected by finding
the local maxima in the values of the distinctiveness measure over an image. There
are several metrics available for similarity of two n x n arrays 4;; and B;;. We

have utilized the following measures:
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Normalized Correlation
(11)
Moravec Correlation [Mora77)
| 2i 205 45Bis (12)
(i 30 AisAii+ 1, 2, Bi jB: )20
Normaliged Absolute Value Difference
(13)

All of these measures have a value of 1 for a perfect match. Of these, the first
choice is the most conventional, the second is a good approximation to the first and
more efficient, and the third is the quickest to evaluate. ‘

We fﬁrther constrain the neiéhborhooda over which the features are selected
to contours determined by other processes, such as gero-crossing extraction and
thresholding, which are sensitive to edges. This yields interesting points which are
locally distinctive and exhibit high curvature along extracted contours containing
the point.
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oy traction Using Zero-Cross

The use of gero-crossings to determine gignificant image contours at different
levels of resolution has been proposed and extensively studied by Marr ef. al.
[Hild80, Marr80}. In this processing an image is convolved with Gaussian-Laplacian
masks (V2G) of different positive widths and thresholded at sero to determine
gero-crossing contours. These contours are significant since they correspond to the
points of greatest change in the convolved image. The distinctiveness measure can
be applied to points along these contours in the convolved image, with the local
maxima determining the position of potential features. This generally has the effect
of finding points of high curvature along the gero-crossing contour, although points
apparently corresponding to local occlusion vertices and weak maxima will also be
extracted.

Many weak features which are local maxima of distinctiveness can be removed
by suppressing those which are at points of low curvature along the sero-crossing
contours (a cheaper method for dealing with this is presented in the discussion of
this chapter). For features which are local distinctiveness maxima, we approximate
the curvature along the contour by the inner product of the normalized vectors
describing the relative positions of the nearest local maxima along the contour
(figure 7). These values are then thresholded between 1.0 (corresponding to high

curvature) and -1.0 (corresponding to low curvature) to reflect feature strength.
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Figure 7. Computation of curvature for low curvature suppression of
extracted features.

The images in figure 8a and figure 8b were taken from # gyroscopically stabi-
lized movie camera held by a passenger in a car traveling &own a country road in
Massachusetts [Will80]. They are 128x128 pixel images with 6 bits of resolution
in intensity and will be referred to as the roadsign images, Figure 8c shows the
gero-crossings extracted from the initial roadsign image using a V2G mask with a
positive width of 5 pixels. The distinctiveness values were computed using features
which were 5x5 pixel arrays extracted from the convolved image and centered on
pixels which were adjacent to the sero-croesing contour and of positive value. These
fe#tures were correlated, using Moravec’s norm, with their 8 immediately neighbor-
ing features. Figure 8d shows the local maxima in the distinctiveness measure
positioned with respect to the sero-crossing contour. Figure 8e shows the results of

suppressing low-curvature points using a threshold set to -0.8 radians (143 degrees).




Figure 8a. Roadsign Image 1. The upper image has the intensity values
normalized across the entire image. The lower image uses a restricted range
of intensity values to show the dark, low contrast tree texture.
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Figure 8b. Roadsign Image 2. The upper image has the intensity values
normalized across the entire image. The lower image uses a restricted range
of intensity values to show the dark, low contrast tree texture.
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‘ Figure 8e. High Curvature Points along Zero-Crossing Contour
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Use of features based on gero-crossings requires specification of the siges of the

convolution masks that are employed, and a decision whether to position extracted

feature points with respect to the unprocessed image or the convolved images. It

is uaually. beneficial to use masks of various widths for sensitivity to features at

different levels of resolution. In this case, the translational processing described

below can be applied independently to the different pairs of images formed by

convolving the original successive images’ with the different masks. - Alternatively,

a8 was done above, features can be extracted from the original, unfiltered image

at the positions where features were determined in the convolved images, though
experiencé with large ‘masks has shown ‘that this approach can position. features

significant distances from their apparent position in the original image.
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Feature Extraction Using Threshold Contours

Another simple operation to determine image contours is thresholding. The val-
ues of the threshold can be determined in a variety of ways: using fixed increments,
finding peaks and valleys in the image intensity histogram, or using techniques
gensitive to image contrast across the contours produced by a particular threshold

[Kohl81,Wesk75).

The images in figure 9a and 9b were produced from a solid state camera held
by a robot manipulator translating toward some industrial parts lying on a table.
The images are 128x128 pixel images with 6 bits of intensity resolution. These will
be referred to as the jndustrial jmages. Analysis of the image intensity histogram,
using the procedures described in [Kohl81], determined a clear break in the his-
togram at an intensity level of 10 in the image. This corresponded to separation
of the dark background and the brighter objects in the scene. Figure 9c shows the
extracted contour and<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>