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Abstract

A new approach for the interpretation of optical flow fields is presented. The flow
field, which can be produced by a sensor moving through an environment with several,
independently moving, rigid objects, is allowed to be sparse, noisy and partially incorrect.
The approach is based on two main stages. In the first stage the flow field is segmented
into connected sets of flow vectors, where each set is consistent with a rigid motion of a
roughly planar surface. In the second stage sets of segments are hypothesized to be induced
by the same rigidly moving object. Each of these hypotheses is tested by searching for
3-D motion parameters which are compatible with all the segments in the corresponding
set. Once the motion parameters are recovered, the relative environmental depth can be

estimated as well. Experiments based on real and simulated data are presented.
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1. Introduction

Dynamic visual information can be produced by a sensor moving through the environ-
ment and/or by independently moving objects in the visual field. The interpretation of
such information consists of dynamic segmentation, recovering the motion parameters of
the sensor and each moving object, and structure determination. The results of this inter-
pretation can be used to control behaviour, as in robotics or navigation. They can also be
integrated, as an additional knowledge source, into an image understanding system, such
as the VISIONS sys.em [HAN78].

The most common approach for the analysis of visual motion is based on two phases:
computation of an optical flow field and interpretation of this field. In the present dis-
cussion, the term ‘optical flow field’ refers to both a ‘velocity field’, composed of vectors
describing the instantaneous velocity of image elements, and a ‘displacement field’, com-
posed of vectors representing the displacement of image elements from one frame to the

next. In the latter case we will assume small values of motion parameters.

The second phase, i.e,, the interpretation of the optical flow field, is the main concern
of this paper. A new scheme is proposed, which allows motion of the camera as well as
rigid objects in the scene. Furthermore, the flow field is allowed to be sparse, noisy and
partially incorrect. The information in only one flow field, as opposed to a time sequence
of such fields, is utilized.

Our approach is based on two main stages. In the first stage the flow field is segmented
into connected sets of flow vectors, where each set is consistent with a rigid motion of a
roughly planar surface. In the second stage sets of segments are hypothesized to be induced
by the same rigidly moving object. Each of these hypotheses is tested by searching for
3-D motion parameters which are compatible with all the segments in the corresponding
set. Once the motion parameters are recovered, the relative environmental depth can be

estimated as well.

In the next section, techniques existing in the literature for visual motion interpretation

are examined. The mathematical formulation of the model and the task is presented in



gection 3. In subsequent sections, algorithms for flow field segmentation, estimation of
motion parameters, and structure determination are developed. Preliminary experiments

based on real and simulated data are described in section 6.

2. Literature Review

In this section we review methods existing in the literature for interpreting optical flow
fields. We concentrate on techniques which assume rigid motion and basically rely on the

information contained in one flow field. Two main issues are emphasized:

a) Scene Complexity. Some researchers assume that the scene contains only one object,
or, equivalently, that the sensor is moving but the environment is stationary (e.g., [BRU81],
[LAWS2], [TSA84]). Others allow the scene to contain several independently moving
objects (e.g., [ULL79], [NEU80]).

b) Robustness. Optical flow fields produced from real images by existing techniques
are noisy and partially incorrect (see the discussion in [ULL81]). Many of the algorithms
described in the literature for interpretation of flow fields fail under such conditions. Other

algorithms are less sensitive and work reasonably well on real world images.

In the first class of techniques, discussed in this review, only one rigid object (or camera
motion) is assumed. A few researchers [ROA80, PRA80, NAGSI1a,b, FAN83a,b] present
gets of nonlinear equations with motion parameters as unknowns. Methods for solving such
equations are usually iterative and require initial guesses of the unknowns. Sensitivity to
noise is indicated by experiments reported in [ROA80, PRA80, FAN83a,b].

Longuet-Higgins [LON81) and Tsai and Huang [TSA84] develop techniques based on
solving a get of linear equations. Furthermore, conditions for the uniqueness of the solutions

are formulated. However, difficulties in the presence of noise are still reported [TSA84].

Bruss and Horn [BRUS81] employ a least squares approach which minimises some mea-
sure of the discrepancy between the measured flow and that predicted from the computed
motion parameters. In the case of general rigid motion this approach leads to a system

of nonlinear equations from which the motion parameters can be computed numerically.
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This method is computationally more complicated than the methods offered in [LON81]

and [TSA84], but seems to be more robust in the presence of noise.

Assuming a purely translational motion, all the flow vectors are oriented towards or
from a single point in the image plane. Determining this point, called the focus of expansion
(FOE), yields the direction of the translation. A few techniques, reviewed below, are based

on this observation.

Early results based on real images are reported in [WIL81]. However, only sensor
motion restricted to translation is allowed and the environment is assumed to contain only
planar surfaces at one of two given orientations. Thus, the algorithm can be based on
a search for the FOE and the distances to the surfaces in the scene. Lawton [LAWS2]
describes a robust algorithm which has been applied to real world images from several
different task domains. This algorithm requires no restrictions on the shape of the envi-
ronment, but is still restricted to translation. It is based on a global sampling of an error
measure corresponding to the potential positions of the FOE, followed by a local search to
determine the exact location of the minimum value. Results for other restricted cases of

motion are presented in [LAW84]. .

Pragzdny [PRA81] describes a method which relies on decomposition of the velocity field
into rotational and translational components. For a hypothesized rotational component,
the FOE of the corresponding translational field and a related error measure are computed.
Thus, an error function of the 3 rotation parameters is obtained and the solution can be
determined by minimiging this function. Jerian and Jain [JER83| report on difficulties

with applying a similar approach to noisy data.

Rieger and Lawton [RIE83] develop a relatively robust and simple procedure for com-
puting the motion parameters, based on the fact that the differences between optic flow
vectors near occlusion boundaries are oriented towards the FOE of the translational field.
However, the environment is assumed to contain occlusion boundaries which endow the

flow field with strong discontinuities.

A number of methods, presented in the literature, allow (at least in principle) uncon-
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strained sensor motion and independently moving objects in the environment. Ullman,
in his somewhat pioneer work [ULL79], examines small sets of adjacent vectors. If there
exists a unique rigid interpretation consistent with all the vectors in a given set, then this
interpretation is assumed to be correct and the vectors in the set are grouped together.

This approach seems to be very sensitive to noise because of its local nature.

Longuet-Higgins and Prazdny [LON80] and Waxman and Ullman [WAXS83| introduce
equations for computing the motion parameters and the local structure at a given point
in the environment from the flow field and its first and second spatial derivatives at the
corresponding point in the image. If the scene consists of several objects in relative motion,
then a separate computation can be carried out on each one. However, local estimates of
the second derivatives of the optic flow seem to be inaccurate in the presence of noise, and

no algorithm has been presented for reliably computing such derivatives.

