74-20

A >;O€,‘¢[5€ 5 ‘/‘j

Applications of Symbolic Evaluation*

Lori A. Clarke
Debra J. Richardson

University of Massachusetts

Symbolic evaluation is a program analysis method that
represents a program’s computations and domain by
symbolic expressions. In this paper a general functionat
model of a program is first presented. Then, three related
methods of symbolic evaluation, which create this func-
tionat description from a program, are described: path-de-
pendent symbolic evaluation provides a representation of
a specified path; dynamic symbolic evaluation, which is
more reslirictive but less costly than path-dependent sym-
bolic evaluation, is a data-dependent method; and global
symbolic evaluation, which is the most general yet most
costly method, captures the functional behavior of an en-
tire program when successful. All threa methods have
been implemented in experimental systems. Some of the
major implementation concems, which include eftectively
representing loops, determining path feasibility, dealing
with compound data structures, and handling routine in-
vocations, are explained. The remainder of the paper sur-
veys ihe range of applications to which symbalic evalua-
tion techniques are being applied. The current and
potential role of symbolic evaluation in verification, test-
ing. debugging, optimization, and software dovelopment
is explored.

1. INTRODUCTION

The ever increasing demand for larger and more com-
plex programs has created a need for automated sup-
port environments to assist in the software development
process. The primary components of such an environ-
ment will include validation tools to detect errors and
determine consistency, as well as development tools 10
assist in design, construction, and optimization. The use
of such tools will reduce the development costs and im-

*This work was supported by the National Science Foundation
under grants NSFMCS 81-04202 and 8303320

dddress correspondence 10 Professor Lori Clurke, C omputer
and information Science Department, University of Massachusetts,
Amherr, AM.4 01003

The Juurnal of Syatems and Suftware S, 15-)4 (1983)
4 Hisevier Science Publshing Co . Inc , 1988

prove the reliability of the resulting program. Several
of the tools presently being developed employ a method,
called symbolic evaluation, that creates a symbolic rep-
resentation of the functional behavior of a program.
This paper describes symbolic evaluation and surveys
many of the current applications of this method.

Symbolic evaluation is a program analysis technique
that derives an algebraic representation, over the input
values, of the computations and their applicable do-
main. Thus symbolic evaluation describes the relation-
ship between the input data and the resulting values,
whereas normal execution computes numeric values but
loses information about the way in which these numeric
values were derived. There are three basic methods of
symbolic evaluation: path-dependent symbolic evalua-
tion describes data dependencies for a specified path;
dynamic symbolic evaluation produces a trace of the
data dependencies for particular input data; global
symbolic evaluation represents the data dependencies
for all paths in a program. When further analyzed, the
algebraic representations produced by symbolic evalu-
ation provide the basis for a wide range of applications,
including verification, testing, debugging, program op-
timization, and program development.

Formal verification techniques have typically ap-
plied symbolic cvaluation techniques to develop verif-
cation conditions. (Formal verification has been exten-
sively described in the literature and is not discussed
further in this paper.) There are a number of less com-
prehensive verification techniques that have used sym-
bolic evaluation to centify the correctness of selected
program properties. In addition, some current work is
being directed at developing methods that integrate
testing and formal verification. based upon: symbolic
cvaluation. ’

For the most pan, current testing research is di-
rected at cither the problem of determining the paths,
the particular sequences of statements that must be
tested. or the problem of selecting revealing test data

15
0104-1212,24/8) 30

16

for the selected paths. For the path selection problem,
techniques such as program coverage, data fluw testing,
and perturbation testing have been proposed. For the
test data sclection problem, there has been recent re-
scarch on devcloping systematic test data sclection
techniques that can cither climinate certain classes of
crrors or provide a quantifiable ¢rror bound. Many of
these path selection and test data selection techniques
base their analysis on the information provided by sym-
bolic evaluation. Morcover, if 1esting reveals an error,
debupging techniques that are based on symbolic eval-
uation can be used to search for the cause of the crror.

Symbolic cvaluation also provides information that
is usclul in program optimization and, if applied early
in the software development process, in program devel-
opment. It is thus a tool that can be employed through-
out the software development lifecycle and made wide
usc of within an automated programming environment.

The next section of this paper introduces the basic
concepls of symbolic evaluation as well as some termi-
nology. The three methods of symbolic evaluation are
then described. Examples of the three methods are
given 10 demonstrate their corresponding strengths and
weaknesses. The third section discusses implementation
considerations related to all threc methods, while the
fourth section describes some of the applications of
symbolic evaluation.

2. GENERAL METHODS

This section presents some concepts fundamental to
symbolic evaluation. Some terminology is introduced
and general descriptions of cach of the three methods
are provided. Initially, these descriptions are restricted
1o single routines and (o routines whase input and out-
put are done only via parameters. These restrictions are
made merely to simplify the presentation. The modifi-
cations necessary to eliminate these restrictions are ad-
dressed later.

2.1 Basic Concepts

A routine R can be viewed as a function that maps cle-
ments in a domain X into clements in a range Z. An
clement in X is a vector x with specific input values, x
= (X,. Xx - . - « Xy). and corresponds to a single point in
the M-dimensional input space X. Likewise, R(x) in Z
is a vector z with specific output values, z = (2.
P JSN 2.). and corresponds to a single point in the N-
dimensional output space Z. A routine’s variables,
which store input, intermediate and output values, are
represented by a vectory = (yi. ¥x -+« Yw)

Program analysis methods typically represent a rou-
tine by a direcied graph. called a vontrol flow graph

L. A. Clarke and D. J. Richardson

that describes the possible flow of control through the
routinc. The nodes in the graph. {1, 2, .. ., q}, represent
cxecutable statements. Figure 1 presents RECTAN-
GLE. a routine that is used below to illustrate symbolic
cvaluation; note that the statements in RECTANGLE
are annotated with node numbers. An edge is specified
by an ordcred pair of nodes. (1. j) that indicates that a
transfer of control exists from node i to node j. Associ-
ated with cach wransfer of controt are conditions under
which such a transfer occurs. The branch predicate that
governs traversal of the edge (i. j) is denoted by bp(i,
j). For a sequential transfer of control, the branch pred-
icate has the constant value true and thus nced not be
considered. For a binary condition at node i that trans-
fers control to either node j or k. the branch predicate
for edge (i, j) is the complement of the branch predicate
for the edge (i, k)—thus,

bp(i. j) = not (bp(ik)).

