FEEDBACK-DIRECTED DEVELOPMENT OF
COMPLEX SOFTWARE SYSTEMS

Jack C. Wileden
Lori A, Clarke

COINS Technical Report 84-06
April 1984

(To appear in: Proceedings of Software
Workshop, Runnymede, England, 1984

Software Development Laboratory
Department of Computer and Information Science
University of Massachusetts
Amherst, Massachusetts 01003

ABSTRACT

The phrase feedback-directed development refers to a research program

whose goal is improved approaches to the software development process. In
this paper we give an overview of that research program. We discuss
shortcomings in existing approaches and motivate the two focal points of

our research on feedback-directed development:

. appropriate, consistent sets of abstractions and

. analysis (or feedback) techniques applicable throughout the software

development process.

We also indicate how several of our ongoing projects in software technology

contribute to the feedback-directed development research program.

rage |

1. INTRODUCTION

Powerful and sophisticated software development environments are
urgently needed, The ever-increasing demand for complex software systems,
particularly those supporting concurrent or distributed processing under
real-time constraints, accentuates this need. Existing software
development support consists primarily of high-level programming languages,
such as FORTRAN, Pascal, or Ada*, and an assortment of diverse, unrelated
tools, such as conpilers and editors. Programming support environments
(PSEs), such as the Programmer's Work Bench [Ivie77) or the proposed
Minimal Ada Programming Support BEnvironment (MAPSE) [Buxt80], are a first
step toward more sophisticated support for software development activities.
But these PSEs only offer support for the program implementation phase of

software development, This must be augnented by additional tools

supporting the pre-implementation activities of requirements,

specification, and design development and the post-implementation

activities of code analysis, testing, and maintenance, before the result

can appropriately be called a software development environment (SDE).

We do not believe that simply extending the coverage of existing PSEs
by adding pre- and post-implementation languages and tools will result in
the highly integrated, powerful SDEs required for developing complex
software, This is because the standard approaches to software development,

on which existing PSEs are based, have two crucial shortcomings:

« Lack of appropriate, consistent sets of abstractions

¥Ada is a registered trademark of the U.S. Government (Ma Joint Program
Of fice)

Luge ¢

. Inadequate availability of analysis during most phases of the software

development process

We view appropriate and consistent sets of abstractions as the key to
integration in the software development process. Having appropriate sets
of abstract concepts for describing various aspects of a computational
system is of crucial importance to software developers. The lack of
suitable abstractions for such things as concurrency, real time constraints
and exception handling is no doubt due largely to their relatively recent
eémergence as important features of software systems. Unfortunately,
appropriate abstractions are also 1lacking for other, 1less recently
recognized concepts. An example is visibility control, which is
inadequately supported in many languages (e.g., FORTRAN) and inelegantly
Supported with a hodgepodge of constructs, rules and exceptions to those
rules in other languages (e.g., Ada). Even the most appropriate
abstractions will be of limited value to software developers, however,
unless they can use the same set, or closely related sets, of abstractions
for describing a software system during each phase of the development
process., Such consistent sets of abstractions are conspicuously lacking in
current approaches to software development, where at each phase of
development (e.g., Specification, design, program) a software system is
described in terms of vastly different sets of concepts, Providing
consistency among the abstractions used in describing a software system
during different phases will minimize discontinuities in the development
process. As a result, development can be a smooth, consistent progression
through successively less abstract descriptions of an evolving software
system, Moreover, appropriate and consistent abstractions will facilitate

the development and use of analysis techniques that can be uniformly

St e N

- e

o

¥
»
{4
3:.
X
3
5
&
K%
¢
§

applied during all phases of software development. T R e

Although there do exist some methods for analyzing programs, and even
a few for analyzing pre~implementation descriptions, the systematic use of
analysis to guide software development has received.little attention, To
be most beneficial, analysis techniques should be applied early in the
software development process when decisions are first being formulated and
when errors are most likely to be introduced. The use of powerful analysis
techniques early in the development process enables developers to explore
alternative approaches to structuring a complex software system. Such

exploratory development is a very attractive paradigm for the construction

of complex software, since it can increase the developer's confidence in
the quality and eventual success of the software system. To ensure that
quality is maintained, it is important that corresponding analysis tools
also be available later in the development process when coding details are

added or modifications are made.

