Environments for Decision Support

Steven H. Gutfreund
COINS Technical Report 84-10
June 11, 1984

Preparation of this paper was supported in part under a grant given to Professor David 0. McDonald, National
Science Foundation Grant IST-810-4984.

UNIVERSITY OF MASSACHUSETTS
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES (COINS)
Graduate Research Center
Amberst, Massachusetts 01003

Environments for Decision Support

Steven H. Gutfreund
June 11, 1984

A paper submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE

Abstract

White collar workers have been helped immensely by the introduction of computers and office
automation equipment. However, most of the systems that have been introduced only deal with
the clerical aspects of office oriented jobs: meeting scheduling, letter writing, and book-keeping.
Considerably less work has been aimed at assisting people at doing the central portion of their
job: that of decision making. In this paper we look at the challenges that system designers face
when trying to build systems that do more than solve computational problems and at how our

language constructs and programming tools may need to change to meet these challenges.

Steven H. Gutfreund -2- Environments for Decision Support

1. DSS: A CHALLENGE

Today it is a very popular thing to talk about “profession based workstations®. People use
this term to highlight the fact that they desire something much more than commercially available
word processors. A profession based workstation is a system for higher level staff: executives,
administrators, financial analysts, treasurers, plant managers, and chief executive officers.

The first part of the term “professional based workstation” is “professional®. The word
“professional” is used to highlight the fact that the users are professional people, not secretaries
or clerks. Unlike clerical workers, professionals are not “plug-compatible® people, they cannot be
acquired and trained in wholesale fashion nor given generic tools.

Professionals have specialized skills and training and thus need specialized tools. Not only
do professionals need more customized tools than clerical workers, they need more flexible tools.
The jobs of technicians and clerks tend to be fairly well defined and delineated. Not so with
professional workers. They are expected to deal with, and decide on, a wide range of problems,
many of which may be unplanned. Their tools must be adaptable enough to deal with these
unplanned situations.

The second part of the term “profession based workstation” is workstation. The worksta-
tion metaphor usually implies a powerful CPU, Bit-map terminal, hard disk, peripherals and
local network connection. But more is meant by this term than mere hardware. The worksta-
tion metaphor also implies an integrated electronic environment for integrating, processing and
analyzing intellectual matter.

For a professional, the workstation is meant to become the central tool in his arsenal. It will
be used for collecting new communications, messages, and data, then modeling and analyzing
those facts, and finally hypothesizing courses of action. It will be the primary vehicle for issuing
the orders to execute actions, and for maintaining supervision of the course of current projects.
Most of all, a workstation is an “electronic” integrator, able to centrally store and cross-reference
related facts and task related data with the computer’s renowned speed and efficiency.

This, then is the viston of the profession based system. Its appeal comes not only from the
potential profit from selling more expensive and sophisticated machinery, but also from the fact
that almost every white collar worker can see something in it that would be a great boon in his
job.

The problem with this vision is that it comes from the marketing department. It describes

Steven H. Gutfreund -3- Environments for Decision Support

all the wonderful things that the system is going to do for you, but little of what it contains.
The result has been systems which are called “professional workstations” that consist of little
more than souped up clerical tools: ledgers, visicalcs, data-base managers, meeting schedulers,
calendars, and electronic mail systems.

Where did the vision fail? I would maintain that the fault does not lie with the marketing
department. Afterall, they have defined and characterized for us what our goal should be, and
given us a useful framework for exploration. Instead, I maintain the responsibility for realiging
this vision now rests with engineers and scientists to supply the technological substance to what
is now only a dream.

The reason we computer professionals have had difficulty in implementing the professional
workstation vision is our limited model of the function of a computer. Traditionally, we tend to
view a computer as a finite state automata for slavishly carrying out boring and repetitive tasks.
[32] This leads us to focus on tasks which can easily be regularized and formalized. As long as
engineers are fascinated with the computational aspects of computers, we will tend to be limited
to systems for solving clerical tasks: spelling checkers, desk calculators, and word processors.