In RECTANGLE for example, node 1 precedes nodes
2and 3 and :

bp(1.2) = (H > B — A),
bp(1.3) = (H <B — A)

Note that each IF statement. nested or otherwise, forms
a pair of complementary branch predicates. Some con-
ditional statements, such as the FORTRAN computed
GO TO or the Pascal and Ada CASE statements, may
have more than two successor nodes, and each branch
predicate must be represented appropriately. To facili-
tate analysis, the control flow graph has a single entry
point, the start node s, and a single exit point, the final
node . Without loss of gencrality, a null node can be
added to a graph for the start node, and likewise for the
final node, if necessary, to accomplish this single-cntry,
single-exit form. Figure 2 shows the control flow graph
for RECTANGLE.

A subpath in 2 control flow graph is a sequence of

Figure 1. Procedure RECTANGLE

procoduse RECTANGLE (AJX: s sl B in wal sage -LALE
F: is wrey [02) of seak AREA: et veak; ERROR: ent bookess) b
— RECTANGLE sppwatimstcs the smn wndce the quadcatic oquetion
— FAl + AIRX ¢ FRPX=2 bom X=A ® X8 ia acscmcam of B.
XY: wak;
s begie

R N AV ~ -

[]
1

[R
&
=
"
[J

;
:
A

Symbolic Evaluation

X H>p-A

T EXROR = trem

—————

* X ~X e+ H

4
Y = QFFINKFRjeX 043
¥ AREA = AREA ¢+ Y

-
1

Figure 2. Control flow graph for RECTANGLE

stalements, (J, J,,1h ... J). where forall ki < k <
L, J, is a node in the control fiow graph such that there
exisis edge (J,, J..,). A partial path is a subpath that
begins with the start node and is denoted by P, where
Py = (s 3.) ..., L). Hence, for any partial path
Pj‘ withu > 1. P,. = (P).-.- J.). where P,. = (S). A
paih is a pantial path that ends with the final node and
is denoted by P, thus P, = 3. J....0.D A
routine R is composed of a set of paths (P, P.. ..., P,
| 1 = R < oo} there may be an infinite number of
paths due 1o program loops. The routine RECTAN-
GLE cuntains a loop whose itesation count is dependent
on unbounded input valuess there are, therefore, an in-
finite number of paths through RECTANGLE.

There is no guarantee that a sequence of statements
representing a path is executable; a path may be
non¢tecutable due to contradictory conditions govern-
ing the transfers of contrad along the path. Path
(s.1.3.4.5,6.10.) in RECTANGLE is an example of a
nonexevutable path, while s1.3.4.5,6,7.8.9.6.10.1) is
an executable path. The coatnd fow graph is a repre-
sentation of all possible paths, both executable and
ronexecutable, through the awresponding routine.

The path domain D[P,] & the set of all x € X for
which the path P, could be evevuted. The path domain
of a nonevecutable path, therefore, is empty. Execution
of path P, performs a patk cumypuration C {P,) that pro-
vides R{\) = zin Z. For each evecutable path, the path
domain and the path compuetation define the funclion
of the path. Since the exevutable paths of a routine di-

17

vide the domain X into disjoint subdomains, the func-
tion of a routine R is composed of the sct of functions
of all exccutable paths in R.

Symbolic evaluation provides symbolic representa-
tions for the path domains and path computations of a
routinc. For any path, these symbolic representations
can be developed incrementally as the statements on a
path arc interpreted. To create this representation,
symbolic cvaluation assigns symbolic names for the
input values and cvaluates a path by interpreting the
statements on the path in terms of these symbolic
names. During symbolic evaluation, the values of all
variables arc maintaincd as algebraic expressions in
terms of the symbolic names. At any point in the eval-
uation of path P, somc partial path P, = (s, J,,
Jx ..., J,) has been cvaluated. The symbolic values of
the variables after evaluation of that partial path are
referred 10 as 1he path values and denoted PV(P,). The
PV (the panial path will not be referenced when un-
I’ICCCSS:)I')') ‘5 a veclor (“yl)- 5()':)' L) 5()'-:))‘ whem
s(y,) denotes the current symbolic value of variable y,.
After interpretation of the entire path P,, the path com-
putation C[P,] is rcpresenied by the components of
PV[P,] that corresponds to the output parameters. The
symbolic representation of the path domain can also be
formed incrementally by maintaining a representation
of the domain of input values for the partial path that
has been interpreted so far. This is done by interpreting
the branch predicates for the conditional statements on
a path. Thus, cach such branch predicate is represented
by constraints in terms of the symbolic names for the
input value. The conjunction of these constraints is
called the parh condition and is denoted PCIP,].
PC[P,] = s(bp(s. J,)) and s(bp(J,. J,)) and ... and
s(tbp(J,_,. J)). where s(bp(Jo Joy) | = m < 4, do
notes the symoblic value of the branch predicate bp(J,..
J....) when evaluated over the values of the program
variables preceding traversal of the edge (J,., J.,,)—
that is, over PV[P,). The path domain is represented
by the path condition after interpretation of the entire
path PC[P,]. For nonexecutable paths, the PC is incon-
sistent, thus no input values exist that could cause ex-
ccution of the path.