More global approaches are proposed in [NEU80] and [BAL81b]. Neumann [NEU80)
proposes an elegant hypothesize-and-test scheme: for any rotation hypothesis, the transla-
tion component may be decomposed such that motion compatibility of many flow vectors
can be easily tested. This technique heavily relies on the assumption of-orthographic

projection.

Ballard and Kimball [BAL81b] apply the generalized Hough technique to the optical
flow field and thus extract the motion parameters. This is a global approach which is
relatively insensitive to noise. In principle, it can also be used in scenes containing inde-
pendently moving objects. However, the depth information is assumed to be known, thus

making the task much easier.

This review demonstrates typical constraints and weaknesses of algorithms reported
in the literature. No algorithm for interpretation of optical flow fields in scenes containing
several, independently moving, rigid objects, has been shown to work with noisy, real world

data, unless severe constraints are assumed or additional information is utilized.



8. The Model and the Task — A Mathematical Formulation

8.1 Basic Model and Equations

In this section we present a notation for describing the motion of a camera through
an environment containing independently moving objects. We also review the equations
describing the relation between the 3-D motion model and the corresponding optical flow,
assuming a perspective projection. The equations are developed both for velocity fields

and displacement fields.

Let (X,Y,Z) represent a cartesian coordinate system which is fixed with respect to
the camera (see figure 3.1) and let (z,y) represent a corresponding coordinate system of
a planar image. The focal length, from the nodal point O to the image, is assumed to
be known. It can be normaliged to 1, without loss of generality. Thus, the perspective

projection (z,y) on the image of a point (X,Y,Z) in the environment is:

z=X/2, y=Y/Z. . (3.1a,b)

The motion, relative to the camera, of a rigid object in the scene can be decomposed
into two components: translation I = (Tx,Ty,Tz) and rotation } = (Q1x,Qy,0z).
In the equations corresponding to velocity fields, these symbols represent instantaneous
spatial velocities, and, in the equations corresponding to displacement fields, they represent

differences in position and orientation between two time instances.

In the velocity-based scheme, if (X,Y, Z) are the instantaneous camera coordinates of

a point on the object, then the corresponding projection (z,y) on the image moves with
a velocity (a, 8), where [LON8OJ:

a=—-0xzy + Oy(1 + 2%) - Qzy + (Tx — Tzz)/2 (3.2a)

and
B=-0x(1+y%)+0Qyzy+0zz+ (Ty — Tzy)/2. (3.2b)

Notice that (a,f) can be represented as the sum

(a,8) = (ar,Br) + (ar, Br), (3.3)

5
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A

Pigure 8.1(redrawn from [LON80]): A coordinate system (X,Y,Z)
attached to the camera, and the corresponding image coordinates
(z,y) . The image position p is the perspective projection of the point
P in the environment. I = (Tx,Ty,Tz) and Q1 = (Ox,0y,02)
represent the relative translation and rotation of a given object in the

scene.

where (ag,B8r) and (ar,fr) are, respectively, the rotational and translational compo-
nents of the velocity field:

ap = -Oxzy+ Qy(1 +22) - Qzy, ar = (Tx — Tz7)/Z2, (3.4a,b)

Br=-0x(1+9%) + Qyzy+Qzz, fr=(Ty — T2y)/Z. (3.4¢,d)

In the displacement-based scheme, let (X,Y,Z) be the camera coordinates at time ¢,
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of a point on the object and let (X',Y’,2') be the corresponding coordinates at time ¢;.

b'd X
Y |=R|Y |+T, (35) =
7 z

where the rotation matrix R can be approximated, assuming small values of the rotation

parameters, by:

1 -1z Oy
R=| Qz 1 -Qx|. (3.6)
-y Ox 1

If (z,y) and (z',y’) are the image coordinates corresponding to the points (X,Y, Z) and
(X',Y', 2"), respectively, then:

z-Nzy+Qy +Tx/Z

X!

z'= 7' —Qyz+Qxy+1+Tz/2 (3.72)
and '

=X Qzz+y-0x+Tv/Z (3.7b)

2 Qyz+0xy+1+Tz/2

Now, let (a,p) be, in this case, the displacement vector (z' — z,y' —y). Then from (3.7)
we get:
o= —Nxzy + Oy(1 + zz) —Qzy+ (Tx — Tzz)/2
- 1+ Qxy-Qyz+Tz/2

(3.8a)

and
_ —O0x(1+¢%) +Qyzy + Qzz + (Ty — Tzy)/2

p 1+ 0xy—Qyz+12/2

(3.8b)

I |Tz/Z| < 1 and the field of view of the camara, i.e., the visual angle corresponding to
the whole image, is not very large, then (employing also the assumption that the rotation
parameters are small) we can approximate the displacement vector (a,f) by equations
(3.2).

To conclude: equations (3.2) hold not only for velocity fields, but also for displacement
fields, given that the rotation parameters are small and that the Z-component of the
translation is small relative to the distance of the object from the image plane. Such

assumptions are reasonable if the time interval between the two image frames is short
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enough or if the motion is slow. In the following sections we restrict ourselves to conditions

which allow us to employ equations (3.2) as the basis of our analysis.
8.2 The Task —Inputs and Outputs

The input utilized by our scheme for interpreting motion information is a flow field
described by {(a(z,y),8(z,y),W(z,y))} , where (a(z,y), B(z,y)) is the flow vector at the
(z,y) pixel in the image and W(z,y) is a corresponding weight between 0 and 1. High
reliability of the flow vector is represented by a weight close to 1 and low reliability by a
weight close to 0. The flow field can be either dense, thus defined at most of the pixels,
or sparse, thus defined only on a sparse subset of the image pixels. If the flow field is
undefined at a pixel (z,y), then W(z,y) is determined to be 0. A rough estimate of the

noise level in the flow field is assumed to be known.

The interpretation process should result in three outputs: object masks, motion pa-
rameters and depth. We want to partition the set {(z,y) : W(z,y) > 0} into disjoint sets
of pixels, where each set corresponds to a different rigid object. The pixels correspond-
ing to the stationary environment, where the optical flow is induced only by the camera

motion, should be grouped together.

The 5 recoverable motion parameters of each rigid object, relative to the camera,
should be estimated. These parameters include the rotation parameters (fix,fly,Qz)
and the direction of the translation vector defined by the unit vector U = I'/r, where r
is the length of the translation vector I'. Once the motion parameters are recovered, it is
also possible to estimate the relative depth, Z(z,y)/r, corresponding to each pixel (z,y)
where a flow vector is defined, unless r = 0 or the location of the vector is exactly in the
FOE.