In an effort to overcome the shortcomings in current approaches to
software development, we have been pursuing an approach that we call

feedback-directed development. Ain SDE supporting this approach would

employ consistent abstractions and provide tools supporting analysis (i.e.,

feedback about the quality of the system being produced) throughout the

software development process. The consistent abstractions would provide a

basis for thorough integration of the languages and tools constituting an
SDE. In particular, they would facilitate the application of nearly
identical analysis tools to descriptions at various levels of abstraction
and detail. By providing analysis capabilities that are available
throughout the software development process, the environmenp would support

continual reasoning about the properties of an evolving software system.

This ongoing reasoning would guide the SDE user in evaluating decisions,
exploring alternatives and smoothly progressing toward a completed software
system. In some cases, this reasoning might be performed by the
enviromrment itself. In other cases, the environment would simply augment
the reasoning abilities of its human user by providing insightful
information, But always the environment's consistent abstractions and its
omnipresent analysis capabilities would provide the basis for that
reasoning, and hence for an exploratory, feedback-directed development

process,

[, . —— ot = n e ——

2. RELATIONSHIP TO OTHER APPROACHES

Feedbuck-directed development extends and complements the two other
primary approaches to SDE integration, which we refer to as the uniform

interface toolset approach and the transformational development approach,

Uniform interface toolsets (e.g., Interlisp, Smalltalk, Programmers
Workbench ([Ivie77)}, TOOLPACK [Oste82]) attempt to achieve integration by
providing a single standard user interface to a collection of software
development tools. The interface may be a common command language or even
a graphical interface. Uniform interface toolsets may also employ uniform
interfaces among the tools themselves, i.e., common internal
representations of the information that the various tools can produce and
manipulate, While a uniform and user-friendly interface is an important
aspect of an SDE, it will only provide surface level integration. If the
tools in these toolsets are not based on consistent sets of abstractions,
shifts in perspective and discontinuities in descriptions are 1likely to
arise as development proceeds, These shifts and discontinuities force
users to perform the necessary translations, and hence they invite the

introduction of errors.

We use the term "transformational development™ to encompass a variety
of development approaches, all of which are based on the automated
transformation of specifications into executable programs, Balzer and
Cheatham [Balz81] have pursued such an approach, while similar, if less
ambitious, approaches have been dubbed "Very High Level Languages" or
"application generators", Transformational development seems very suitable
for use in developing software for limited, well-understood problem

domains, where standard data representations and processing techniques are

known to be both applicable and reasonably effidient. It is not at all
clear that transformational development is as suitable for developing novel
solutions or for producing software for novel applications, where the major
challenge 1s to discover appropriate data representations and algorithms.
The generality of the transformations that would be required to develop
reasonable software in the general case of novel applications far exceeds
the transformation repertoire that can be anticipated in the foreseeable
future, Feedback-directed development, on the other hand, exploits and
augments the creativity of human software developers. While letting the
developers themselves define the transformations to be performed, the
feedback-directed approach supports and guides them by providing feedback
(i.e., the outcome of analysis) on the results of the development steps

that they choose to make.

Page

3. TOWARD FEEDBACK-DIRECTED DEVELOPMENT

We are presently working toward the construction and evaluation of a
prototype SDE supporting the feedback-directed approach to software
development. This prototype will be based upon three promising foundations
for feedback-directed development that have emerged from our work on

software development technology. These are:

. language constructs and analysis tools supporting precise description

of modularity and interfaces within a software system [Clar83]

. the constrained expression framework for description and analysis of

behavior in concurrent/distributed systems [Avru83b]l, [Wile82]

. rigorous and systematic testing methods applied throughout the software

development process [Rich81,82]

As will be explained in more detail in the remainder of this section,
each of these represents an instance of a consistent set of abstractions.
Each also provides a suitable basis for analysis techniques and tools that
could generate the information needed for feedback-directed development.
Thus each of these areas is, in itself, an appropriate vehicle for studying
feedback-directed development. In addition, our work on each of the areas
will result in tools and techniques that will be of independent interest
and value, while the integration of all three areas will permit a more

realistic exploration and evaluation of the approach.