The next three subscctions demonstrate how this
technique can be employed to derive the symbolic rep-
resentations of the path computation and path domain
in the contexi of path-dependent symbeolic cvaluation,
dynamic symbolic evaluation, and global symbolic eval
uation. The methods differ primarily in their techniques
for sclccting the paths to be analyzed. With path-de-
pendent symbolic evaluation, each path to be analyzed
is chosen by the user or sclected by heuristics cmployed
by the system. Dy namic symbolic evaluation is a data-
dependent method that analyzes a path while it is ac-

tually being exccuted for specific input data. Rather
than analyze a routine on a path-by-path basis, global
symbolic cvaluation altempts to create a closed-form
expression that represents all paths,

2.2 Path-Dependent Symbolic Evaluation

Path-dependent symbolic cvaluation analyzes distinct
paths. In genaeral, path-dependent symbolic evaluation
1s attempled on only a subsel of the paths in a routine
since a routinc containing a loop may have an cflec-
tively infinite number of paths. The description of path-
dependent symbolic evaluation that follows is indepen-
dent of the method of path sclection; it is assumed that
path selection information is provided externally. This
scction provides an overview of the way path-dependent
symbolic evaluation systems develop the symbolic rep-
resentation of a given path.

Several path-dependent symbolic evaluation systems
have been described {4,10,36,39.42,48,53,65). These
systems employ ecither of two cvaluation techniques:
forward expansion or backward substitution. The for-
ward expansion technique [4,10,42] begins at the start
node and develops the symolic representations as each
statement on a path is interpreted. The backward sub-
stitution technique [39,36] begins with the final node
and works toward the start node. While both techniques
produce equivalent results, backward substitution re-
quires additional processing when further analysis, such
as determining path condition consistency, is desired.
Thus, forward expansion is the technique outlined
below. The path-dependent symbolic evaluation of the
feasible path (s,1,3,4,5,6,7,89,6,10) is described
below, and Figure 3 shows the expressions that are
generated.

Forward expansion begins at the start node, where
the path condition is initialized 10 the value true and
the path values are set to their initial values: the input
parameters are assigned symbolic names, variables that
are initialized before execution are assigned their cor-
responding constant value, and all other variables are
assigned the undefined value *?". Thus, before symbol-
ically evaluating a path in RECTANGLE, the vari-
ables would be set to the initial values specified for node
s in Figure 3, where variable names are written in upper
case and symbolic names in lower case.

After initializing the path valucs and path condition,
cach statcment is interpreted, as it is encountered on
the path, by substituting the current symbolic value of
a variable wherever that variable is referenced. Thus,
when an assignment statement, such as y, 1= y, » y,,
1s interpreted. the algebraic expression s(ys) * s(y,) is
generated and provides the new symbolic value for y,,
updating the corresponding clement in PV, For the as-
signment statement al node § in RECTANGLE, for

L. A. Clarke and D. J. Richardson

oode: Interpretad sndgnmenty o hreach prodicate
'+ A~-a
Be-bd
Hey
P=1
AREA = 7
ERROR = ?
X =-?
Y7
PC = tree
| PC~tucsad nct (b >0 ~ 8)
~(s—-b+d %00
3 ERROR « folm
4 X =a
S AREA = (0} + fii}s « @}e=d
= 0] « »=qi} « 20mefT2)
6§ PC=(sa -0+ x0Dand(s +duh)
~(s-de+hxoD
7T X®a+h
8 Y = fi0] + flij(atd) + f2)(aeb)ud
= 0] aefi] + Mi)b ¢ s=2e(2) +» I0e2Pa ¢ (IPoed

9 AREA = (10] + avfll] ¢ 20me2] + 00} + o=f])]
+ fli ¢ amdef]2] ¢ 20me[2lb ¢ (2bee2
© 2040] + 20mefll) + 20wel2) + G1p4
¢ ae2ef(2] ¢ 20veof(2)d ¢ LIpivea
6§ PC-(a-b+a=x00)andnn(e +d ¢+hxb
=(a~5+bhx00)aod (s ~b ¢+ 204 >00

X AREA = QO-[0) + 20mefll) + 20we(D] + fi}a
+ ace2o([2] 4 20mef(Aoh ¢ QAhoe2) ¢ b
= 2001 + 20meflibh + 20mellZMh + Pt
+ smdeQIMh + 20maef2bbend ¢ M2pbend

D (a-5+0x00sd(s -0 +204 >00

C ERROR = fabw
AREA = 20076 + 20mef{iMh + 20we@IMh ¢+ fi}bend
+ ee2e[Ipb + 20wefijhend ¢ GTpbend

Figure 3. Path-dependent symbolic evaluation of path in
RECTANGLE.

example, the current symbolic values of X and F after
interpretation of statements (s,1,3,4) are substituted
into the expression on the right-hand side, resulting in

AREA = f[0] + aef{1] + 2.0 ® ae f[2).

If AREA is subsequently referenced on the path, then
this new value would be substituted for AREA. For a
conditional statement, the branch predicate corre-
sponding to the sclected path is interpreted. When in-
terpreting a branch predicate, such as bp(i, j) = (y, >
¥i). the conditional expression (s{y,) > s(y)) is gen-
crated and provides a symbolic value for the branch
predicate s(bp(i. j)). which is conjoined to the evolving
PC. When interpreting node 1 in RECTANGLE, the
branch predicate representing the condition to go from
node 1 10 node 3 is the complement of the condition at
node L. This evaluated branch predicate is first simpli-
fied and then conjoined 10 the previously generated path
condition, resulting in the path condition

trueand mot th > b — a) = (a —~ b + h <0.0).

Symbolic Evaluation

1t is possible that the new PC is inconsistent, which im-
pites that the path is nonexecutable. Methods for deter-
mining PC consistency are discussed in Section 3.1.

In. RECTANGLE, the output paramcters are
ERROR and AREA, and thus the path computation is
represented by

(sCERRORY), s(AREA)).

For path.(s,1.3.4,5,6,7.8,9.10.6.10.N in RECTAN-
GLE. the path domain is represented by

s(bp(1.3)) snd s(bp(6.7)) and s(bp(6.10)).

The path domain and path computation resulting
from path-dependent symbolic evaluation of path
(5.1.3.4.5.6.7.8.9.6,10.f) are shown in Figure 3.

