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Symbolic evaluation is a program analysis method that represents a
program’s computations and domains by symbolic expressions. This
method has been the foundation for much of the current research on
software testing. In particular, most test path selection and test data
selection techniques, which are two of the primary concerns of

testing, requirc the information provided by symbolic evaluation.
Moreover, symbolic evaluation techniques have recently been extended
‘to be applicable to specifications. This provides the basis for both
specification-guided program testing, whereby the specification is used to
assist in the program testing process, and specification testing, whereby
the specification itself is tested.

In this paper, symbolic evaluation is explained. Several path selection
and test data selection techniques that utilize the information provided
by symbolic ecvaluation are then described. In addition, several
specification-guided program testing and specification testing methods
that use symbolic evaluation are introduced.

1. INTRODUCTION

The ever increasing demand for larger and more complex programs has created a need for
automated support environments to assist in the software development process. One of the
primary components of such an eavironment will be validation tools to detect errors, determine
consistency, and generally increase confidence in the software under development. Several of
the validation tools being developed employ a method, called gymbolic evaluation, which creates
a symbolic representation of the program. This paper describes symbolic evaluation and surveys
some of the testing applications of this method.

Symbolic evaluation monitors the manipulations performed on the input data. Computations
and their applicable domain are represented algebraically over the input data, thereby describing
the relationship between the input data and the resulting values. Normal execution computes
numeric values but loses information about the way in which these numeric values were
derived, whereas symbolic evaluation preserves this information. When further analyzed, this

‘m'mimh.thi%gmm&m Reliability Workshop:  Software



information provides the basis for several testing techniques.

For the most part, current testing research is directed at cither the problem of determining the
paths, the particular sequences of statements, that must be tested or the problem of selecting
revealing test data for the sclected paths. For the path selection problem, techniques such as
program coverage, data flow testing, and perturbation testing have been proposed. For the test
data selection problem, a number of informal guidelines have been put forth. Recently there
has been considerable work on developing more systematic test data selection techniques that
can either eliminate certain classes of errors or provide a quantifiable error bound. Many of
the current path selection and test data selection techniques base their analysis on the
information provided by symbolic evaluation.

The above testing techniques are referred to as structural techniques since they base their
analysis solely on the information provided by a given implementation. There are two
drawbacks to such an approach. First, it ignores the information that may be available from a
specification.  Second, it delays testing until the implementation is complete, thereby not
detecting errors in the most timely and cost-effective manner. Research efforts that use
symbolic evaluation to assist in solving both these problems are currently underway.
Specification-guided program testing techniques use the information provided by symbolic
evaluation of a specification to guide in the testing of its implementation, while specification
testing techniques employ symbolic evaluation to actually test a specification.

The next section of this paper provides a brief overview of symbolic evaluation, with an
example to demonstrate the method. The third section describes a number of ways in which
symbolic evaluation of a program aids the path seclection and test data selection aspects of
testing. The fourth section discusses the use of symbolic evaluation for specification-guided
program testing and specification testing.

2. SYMBOLIC EVALUATION

Symbolic evaluation provides a functional representation of the paths in a module or group of
modules. To create this representation, symbolic evaluation assigns symbolic names for the
input values and evaluates a path by interpreting the statements on the path in terms of these
symbolic names. Thus, during symbolic evaluation, the values of all variables are maintained as °
algebraic expressions in terms of the symbolic names. Similarly, the branch predicates for the
conditional statements on a path are represented by constraints in terms of the symbolic names.
After symbolically evaluating a path, its functional representation consists of two parts, path
computation and path domain. The path computation is a vector of algebraic expressions for
the output values, which include written output values as well as output parameters and
exported global values. The path domain is defined by the conjunction of the path’s branch
predicate constraints. For path Pj the path computation and path domain are denoted by

C[P;) and D[P;], respectively.

A symbolic representation of all executable paths through a program is usually unreasonable to
create due to the presence of loops. If the number of iterations of a loop is dependent on
unbounded input values, there is an effectively infinite number of executable paths. Onme
approach to this problem is to replace each loop with a closed form expression that captures
the effect of that loop [CHEA79, CLARS1]. Using this technique, a path may then represent
a class of paths in which the members differ only by their number of loop iterations.