The reason for this tunnel vision on the part of computer scientists is easy to discover. Pro-
grammers produce code that has to run on finite state automata. Because of the “literalness®
with which the computer interprets its instructions, the programmer has learned to be exceed-
ingly formal and precise. We find this predilection to formal and precise problem solving seeping
into the designs of user interfaces and tools. Instead of trying to build extensible or adaptive
environments for problem solving, computer scientists develop Al formalisms that attempt to
structure the users problem solving approach.

Unfortunately, professionals do not work in a problem solving domain that lends itself to
easy formaligation. Afterall, in any well organized firm, the first step an administrator takes
to achieve greater efficiency is to divide labor and responsibilities into small, well-defined, and
formalized clerical tasks. These tasks are then relegated to the clerical staff, and the professionals
are free to deal with less easily defined problems. Therefore, professionals have little interest
in the formalized and structured problems that many computer scientists are tackling - they
have already been freed of those responsibilities. It is not very likely that any “professional
workstation” composed of even the fanciest clerical tools is going to make a professional want to
re-assume responsibility for basically clerical office tasks.

There is a new view of computer that is gaining greater recognition: that of a medium for

Steven H. Gutfreund -4- Environments for Decision Support

modeling and representing the real world. When one approaches the design of computer tools
with this model in mind, one does not solely construct trip planners and meeting schedulers.
Instead, one looks to build such things as physics microworlds [29], electronic circuit and musical
instrument design kits [16], and reactive maps [15).

When one looks to provide support environments for decision makers one does not concentrate
on linear programming tools and inventory control programs but on providing:

Military planners: a reactive war simulation and tactics planning environment
Stock brokers: an investment microworld for testing investment tactics
Architects: structure and building design kits

We define a Decisson Support System' as a computer system which is designed to provide an
environment for modeling and analyzing the real world. Because of its different focus, it will lead
to a different environment and context for problem solving than that arrived at by viewing the
computer as an automaton for computational tasks.

The goals of decision support are:

e Assisting decision makers in exploring decision alternatives (what-if? questions).

e Training and simulation

e Helping professionals better understand the real world constraints and context via interactive

modeling.

e Giving executives sharper insights into the underlying mechanisms that drive the model (and
hopefully also the real world).

o Better analysis of data through instrumentation and monitoring of models that would not
be possible in the real world.

o Centralized, integrated storage for better cross-referencing, comprehensive modeling, and

strategic analysis.

As can be seen, the overwhelming thrust of Decision Support Systems (DSS) is a system that

! Sadly, this term is also becoming a marketing buzzword (it tells what the system does for you but not its
technical consistency). However this paper is an attempt to flesh out the term by providing a techuical basis for this

term.

Steven H. Gutfreund -5- Environments for Decision Support

works symbionically with the professional to make him a more effective and conscientious decision
maker. The mechanisms employed by DSS are mostly modeling, simulation and analytic tools.
It is in this framework that the marketing department’s profession based workstation dream can
best be achieved.

Having now sketched out the goals and challenge of the DSS we need to describe what will
constitute its substance. Our first step will be to give a more technically rigorous definition of
DSS than a mere elaboration of goals.

2. DSS: A DEFINITION
Our definition of DSS is based on a framework developed by Peter Keen [18].

Management Activity

Type of Operational Management Strategic Support
Decsssonal Task Control Control Planning Needed
Structured Inventory Linear Programming Plant Clerical, EDP
Reordering for Manufacturing Location or MS Models
Semi-Structured Bond Setting Budgets Capital DSS
Trading for Advertising [Acquistion Anal.
Unstructured Selecting a Cover Hiring a R&D Human
for TIME magagine Manager Budgeting Intuition

Figure 1. A Framework for Decision Support Systems

A structured task is a task where the algorithm has been formalized to a point where it can
be immediately implemented with current EDP and MS tools. An example of this type of task
would be a payroll system. The requirements and means for implementating a payroll system are
so well understood that one could conceivably write a generator program that would produce one
on demand. A good test for whether a task is highly structured would be if one can formalige
the requirements and outputs of the program in a denotation formal enough so that one could
actually prove that the program meets the requirements.