The paths to be evaluated by path-dcpendent sym-
bolic evaluation can be either chosen by the use or se-
lected automatically by a component of the sysiem.
Most path-dependent symbolic evaluation systcms sup-
port an interactive path selection facility that allows the
user 1o “walk through™ a program, statement by state-
ment. Such capabilities have been described for DIS-
SECT [36) and ATTEST ([10,71). This feature is use-
ful for debugging since the evolution of the PC and PV
can be observed. More cxtensive program coverage can
be expedited by an automated path selection facility for
choosing a set of paths based on some coverage crite-
rion. Several coverage criteria are discussed in Section
4.2.

2.3 Dynamic Symbolic Evaluation

Dynamic symbolic evaluation is one of the features
often provided by dynamic testing systems [1,24,63]).
Using test data to determine the path, the dynamic
symbolic evaluation method monitors the execution of
the path and provides symbolic representations of the
results created by executing the path.

19

The dynamic symbolic evaluation component of dy-
namic testing systems provides a symbolic representa-
tion of the computation of each executed path. In ad-
dition 1o the uscr-supplied test data, symbolic names
arc associaled with the input values. Throughout the
execution, dynamic symbolic evaluation maintains the
symbolic values of all variables as well as their usual
compuled values. As with path-dependent symbolic
cvaluation, the symbolic values are represented as al-
gebraic expressions in terms of the symbolic names.
Since dynamic testing systems monitor the normal ex-
ccution process, the forward expansion technique de-
scribed for path-dependent symbolic evaluation is a
natural approach for creating these symbolic values,

After exccuting path P,, the symbolic value for each
Outpul parameter is shown, providing the path compu-
tation. With dynamic symbolic evaluation, these
expressions are gencrally displayed as trees instead of
as algebraic expressions, although both or either form
could be displayed. The computation trees that would
be created for the specified input values to RECTAN-
GLE are shown in Figure 4. Note that these input val-
ues cause path (s,1,3,4,5,6,7,8,9.6,10,0) to be executed.

Most dynamic symbolic evaluation systems are only
concerned with providing the path computation. Since
the input values are known, each interpreted branch
predicate evaluates to the constant value true (or a run-
time error is encountered). The PC is, therefore, equal
10 true and thus it is not necessary to check for PC con-
sistency. Since the PC is often useful in validating the
path, dymamic symbolic evaluation systems may also
provide the symbolic representation of the path domain.

2.4 Globat! Symbolic Evaluation

The goal of global symbolic evaluation [8.52) is the
derivation of a global representation of a routine—a
symbolic representation of the domain and computation

Symbelkk and Actasl laget Valem AREA =
A=s=20
B=b=1p
Heb=10
F=t=0012010 *nn

Output Puremetcrs

Figure 4. Dynamic symbolic evaluation of path in
RECTANGLE.

/ -
P >““\

e0n M40

A //K': /X AN

fl l{")\!ﬂﬂ R I.S:m m,:{ﬁm mnm/\q

20

for all paths, rather than along one specific path. Since
there may be an effectively infinite number of execut-
able paths in a routinc, using path-dependent symbolic
evaluation is unrcasonable. Instead, global symbolic
cvaluation atlempls to replace cach loop with a closed
form expression that captures the effect of that loop
[8.12]. Using this technique, a path may then represent
a class of paths in which each member differs from the
others only by its number of loop iterations.

Global symbalic cvaluation, like path-dependent
symbolic evaluation, uses the control flow graph of a
routine to guide cvaluation. Loops are evaluated first by
a loop analysis technique. For each loop, this technique
aticmpts to creale a loop expression, which is a closed
form representation encompassing the effects of the
loop. An analyzed loop can be replaced by the resulting
loop expression, which can thercaflter be evaluated as a
single node. Thus, inner loops must be analyzed before
outer loops. After all loops have been analyzed, the con-
trol flow graph has been reduced to a directed acyclic
graph. In this section, an cfficient interpretive technique
for acyclic programs is described and then loop analy-
sis, which also uses this interpretive technique, is
explained.

For acyclic programs, or programs that have been
made acyclic by using loop analysis, a more efficient in-
terpretive technique than the forward expansion tech-
nique described above can be used. This technique in-
terprets each node only once but in the context of all its
predecessors and then saves this interpreted represen-
1ation to be used when interpreting any of its successor
nodes. To do this, a node cannot be interpreted until all
its predecessors have been interpreted. Thus, global
symbolic evaluation starts by interpreting the start
node, then all nodes that have only the start node as a
predecessor, and so on. For a node in the control Row
graph, a case expression' is maintained, where cach
subcase represents onc partial path reaching that node.
Each subcase is composed of the PC for a partial path,
as well as the symbolic values of all the variables com-
puted along that partial path.

To see how a node is interpreted, consider a partic-
ular node m, with predecessor nodes , j, which
have been previously interpreted. Control may reach m
via any of the edges (i, m), . .., (j. m), and the transfer
from a predecessor node occurs under the conditions of
the corresponding branch predicate. Thus, when m is
interpreted. each subcase of the casc expression of cach
predccessor node must be considered independently.
For predecessor node i, for instince, the branch predi-

"In the casve expreston used by global vymbolic evaluation, s
subvase vonsnts ol an arbiraes taulcan evpression fullowed by the
aumbobe votues avagned 10 1he vanables

L. A. Clarke and D. J. Richardson

cate bp{i. m) is evaluated in the context of cach subcase
for nodc i, and for a particular subcase, bp(i, m) is in-
terpreted in terms of the symbolic values of the vari-
ables for this subcase. This interpreted branch predi-
cale is then conjoined 1o the PC for the partial path
awsoctated with this subcase of predecessor node i. As
with path-dependent symbolic evaluation, it is desirable
to check the consistency of the PC. If the PC s found
to be inconsistent, this subcase is discarded, otherwise,
the statement at node m must be interpreled in the con-
text of this subcase for node i. After all the subcases for
node i have been considered, this same procedure is fol-
lowed for all other predecessor nodes of m. Finally, the
subcase expressions derived from evaluating all the sub-
cases of the predecessor nodes are combined and the
resulting casc expression represents all cxecutable par-
tial paths reaching node m. To illustrate this technique,
Figure 5 shows a fragment of a control flow graph, gives
a hypothetical case expression for node 11 in the graph,
and shows the resulting case expressions for nodes 13,
14, and 15.