The loop analysis technique attempts to represent each loop by a loop expression describing the
effects of that loop. For each analyzed loop, a conditional expression is created representing
the final iteration count for any arbitrary execution of the loop. The final iteration count is
expressed in terms of the symbolic values of the variables at entry to the loop. In addition to
the final iteration count, the loop expression describes each variable modified within the loop
by its symbolic value at exit from the loop. These symbolic values are expressed in terms of
the final iteration count and the symbolic values of the variables at entry to the loop. The
loop expression is often composed of several subcases — one for the fall through case and one
for each typical case with a unique exit condition.

Once the loop expression is formed, the nodes in the loop can be replaced by a single node,
annotated by this loop expression. Later, when such a loop is encountered during symbolic
evaluation, each subcase in the loop expression must be considered in the symbolic evaluation
process. Thus, the resulting symbolic expression may also be composed of a number of
subcases.

The procedure RECTANGLE, shown in Figure 1, is used to illustrate symbolic evaluation.
Note that the lefthand side of the listing is annotated with node numbers so that statements or
parts of statements can easily be referenced. Paths (or classes of paths) are designated by the
ordered list of nodes encountered on the path. Figure 2 provides the loop expression for
RECTANGLE. Figure 3 shows the path domains and computations for RECTANGLE, where
path P, represents the class of paths with one or more iterations of the loop. A detailed
description of the method of symbolic evaluation employed here may be obtained from
[CLARS3].

procedure RECTANGLE (A,B: in real; H: in real range -1.0..1.0;
F: in array [0.2] of real;
AREA: out real; ERROR: out boolean) is
— RECTANGLE approximates the arca under the quadratic equation
— F[0] + F[1}»X + F[2]#X*s2 from X=A to X=B in increments of H.
X,Y: real;
s  begin
— check for valid input

1 if H>B - A then
2 ERROR := true;

else
3 ERROR := false;
4 X = A;
5 AREA := F[0] + F[1]sX + F[2JsX»2;
6 while X + H < B loop
7 X =X + H;
8 Y := F[0] + F[1]sX + F[2}sX=2;
9 AREA := AREA + Y;

end loop;

10 AREA := AREAsH;

endif;

f end RECTANGLE;

Flgure 1: Procedure RECTANGLE.



case
—fall through
(-b +h + X5 > 00):
AREA = AREA,
X = X
Y =Y,
—exit after first or subsequent iteration
(-b + b + Xp =< 00) and (k, = min< k | (k=1) and (-b + b + hek + X > 00) >)
= (-b + h + Xy = 00) and (k, = int(/h ~ Xg/h)):
AREA = AREA; + f[O]sk, — f[l]shek 20 + f[l]sk *Xq + f[1}shek +2/2.0
+ f[2]shee2ek /6.0 - f[2]shek sXg + f[2]ek oXyee2
+ f[2]shee2ek +2272.0 + f[2]shek os2¢X, + f[2]shee2ek 3/3.0
X = hek, + X,
Y = f[0] + fl1]eXy + f[1]shek, + f[2]sXges2 + 2.0f[2]shek oXgy + f[2]thes2ek o2
endcase

Flgure 2: Loop Expression for RECTANGLE.

P, : (s,1,2,0)
D[Pyl :(@a-b+h > 0.0)
C[P;] : AREA =7?
ERROR = true

P, : (5,13,4,5,6,10,f)
D[Pﬂ:(a-b+h50.0)and(a—b+h>0.0)
= false s=» infeasible path s

Py : (5,13,4,56,(7.89,6 +.10,9)

D[P3]:(a—b+h50.0)and(kc=lnt(-a/h+b/h)

C[P;] : AREA = (f[0] + asf[1] + 2.0vaef[2] + {0}k, - f[1}+hsk /2.0 + aef[1]k,
+ f[1]shek =22/2.0 + f[2]shes2¢k /60 - asf2]shek, + ass2ef[2]sk .
+ f[2]shes2ek #2720 + asf2ehek =02 + f[2]shes2¢k _++3/3.0) » h

= f[0}h + asf{lJsh + 20vasf[2Jsh + f[O]shek_ + asf[l]shek_ — f[1]shwe2ek /2.0
— asf[2]shes2ek, + awe2ef[2]shek, + f[1]shes2sk =220 + f[2]ehe3+k /6.0
+ asf[2]shes2ek 02 + f[2]shee3ek =2/2.0 + f[2]ehee3+k 43/3.0
ERROR = false

Figure 3: Path Domains and Computations for RECTANGLE.