Unstructured tasks exist at the other end of the spectrum. One could not possibly state

Steven H. Gutfreund -6- Environments for Decision Support

the requirements in a formal enough notation so as to make formal proofs of sufficiency possible.
These tasks are usually thought of as being carried out in an individualistic and “artistic® manner.2
Most unstructured decision making is made by an expert in an area, who by dint of his extensive
knowledge in a field, can make decisions on which correct path to take. Keen’s examples of
designing the cover of TIME magazine and deciding which R & D projects to fund are good
examples of tasks that are largely unstructured.

There is a definite tendency by some technologists to minimige the extent to which decision
tasks are unstructured. Frequently this results in packaged structured systems that purport to
be complete decision support systems. When the technologist’s system is (justifiably) rejected by
the decision makers, he frequently ridicules and rejects the customer’s criticisms. Alter presents
one technologist’s caricature of his client:

“l just don't understand that kind of stuff. It simply is not my bag. I'm
intuitive. | don't understand equations and that kind of stuff. | just use them
when | have to put them in reports. | look at ads and see if they turn me
on. | try to get a feel for the market. It’s and intuitive thing. In summary
I'm an intultive animal, so don’t bother me with facts.” [1]

Keen has done us a great service in describing the true nature of structured/unstructured
systems. For, although we technologists understand that great progress comes from formalizing
and structuring unstructured tasks, we still need a healthy respect for the complexity and richness
of the complete decision and problem analysis process. Understanding the limits of structured
tasks and the nature of unstructured tasks is especially important when a decision problem is of
a semi-structured nature and a mix of approaches is needed.

Semistructured tasks fall in-between these two extremes. For portions of these tasks there
may exist mathematical and formal problem solving techniques. Yet, there is usually some un-
structured element of the task that requires expert knowledge on the part of the user. Too much
reliance on one’s formal tools can lead to disastrous consequences.

To give an example of this we can look at trading in corporate bonds. There exist well known
techniques for determining yields on bonds, and linear programming tools are powerful enough to
handle the straightforward optimization of yields. Still, one would be foolish to completely rely

3 There may exist books that present “algorithms” and procedural methods for decision makers to use in solving
unstructured problems. However, these algorithms are not formal, involve a fair amount of human intuition, and
cannot be implemented with today's software technology.

Steven H. Gutfreund -7- Environments for Decision Support

on these tools, since unstructured aspects of bond investment (devaluations, bankruptcies, and
nationaligation of corporate assets) could easily wipe out years of investment gains.

Thus, in semistructured tasks, while there may exist many computational decision support
tools, the complete analysis of the problem milieu will be dependent on the decision maker's
intuitive feel of the problem domain.

Keen has defined Decision Support Systems as systems designed to support problem solving
in the semistructured task domain. This definition complements the one given previously. Before
we defined DSS in terms of a particular problem solving style. Now we see that there is a specific
domain of decision and support problems that requires our particular type of problem solving
environment (a environment designed to give one an intuitive feel of the problem milieu through
a micro-world simulation). Given our new unified definition of DSS, we need now to take a look
at the problem domain.

8. DSS: THE PROBLEM DOMAIN

Decision support systems are supposed to provide an assist to decision makers in making
decisions. But what is the nature of these decisions? Some of the questions that one might ask
are:

e How do changes in the jet-stream affect California weather?

e Would increases in SO3 emissions in the Midwest affect acid rain in the Northeast?

e What biological processes are affected by digoxin? THC?

What advertising media are most effective for specific types of products? age groups?

If I change the shipment policy how will it affect inventory levels?

If I change pricing, how does it affect the bottom line?

What changes can we make to operations to improve cash flow?