4. Segmentation

In this section we develop a method for segmentation of the flow field into connected
sets of flow vectors, where each set is consistent with a rigid motion of a roughly planar

patch. A segment, satisfying this constraint, is very likely to correspond to a portion of
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only one rigid object. Thus, the data is organized into coherent units which form the basis
for further processing. Another purpose of the segmentation is exclusion of flow vectors

which are inconsistent with their neighbors, hence assumed to be incorrect.
4.1 ¥ Transformations — A Segmentation Constraint

In order to achieve a useful segmentation, we employ a few simple observations on the
structure of optical flow fields. First, we examine the flow field induced by a rigid motion
of a planar surface. Excluding the degenerate case in which the same plane contains both
the surface and the nodal point (and, therefore, the corresponding region in the image is

a straight line), the surface can be represented by the equation
ki X + koY + k3Z = 1. (4.1)

The coefficients k;, k2 and k3 can be any real numbers, except the case in which all of

them are gero. Using (3.1), we obtain:
1/Z = k1z + kay + k3. (4.2)

Substituting (4.2) in (3.2), we realize that, given a relative motion {T',{1}, the flow field

18:

@ = a; + 622 + a3y + a7z% + agzy, (4.32)
B = a4 + asz + agy + arzy + agy?, (4.3b)
where:
a1 = Qy + k3T, (4.4a)
a2 = k\Tx — k3Tz, (4.4b)
a3 = —0z + k2T, (4.4¢)
ay = —Qx + k3Ty, ' (4.4d)
as =z + k1 Ty, (4.4e)
ag = koTy — k3 Tz, (4.41)
a7 =0y — k1T (4.4g)
and



as = —Qx — k2T (4.4h)

Equations (4.3) represent what we shall call a ¥ transformation. This is a 2-D transfor-

mation of the image into itself based on the 8 parameters a,,...,a3.

We proceed now with another observation, related to arbitrary surfaces in the envi-
ronment. Given such a surface, it can be described as a function Z = Z(z,y) defined on
the image region R which corresponds to the projection of this surface. Let 2' = Z'(z,y)

be an approximation to the surface Z such that
def
|82 (z,y)| = |2(z,y) - 2'(z,y)| < Z(z,y) forany (=z,y) €R. (4.5)

¥ (ar,Br) and (of,By) are the translational components of the flow fields induced by
the same motion of the surfaces Z and Z', respectively, then

Tx—Tzz_Tx—Tzzme—Tzz (1+AZ) =ar( AZ) (4.6a)

7 - Z-AZ 7 Z 1+

ap =

and

Ty -Tzy Ty -Tzy Ty -Tzy ( AZ AZ
| - _— . —_ )

The rotational component of the flow field is independent of the structure of the envi-
ronment. Hence, given (4.5), the flow field induced by the approximating surface Z' is
very similar to the real flow in the region R. As a conclusion, if 2’ is a planar sur-
face which satisfies equation (4.5), then the flow field in R can be approximated by a ¥

transformation.

In a real world environment the surface can be usually approximated by a piecewise
planar surface, containing only a few planar patches, where the distance between the real
surface and the approximating one is small relative to the distance from the sensor to
the surface. If this is the case, then the flow field can be approximated, reasonably well,
by a piecewise ¥ transformation. This suggests that a useful segmentation of the flow
field can be based on finding connected sets of flow vectors, where each set approximately

satisfies the same ¥ transformation. Thus, each segment is consistent with a rigid motion
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of a roughly planar surface and can be assumed to be induced by the relative motion of
only one rigid object. In the next section we describe an algorithm for achieving such a

segmentation.
4.2 Segmentation Algorithm

The generalized Hough transform technique [BAL81a] is a useful tool for grouping
together flow vectors which satisfy the same 2-D parameterized transformation [ADIS3).
In this technique, the set of relevant transformations is represented by a discrete multi-
dimensional parameter space, where each dimension corresponds to one of the transforma-
tion parameters. Each point in this space uniquely characteriges a transformation, defined
by the corresponding parameter values. A flow vector ‘votes’ for each point with an asso-
ciated transformation consistent with this vector. The points receiving the most votes are

likely to represent transformations corresponding to large segments in the flow field.

As a global technique, the Hough transform is relatively insensitive to noise and par-
tially incorrect or occluded data. However, high dimensionality of the parameter space
requires large amounts of memory and computation time. In our case, the segmentation
constraint is based on the 8-parameter W transformations (equations (4.3)). The Hough
technique can, in principle, be employed, but the computational cost required for such a

number of parameters is very high. Therefore, a three-stage algorithm is proposed.

The first stage is based on grouping together adjacent flow vectors into components

consistent with affine transformations. The affine transformations, represented by
a = a; + a2z + agy . (4.7a)

and
P = a4+ a5z + agy, (4.7b)

are sub-class of the ¥ transformations, parameteriged by only 6 parameters. Further-
more, these parameters can be partitioned into two disjoint sets of 3 parameters each,
corresponding to equations (4.7a) and (4.7b). Thus, the grouping problem in the first
stage can be basically solved by applying the Hough technique to 3-dimensional parameter

spaces, as will be shown in sub-section 4.2.1.
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In the second stage, components which are consistent with the same ¥ transformation
are merged into segments. Given a set of adjacent components, optimal parameters are
computed, using the least-squares technique. Related error measures, associated with each
component in the set, can be then obtained. If these error values are not high (in a sense

defined in sub-section 4.2.2), then the components are merged.

Sometimes over-fragmentation may occur in the first stage of the segmentation, that
is, a segment is partitioned into a large number of small components, as demonstrated
in experiment 1 in section 6.1 (see figure 6.1b). In order to reduce the computational
cost of the first and second segmentation stages, the grouping of vectors belonging to
small connected sets may be postponed, in such a case, to the third stage. In this stage,
flow vectors which are not contained in any of the segments are merged into neighboring
segments, if they are consistent with the corresponding ¥ transformations. If, after the
third stage, some of these small sets are still not merged into the existing segments, then
the first and second stages of the segmentation may be repeated, focused only on these
gets, thus possibly creating new segments. In the following sub-sections the three stages
of the segmentation are more fully described, but, for the sake of brevity, many details are

still suppressed.
4.2.1 First Stage — Grouping Based on Affine Transformations
4.2.1.1 A Modified Version of the Generalised Hough Technique

The grouping of flow vectors into components consistent with affine transformations is
based on a modification of the generalised Hough technique. The affine transformations
can be represented by a 6-dimensional parameter space where each dimension corresponds
to one of the parameters a,,...,a¢ in equations (4.7). For computational reasons the
parameter space should contain only a finite number of points. Therefore, minimal and
maximal values are determined for each parameter and the corresponding interval is quan-

tized. The parameter space is the cartesian product of the obtained sets.