3. PROGRAM TESTING APPLICATIONS

Testing research has evolved from primarily gathering information about a program to
analyzing that information so as to detect errors or provide a guarantee that certain classes of
errors cannot occur. The division of the testing process into path selection and test data
selection components is based on the recognition that, in general, it is impractical, if not
impossible, either to test all paths through the program or to test all inputs to a path. Thus
criteria for selecting a subset of paths and criteria for selecting a subset of the input data for
those paths are needed. The basic goal is to select paths and test data that will detect errors
or guarantee their absence over the whole program. This section describes several path
selection and test data selection techniques and emphasizes how these techniques utilize
symbolic evaluation.

3.1. Path Selection

Three criteria for selecting paths that have typically been used for program testing are
statement, branch, and path coverage. Statement coverage requires that each statement in the
program occurs at least once on one of the selected paths. Likewise, branch coverage requires
that each branch predicate occurs at least once on one of the selected paths, and path
coverage requires that all paths be selected. These three measures provide an ascending scale
of confidence in testing; branch coverage implies statement coverage, while path coverage
implies branch coverage. Given a reliable method of test data selection, path testing would
constitute a proof of correctness. Since path coverage implies the selection of all feasible paths
through the routine, attaining path coverage is usually impractical, if not impossible.

It is generally agreed that branch coverage should be a minimum criteria for path selection.
Achieving even this level of coverage is not always straightforward. Statically generating a list
of paths that satisfy this criterion usually results in a number of infeasible paths being selected.
Data flow techniques that attempt to generate only feasible paths by excluding inconsistent
pairs of branch predicates have been shown to be NP complete [GABO76]. Thus, symbolic
evaluation is a useful technique for aiding in the selection of executable paths. The ATTEST
system [CLAR76], for example, uses a dynamic, goal-oriented approach for automated path
selection whereby each statement on a path is selected, based on its potential for a selected
coverage criterion. When an infeasible path is encountered, ATTEST chooses one of the
alternative statements. When there is more than one consistent alternative, the choice is based
on the selected coverage criterion [WOODS0).

Unfortunately, branch coverage is easily shown to be inadequate; no matter what test data is
selected for these paths, many simple, common errors will go undetected. Several stronger
criteria bave been proposed for selecting paths that fall between the two levels of reliability
and expense associated with branch testing and path testing. Some alternative criteria use a
modified path coverage criterion that simply limits loop iterations. For example, the EFFIGY
system [KING76] generates all paths with a bound specified on the number of loop iterations
and the ATTEST system, in addition to statement or branch coverage, attempts to select paths
that traverse each loop a minimum and maximum number of times.

Howden has proposed the boundary-interior method for classifying paths ([HOWD75). With this
method, two paths that differ in ways other than in loop traversals are in different classes. In

addition, two paths that differ only in the way they traverse loops are in different classes if
1. one is a boundary and the other an interior test of a loop;



2. they enter or leave a loop along different loop entrance or loop exit branches;

3. they are boundary tests of a loop and follow differeat paths through the ‘loop;

4. they are interior tests of a loop and follow different paths through the loop on their first

iteration of the loop.

A boundary test is one which enters the loop but leaves it before carrying out a complets
traversal and an interior test carrics out at least one complete traversal of the loop. A set of
test data is considered to cover all classes if at least one path from each class is exercised by
the test data. Again, symbolic evaluation is useful for determining a set of feasible paths that
satisfy the loop criterion. Moreover, whea loop analysis is successful in creating a closed form
represcatation of the loop, then this representation is useful in determining the paths that
satisfy the selected loop criterion.