The common aspect present in all of these modeling systems is that they are involved in
answering questions concerned with the consequences of indirect actions. In dealing with weather
systems, small local storms and disturbances can cascade to create macroscopic effects. With
digoxin poisoning, it is not the case that digoxin itself is a carcinogen, but rather that it unbalances
the production of certain engymes which lead to cells being much more susceptible to other

Steven H. Gutfreund -8- Environments for Decision Support

carcinogens. The acid rain problem in the Northeast is not a direct result of sulfur emissions by
coal burning generators in the Midwest, but arises through a long sequence of chemical reactions
and by-products.

In decision making we value most those individuals who are able to estimate the indirect
consequences of their actions. The investment manager who can balance opportunities in the stock
market versus the gold market, the real estate market, and the rare book market is more valuable
than one who has confined his knowledge to stocks alone. The meteorologist who can balance
the meteorological effects of ocean thermals, solar activity, and thermal inversion layers, is more
valuable than a meteorologist who has no training in oceanography, astronomy, or environmental
science.

If what we value most in decision makers is their ability to discover the indirect consequences of
actions and balance heterogeneous systems, we need a DSS system that supports these activities.
There are three attributes that I consider to be most important in producing this type of decision
support environment: cascadability, extensibility, and extemporaneousness.

Cascadability: It should be possible to construct a model (simulation) out of component
modules from many different knowledge domains. In assembling a model one imports components
from other models, cascading them together to create an integrated model. Thus to assemble
a system for studying inventory controls, one would import the output portions of the factory
model, create a warehouse model, and import part of the distribution and sales systems. The
designer supplies the common sense reasoning needed to interface these tools on the fly.

Extensibility: A DSS system must lead to designs that can be readily extended as need
demands. One starts with simple undifferentiated components that are cascaded together as
black boxes to form larger structures. But, as needs demand, the boxes become transparent and
one embroiders on their internal workings and external interfaces. For example, a biologist may
start with a simple Pitts-McCulloch model of a neuron with which he builds his brain structures.
As the model develops, the model of the workings and structure of the neuron can be elaborated
and improved, and yet the original macro-structures will still hold together as long as the basic
interface assumptions still hold.

Eztemporaneousness: A decision support environment must not only support dynamic changes
in its operation and inference rules, but must make its model (simulation) visible. One needs to see
the production bottlenecks forming, cash flow accumulation, and enzyme production imbalances.
The best way to assist the decision maker in discovering unsuspected secondary and tertiary

Steven H. Gutfreund -9- Environments for Decision Support

indirect consequences is to animate the operation of the model.*

To see how these features would come together in a single system, let us look at our biologist
who is studying digoxin poisoning. First he construct a simple model of a cell and its external
interfaces. He then cascades cells together to construct simple organs. After adding metering
equipment to the simulation he watches the model and tinkers with it extemporaneously. He
then goes back, extends, elaborates, and differentiates the cells, making their internal mechanisms
richer, yet preserving the basic interface assumptions on which the organs were built. He then
goes back and runs the simulation and repeats this cycle.

We now turn our attention to the technology needed to construct a DSS environment. We will
begin by making a quick survey of the entire spectrum of methods proposed for DSS construction.

4. DSS: THE TECHNOLOGIES FOR MODELING

There are many technologies that have been used for DSS tools, our survey will examine several
major areas where work has been done: Analysis Information Systems, Operations Research,
Artificial Intelligence, and exploratory research.

4.1 Analysis Information Systems

An Analysis Information System (AIS) is a system for data analysis, statistical correlation,
program management, and financial tracking.[18] In their books Keen and Alter present many
examples of AIS systems that have been effectively put to use in corporations. We will look at two
such systems, ISSPA [1,18,19,20] and PMS [1,18], and explore what functionality they presented.

4.1.1 ISSPA. ISSPA was a simple data presentation system for administrative planning in
educational institutions. It had a small set of verb oriented command such as:

List: show data variables
Rank: rank data on one variable
Plot: draw two dimensional charts

Regres: regression analysis
Histo: plot histogram

ANOVA: analysis of variance

3 How could one put into formal structures algorithms for looking for unexpected tertiary conscquences?

Steven H. Gutfreund -10 - Environments for Decision Support

NTILES: break up the data into quartiles or deciles

WTILES: break up data into quartiles or deciles by equity

The last two commands were particularly useful in ISSPA’s main roles: that of determining school
staffing levels based on demographics, and determining the equity spread among projects.