In global symbolic evaluation, a global representa-
tion of all paths is only possible when the loop analysis
technique can create closed-form representations for all
loops in the program. This loop analysis technique at-
tempts to represent cach loop by a loop expression,
which describes the effects of that loop. For each ana-
lyzed loop, a conditional expression is crcated repre-
senting the final iteration count for any arbitrary exe-
cution of the loop. The final iteration count is expressed
in terms of the symbolic values of the variables at entry
to the loop. In addition, for cach variable modified
within the loop its symbolic value at exit from the loop
is created in terms of both the final iteration count and
the symbolic values of the variables at entry to the loop.
Figure 6 shows the results from loop analysis; these re-
sults as well as the loop analysis technique are ex-
plained in the remainder of this section.

A loop is not analyzed until all its nested loops have
been replaced by their associated loop expression. At
the time of analysis, therefore, each loop® contains only
one backward branch. Il we temporarily ignore this one
branch, the loop body can be represented as an acyclic
dirccted graph to which the interpretation technique
described above can be applied. To initiate this inter-
pretation, an iteration counter, say k, is assoclated with
the loop. For each variable y, y, represents the value of
the vanable y on entry 10 the first itcration of the loop
and y,. k =), represents the valuc of the variable y
aler execution of the kih itcration of the loop. The
body of the loop is then symbolically evaluated to get a
representation of a typical iteration. This evaluation,

‘Only unglecntny, single<cait loup are considered here

Symbulic Evaluation

21
i ¥; - 3
T r
Ik X = AsX M X = X
L_

-8
-»
- vu - bt
Figure 5. Hypothetical interpretation with global e’}
symbolic evaluation.
D cae B cus
(0<D) and (axd) amd fa>8) (220) wnd (a>0)
- A=s
{a0) amd (a0 B-b
A ena X = Jvgml - Jugenip
| WY Y o b - Guedh ¢ 3
X = 2e0mQ - Jug=ub (o<t) and (asd)
Y-y A=y
ondcmm =0
X = 2 ~
M oam Y ® dn - bood - Jpdmg
= (axp) (30) wd (asdk
-8 A=p
-» Bad
® 2w - Sud X = 2w - 4
= Jvh - Jupude=Q Y ® bp = Sbed ¢ Iwd - G4md
(20} and (axbi endiceng
A =g
L X
X o 2m - 4
Y = Jud - el
cadcase

assuming it is for the kih iteration, is identical 10 the
process described above, except that the symbolic name
initially assigned to each variable is its value afier ex-
ecution of iteration k — 1—that is, the assumed value
foryisy,.,if y is changed in the loop and Yo Otherwise,
The result of this interpretation is a set of recurrence
relations that are in terms of the values of the variables
after iteration k — 1. Next. the branch predicate con-
trolling exit from the loop is interpreted in terms of the
values of the variables after execution of the kth itera-
tion. This provides the loop exit condition, denoted lec,.
which represents the condition under which the loop
will be exited after the kih iteration. The first pan of
Figure 6 shows the resulis of this evaluation for the
WHILE loop in RECTANGLE. (Since the loop in
RECTANGLE only contains straight line code, each
nodc only has one predecessor and so no case expression
need be formed.)

Next, loop analysis attempts 10 find solutions 1o the
recurrence relations for each variable in terms of the
values of the variables on entry 1o the lovp. The solution
1o the recurrence relation for v, is denoted by y(k) and
represents the value of the variable v on evit from 1he

kth iteration of the loop. Solutions are found first for
those variables that do not reference other variables
whose recurrence relations are as yet unsolved. Once a
solution is found for a variable, it is substituted for all
references 1o it in the remaining recurrence relations.
This process is repeated. if possible, until all recurrence
relations are solved. The loop exit condition lec, is then
solved by replacing cach y, referenced in the condition
by its solution y(k) and simplifying. This provides
lec(k). the condition under which the loop will be exited
after cxecution of the kih iteration. The second part of
Figure 6 provides the solutions to the recurrence rela-
tions for the loop in RECTANGLE. Although not i
lustrated in this example, two subcases musy sometimes
be considered independently: (1) the first iteration of
the loop (k = 1). where the recurrence relations and
loup exit condition depend on the values of the variables
at entry to the loop: and (2) all subsequent iterations
(k > 1). where the recurrence relations and loop exit
cundition depend on the values computed by the pre-
vious iteration.

Afier solutions to the recurrence relations have been
determined, the loop expression can be created. The

22

Racsrteors Relatoas sad Lovp it Coalifion for RECTANGLE
Crestod ¥y Srotelie Zralastion of A1\ lervtea of Lovp
AREA, = AREAy.; + ¥,
= ARBA, + 0] « QIFX, ¢ M7pX e
X = Xoq * B
b e X,y
Yy = 0 ¢ QIpX, ¢ (7RXy 2
b, = oct (Xy ¢+ b % D)
“(-deb e X >00
Sulved Recwremce Relatiens and Lavy ExX Conditien for RECTANCLE
AREAQ}) = ARE.A.‘ ¢ e [L=l 10 + ‘l'H‘”x& * moxo)-“
= ARBAg ¢ 044 ¢ MlikteXy + MPteXgeol
+ o { el X0 ity ¢ 10902 2T 303 10-(17]-5*10 }
= AREAg ¢ (I0FA + MIFeXy ¢ fMZlheXgm2 + Milbeko(k-1)20
¢ (2Pbm2obo(d e l(Ze ¢+ 160 o 20v{2bt ok - 10X /20
= AREAG ¢ [0} ¢ flipieXy ¢ MIMheXgm? - fI}ba/20

l.. A. Clarke and D. J. Richardson

¢ QIlbod=2/20 o QUrbmedeA 60 ¢ Ipbmlhe=22D
*+ f2pb=24=310 - fIkbdeXg + M2Fbke2Xy

° AREAG ¢ 0Ft - QIF4t/20 o fIpaeXy + QiFbekes2r20

+ MFhe=2A/68 - MIpowkoXy o Q2pAeXgred

+ 2}he2ebes2/20 + QIptehmeXy ¢ QTpbmeda=dID
XQ2) = bk ¢ Xg
YQ) = 110 ¢ i e Xg) ¢+ QT4 4 X2

Figure 6. Loop analysis of RECTANGLE.