A flow vector (a(z,y),8(z,y)) votes for a transformation (a,...,as), if it approxi-
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mately satisfies the constraint equations (4.7), that is, if

s% 624 62<e, (4.8a)

where

5, =|a—a; — a2z — asy| (4.8b)

and

6y = |P — a4 —asz — agyl. (4.8¢)

Note that ¢ is a function of the resolution in the parameter space and the noise level in
the flow field, but it is never less than a given threshold, typically one pixel. In this case,
the amount of support is determined by the function

V (a1, 82,03, 84,85,06,%,y) = 1 — 0.755 /¢ (4.9)

which allows the support to range from 1 down to 0.25 for those flow vectors at the limit
of the acceptable error range. The total amount of support, given to each transformation

(a1,...,a8), is the weighted sum

S(ay, a2, as, ay, 65, aa) = EW(-‘B, y)V(al, a2, as, a4, a5, 84, T, Y)s (4'10)
z,Y

where W(z,y) is the weight of the flow vector in the pixel (z,y).

Suppose now that we want to find the affine transformation, among those represented
in the parameter space, which is maximally supported by a given set of flow vectors.
Basically, we have to compute the support, according to equation (4.10), given to any of
those transformations. A serious computational problem may arise if the number of points
in the parameter space is very high. If, for example, the minimal and maximal possible
values of the parameter a; are —64 pixels and +64 pixels, respectively, and the desired
accuracy is 0.25 pixel, then 512 samples are apparently needed for this parameter. If an
equal number of samples is also required for the other parameters, then the parameter
space should contain 512% s 16 x 10'® points. In such a case, a straightforward Hough

technique is computationally impractical.

13
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This problem is alleviated by using two techniques. First, a multi-resolution scheme
in the parameter space is employed. The Hough technique is iteratively used, where
in each iteration the parameter space i3 quantized around the values estimated in the
previous iteration, using a finer resolution. Thus, utilizing a limited memory sige, accurate
parameter values can still be found. Other methods for achieving this goal are presented
in [ORO81, SLOS81|.

The second technique is based on decomposition of the parameter set into two disjoint
subsets, {ai,a2,a3} and {aq,as5,a6}. The Hough technique is separately applied to the
corresponding 3-dimensional parameter spaces, using the relevant constraint, (4.7a) or
(4.7b). Sets of highly supported parameter triples, A, = {(a1;,62;,83;) :4=1,...,N}
and Ag = {(a4;,as,a6;) :§ = 1,...,N}, are thus found, where N was experimentally
determined to be 10. As a result, a set of N2 hypothesiged affine transformations,

Ayp=Aa X Ag = { (a1, a2, aa,-,a4,»,as,-,ae,') :¢=1,...,N; 7=1,...,N}, (4.11)

is obtained. The support function can be then directly applied to the set 4,5, thus de-
termining the maximally supported transformation T in this set. T'* is not necessarily
the maximally supported transformation in the 6-dimensional parameter space. However,
large components in the flow field, corresponding to maxima points in the 6-dimensional
space, can be expected to produce maxima points also in each of the 3-dimensional pa-
rameter spaces. Therefore T is, at least, a near optimal transformation, as can also be
concluded from the experimental results. The decomposition technique is employed in each

iteration of the multi-resolution scheme; together they create a very efficient algorithm.

4.2.1.2 Implementation of a Multipass Approach

. -

The components which we try to locate are connected sets of flow vectors which support
the same affine transformation. The algorithm for obtaining this goal is based on a mul-
tipass Hough approach, where a basic cycle of operations is repeatedly executed [FEN79,
ADI83]. The input to each cycle includes masks of the components which were already
detected during the previous cycles and a mask of those vectors which were excluded from

furtter ccusideration. The cycle is composed of the following steps:
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1) Consider the set of pixels which are assigned a positive weight, do not belong to
any of the previously found components and were not excluded from further consideration.
Find in this set a connected subset E with maximal sum of weights. If this sum is below a
given threshold L, which is related to the noise level in the flow field, then stop searching
for new components and start the merging stage. Sometimes over-fragmentation occurs,
i.e., a segment is partitioned into a large number of small components . In order to prevent
an excessive number of cycles in such a case, a new threshold, higher than L, is determined
and the process is stopped if the sum of weights is below this threshold. The grouping of
vectors in small sets is thus postponed to the third stage.

2) Partition the set E into a given number (typically 64) of square windows, such that
the sum of weights in each window is roughly the same. Then, from each window, select
the flow vector with maximal weight. The Hough technique will be applied only to these

vectors, and not to the whole set E, in order to reduce the computation time.

3) Use the modified Hough technique, described in section 4.2.1.1, to find the affine
transformation which receives the maximal support from the flow vectors selected in the

previous step.

affine transformation. If the sum of weights corrsponding to F' is below the threshold L,
then exclude the set E' from further consideration and start a new cycle. Otherwise, find
in F a connected subset G with maximal sum of weights. Then, if this sum exceeds L,
add G to the list of components; otherwise, just exclude G from further consideration

(to prevent an infinite loop).
4.2.2 Second Stage — Merging of Components

Components, created in the first stage of the segmentation, are atomic units which, if
consistent with the same ¥ transformation, should be merged together to create a segment.
Two main steps can be observed in the merging process. In the first step an optimal ¥

transformation is estimated for each component, employing the least squares technique. If
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the component contains n flow vectors, then the error function to be minimiged is

E(a1,...,a8) = ZW:’ [(a.- — 81 — azz; — agy; — a7z} — agz;y;)’

=1

+(B; — a4 — asz; — agy; — arz;y; — asy?)z], (4.12)

where, for each i between 1 and n, (a;,8;) = (a(z;, %), B(z;, ¥;)) is a flow vector and
W; is the corresponding weight. Taking partial derivatives with respect to ay,...,as
and equating to 0, a set of linear equations is obtained. Their solution, a},...,a§, is the
optimal ¥ transformation. Substituting this solution in (4.12) and using the normalization

equation

n

o= J E(a3,...,a3)/ Y Wi, (4.13)
=1

an error value, corresponding to the component, is obtained. o is an estimate of the

standard deviation of the actual flow values from those predicted by the optimal ¥ trans-

formation.