4.1.2 PMS. PMS was a stock analysis system implemented at Great Eastern Bank. Like
ISSPA, it was a verb oriented system with commands like: Plot (a stock), Plot (an industry),
Group (use one attribute to collect related stocks into a group), Histogram (a group), and Scatter
(plot one attribute against another for all securities). Scatter and Group were especially useful
commands in helping analysts discover unexpected correlations in investment strategies.

4.1.3 Discussion. The positive features of such systems can be quickly identified: they are
quick to learn (approximately one hour for ISSPA according to Keen [18]), they adapt quickly to
new problems (the commands in PMS are almost identical to that of ISSPA), and they sometimes
uncover unexpected correlations and trends. Unfortunately, one can also quickly point out the
weaknesses of these systems. They are not true modeling/simulation systems, and thus testing
a strategy (such as an investment strategy where there will be feedback from the model) is not
possible. Also they present the end user with a fixed set of commands, which in the case of ISSPA
could only be extended by an APL programmer.

4.2 Operations Research Systems
Operations Research covers a wide range of quantitative methods used in business for decision

making.

4.2.1 Network Models. Network analysis can be used for discovering production bottlenecks
or least cost paths of production. Two common applications of Network Analysis are PERT
charting [5,13], and CPM (7]. In PERT charting one draws a network diagram such as shown in
figure 2, assigns costs to each path, and solves the network to find the cheapest path.

4.2.2 Linear Programming. Linear Programming is a technique for maximizing or minimisz-
ing a variable which is subject to a set of constraint equations. For example, a manufacturing
executive many have a set of equations describing the cost of production at his various plants,
the cost of transporting the goods to market, and the number of units of goods required at each
market. He can then write a set of linear equations and use Linear Programming techniques to

Steven H. Gutfreund -11- Environments for Decision Support

Figure 2. A PERT chart

find the optimal strategy for maximizing his profits. Figure 3 shows a graphical representation
of a Linear Programming solution.

There also exist algebraic solution techniques such as Simplex for solving Linear Programming
problems that are too difficult to describe pictorially. i one can only accept integer solutions to
one’s equations, such as when one can only order supplies in units of 50 or 100, then one can
use Integer Programming techniques to obtain optimal results. Dynamic Programming can be
employed when one has to make a sequence of optimal solutions such as in a multi-year investment
plan.

4.2.3 Statistical Modeling. Statistical methods use probability distributions, Markov chains
and loss matrices to model business activities. Typically these techniques are uses in conjunction
with simulation tools to test business strategies. For example, a car rental office may model
customer arrivals as a probability distribution, and use Markov chains to describe the probabilities
of one, two or three day rentals. With this model one can construct a simulation to test different
service policies and determine the resulting profits.

4.2.4 Discussion. Operations Research modeling techniques have been widely and success-
fully applied to many decision making problems. One common reason for their success in their
power. Because they are well formalized and mathematically sound, they can give very complete

Steven H. Gutfreund -12 - Environments for Decision Support

X2
($1000)

Region of
feasible
solutions

7Y

A

X)
10 {$1000)

Figure 8. Graphical solution for a financial problem

and sound solutions to problems. Because they provide for good abstraction, they are applicable
to a wide variety of decision making domains.

Since Operations Research techniques cover so much ground, and are so widely and effectively
used, one must be careful when making general criticisms. Still, one problem that has been
observed with these techniques is that they require extensive training in formal analysis so that
they can be applied appropriately and their results interpreted correctly.*

4.3 Al Modeling Techniques

There have been a wide variety of approaches to AI modeling techniques for decision support.