An alternative to the use of control flow as the determining factor in path selection is the use
of data flow. PData flow techniques [LASK79, NTAF81, RAPP&] require the sclection of
subpath(s) based on particular sequences of definitions and references to the variables in the
program.  Rapps and Weyuker [RAPP82] have described a partial ordering on a family of
data flow techniques for path selection. Figure 4 shows this partial ordering as well as its
relation to statement, branch, and path coverage. As an example of the application of these
techniques, consider the flow chart in Figure 5. Def coverage requires the selection of a
subpath containing each definition of a variable; the following paths satisfy def coverage:
(123,568) and (123,5,78). Notc that this set of paths docs not satisfy ecither statement or
branch coverage since statement 4 is not executed. Use coverage requires the sclection of
some subpath from ecach definition of a variable to each use of that variable; the following
paths satisfy use coverage: (1,23,568) and (12,4,5,78). Du-path coverage, on the other hand,
requires the sclection of all minimum loop subpaths from each definition of a variable to any
use of that variable. In addition to the two paths for use coverage, the path (1,2,3,5,7,8) must
be selected because it includes a subpath from the definition of Y at node 3 to its use at
node 8. Note that there is one more path, (1,2,4,5,6,7), that would need to be sclected to
satisfy path coverage but no additional flows of data are to be gained by testing that path.
Although the data flow path selection techniques can be applied independently of symbolic
evaluation, a number of infeasible paths will be generated unless data flow analysis and
symbolic evaluation techniques are paired together.

In addition to using control and data flow information, path selection techniques bave been
developed that relate directly to the elimination of potential errors in program statements.
Perturbation testing [HALES2, ZEIL83] attempts to compute the sct of potential errors in
arithmetic expressions that cannot possibly be detected by testing only the current sct of
selected test paths, regardless of the test data sclection techniques employed for those paths.
Perturbation testing derives a set of characteristic expressions that describe the undetectable
perturbations (errors). This information can be used to select additional paths that must be

path du-path use ) Aef
wvmgc':bcovcrage ﬁ¢::orwm‘ag¢= coverage
\\\J branch | statcment
coverage = coverage

Figure 4: Data Flow Testing Criteria.



Figure 5: Data Flow Testing Example.

tested in order to detect these possible perturbations. As an example, consider the flow chart
in Figure 6. Along path (..,13,..) the value of Z is the same as the value of 2¢X at node 3
Any error in the predicate at node 3 that can be represented by k  (Z - 2¢X), where k is a
constant, could not be detected along path (..,13,.). For instance, if the branch predicate at
node 3 should have been Z - X > Y, the error would not be detected. Along path
(..23,.), however, this equality does not hold and thus this error could be detected. In
general, another proposed path will be a useful test if, and only if, it eliminates one or more
expressions describing undetectable perturbations. In effect, perturbation testing systematically
captures the interesting error detection capabilities of mutation testing [BUDDS1), a method that
sequentially introduces a large number of small errors (mutants) into a program and then
determines which of these errors were not detected by the seclected test data. The
perturbations of a statement can be represented by using symbolic evaluation techniques.
Perturbation testing is currently being implemented as an extension to the ATTEST. symbolic
cvaluation system.

Figore 6: Peturbation Testing Example.



32. Test Data Selection

Symbolic evaluation, like most other methods of program analysis, docs not actually execute a
routine in its natural eavironment. Evaluation of the path computation for particular input
values returns numeric results, but because the eavironment bas been changed, these results
may not always agree with those from normal execution. Errors in the hardware, operating
system, compiler, or symbolic evaluation system itsclf may cause an erroncous result, It is thus
important to test the routine on actual data. In addition, testing a routine demonstrates its
run-time performance characteristics.

To assist with test data selection, several grror-sensitive heuristics have been proposed. Myer’s
error guessing [MYER79), Foster’s error-sensitive test case analysis [FOSTS0], Weyuker's
error-based testing [WEYUS1), and Redwine’s enginecring approach [REDWS&3] provide
guidelines for sclecting test data to detect likely emrors. Each approach is based on examining
the statements in a program or an informal description of the inteat of the program.

The symbolic representation of a path can be used as the basis on which to select test data
for a path. The most straightforward technique simply examines the PC to determine a
solution ~ that is, one arbitrary test datum to execute the path. SELECT [BOYE7S] and
ATTEST are two symbolic execution systems that generate such test data by using an algebraic
technique for evaluating the constraints comprising the path domain.

