E B g

g BT BT

oo e B o

Ef

F F

IMAGE PROCESSING ON A CONTENT
ADDRESSABLE ARRAY PARALLEL PROCESSOR

Charles C. Weems, Jr.

COINS Technical Report 84-14

September 1984

This research was supported in part by the Army Research Office

under grant
Research

number DAAG 29-79-G-0046, the Defense Advanced
Projects Agency under contract NO00014-82-K-0u46l,

General Electric Company (Flexible Automation Systems Program,
Corporate Research and Development), and Digital Equipment

Corporation.

E" E ' E

F E T g B B

- .

el sl Sl

IMAGE PROCESSING ON A CONTENT
ADDRESSABLE ARRAY PARALLEL PROCESSOR

A Dissertation Presented

By

Charles Chilton Weems Jr.

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 1984

Department of Computer and Information Science

g“““l

g

r IMAGE PROCESSING ON A CONTENT
| ADDRESSABLE ARRAY PARALLEL PROCESSOR

A Dissertation Presented

By

e B

Charles Chilton Weems Jr.

e £

Approved as to style and content by:

25 PR

Dr. Caxton C. Foster, Chairperson of Committee

D, Lo

Dx. Edward M. Riseman, Member

W

Dr. D. Nico Spinelli, Member

')
Al
Dr. Charle\ R. Rugg¥Member
Dr. David W. Stemple, Graduate Prodram Director
Department of Computer and Information Science

g B

é.‘“—v

Charles Chilton Weems Jr. -J
N il
All Rights Reserved
e}
l:.”‘&!
Research supported in part by:
Army Research Office DAAG 29-79-G-0046. el

DARPA N@0014-82-K-0464.

General Electric Company, Flexible Automation Systems
Program, Corporate Research and Development.

Digital Equipment Corporation.

iii

. o - L & __

|

E} , Dedicated To The Memory Of
i

Herman Gotloeb Herrmann

iv

ACKNOWLEDGEMENT

There are many people who have helped me along the road
to writing this dissertation. In particular I would like to
thank my committee: Nico Spinelli, for his helpful
suggestions, especially with regard to reviewing the
literature; Charle' Rupp, for teaching me most of the
practical things I know about VLSI; and Edward Riseman, for
his many suggestions and a great deal of help with the
computer vision aspects of this work. Most of all I
would like to thank my advisor, mentor and friend, cCaxton
Foster. Over. the past five years I have learned a great many
things from him, some technical in nature and some not. I

feel very proud to be able to call myself one of his
students.

In addition to my committee, there are many people who
have directly assisted me in this research. I would like to
thank Al Hough, Daryl Lawton, Martha Steenstrup, Jeff Bonar,
Raj Wall, John Adler, Steve Weiss, Ken Estabrook, Kurt
Rudahl, and Madhura Kirloskar for their contributions. 1
would especially like to thank Steve Levitan. He has been a
constant source of ideas, encouragement, help, sage advice
and moral support for these five Years. I am most indebted
to Bill Verts, my very good friend and fellow Oregonian, who
has kept me from going insane on many an occasion.

I would also 1like to thank the people who have really
made this all possible, the secretaries and staff who do so
much to keep life at the University running smoothly: Ruth
Morrell, Rose Korowski, Renee Stephens, Louise Till, Bonnie
Cichy, Barbara Gould, Janet Turnbull, Susan Parker, Renita
Ballard, Rick Newton, Skip Rochfort, and Joey Griffiths.

Three of my former teachers, Robert _Anderson, Gene
Enfield and Harry Goheen have had a particularly strong
influence on the course of my academic career. They are the

people who are most responsible for my choosing the path
that I have taken.

Most of all, I would 1like to thank my Mother for her
support, encouragement and love.

g

g‘—*‘v

E—‘“_'l

FE— BT BT

-

i e B S T S S s - e -

ABSTRACT
Image Processing on a Content
Addressable Array Parallel Processor

August, 1984
Charles Chilton Weems Jr., B.S., M.A., Oregon State
University, PhD., University of Massachusetts

Directed by: Professor Caxton C. Foster

We present the design of a Content Addressable Array
Parallel Processor (CAAPP) for image processing and low to
intermediate level vision processing. This new architecture
combines: a) associative processing including global
broadcast and response to and from the array of cells, and
b) afray processing via local square neighborhood
computation. This combination of capabilities can be used
to close the feedback loop between high and low level vision
processing, by providing appropriate and effective
mechanisms for bidirectional information flow between the
CAAPP and its host symbolic processor. A number of

algorithms are presented which demonstrate this.

The CAAPP design consists of a square array of 512 by
512 processors, with its own controller, driven by a host
processor. The basis of the hardware design is a custom
VLSI chip which contains 64 bit-serial processors. We have

taken a pragmatic view of fabrication technologies (VLSI,

vi

packaging, etc.), approaching the design very
conservatively. The architecture does, however, represent a
genuine increase in processing power over the best machines

now available. The design of a test chip with 16 processors

is presented to demonstrate the feasibility of construction

with current technology.

The experience needed to achieve an effective Ccaapp
design was attained by iterative evaluation and redesign.
The evaluations consisted of developing algorithms with a
subsequent analysis of architectural effectiveness. Two
iterations of the development process are presented here.
The first is our experience with a commercially available
system. The second is the analysis of our first CAAPP
design, bésed on simulations that gave us statistics for
static and dynamic instruction set usage. The result is
three new designs, based on the capabilities of three

potential fabrication technologies.