In the second step ¥ transformations, corresponding to merged sets of adjacent com-
ponents, are computed. Based on related error values, associated with each component
in such a set, it is decided whether to merge the components. In order to formulate the
conditions for a merging decision, some notations are used. First, S denotes a set of
adjacent components and ¥g is the corresponding optimal ¥ transformation. For each
component C; in S, o; is the error value found in the first step of the merging process,
o!; is the error value obtained by substituting the coefficients of ¥s in (4.13), and p; is
the ratio between the sum of vector weights in C; and the total sum of weights in the set
S.

The ratios {a‘}/a,—} are a major factor in the merging decision. If these ratios are only
slightly higher than 1, then a merging decision seems to be justified. Note that a; is never
less than o;, because the optimal ¥ transformation corresponding to the component C;
can be adjusted to the local surface and noise associated with C;. If, however, p; is
close to 1, then we expect a'; to be very close to 0;, especially when a merging decision is

justified. Hence, the allowed level of 0;/o; will be defined to be a monotonically decreasing
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function of p;:
La(pj) =7 — (1’1 - l)pj, (4.14)

where 7, is a given threshold (typically r; s 1.5). Thus, Ls(p;) ranges from values close

to 1 for components with relatively large weight, up to almost 7, for small components.

Sometimes, however, o; can not be computed because the linear equations derived
from (4.12) are linearly dependent. In addition, if the component C; is small, then o;
may be unreliable as a basis for evaluation of o'; values. Therefore, an absolute threshold

Ly(p;) of allowed values of o’ is also employed. Ly(p;) is given by

Li(p;) = 13 — (13 — m2)p;, (4.15)

where m and 73 are pre-determined thresholds related to the expected noise level in the
flow field and 73 > . Thus Ly(p;) ranges from r for very large components up to 73
for small components. The reason for this dependency on p; is related to the effect of
statistical averaging of the noise. In large objects, such averaging is likely to take place and
thus ™ represents the estimated standard deviation of the noise. The threshold 73, on the
other hand, represents some reasonable upper bound of the noise level. If, for example, the
most significant noise is induced by using flow values rounded to integers and, therefore,
the noise is uniformly distributed between —0.5 pixels and +0.5 pixels, then m will be
taken to be the corresponding standrad deviation, that is, approximately 0.3 pixels and
73 will be 0.5 pixels. To conclude, a merging decision is accepted if and only if, for each

component Cj in §, 0}/0; < La(p;) or o) < Li(pj), i.e.,

0; < max{Ls(p;)o;, Ls(p;)}- (4.16)

The algorithm, for finding sets of components to be merged, starts with detection of
the component with the maximal sum of vector weights. Then, merging of this component
with its neighbors is sequentially tested, in the order of their associated sums of weights.
If one of these merging trials is successful, then merging of additional components with the
already merged pair is examined. In general, given a set of already merged components,

neighboring components are tested as candidates for adjoining this set. This process
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continues until all the candidates for merging are examined. Then, the process starts
again, considering only the components which are not yet assigned to any of the already

created segments. Evantually, all the components are contained in one of the segments.
4.2.83 Third Stage

The purpose of the third stage of the segmentation is examination of flow vectors which
were assigned positive weights and were not grouped into any of the components in the first
stage of the segmentation, and thus do not belong to any of the segments. Such vectors,
called 0-vectors, which are neighbors of one of the segments, are tested for consistency
with the ¥ transformation corresponding to this segment and, if consistent, are merged
into it. Then, O-vectors, neighbors of the just segmented vectors, are examined in their
turn. This process is iteratively executed until no new vector is merged into one of the

segments.

It is possible that after the third stage, connected sets of O-vectors, which were not
excluded from further consideration in the first segmentation stage, are still not contained
in any of the existing segments. In such a case, the first and the second stages of the
segmentation are executed again, focused only on these sets, thus possibly creating new

segments.

5. Forming Object Hypotheses and
Recovering 3-D Motion and Structure

In the first stage of the interpretation process, described in the preceding section, the
flow field is segmented into connected sets of flow vectors, where each set is consistent
with a rigid motion of a roughly planar surface. Such a segment is assumed to correspond
to a portion of only one rigid object. The next task is to detect sets of segments which
are consistent with the same 3-D motion parameters. Such a set can be hypothesized,
employing the rigidity assumption [ULL79], to be induced by one rigidly moving object
(or by the camera motion). In sub-section 5.1 we describe an algorithm for computing the

motion parameters of any set of flow vectors generated by a rigid motion. In section 5.2
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we combine this algorithm with the segmentation results to form object hypotheses and
estimate the corresponding 3-D motion and structure. Again, for the sake of brevity, many

details are suppressed.
5.1 Estimating Motion Parameters and Depth Information of a Rigid Object
6.1.1 Optimisation Constraint

Given a set of flow vectors, assumed to be induced by a rigidly moving object, we
want to find the 3-D motion parameters which are maximally consistent with this data.
Following [BRU81), we employ the least-squares approach because of its relative robustness

in the presence of noise. Based on (3.2), the error function to be minimized is

n
ZW;[(Q.' +Qxziy; — By (1 + 23) + Qzy; — (Tx ~ th)/z.')2
i=1
+(ﬂ.' + 0x(1 + 97) — Qv ziy; — Vz2; — (Ty - Tzy)/ Z.') 2], (5.1)
where T = (Tx, Ty, Tz) and Q = (ix, Ny, {1z) are the translation and rotation vectors,
respectively, and, for each § between1 and n, (e, B;) is the flow vector computed at the
pixel (z;,y;), W; is its weight and Z; is the spatial depth of the corresponding point in
the environment. The task is to determine L, 2 and {Z;} which minimizge this function.
Using the decomposition of the flow field into its rotational and translational components,
denoted by (ag,Br) and (ar,Br) (see equations (3.4)), the error function can be more

concisely represented by

3 Willos — agi — azel? + (6 — i — s (5.2)

=1

As can be easily seen, it is actually impossible to determine the absolute values of
(Tx,Ty,Tz) and {(Z; : s = 1,...,n}. However, if the length, denoted by r, of the
translation vector is non-zero, then it is possible to estimate the direction of the 3-D

translation, represented by the unit vector

(UX: Uy, UZ) = (TX: Ty, TZ)/': - (5'3)
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and the relative depth values, represented by

Z;=r/2, i=1,...,n. (5.4)
Introducing the abbreviations

ap =Ux -Uzz=ar/Z (5.5a)
and

Bu = Uy —Uzy = pr/2, (5.5b)
(5.2) can be rewritten as

n e -
W [(ai — ap; — ap;Z;)? + (Bi — Bri — ﬂv.'z.')z] . (5.6)

s=1
Thus, the task can be reformulated as finding the values of (Q1x,8y,0z), (Ux,Uy,Uz)

and {Z;:¢=1,...,n} which minimige this expression. In addition, the depth constraints
Z;>0, i=1,...,n, o (8.7)

should be satisfied. Note that this error measure is different from the one employed in
[BRUB1] where the contribution of each flow vector is multiplied by ap? + 8y2.