=10 ¢ flipbed ¢ IpXg ¢ M2Fde2bamd o 20-[2PbokeXy ¢ f2pXg=2

boc(l) = (b + b ¢ bk ¢+ Xg > QD)
Leop Expresdisa far RECTANGLE
coes

=28 Aecmgh

(-b + b+ Xg > Q0%
AREA = ARBA,
X~ Xg
Y=Yy

~—za siuy Grst or ssbanqucas lesation

(-boiox‘som-ud(\,--‘-(lln.zl)nd(—eolonox‘?mg

“{-b+b 2 Xy %00 and , = im(MD - XA

AREA = AREAg ¢ fl0b%, - HIMeb/20 + Qibk,eXy + HIMbek,e2/20

+ M2, /60 - MIbetyeXy + Qb oXgod
+ QT4 =220 ¢ Rt =Xy + GIHmdd =330
X = ok, ¢ Xy

Y =00 ¢ QIFXy ¢ fibek, ¢ QFXgm2 ¢ 20MR2hbd Xy ¢ Qlpiestet wd

cadcass

loop expression for the loop in RECTANGLE appears
in the last part of Figure 6. Each subcase consists of the
loop exit condition and the values of the variables at
exit from the Joop. The first subcase in this figure rep-
resents the fall-through condition that must be included
for any WHILE loop or similar loop construct. For this
subcase. the values at entry to the first iteration of the
loop satisfy the loop exit condition and provide the val-
ues on exil from the loop. The second subcase repre-
sents one or more iterations of the loop and is derived
from the solved recurrence relations and loop cxit con-
dition. Usually, for this subcase, the final iteration
count, call it k., is represented in terms of the minimum
k. k = 1, such that the loop exit condition is true. Thus,
for this subcase the condition is

not(lec(0)) and (k, = min{k| (k = 1) and lec(k)))

and the value for each variable y, at exit from the loop
1s represented by y(k,). In this example, it is possible
10 precisely represent k, by int{b/h — X,/h). Since the
loop expression is a closed-form representation captur-
ting the effects of the loop, the nodes in the Joop can be

replaced by a single node, annotated by this loop
expression. If the loop body contains nodes i through j,
this single node is denoted (i — j).

When a loop is encountered during global symbelic
cvaluation, each subcase in the loop expression must be
considered in the context of each subcase of each pred-
ccessor node. Consider the interpretation of one subcase
of the loop expression in the context of one subcase of
a predecessor node. The results of this interpretation
will be a single subcase for the interpreted loop node.
The symbolic values of the variables of the predecessor
subcase provide the values of the variables at entry to
the loop. Thus, for variable y, the symbolic value of y
in the subcase of the predecessor node is the value to be
substituted for y,. The PC of the loop node subcase is
developed by interpreting the condition from the loop
cxpression subcase and conjoining it with the PC of the
predecessor subcase. The symbolic values of the vari-
ables of the loop node subcase are developed by inter-
preting the assignments specified by the loop expression
subcase.

The above process is repeated for euch subcase in the

Symbolic Evaluation

loup cxpression with cach subcase of each predecessor
nol~ The resulting subcases are then combined to form
the case c¢xpression for the interpreted loop node.
Global symbolic evaluation can procced as usual from
this point. Figure 7 demonsirates the global symbolic
cvaluation of RECTANGLE. Here. only the sian
node, the final node, the nodes corresponding 10 condi-
tional statements, the node precceding the loop, and the
loop nede are shown. The symbolic values of variables
that cannot Be modified arc shown only at the start
node. Note that node § is the only predecessor node to
the loop and node (6~9) provides the case expression
resulling from interpretation of the loop expression.
The final output of global symbolic evaluation of REC-
TANGLE also appears in Figure 7, where path P, rep-
resents the class of paths with one or more iterations of
the loop.

As one might expect, there are several problems as-
sociated with loop analysis. Obtaining the solutions 1o
the recurrence relations is not always straightforward
and sometimes may not be possible. Complications
aris¢ in several situations. In particular, the interdepen-
dence between two recurrence relations may be
cyclic—y may depend on x, which depends on y—in
which case the recurrence relations cannot be solved.
Problems also arise when conditional execution occurs
within the loop body, causing conditional recurrence re-
lations. This results in a more complicated loop expres-
sion, provided these recurrence relations can even be
solved. Thus, loops often cause an explosion in the size
and complexity of the global representation of a rou-
tine. Nested loops exacerbate this problem. In addition,
determining consistency of a PC incorporating a loop
exit condition may also be problematic if this condition
is represented in terms of conditional expressions or a
minimum value expression, or both, Deciding the exis-
tence of these minimum values is essentially proving
routine termination. When none of these problems
arise, however, the loop analysis technique provides a
generalevaluation of a loop that is very useful. In prac-
tice. not only can loops often be represented in a closed-
form, but many loops are variants of common patterns.
Recognizing these patterns [66) may be casier and
more cfficient than invoking general axiomatic and al-
gebraic mechanisms 10 solve recurrence relations.