More rigorous techniques have beea proposed that appear to capture the ideas underlying the
error-sensitive heuristics by characterizing poteatial errors in terms of their effects on a path.
For these techniques, errors are classified into two types, computation errory and domain errors,
according to whether the effect is an incorrect path computation or an incorrect path domain.
A domain error may be cither a  missing path eryor, which occurs when a special case
requires a unique sequence of actions but the program does not contain a corresponding path,
or a path_selection error, which occurs when a program recognizes the need for a path but
incorrectly determines the conditions under which that path is executed. A number of test data
sclection techniques focus on the detection of cither domain or computation errors. These
techniques analyze the symbolic representations created by symbolic execution and select data
for which the path computation and path domain appear sensitive to errors. A difficult
problem, which must be addressed by these techniques, is the possibility that an error on an
executed path may not produce erroncous results for particular test data; this is referred to as
coincidental correctness. For an example, note that the second multiplication operator in
statement S of RECTANGLE should be an exponentiation operator. If this statement is only
executed when A=00 or 1.0, then the actual resulting value and the intended value agree.
Although this is a contrived example, coincidental correctness is a common phenomenon of
testing. A goal, therefore, is to minimize the occurrence of coincidentally correct results by
astutely sclecting test data aimed at exposing, not masking, errors.

In RECTANGLE there are five errors: one computation error, threc missing path errors, and
a path sclection error. As noted above, the first error is caused by an crroncous computation
at statement S; statement 5 should be AREA := F[0] + F{1X + F[2]*Xe2. The sccond and
third errors are caused by an erronecous check for a valid input value for b when a > b (the
input check is only correct if a < b). If a > b, then h must be negative (error two) and its
absolute value must be less than a — b (error three). Both errors two and three are missing
path errors. Moreover, h cannot be zero, regardless of the relationship between a and b or an
infinite loop results; this fourth error is also a missing path error. A correct check for invalid



input follows:

if (A >Band H=00)or (A <Band H= 00) then

ERROR := true;

else if (abs (H) > abs (B — A)) then

ERROR := true;
Another situation, which might be considered a fifth error, occurs when a + int(-a/h + b/h) »
b < b, since the area under the quadratic is computed beyond the point specified by b. A
more accurate algorithm would add in the area of a smaller rectangle on the last iteration of
the loop (or subtract the excess upon exit). In the ensuing discussion it is shown how four of
these five errors are detected by test data selection techniques.

Computation testing techniques select test data aimed at revealing computation errors. One
such approach analyzes the symbolic representations of the path computation. This approach is
based on the assumption that the way an input value is used within the path computation is
indicative of a class of potential computation errors. Analysis of the symbolic representation of
the path computation reveals the manipulations of the input values that have been performed
to compute the output values. In general, a path computation may contain arithmetic
manipulations or data manipulations, which are inherently sensitive to different classes of
computation errors. Guidelines have been proposed for selecting test data aimed at revealing
computation errors that are considered likely to occur for both types of path computations
[CLARS3]. One of these guidelines states that each symbolic name corresponding to a
multiplier in the path computation should take on the special values zero, one, and negative
one, as well as nonextremal and extremal values. Note that such a selection of values for A
in RECTANGLE would reveal the first error.

There have been some theoretical results showing that more rigorous computation testing
techniques can guarantee the absence of certain types of computation errors when the path
computations fall into well-behaved functional classes. For example, there are a few techniques
that can be applied if the symbolic value for an output parameter should be a polynomial.
For a univariate polynomial with integer coefficients whose magnitudes do not exceed a known
bound, a single test point can be found to demonstrate the correctness of that polynomial
[ROWLS1].  Alternately, for a univariate polynomial of degree N, N+1 test points are
sufficient [HOWD?78). Probabilistic arguments have been made for reducing this number
without sacrificing much confidence [DEMI78], and similar results have been provided for
multivariate polynomials.

When the path computations fall into specialized categories, the computation testing guidelines
can be tuned to guide in the selection of an even more comprehensive set of test data. For
example, if a path computation involves trigonometric functions, then guidelines dependent upon
their properties should be exploited. In RECTANGLE, an example for which an extended set
of guidelines are required is the int function that appears in the computation of AREA. Data
should be selected so that the dropped remainder that results from applying the int function
takes on the value zero and both positive and negative values. Data satisfying this extension
would alert the tester to the poor termination condition (the fifth error).