For any given i, 1 < i < n, we can find the optimal value of Z;, as a function of
the motion parameters, by examining the first derivative of (5.6) with respect to Z;. This

derivative is given by

2W; [-(ai — ag;)ag; — (B; — Pr:)Bu; + (ap? + Po? )2.'] . (5.8)

Settin; ig_équal to 0 yields
Z; = ((c‘i — ap;)ag; + (6 — ﬂm)ﬂu;) /(ag? + Bo?), (5.9)

unless ap? + Bp? = 0, in which case Z; can be assigned any non-negative value. If
the expression in (5.9) is negative, then the corresponding depth constraint in (5.7) is

unsatisfied. In such a case, to minimise the error function (5.6), Z; should be set to 0,
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since the derivative (5.8) is non-negative for non-negative values of Z; and, therefore, the
error function is monotonically non-decreasing for these values. To summarige, the optimal

value of Z; is given by:
Z;= [((a.' - ag;)ag; + (B; — ﬂR.')ﬁm)/ (ag? + ﬁu?)] Y, (5.10)

Substituting (5.10), for any 1 < < n, into (5.6) and expanding the resulting expression

yields the following representation of the error, as a function of the motion parameters:

E(Q;Q) = ZWiEt" (5.113)
=1
where
- . = (B — . ]2
E; = M%F&M if (a5 — ari)eg; + (B; — Br:)Pu: > 0;
(o — ap;)? + (B; — Br;)? otherwise. 65.11)

A normaliged version of this error function, defined by

- :
o(U,0) = \ E,0)/ Y wi,  (512)
=1

will be also utilized. o is an estimate of the standard deviation of the measured flow values
from those predicted by the motion parameters and the corresponding depth values.

Note that the expression (5.11) for the error function was obtained by assuming non-
gero translation. In the case of a purely rotational motion, the appropriate error function

to be minimized is:

Eo(@) = Y_Wi((e - ag? + (5: — Ba)?). (513)

i=1

Hf the minimal value of this function is close to the minimal value of the function (5.11),

then the motion is, possibly, purely rotational.

The task of finding the rotation parameters which minimige the function Er(f2) can
be easily accomplished by solving a set of three linear equations [BRUS1] and will not
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be considered further in this paper. Thus, in the next section, we concentrate on the
much more difficult task of finding values of U and §§ which minimige the error function
E(U,Q) (or, equivalently, the function o(U,(3)), where U can be any unit vector and 02

is unconstrained.
5.1.2 Algorithm

The algorithm for recovering the motion parameters employs an error measure, derived
from (5.12), corresponding to possible directions of the translation vector. A minimum

value of this function is determined, using a multi-resolution sampling scheme.

Let us start the derivation of this error measure with the observation that if the
depth constraints (5.7) are ignored, then, for any hypothesized direction of translation,
the optimal rotation parameters can be easily extracted by solving a set of three linear
equations. To see that, notice that the error function (5.11) can be reduced in this case to
the function

E'U,9)= Z":Wi[((a.' — agi)Poi — (Bi - ﬂm)am) Y (ap? + ﬂv?)] . (5.14)

i=1

Differentiating E'(U,{l) with respect to the rotation parameters and setting the deriva-
tives equal to O yields three linear equations with the rotation parameters as unknowns.

Thus, ignoring the depth constraints (5.7), the search space can be limited to the unit
sphere {U:|U|=1}.

Moreover, changing the sign of any unit vector U has no effect on the value of E'(U, f2)
since it only affects the sign of ap and Sp. Therefore, the search space can be further

restricted to the hemisphere
HS={U:|Ul=1 and Uz >0}. (5.15)

The preferred sign of U can be then determined, as proposed in [BRU81|, as the one
which gives Z; > 0 for most indices . Still, we wish to incorporate these constraints or,

equivalently, the equations (5.11b) in a more rigorous way. Hence, for each U in HS, we
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define the error measure

o1(U) = ip o(BU,0), (5.16)

where B can have the values +1 or -—1. The goal is to find a vector U in HS which
minimiges the function o;. The associated values of B and {} are, respectively, the
determined sign of the translation vector and the estimated rotation parameters. The
functit;ﬁ ;n is, however, difficult to compute. Therefore, in the proposed algorithm we
compute an approximation to o; which is experimentally shown to be very accurate. A

few main steps can be distinguished in the procedure for computing this approximation:

1) Given a vector U in HS, estimate the optimal rotation vector {}* by minimiging
E'(U,Q) with respect to £1, and compute the corresponding normaliged error measure
o'(U,0°). This error value is a lower bound of o1(U) since it minimiges the error function
o(U, ), with respect to {} and the sign of U, without considering the depth constraints
(5.7).

2) Compute o(U,") and o(—-U,0"). Determining the minimum of these two error
values yields the preferred sign, denoted by u, of U. Using the notation U* = ulU,
o(U*,0°) is an upper bound of o;(U), because it gives the actual error measure for some
values of B and 3 in equation (5.16).

3) Compute an approximation to o1(U) by averaging its lower and upper bounds:

&(U) = (¢'(U,0°) +o(U*,0%)) /2. (5.17)

The relative deviation of &;(U) from o;(U) is bounded by

(U(Q.a Q.) - UI(Q) Q.)) / (Z&I(Q)) . (5'18)
In the experiments, this value was found to be very small, typically much less than 0.01.

The search for an optimal vectorin HS consists of a sampling (similar to [LAW82]) of
the error measure &;. A multi-resolution scheme is employed, where in the first iteration
the set HS is coarsly sampled and, in each additional iteration, only the neighborhood

of the vector giving a minimum value in the previous iteration is sampled, using a finer
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resolution. Note that solutions near the boundary of HS require a vector I’ to be defined
as a ‘neighbor’ of a vector U if either U’ or —U’ is close to I . Another way to obtain the
same effect while using the normal definition of a neighborhood is to extend the domain
of definition of the function &; to the whole unit sphere, employing exactly the same
definition used for the domain HS . In this case, &,(—U) = 8,(U) for each unit vector
U, thus, computationally, it makes no difference which domain of definition is used.

The final solution of U, and the corresponding sign x and the rotation parameters
f1* , defined in the procedure for computing &;, are the determined motion parameters.
Substituting these parameters in equations (5.10), the relative depth, corresponding to

each flow vector, can be estimated as well.