3. IMPLEMENTATION CONSIDERATIONS

The above section described the general methods asso-
ciated with symbolic evaluation. When implementing a
symbolic cvaluation system there are many additional
issucs 1o be considered. This section discusses several of
these issucs, some of which are well undersiood and
others that remain arcas of current rescarch

3

3.1, Further Analysis of the Symbolic
Representations

In the purest sense, the path domain and path compu.
tation are all that need be provided by symbolic evaly-
ation. To do further analysis, however, it is often desir-
able 1o simplify the symbolic representations, determine
the consistency of the PC, and find alternative solutions
for the PC that serve as test data,

Simplification can be done by converting the sym-
bolic expressions into canonical forms. There are sev-
eral available algebraic manipulation systems [3,6,56)
that can be used to accomplish this simplification. A
canonical form for the symbolic value of each output
parameter might be one in which like terms are
grouped together and terms are ordered first by degree
and then lexically. The PC might be put into conjunc-
live normal form and cach relational expression put
into a canonical form. This canonical form might be
onc in which the constant term is on the right-hand side
of the relational operator and the left-hand side has the .
same form as that for an output parameter. To enhance
readability, we have simplified the output from sym-
balic evaluation 10 these canonical forms in all the ex-
amples given in this paper.

As noted above, only a subset of the paths in a pro-
gram are cxecutable and, therefore, for path-dependent
symbolic evaluation or global symbolic evaluation it is
desirable to determine whether or not the PC is consis-
tent. Not only is it desirable to recognize nonexecutable
paths but also to recognize the inconsistency as soon as
possible. Early detection of a nonexecutable path pre-
vents worthless, yet costly, symbolic evaluation. A
nonexecutable path can be detected as soon as possible
by developing the PC as the statements on a path are
interpreted and examining the evolving PC for consis-
tency as each branch predicate is interpreted. For par-
tial path P, = (s, J,, ..., J,), the path condition is
denoted PC[P,). When a node J, ,, is considered as an
extension to the partial path P, the interpreted branch
predicate s(bp(J.. J,,,)) is first simplified and then ex-
amined for consistency with PC[P,). Unless inconsis-
tency is determined, the interpreted branch predicate is
conjoined to PC{P,], creating

PC[P...,] = PC[P,] and s(bp(J,, J,.).

Thus at any point in this interpretation, theré js a sym-
bolic representation of the domain for the partial path
that has been evaluaied so far.

When used with the path-dependent symbolic eval-
uation, the incremental development of the PC allows
an alternative edge 10 be sclected on a partial path
when an inconsistent branch predicate is initially en-
countered. Thus, the evaluation of the partial path up

»
>~zw>it
LI Y
~oe®s

?

£
-8

.

(s =% ¢h 0D
AREA = {0} ¢ filke * [2}ws2
. = 0] ¢ sef(t] ¢ 20me
ERROR = faim
X oo
Y=?

codcnss

- 113438
(s=-5+bx00)sd(-b¢eh =a>00
- fate

- WIIAIAB95)° 0
(a-bed»xO0Nad(-d+¢) ~0o =00
wd t, = A -)
“(s =5 ¢s 200) wd(, - idd-w/A ¢ DA
ARBA = 0] + aefl)] + 20we?)
¢ OR - MiPted/20 ¢ aeflilt
* Rk =220 ¢ TPbee22/50 - o2hbed ¢ omeddZ}4
o QPteded=20 ¢ oof[ifbeke? ¢ M2Mree2k=)/ID
= 110} + 1] = 20=eD2) ¢ fi0pA, ¢ Qi - H1Per, 28
= weff2pbek, ¢ am2ef[2h ¢ (IF0sd 22D ()02 NS
* sef[2fdek, D ¢ fIpbeedek,ee2/200 Gpbmlot 330
ERROR = falm
X = W te
- acheb,
¥ = 60 ¢ Qifs ¢ i, ¢ Qe
* 20Tk e ¢ (Ipbendeb a2
- 00 ¢ aeff)] + a=3oM) ¢ Q1A .
¢ 20~eR2phek, + Mpbeudsk e Figure 7. Path domains and compuiations for
RECTANGLE.

= M3435029° g
(-0 +h 20D aed 1, -~ b{-o/h ¢ Walk
Am-ﬂtyq])-ml.m
¢ e IN - IMR,20~ oM, + s,
¢ QPR 2720 ¢ Mibea2d 60+ pelf2pbd o
¢ RPbr2ek =272 00 MIbeedet =3/30r
< 04 ¢ aeflIbb ¢ 2Dme2lh ¢ f0PMeR,
¢ et - 1IN /20~ af[IMheadn, ¢ aedeTHR,
* QR 2720 ¢ MIPdmIn D+ welNrmdk o0l
¢ QPRSI 220+ M-Ik =VI8
ERROR = tabe
Xeoaobhod
Y = 0] ¢ eefi]) + omd2) o Qipoek,

4 2D, ¢ Q2P o2
sodcass

P (29 .
OF):(s ~%+ b >00
Qr,) : AREA = ?

ERROR =~ s

Py (3343800
OF) (s -bebu0Maad(a-»+b>00
« fabw wve micaadble pach s

Py - (1AL 0RE 00N
Ofy) (o -5 ¢b v00)and (N, ~ mn-ah + W)
1P : ARFA = 1578 + avfllFh + 10meflPe * fISMAA * o<1, - flIMbeIN /20
SAIFALIG, ¢ amiiirad, ¢ GIPaala w8 ¢ NN /00
¢ MMl =D ¢ I3 =118 ¢ N4, =38
RX0OA - feim

Symbolic Evaluation

10 an inconsistent branch predicate can usually be sal-
vaged, For cxample, the nonexccutable partial path
(5.1,3.4,5,6.10) sn RECTANGLE can be terminated as
soun as the inconsistent PC is discovered. The symbolic
value of the branch predicate for the edge (6.10), where
the inconsistency occurred, is replaced by the symbolic
value of the branch predicate for the alternative cdge
(6.8). and analysis continues.