Domain_testing techniques [CLARS2, WHITS80] concentrate on the detection of domain errors
by analyzing the path domains and selecting test data “on™ and slightly “off” the closed
borders of each path domain. If the correct results are produced for each of the on and off
test points, the border must be “close™ to the correct border. An undetected border shift can
only occur if the on test points and the off test points lie on opposite sides of the correct



border. The undetectable border shifts are kept “small” by choosing the off test points as
close to the border being tested as possible. In fact, with the proper sclection of on and off
test points, a quantified error bound measuring the set of eclements placed in the wrong
domain by an undetected border shift can be provided. Figure 7 illustrates a border shift,
where G is the given border, C is the correct border, and the sct of elements in the wrong
domain is shaded. The border shift is revealed by testing the on points P and Q and the off
points U and V, since V is in the wrong domain. For a border in higher dimensions, 2sv
(where v is the number of vertices of the border) test data points must be selected for best
results. A thorough description of the domain testing technique and its effectiveness is
provided in [CLARS2]. Figure 9 shows the test data selected for the paths in RECTANGLE
to satisfy the domain testing technique. The only closed border is (a — b + h =< 00). If
extremal values of 1000 and -100.0 are assumed for the inputs A and B, this border has six
vertices. The figure indicates whether each datum is an on point or an off point (on or
above the border). Four of the five errors in RECTANGLE are revealed by domain testing.
Error one is detected by execution of any of the on points. Error two is detected by either
of the two off points (a = 1000 and b = 9999 and h = 001) or (a = -9999 and b =
~1000 and b = 001). Error four is detected by cither of the two on points (a = 1000 and
b = 1000 and b = 00) or (a = -1000 and b = -1000 and h = 00). The inaccurate
termination condition (error five) is revealed by testing either of the off points (a = 1000 and
b =09899 and h = -10) or (a = -9899 and b = -1000 and h = -10). The third error is a
missing path error that will not be detected by domain testing. This error occurs when
(@ >b) and (b < 00) and (absth) > a - b), which implies that a - b + b < 0.0; this
describes points in the domain of P; but not on the closed border and thus will not be
selected by domain testing. .

Figure 7: Domain Testing Strategy.



Conditions for on points for (a - b + h =< 0.0)
1000 and b = 990 and h = -10

990 and b = 1000 and h = 10

1000 and b = 1000 and b = 00

-1000 and b = -990 and h = 10
-1000 and b = -1000 and h = 0.0
-990 and b = -1000 and h = -1.0

PP PR
mnowononon

Conditions for off points for (a — b + h < 00)

a = 1000 and b = 9899 and h = -10
a =901 and b = 1000 and h = 10
a = 1000 and b = 9999 and h = 0.01
a=-1000and b =-901and h = 1.0
a=-99 and b = -1000 and h = 001
a =-9899 and b = -1000 and h = -1.0

Figure 8: Conditions for Satisfying Domain Testing Strategy for RECTANGLE.

Existing domain testing techniques are aimed at the detection of path selection errors. As
illustrated in the example, missing path errors may not be detected by such techniques. A
missing path error is particularly difficult to detect since it is possible that only one point in a
path domain should be in the missing path domain; the error will not be detected unless that
point happens to be selected for testing. When a missing path error corresponds to a missing
path domain that is near a boundary of an existing path domain, then the error may be
caught by domain testing techniques, as occurred in RECTANGLE for errors two and four.
Missing path errors cannot be found systematically, however, unless a specification is employed
by the test data selection method, as is done by specification-guided program testing.

4. SPECIFICATION TESTING APPLICATIONS

The major drawbacks to the program testing techniques described above are their failure to
consider specifications or to be applicable earlier in the software lifecycle. Specification-guided
program testing techniques attempt to incorporate information from the specification into the
analysis process. It is only through such techniques that missing path errors can be detected in
a systematic way. Of course there is no guarantee that a specification will adequately capture
the functionality of a problem. Moreover, many of the proposed specification languages are
difficult to comprehend. Thus, it is imperative that specifications themselves be tested in order
to provide some assurance about their validity. In this section, techniques based on symbolic
evaluation for specification-guided program testing and specification testing techniques are
described.

4.1. Specification-Guided Program Testing

A specification provides an independent description of the external behavior of a procedure and
thus provides an alternative, and wusually more abstract, representation to which an
implementation of the procedure can be compared. Often the specification provides valuable
functional information that should be utilized for testing.