We should mention that sometimes the error function &; is very close to its minimal
value in a large portion of the search space (see figure 6.2¢). Hence, in the presence of noise,
it may be impossible to obtain reasonably accurate estimates of the motion parameters.
Two complementary approaches may be taken in order to deal with this ambiguity. First,
constraints on the motion parameters and the environmental depth, rather than values,
can be still recovered, using, for example, the coefficients of the related ¥ transformations
(see equations (4.4)). Second, possible values of the motion parameters can be represented
by a probabilistic distribution function. Such a function can be defined, for example, on
the set HS, using the computed values of &, . Investigation of situations which may lead

to this Ailr‘lbiguity is under way.
5.2 Forming Object Hypotheses

Segments of the flow field, which are consistent with the same motion parameters,
can be hypothesiged, using the rigidity assumption [ULL79], to be induced by one rigidly
moving object (or by the camera motion). The process for detecting such sets of segments
is similar to the second stage of the segmentation process, where components are merged
into segments. Optimal motion parameters and a related error measure M; are computed
for each segment S EG; , using the algorithm described in the previous section. In addition,
given any set of segments, the algorithm is applied to this set and the corresponding motion

parameters are computed. Then, for each segment SEG; in the set, an error measure M!
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is obtained by substituting these parameters and the related flow data in equation (5.17).
Based on the error values {M;} and {M}, consistency of the set with rigid motion is

determined, employing a decision procedure similar to the one described in section 4.2.2.

Actually, each segment is sampled, using the method in step (2) of the multipass
Hough technique (section 4.2.1.2), and only the selected vectors are used for forming
object hypotheses and computing the corresponding motion parameters. This sampling
procedure considerably reduces the computation time. Notice that, because each segment
is sampled, all the distinct surfaces and independently moving objects, even the small ones,

are appropriately represented, thus preventing the suppression of valuable data.

In addition to the ambiguity described in the previous section, another ambiguity may
exist in the decomposition of the environment into independently moving objects. For
example, two independently moving objects induce, in some cases, a flow field which can
be interpreted as resulting from one rigidly moving object. In order to deal with this
ambiguity, one may have to find a set of possible decompositions, not only one. Analysis

of this ambiguity is also under way.

6. Experiments

In this section we present four experiments which demonstrate our proposed scheme for
the interpretation of optical flow fields. The first two experiments are based on simulated
data, and the last two are based on real data. In all the experiments, values to appear
in translation vectors and surface equations are given in focal units, whereas rotation
parameters are given in radians and flow vectors are given in pixel units. Actually, the flow
values in the experiments based on simulated data are rounded to integers, thus inducing
noise uniformly distributed between —1/2 and +1/2 pixels. The methods employed for
computing the real data in experiments 3 and 4 also produce flow values given in integer
units, hence the noise level in these experiments should be at least as high as in experiments
1 and 2 (actually it is higher). The image, in all the experiments, contains 128 x 128 pixels.
The field of view of the camera is 45° in the experiments with simulated data and 30° in

the experiments with real data.



6.1 Experiment 1

The first experiment simulates a translatory motion of the camera, represented by the
vectors T = (0.,0.02,1.) and 5 = (0.,0.,0.). The environment consists of two distinct
surfaces: a plane described by the equation Z = 50Y <+ 100 and an ellipsoid represented
by (X—-2)2+[(Y —2)/4)2+(Z-5) = 1. A flow vector is computed for each pixel,
unless the corresponding ray of light does not intersect any of the surfaces, in which case
the related weight is assumed to be 0 (otherwise it is 1). A sample of the flow field is
shown in figure 6.1a.

The results of the three stages of the segmentation, shown in figures 6.1b, 6.1c and 6.1d,
demonstrate the role and importance of each of these stages. The two segments, found
in this process, were determined to be consistent with the same rigid motion. The error
function &, (equation 5.17) was computed using 64 vectors from each segment. Employing

a spherical coordinate system (r,$,0), where

X = rsin(¢) cos(9), (6.1a)

Y = rsin(¢)sin(8) (6.1b)
and

Z = rcos(¢), T (6.1¢c)

the domain of definition of &;, that is, the hemisphere {U : |U| =1, Uz > 0}, can be
represented by the set

{(4,6):0< ¢ <90°,0° < 0 <360°}. (6.2)

This representation is utilized for displaying the function &, in figure 6.1e, where (¢, 8) are
used as polar coordinates. Employing the sampling procedure for minimiging &), the mo-
tion parameters were determined, after two iterations, to be U = (0.0017, —0.0204, —0.9998)
and { = (—0.0004, —0.0003, —0.0004) . Note that, assuming a stationary environment, the
camera motion is given by —U/ and —f}. These results are in a good agreement with the
correct values. Substituting the computed values in equation (5.10), the ‘reciprocal depth’

map, that is, the function r/Z shown in figure 6.1, was obtained.
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6.2 Experiment 2

In the second experiment, the camera motion is composed of both translation and
rotation, described by T, = (0.5,0.5,1.) and R = (0.02,-0.02,0.05). The environment
contains an independently moving sphere, defined by (X —9)2 + (Y —9)2 +(Z —30) = 4.
An object coordinate system is defined, which is parallel to the camera coordinate system
but its origin is in the sphere center (9,9,30). The motion of the object, in this coordinate
gystem, is represented by T = (0.5,—0.5,0.) and Q5 = (0.,0.,—0.2). The stationary
environment is composed of two surfaces: a plane described by Z = X +0.5Y +50 and an
ellipsoid described by [(X + 3)/2J2 + [(Y +1)/5]> + [(Z — 20)/2]> = 1. A 32 x 32 sample

of the flow field corresponding to this scene is shown in figure 6.2a.

The segments found in the experiment are shown in figure 6.2b. The two segments
associated with the stationary environment were determined to be consistent with the
same rigid motion, while no rigid motion compatible with the third segment was also
found to be consistent with one of the other segments. Thus, the decomposition of the
flow field into sets corresponding to independently moving objects could be uniquely (and
correctly) determined. The error function &; corresponding to the stationary environ-
ment is displayed in figure 6.2c. The associated motion parameters of the camera were
determined to be —U = (0.3897,0.4017,0.8287) (the corresponding actual values were
U, = (0.4082,0.4082,0.8164) ) and —{2 = (0.0204, —0.0196,0.0404). The related depth
map is represented by the function r/Z in figure 6.2d.

The error function corresponding to the independently moving object is shown in figure
6.2e. This function is very close to its minimal value in a large portion of the search space,

thus, demonstrating the ambiguity discussed in section 5.1.2.