Consistcngy of inconsistency may possibly be detes-
mincd by performing simple reductions 121,22} on the
newly interpreted branch predicate s(bp(J..1..,) in the
conlext of the existing consistent PC., On the one hand,
it may be possible to determine that s(bp(J,, Joaa) is
dominated by relational expressions in PC[P,], in
which case PC[P,,.,] must not be inconsistent, since
PC[P,] is not inconsistent. On the other hand, s{bp(J..
J...)) may be contradicted by a relational expression in
PC[P,], in which case PC[P,,_] is inconsistent. In the
evaluation of path P, in RECT. ANGLE, for example,
S(bp(6,10)) = (a —~ b + h > 0.0) is contradicted
by s(bp(1.3)) = @ - b + n < 0.0), thus
PC[s,1.3,4.5.6.10) is inconsistent. While such reduc-
tions are sometimes applicable, it is often necessary to
rely on more costly techniques, such as an automatic
theorem prover [5) or one of a number of algebraic
techniques. The ATTEST system [10,11], for example,
uses a linear programming algorithm [43). The advan-
lage of choosing an algcbraic technique is that a solu-
tion is provided when the PC is determined to be con-
sistent. This solution serves as test data to exccute the
path. The next section discusses more sophisticated
strategies for selecling test data for the PC that are
aimed at detecting errors on the path. Both automatic
theorem provers and algebraic techniques work well on
the simple constraints that are generally created during
symbolic evaluation. No method, however, can solve all
arbitrary systems of constraints (19]). In some in-
Stances, PC consistency or inconsistency cannot be de-
lermined; the symbolic representations for such a path
can be provided, but whether or not the path can be
executed is unknown.

3.2 Arrays

Array clement determination causes a problem when-
ever the subscript of an array depends on input values,
in which case. the element that is being referenced or
defined in the array is unknown. The flow chans in Fig.
urc 8 illustrate this problem. The first part of Figure 8
shows indcterminate armay subscripts. Note that a
nodes 5 and 6 there is a constraint on the range of val-
ucs for the subscript duc 1o the PC. In the second pant
of Figurce 8, the subscript values are constant and thus
Ciluse no problems. Although an indeterminate array

28

H-t-v——-.umm
L read LA

2AM =3

¥ = A

« Y- aAm %Z =AM
]

bnn-unyl‘-:w
Ll=3

r T
x1>3

XA =0

i

4:1 = (o3

—
Figure 8. Array element determination.

element can be represented symbolically, ini
PC consistency may become extremely complicated
when such an occurrence affects the PC. This prablem
occurs frequently during both path-dependent symbolic
cvaluation and global symbolic evaluation. §t cannot
occur during dynamic symbolic cvaluation since all va}-
ues, including subscript values, are known.

Incfficient solutions for determining an appropriate
array element exist, for in the worst case all possible
subscript values can be enumerated, Though there has
been some work on this problem [4,10,53), the results
are still unsatisfactory. Efficient solutions frequiring a
minimal amoumt of backtracking are sill being
explored,

3.3 Rodtine Invocation

Several approaches 10 routine invocation during sym-
bolic evaluation have been proposed. The simplest ap-
proach. which is not applicable for dynamic symbofic
evaluation, is 1o represent the results of a routine invo-
cation symbolically. For a procedure, such an 4pproach
might assign unique symbolic names for the output pa-
rameters cach time the procedure is called. For a func
tion (with no side effects), this approach might repre-
sent cach invocation by the function name along with
the arguments’ symbolic valyes at the point of invoca-
tion. The advantage of this approach is that the calling
routine can be evaluated even when the called routine

26

ts not available. Thus this approach supports unit
testing,

Another straightforward approach to routine invo-
cation is 10 symbolically evaluate a path (or paths in the
case of global symbolic evaluation) through the called
routinc by passing information to and from the called
routine via the parameters. This approach is similar to
normal execution. When a rouline invocation is encoun-
tered, the symbolic values of the arguments are passed
1o the called routine. Any branch predicates that are
interpreted within the called routine are conjoined to
the PC in the usual manner. The symbolic values of the
parameters are updated by the interpretation of assign-
ment statements on the path in the called routine.
When control retumns 1o the calling routine, the sym-
bolic value of each parameter is returned and assigned
to the corresponding argument. This is the only ap-
proach 1o routine invocation that is applicable for dy-
aamic symbolic evaluation.

The drawback of the first approach is that the pro-
cise effect of the invocation is unknown and this loss of
information may degrade the results of any subsequent
analysis. The drawback of the second approach is the
mcfficiency of interpretating a routine each time that
routine is invoked. A third approach, called subroutine
substitution, may avoid these drawbacks by utilizing
the previously created symbolic representations of a
routine. With path-dependent symbolic evaluation, the
PC and PV of a path in a routine are saved for substi-
tation. Later, when the routine is invoked, the symbolic
values of the arguments are substituted for the sym-
bolic names that were assigned to the paramieters in the
saved PC and PV of the called routine. The updated PC
of the called routine is then conjoined to the existing PC
of the calling routine. If this conjunction is consistent,
then the corresponding path through the called routine
could be executed, and this conjunction is the new PC.
Ia addition, the symbolic values of the output parame-
ters, which are represented in the PV of the called rou-
tine, are retumned to the calling routine. With global
symbolic evaluation, the global representation of the
called routine is substituted into the global representa-
tion of the calling routine. Each subcase of the called
routine must be evaluated in the context of each sub-
case of the calling routine at the point of invocation. For
cach such combination, this evaluation is similar 10 sub-
routine substitution during path-dependent symbolic
evaluation.

Using subroutine substitution involves expensive re-
formulation and simplification of the symbolic repre-
sentations. Unfortunately, it may not always be more
cfficient than reevaluation of the path(s) [72]. When
arguments are functions or large arrays, these problems

L. A. Clarke and D. J. Richardson

are further aggravated. Morcover, for path-dependent
symbolic ecvaluation several evaluations of the called
rouline must be saved to make this a viable approach.
For ci