¢ Alter [1] presents an amusing anecdote about a bank manager who used a linear programming system for
depositing overnight balances. One day it indicated that all the money should be invested in English banks, the next
day there was a major devaluation of the Pound. The linear programming constraint equation for devaluation was
missing, and the result was a major loss. Since DSS problems are inherently semi-structured, application of formal
techniques such as linear programming must be done with great care.

Steven H. Gutfreund -13 - Environments for Decision Support

A complete survey would require the investigation of everything from Prolog-based inferencing
systems (3] to natural language fact retrieval [22]. However, the most flexible and powerful systems
seem to be the schema driven production systems, so I will concentrate my investigation on these
systems.

IMS [11] is a schema driven system for manufacturing decision making. One describes in short
schemas the operation of the machinery in the plant, their resource requirements, and the steps
required in the production of goods. One can then query the system to obtain optimal scheduling
policies, production bottlenecks, order priorities, resource availability, etc.

POISE [4] is a system for describing bureaucratic (office) procedures. POISE uses schemas to
describe preconditions, postconditions, resources, and the logical sequence of operations needed
to carry out office tasks. One can query POISE to get information on the status of office tasks, or
it can prompt the user about incomplete tasks, or alert the user of quicker methods for carrying
out tasks.

Odyssey [10] is a system for handling the billeting (assignment to posts) of military personnel.
It contains schemas that describe the education and skills of personal and the personnel needs of
the military posts with open billets.

While these systems obviously provide some powerfully attractive functions, there are some
noticeable problems with the schema approach.® Schemas are usually one-level descriptions tech-
niques, they are not typically composed of layers of increasingly abstract constructs, therefore we
lose the important cascadability property that was discussed in the last section.

While there do exists techniques to overcome the cascadability limitation, it is more difficult
to overcome the domain dependency of schema driven systems. When a Al modeling system
such as IMS is confined to the narrow domain of plant management, the schemas are small
and easily extended by a user. However, if we wished to construct an Al modeling system
for a meteorologist who studies weather systems and how they affect acid rain, incorporating
the meteorological, chemical and biological knowledge into the schemas would make both the
schemas and the inference rules unwieldy. Furthermore, since we wish to create extemporaneous
programming systems, we need to be able to modify the inference rules of the system itself.
Unfortunately, this usually requires a skilled knowledge engineer trained in the intricacies of the

5 It can be very frustrating to get an Al researcher to admit the limitations in his system. For every limitation
there is always so-and-so’s system, which supposedly takes care of that problem. Upon close examination it usually
turns out that either the system is not even yet in the early exploratory phase, or that the system only addressed
“toy” applications and itself has serious limitations.

Steven H. Gutfreund -14 - Environments for Decision Support

File/Print _Edit IEI

w1 0isk _
R RO o
"+ Riphabetical

Chronalogical

Straighten up lcons [[33
tilpkorae|
+{ 2768 blocks free out of 9690. Backed up: never.

)
»

¥ CLusaCuc Folowr LuaProject Foloer LissTersunal Folos Loty Foloars
cols

unsrgnraer LSRN Folowr 1

LsKate Foloer Orarat’s Tuts,

. = >' bl I3
Frstersnces [° prefuis] ';7%.’9&2!?3:

D AW RS TWEowY:

' Cloex !

L 2040t X

Flgure 4. Top Level Lisa Display

production system.

4.4 Exploratory Work

In the next four sections we will examine four systems: Lisa, OBE, PHD, and Smalltalk-80.
While these systems may not individually transcend the limitations of the other systems we have
examined, they do present interesting constructs which can eventually be incorporated into a true
Decision Support System.

5. LISA
Lisa (8] is probably the best example of a class of tools I call “ICON based fixed function
tools”. This rapidly growing class of systems is best employed in file drawer applications but it
has interesting mechanisms for cascading and integrating tools, plus and extremely lucid interface.
Lisa has captured a certain kind of nimble interaction style which makes it an appropriate starting
point for our study of DSS systems.