In addition to tools specific to the three domains enumerated above,
the prototype SDE will necessarily include traditional tools, Such as an
editor and a compiler. Indeed, one of our objectives is to explore the
role of such traditional tools in feedback-directed development, For
instance, given a set of consistent abstractions spanning the phases of
software development, one can conceive of truly smart editors, which are
not simply syntax-directed (e.g., Cornell Program Synthesizer [Teit811,
Gandalf [Habe79]) but instead can provide feedback and guidance and are
also uniformly applicable throughout the development process. Thus we see
inter-operability and tool cooperation as valuable byproducts of our

approach.

We conclude our discussion of the feedback-directed development
research program by briefly describing our work in each of the three

foundations areas enumerated above.

3.1 Modularity and Interfaces

Since Algol60, modern programming languages have primarily relied on
nesting as a means of defining modularizations and specifying the
interrelationships of entities in a software system., Nesting, however, is
both an overly restrictive and an imprecise basis for describing
modularization and entity interrelationships, since it imposes a rigid
tree-like structure that permits only limited patterns of
interrelationships. Moreover, nested software systems are notoriously
difficult to maintain, As a result, many recently introduced languages
have incorporated additional mechanisms to overcome nesting's shortcomings,

while specification langusges have generally eschewed nesting altogether,

We have been exploring an alternative approach to describing
modul arization and entity interrelationship, along with associated
techniques for analyzing these aspects of a software system's structure

(Clar83]. This approach shuns nesting and instead builds upon a carefully

selected set of existing encapsulation and import/export concepts. The

result is a mechanism capable of describing a software system's
modularization and the interrelationships among its entities more precisely
and flexibly than is possible with any existing language. Both our
subjective assessment and a collection of theorems derived within a formal
model of software system structure [Wolf83] testify to the superiority and

generality of this approach,

OQur mechanism for describing modularization and entity
interrelationship is representative of the appropriate and consistent
abstractions that are required by feedback-directed development. We
believe that it is well-suited for use at every stage in the software
development process, from specifications and design to programming and
maintenance. Moreover, the associated analysis techniques are uniformly
applicable and valuable throughout development. Thus one aspect of our
feedback-directed development research program is to explore the use of

this mechanism as a basis for feedback-directed development .

3.2 Constrained Expressions

A variety of approaches for describing concurrent/distributed systems
have been proposed, from Petri nets to temporal logic to CSP and Ada. Yet
none of these has provided a truly unifying perspective on the behavior of
concurrent or distributed systems. Each has been primarily applicable to a

limited segment of the software development process, Few have been

associated with useful analysis methods. In short, neither the appropriate
set of consistent abstractions nor the analysis methods necessary to
support feedback-directed development of concurrent/distributed software

currently exists,

The constrained expression framework that we have been developing
holds great promise as a basis for feedback-directed development of this
important class of systems. In this framework, the possible behaviors of a
concurrent/distributed system are regarded as a set of sequences of events.
Typically these events correspord to internal activities of the individual
processes in the system or to communication among those processes. A
constrained expression is a closed-form representation of this set of event
sequences [Wile821]. We have shown that a constrained expression
representation can be derived from descriptions of concurrent/distributed
systems written in a variety of other notations, such as Petri nets, CSP
and the DYMOL design language [Wile80]. Thus constrained expressions can
be used as a stand ard representation of the Dbehavior of
concurrent/distributed systems that is largely independent of the language
in which they were originally described. We have also used the constrained
expression framework as the basis for a high level, abstract specification
language supporting stepwise refinement of the description of a
concurrent/distributed system's behavior. This language has proven to be
valuable not only in developing but al so in debugging

concurrent/distributed systems [Bate83].