The partition analysis method [RICH78, RICH81a] incorporates information derived from such a
specification with information derived from the corresponding implementation to assist in
determining program reliability. This is done by symbolically evaluating a specification and a
corresponding implementation, and then evaluating the differences and similiarities between their
symbolic representations. With appropriate modifications, symbolic evaluation techniques can be
applied to specifications written in a number of different kinds of specification languages. The
resulting symbolic representation provides a specification-based partition, which consists of
descriptions of specification subdomains and their corresponding computations.

To compare the specification and implementation, the partition analysis method forms a
procedure partition. This partition is comstructed by finding the non-empty intersections
between the implementation-based partition, which is defined by the program path domains, and
the specification-based partition, which is defined by the specification subdomains. The
procedure partition thus divides the set of input data for the procedure into procedure
subdomains so that the elements of each subdomain are treated uniformly by the specification
and processed uniformly by the implementation. The procedure partition also embodies
representations of the specification subdomain computations and path computations associated
with each procedure subdomain. By forming the procedure partition, the procedure’s domain is
decomposed into more manageable units, as is the task of evaluating program reliability. The
partition analysis method then applies both verification and testing techniques in the context of
each procedure subdomain in the procedure partition.

Partition analysis verification uses information related to each procedure subdomain to verify
consistency between the specification and the implementation for the subdomain. Partition
analysis verification is a variation on symbolic testing [HOWD?77). Symbolic testing involves
examining the symbolic representations of the path domains and computations. Partition analysis
verification, however, compares these representations with those derived from the specification.
Partition analysis verification uses standard proof techniques to determine the equality of the
specification subdomain’s computations to their corresponding path computations, where both are
restricted over the procedure subdomain. Most verification methods [DEUT73, FLOY67,
KING69, LOND75] prove that the implementation is coasistent to assertions, which serve as the
specification of the procedure’s intended behavior. These assertions, however, are seldom
developed independently of the implementation; rather they are associated with the structure
of the implementation (as in loop invariant assertions). Partition analysis verification, on the
other hand, is designed to use an independent specification that most likely would have been
written in one of the pre-implementation phases of the software development process [BAUE79,
CAIN75, SILV79, WARN74, WIRT73, YOUR7S). Recent experimental results [RICH8] show
that partition analysis verification is capable of detecting fairly subtle inconsistencies between
two descriptions of a procedure. Of course, partition analysis verification suffers some of the
same drawbacks as other verification approaches since, in general, the proof of computation
equality is undecidable. When proof techniques do fail, testing can provide some assurance of
the equality of the computations or find examples of their inequality.

Thus, partition analysis complements the verification process by the astute selection of test data
on which the implementation should be executed. Partition analysis testing constructs a test
data set by selecting data from each subdomain of the procedure partition. The symbolic
representations of a procedure subdomain and the associated computations are employed to
direct the selection of this test data. Partition analysis testing thereby draws on information
describing both the intended and actual function of the procedure. To increase the likelihood
of detecting errors, partition apalysis testing employs some of the computation and domain



testing techniques previously described. Partition analysis testing has been shown to be a
powerful testing method [RICH82].  The reasons for this are three-fold. First, it jntegrates
several complementary testing techniques. Second, the selected test data appropriately
characterize the procedure based on both the implementatio d the ification.  As such,
it is one of the few testing methods to address missing path errors. Third, the testing and
verification processes are jntegrated within partition analysis so that they might complement and
enhance one another; the testing of some elements in the procedure subdomain may assist in
verification, while the verification process may direct the selection of test data.

Partition analysis bas been applied to several different kinds of specification languages,
including state transitions and both high- and low-level procedural languages [RICHS1b). Thus,
the basic ideas of applying symbolic evaluation to pre-implementation descriptions and
comparing two representations at different levels of detail seems to be generally applicable to a
wide range of languages; it can be applied to compare software specifications to designs,
high-level to low-level designs, VLSI specs to VLSI designs, and so on.