Steven H. Gutfreund -15 - Environments for Decision Support

6.1 Components

Lisa consists of six major tools: LisaCalc, LisaDraw, LisaGraph, LisaProject, LisaList, and
LisaWrite along with interconnection tools for interfacing between these packages. The major tools
are named fairly mnemonically: LisaCalc is a Visicalc style spreadsheet calculator, LisaDraw is a
picture composition tool, LisaGraph is a pie chart, histogram and graph plotter, LisaProject is a
Pert chart and task scheduling tool, LisaList is a list based database tool, and LisaWrite is a word
processor. The overall thrust of the major tools is spreadsheet oriented calculation controlled by
fixed and pop-up menus of operators.

The role of the interconnection tools is to provide interface between the tools, invocation
control, storage management, and most importantly - overall coherence and integration of the
environment. Interconnection tools consist of: clipboards for transferring data between the major
tools, trash cans for the disposal of old data, folders for the storing of spreadsheets, blank pads
for new sources of spreadsheets, and glyphs for invocation control.

5.2 Peatures

There are three major features of Lisa that are useful for DSS implementers to take note
of: the use of structure based tools, a coherent interconnect environment, and graceful context
switching.

5.2.1 Structure based tools. The six major tools of Lisa are largely structure based. A struc-
ture based system utilizes operations and data structures compatible with high level composite
structures. Thus LisaWrite operates on pages, paragraphs and figures instead of being line or
character oriented as most text editors are. LisaProject operates on task and milestones which
are in turn made out of lower level components. Furthermore, Lisa gives these structures dynam-
ically updatable pictorial representations to emphasize the concrete effects of operations. Thus,
in LisaWrite if one changes the page format, the page layout will visually change on the screen,
if one changes a row in LisaGraph then one sees corresponding changes in the pie or histogram
that the row is connected to.

We have previously noted that in DSS environments it is very important to be able to tinker
and explore design alternatives. The pictorial structure-based Lisa tools provide a nice environ-
ment for this kind of interactive tinkering.

5.2.2 Coherent interconnect environment. Perhaps a more important feature is the Lisa inter-
connect environment. The main goal here was to provide a coherent single way of interconnecting

Steven H. Gutfreund - 16 - Environments for Decision Support

AR

P
00
hene,

bk

ALY 4

[0. ¢4

TRy
3733373 SOCRS
30 b b be B An o

K[e[Ulol00l/ [+|7 ER:

LJ]]IT‘Illlljl‘lllllllerJIIIl

o o be oetal.

19-46 sec-|- 30-50 sec -

- 34-57 sec-|- - 18-20 sec

Figure 5. LisaDraw display

the major Lisa tools and controlling invocation and storage management. In conventional sys-
tems disjoint utilities (compilers, linkers, backup programs, file manipulation utilities, etc.) are
controlled by a command shell. In Lisa there is a more cohesive (and more intuitively simple)
tool control environment. Invocation of tools is done by pointing to an Icon of a spreadsheet,
storage is done by moving spreadsheets to a folder, deletion is done by moving an object to the
trash can icon, copying data is done by cutting out sections from a spreadsheet moving them to a
clipboard and then transferring them to another spreadsheet, and backing up is done by moving
an object to the floppy disk icon.

Since DSS environments will probably consist of many tools, and since many DSS problems
will involve the coordinated working of several tools, powerful interconnection tools are mandatory
for DSS environments. Lisa’s interconnection tools provide a good starting point for integration
and interconnection of tools.

5.2.3 Context switching. The ability to shift one’s focus of attention from one task to another
is very important in DSS environments. Different tools will be providing different perspectives

Steven H. Gutfreund -17 - Environments for Decision Support

on the problem. Lisa uses a window mechanism for saving and restoring contexts. Windows pro-
vide another way in which Lisa provides concrete physical representations to abstract operations
(context save and restore in this case). Lately, attention has focused on windowing systems as
the most pleasant way to allow users to gracefully pop and restore contexts.

5.3 Limitations

To the implementers of a DSS environment, understanding the misfeatures and limitations
of a system can be as useful as learni