The use of constrained expressions for description is complemented Dby
analysis techniques based on formal manipulation of the expressions. Among
these are expression simplification and algebraic techniques for
determining whether a particular event or set of events can be realized by
the closed-form representation. The algebraic techniques are based upon a
collection of rules for iteratively generating a set of inequalities. The
generated inequalities describe the number of occurrences of particular
events at various stages in the behavior of a concurrent/distributed system
[Avru83al. The rules are based on the events in question and the
underlying semantics of the concurrent/distributed system as captured by
jts constrained expression description. Beginning with the assumption that
the particular set of events in question does occur in a behavior of the
system, the rules are applied to the constrained expression representation
of that behavior to generate inequalities. If at any stage these
inequalities are inconsistent, then there is a contradiction, showing that
the original assumption was incorrect and the postulated set of events does
not occur in any behavior of the system. Otherwise, additional
inequalities are generated until there is enough information to construct a

behavior with the desired properties.

Having applied these analysis techniques to several distributed
software design problems, we believe that they provide a method for
generating feedback that holds considerable promise. For example, this
technique easily detected a subtle error in a published solution to the

distributed mutual exclusion problem [Avru83b].

LR

:
%Z
:

Like our mechanism for modularization and entity interrelationship
description, constrained expressions offer both an appropriate, consistent
set of abstractions and also analysis techniques for generating feedback.
Thus a second aspect of our program is to explore the use of constrained

expressions as a basis for feedback-directed development .

3.3 Rigorous and Systematic Testing

while it 1is well known that testing, like all validation and
verification methods, cannot guarantee correctness, testing -remains an
important form of analysis. Applied in appropriate combinations, and with
suitable automated support, testing techniques should be able to detect a
wide class of errors or guarantee their absence. Moreover, with
appropriate modification we suspect that many of the known techniques for
testing programs can be applied to the more abstract and possibly
incomplete descriptions found in specification and design. Hence we view
testing itself as an appropriate amd consistent abstraction contributing to
the feedback-directed development approach, as well as a valuable analysis

methodology.

Over the last ten years there has been considerable research
addressing the problems of testing. This research has matured, from early
efforts predominantly focused on methods for gathering information about
programs, to more receni work that is primarily concerned with developing
techniques that actually apply this information. Moreover, there has
emerged a deeper awareness and understanding of the theoretical limitations
of the various techniques. Very little work has been done, however, on
understanding the comparative strengths and weaknesses of various testing

techniques or their potential interaction. We have recently begun to study

these issues and we anticipate that the result will be a systematic and
rigorous approach to testing that can serve as one of the foundations for

feedback-d irected development.

The application of testing methods to pre-implementation stages of the
software development process is another area that has received limited
attention to date. In our research on the Partition Analysis Method
[Rich81,Rich8], however, we have been investigating the use of information
from both the specification (or design) and the implementation to verify
consistency between the two descriptions and to astutely select test data
to exercise the important characteristics of both. The basic, technique
involves symbolically executing both a procedure's implementation amd its
specification (design). The results from these symbolic executions provide
two closed-form representations of the same procedure. Each representation
gives a decomposition of the procedure's input domain. By intersecting the
two decompositions, procedure subdamains are formed. It can be argued that
these subdomains are the largest units that can be analyzed independently
and yet are the smallest units into which a procedure can be practically
decomposed. By comparing the computations associated with each subdomain
and by evaluating the boundaries of these subdomains, error sensitive test

data is selected,

An initial evaluation of this method has shown it to be very effective
for detecting errors [Rich82]. It has several additional benefits as well.
For one, it is one of the few techniques to combine testing and
verification. Al s0, unlike typical verification methods, partition
analysis 1is applicable to a number of different pre-impl ementation
languages. It can be applied to many of the more esoteric, high-level

specification languages as well as to low-level designs, For suitable

TS et

languages, it can be applied to any two descriptions of a software system

such as a specification and design or high- and low-level design

descriptions.