Weyuker and Ostrand [WEYUS80] have proposed a specification-guided program testing method
based on a partition of a problem into frevealing subdomains, which are developed using
specification related information as well as the implementation. A subdomain is revealing if
the existence of one eclement of the subdomain that is processed incorrectly by the
implementation implies that all elements of the subdomain are processed incorrectly. Revealing
subdomains are constructed by overlaying a specification-based partition and an
implementation-based partition. They are, therefore, similar to procedure subdomains. For this
technique the implementation-based partition can be derived through symbolic evaluation, but it
is not clear how to derive a specification-based partition with the appropriate error revealing
characteristics.

Gourlay has developed a specification-guided program testing approach that is also similar to
partition analysis testing [GOURS1]. This approach uses a predicate calculus description of the
problem to form a specification-based partition. Using Gourlay’s technique, a predicate calculus
formula is interpreted as specifying a number of distinct computations, each of which is
applicable over some subdomain. Test data is then selected from each subdomain. Gourlay
proposes that this test data set be augmented by path testing; this provides the
implementation-based partition and makes the final decomposition quite similar to the procedure
subdomains used with partition analysis.

42. Specification Testing

The use of the specification to assist in the testing of an implementation solves many of the
problems inherent in program testing. It is desirable, however, to initiate the testing process
before the implementation is complete; if an error introduced in a pre-implementation phase is
revealed soon after its inception, the cost of its detection and correction is greatly reduced. It
is, therefore, imperative that testing be performed throughout the software development process.

As noted above, the partition analysis method can be employed as an approach to solving this
problem. Extensions of symbolic evaluation to specification languages have been designed so as
to be applicable to a wide range of notations and levels of abstraction. The partition analysis
method can thereby be applied to compare a specification at one level of abstraction to one at
a higher level of abstraction. Kemmerer [KEMMS4] suggests a similar approach for INAJO, a
language for the state machine approach to specifying the functionality of a program. Each



level of specification is proven to be consistent with the level above, and the implementation is
proven to be consistent with the lowest level specification. By induction, the implementation
has been shown to be consistent with the highest level specification.

The problem with these approaches is that the actual functionality of the specifications has not
been tested; instead consistency between two levels of specification has been shown in a
postulated environment. Incorrect functionality may not be discovered until several levels of
refinement have been completed. It may be costly to backup the lifecycle and rewrite
specifications. Thus, specifications should be tested to determine if they achieve the desired
functionality. Kemmerer proposes two techniques for testing specifications. The first is to
convert a non-procedural specification into a procedural form that serves as a rapid prototype
to use for testing. The second approach is to perform a symbolic evaluation of the sequence
of operations and check the resultant symbolic values to see if they define the desired resultant
states.

This latter approach to pre-implementation testing has been experimented with using a symbolic
evaluation system for the GIST specification language [COHES2]. In this project, symbolic
evaluation of a formal specification is envisioned as an alternative to early prototype
development. Symbolic evaluation is used in an attempt to characterize the behaviors that
satisfy a given specification. Logic errors in the specification that are uncovered are pointed out
as unintended or missing behaviors. As was similarly noted for programs, symbolic evaluation
of a specification tests a range of possible inputs as opposed to concrete execution of a
prototype, which for each test case only tests a single path for a unique set of inputs.

5. SUMMARY
In this paper several testing techniques that use symbolic evaluation are described.

For the path selection aspects of testing, symbolic evaluation is useful in determining path
feasibility for the control flow and data flow criteria. It is also being used in the analysis
employed by perturbation -testing. It is interesting to note that path selection and symbolic
evaluation have a symbiotic relationship. Symbolic evaluation is used to guide the selection of
paths, which are then symbolically evaluated. Thus, adaptive systems, where path selection and
symbolic evaluation dynamically interact, must be considered.

Several test data selection techniques are being developed that select data based on an
examination of the symbolic representations created by symbolic evaluation. Both computation
and domain testing techniques have been developed using this approach. While the initial
work in this area is quite promising, it is clear that a complementary set of techniques must
be developed.

Several testing approaches that utilize a specification have also been developed using symbolic
evaluation techniques. Specification-guided program testing assists in the selection of test data
for the implementation by using information derived from the specification.  Specification
testing provides the capability to test the system under development before implementation is
underway.

For the most part, current research is addressing the issues of path selection, test data
selection, and specification testing as independent topics. It is clear, however, that these topics
are closely related and eventually should be integrated into a software development



environment,
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