6.3 Experiment 3

The third experiment, taken from [RIE83], is based on real data, shown in figures 6.3a
and 6.3b. In this experiment the camera was translated roughly ir the direction of the
Z-axis, between two textured cylinders, towards a textured plane parallel to the image

plane, and then rotated about its Y-axis a few degrees. Figure 6.3c shows the flow vectors
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determined for a set of interesting points extracted from the image; for more details on
how the flow field was extracted see [RIE83]. The weight assigned to each vector is 1, since

no reliability measure was computed.

The results of the segmentation process are shown in figure 6.3d. The three seg-
ments found in this process are compatible with the same camera motion. Figure 6.3¢
displays the corresponding error function &;. Assuming stationary environment, the re-
‘covered motion parameters of the camera, —U = (-0.0079, 0.0181,0.9998j and -} =
(—0.0018,0.0203, —0.0006) , are consistent with the specifications of the experiment. The
estimated values of r/Z, shown in figure 6.3f, have a large variation in the central part of
the image, whereas the actual values are approximately constant in this area. These errors
are caused by the presence of noise in the flow values near the focus of expansion and are
unavoidable in such circumstances. Note that this experiment demonstrates the ability of

our scheme to interpret sparse flow fields.

6.4 Experiment 4

Figures 6.4a and 6.4b are images taken from a camera translated in the direction of its
X-axis. The scene mainly contains a coffee can in the front and a plant in the background.
The flow field, shown in figure 6.4c, was computed using a modified version of the algorithm
proposed in [GLA83]. The new version, as well as a reliability measure assigned to each
flow vector, was developed by Anandan [ANA84]. Based on this reliability measure, a

weight plane, shown in figure 6.4d, was computed.

The four segments in figure 6.4e were determined to be compatible with the same mo-
tion parameters. The corresponding error function is shown in figure 6.4f. The optimal mo-
tion parameters of the camera, obtained by minimising this function, are - = (1.,0.,0.)
and —f} = (0.0000,0.0019,0.0001) . These results are very close to the correct ones. Figure

6.4g shows the corresponding ‘reciprocal depth’ map, namely, r/Z.
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7. Summary

We have presented a new approach for the interpretation of optical flow fields which
are induced by motion of the camera as well as motion of several rigid objects in the en-
vironment. The interpretation goals of decomposing the flow field into sets corresponding
to independently moving objects, recovery of motion parameters, and estimation of rela-
tive depth of environmental surfaces were shown to be feasible. An algorithm based on
our approach, was demonstrated to work with sparse, noisy and partially incorrect data,
derived from both artificial and real images.

An hierarchical structure, based on four levels of organigation in the flow field, has
been employed. In the interpretation process units from each level are combined into
larger units in the next level based on their consistency with appropriate parameter val-
ues. Thus, flow vectors, consistent with an affine transformation, are combined into one
component; then, components that are compatible with the same ¥ transformation are
merged into a segment; and, finally, sets of segments which satisfy the same 3-D motion
parameters are hypothesised to correspond to one rigid object. The techniques for com-
puting the parameter values in each level has been based, whenever possible, on solving
linear equations derived from the least-squares criterion. Otherwise, sampling techniques
combined with multi-resolution search schemes, have been employed. Combining all these

techniques together, an effective and efficient algorithm has been developed.

In some situations, however, there exists an inherent ambiguity in the interpretation
of noisy flow fields, as was briefly discussed and demonstrated in sections § and 6. In our
future work we will characterige such situations and propose appropriate modifications
of the interpretation goals, based on the ideas already mentioned in section 5. These
modifications will be basically aimed at issues of representation of information which can
be extracted even in ambiguous cases. Integration of such information over a time sequence

of flow fields may, eventually, resolve the ambiguity and result in a unique interpretation.
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Pigure 6.1: Experiment 1.

Figure 6.2: Experiment 2.

Figure 6.3: Experiment 3.

Pigure 6.4: Experiment 4.

* Figure 3.1 appears in page 6.
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Pigure 6.1a: A sample of the flow field.
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Pigure 6.1b: Components determined in the first step of the segmentation. Each com-
ponent is represented by a specific pattern. The small areas with the densest pattern
correspond to vectors which are not contained in any of the components. The irregular

shapes of the components were caused by the round-off error.



Pigure 6.1c: Segments obtained by merging components consistent with the same ¥

transformation.




Pigure 6.1d: Final segm
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Figure 6.1e: The error function &;, shown upside-down, defined on the hemisphere
{U:|U|l=1,Uz >0}. The spherical coordinates (¢,0), employed in equation (6.2) for
representing this hemisphere, are used here as polar coordinates.
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Figure 6.1f: The function r/Z, where r is the length of the translation vector and Z is

the environmental depth. The length of each bar represents the relative value of r/Z at
the image pixel corresponding to the attached dot.
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Pigure 6.2a: A 32 x 32 sample of the flow field.
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Figure 6.2¢: The error functi?n &, , shown upside-down, corresponding to the stationary

environment.
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Pigure 6.2d: The depth function r/Z corresponding to the stationary environment. The
round-off error has a strong effect, especially in the upper right corner, near the focus of

expansion.



Pigure 6.2e: The error function &;, shown upside-down, correepondiﬂg to the moving

object.



[

8343
p22s

st

7
FoEo

FPigure 6.8a: The first intensity image.

L



SR : ,&m!l

E 3

Y

brdaani

image.

The second intensity i

Pigure 6.3b



IR /!
N N A L N AR A
A oy
| ! \\\\
SRRLANURY /
| VA
SRR L B R A
:_ l \\\\\\ ! 7
_ (o ;o /
_ _ _\ \\\ /
L b fele
/ I,/ /
1 4
|| | t L7,y
l { / /
vt 11 /
\ PR /7 \\\
\ / 7 -
‘ - - H\\.

A
1

Figure 6.3c: The flow field produced in [RIE83].
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Figure 6.3d: Final segmentation. Again, each segment is represented by a distinct
pattern and the points with the densest pattern correspond to flow vectors which are not

contained in any of the segments.
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Figure 6.3e: The error function &; shown upside-down.
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Figure 6.3f: The estimated depth function r/Z.
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Pigure 6.4a: The first intensity image.



Pigure 6.4b: The second intensity image.
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Figure 6.4c: A 32 x 32 sample of the computed flow field.
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The weight plane. High values are represented by bright gray levels.

Figure 6.4d
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Figure 6.4f: The error function & shown upside-down. Note the two peaks which

actually correspond to the same translation, because &, is invariant to sign change in the

translation vector.
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Figure 8.4g: The estimated depth function r/Z.
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