Here again we have both a consistent abstraction and a class of
analysis techniques for generating feedback. Thus the third aspect of our
research program is to explore the use of rigorous and systematic testing

as a basis for feedback-directed development.

4, SUMMARY

In this paper we have described the feedback-directed development
research program, compared it to other approaches aimed at integrated
software development environments and discussed the foundations of our
current work on feedback-directed development. Construction of a prototype
SDE based on the approach, and subsequent experience with its use, are
expected to provide us with more insight regarding the potential value of

the feedback-directed approach to software development.

- v A = —— et v e o e e e —m e -

[Avru83al

[Avru83bl

{Balz81]

[Bate83]

[Buxt80]

f{Clar83]

[Habe79]

[Ivie77]

[Oste82]

[Rich81]

[Rich82]

[Teit81]

¥ RB"ERENC&

Avrunin, G,S. and Wileden, J.C., "Algebraic Techniques for the
Analysis of Concurrent Systems," Proceedings of the Sixteenth Hawaii
International Conference on Systems Sciences, Vol.1, January 1983,
pp.51-57.

Avrunin, G.S. and Wileden, J.C., "Describing and Analyzing
Distributed Software System Designs," University of Massachusetts,
Department of Computer and Information Science, Technical Repaort
83-28, August 1983, (submitted for publication).

Bal zer, R. M. and Cheatham, T.E., "Editorial: Program
Transformations," IEEE Transactions on Software Engineering, SE.7, 1,
January 1981.

Bates, P.C., Wileden, J.C., and Lesser, V.R., "A Debugging Tool for
Distributed Systems," Proceedings of the Phoenix Conference on
Computers and Communications, March 1983.

Buxton, J., "Requirements for Ada Programming Support Hnviromments,"
("Stoneman"), Department of Defense, February 1980,

Clarke, L.A., Wileden, J.C. and Wolf, A.L., "Introduction to a
Unified Treatment of Interface Control and Program Structure,"
University of Massachusetts, Department of Computer and Information
Science, Technical Report 82-32, January 1983.

Haberman, A.N, "An Overview of the Gandalf Project," Computer Science
Research Review, 1978-79, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, 1979.

Ivie, E., "The Programmer's Workbench - A Machine for Software
Development ," Comunications of the ACM, 20,10, October 1977,

pp.746-T753.

Osterweil, L.J., "TOOLPACK — A Software Tool Environment Research
Prototype ," The Fourth Israel Conference on Quality Assurance, October
1982.

Richardson, D.J. and Clarke, L.A., "A Partition Analysis Method to
Increase Program Reliability", Proceedings of the Fifth International
Conference on Software Engineering, March 1981.

Richardson, D.J., and Clarke, L.A., "On the Effectiveness of the
Partition Analysis Method ," Proceedings of the IEEE Sixth
International Computer Software and Applications Conference, MNovember
1982.

Teitelbaum, T. and Reps, T., "The Cornell Program Synthesizer: A
Syntax-Directed Programming Enviromment,” Communications of the ACM,
24,9, September 1981, pp.563-573.

(Wile80]

[(Wile82]

(Wolf83]

“Wileden = C 5" Techniques for Modelling Parallel Systems with Dynamic

Structure," Journal of Digital Systems, 4,2, Summer 1980, 177-197.

Wileden, J.C., "Constrained Expressions and the Analysis of Designs
for Dynamically-Structured Distributed Systems," Proceedings of the
International Conference on Parallel Processing, August 1982.

Wolf, A., Clarke, L.A. and Wileden, J.C., "A Formalism for Describing
and Evaluating Visibility Control Mechanisms," University of
Massachusetts, Department of Computer and Information Science,
Technical Report 83-34, October 1983.