Several of the parallel algorithms developed as part of
the evaluation process are, themselves, of considerable
interest. These include a method of decomposing rotational
and translational motion parameters from an optic flow
vector field, an order square-root of N sorting algorithm,
and a way of performing LISP garbage collections that

insures the capability of real-time response.

vii

F;

g_—\

E“‘”‘W

TABLE OF CONTENTS

ACKNOWLEDGEMENT . . [[} . e L] . L] . L] . . [. [. [[}
ABSTRACT [° L] [} [[[. L] [[L] L] L] . . [. °

.« V
Vi

LIST OF FIGURES . L] L] [[. [. [] L] . . [° . OXiii

LIST OF TABLES L] L3 L] L] L] Ld L] L] L] L] L] L] L L] L L] L3 L] L] L]
CHAPTER
I. INTRODUCTION AND OVERVIEW + & o o o o o o o o o«

The Vision Problem . .« ¢ ¢ ¢ o« o o o o o o o«
The Architecture Problem . . ¢« & o o o ¢ o o o«
The Engineering Problem . . « ¢ ¢ o ¢« o o o &
The Experience Problem . . . e o o o o s
The Contributions of this Research e s e o o

II. A REVIEW OF ASSOCIATIVE AND PARALLEL PROCESSORS

Introduction
Definitions of Associativity .
What CAM's are Used For . . .
A Database Search Example . .
Finding Greatest and Least . .
Some Drawbacks of CAM's ¢ ¢ ¢« o o
Content Addressable Parallel Processors . .
Some CAPP OperationNsS ¢ « « « o o o o o o o
The Add Comparand Algorithm
The Add Fields Algorithm e .
Typical CAPP Applications and Env1ronments . .
A Survey of Associative Processors . ., . . .
The Semionics REM . ¢ & ¢ ¢ ¢ ¢ o o o o o o o
A Review of Parallel Processing and Processors
SIMD Parallel Processors for Image Processing

. . L] L] *
. L] L] L] L]
] L] L[] L
e o o o
o e o o
L[] . L] . L]
* o o o o

III. THE SEMIONICS REM: AN EXPERIMENTAL CASE STUDY
IN CONTENT ADDRESSABLE MEMORY . . . « + . . .
Introduction « ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o o o
Postage Stamp Data Base . . ¢« ¢« ¢ « o .
Architectural evaluation
Real Time LISP Interpreter
Architectural evaluation . e e o o
Cryptanalysis of Simple Substltutlon Ciphers
Architectural evaluation

viii

« XV

.21
.27
.31
.32
.34
.36
«37
.38
.41
.42
.44
.51
.54

.59

.59
.61
.62
.62
.64
.65
.67

Real Time Tune Recognition .

L] L] L] L] L]] o L] L .67
Architectural evaluation69
John Conway's Game of Life . + v v ¢« v « « . . .69
Architectural evaluation72
Text to Speech Synthesis73
Architectural evaluation,78
Summary of Findings78 e
IV. DESIGN FOR A CONTENT ADDRESSABLE ARRAY PARALLEL
PROCESSOR « « & 4 o o o o o o o o o o . e o « 85 e
Introduction v . e85
Design Constraints ¢« v ¢« o86
Design GoalsS &« 4 4 & ¢ o ¢ 4 o ¢ o o o o v o . .92 =
The CAAPP v 4 4 4 v o o o o o o e« o o o o o 101
The controller « v v v ¢« v . « . . 101 1
The distribution of 262,144 processing : e
elements 4 0 4t 4 4 4 e . . . 104
Processing elements + 167
The redgisters . ¢ ¢ ¢ ¢ ¢ v v o o o o« o« o o 111
Neighbor communications 113 ~
Broadcast comparand and meinory data 113 ,
Activity control ¢ 115 |J
Some/none and response count « o 115 -
The array edge circuitry 121
The Processing Element Instruction Set 122 J
Memory operations . « ¢« ¢« ¢« ¢ ¢ ¢ 4 o o . 124 y
Register operations 125
Communications operations 126
Special operations 128 LJ
The CAAPP Simulator . « « o ¢ ¢ o o o o « « o 129
Circuit Board Layout « « ¢ « o & o « o o o o . 132
The Special Purpose CAAPP Integrated Circuit . 134 .J
CAAPP chip pin assignments 135
CAAPP chip overall floorplan 135
Processing element floorplan 141
Support Circuitry « o« o o o o ¢ o ¢ o o o . 143 o
Processing element circuitry 162
Summary statistics . . ¢« ¢ 4+ ¢ ¢ ¢ ¢ . . . 188
Memory simulation and fabrication 189
Design Conclusions . . « « « « o o o « o « o+ . 194 =
V. APPLICATIONS AND ANALYSIS « « ¢ o o o o o « o« o 195
Introduction . . . & ¢ 4 ¢ « ¢« ¢ ¢ o s o + « o 195
Basic Operations . . « v ¢ « o ¢ « o o « o« « o 199
Count responders . . « & ¢ ¢ ¢ ¢ ¢ ¢ « « o 199 -
Exact match « & ¢« ¢« ¢ ¢ ¢ o o o o 202

ix

E E BT OFE T B

E— E

E B E E

VI.

Greater and less than searches
Greatest and least searches .
Select first
Add and subtract constant .
Add and subtract fields .
Multiply by constant . . .
Divide by comparand
Multiply fields
Divide fields . « ¢« « « . .
Simple Image Processing Operati
Game of life . . . & ¢ ¢ ¢« ¢ ¢« o« &
Gaussian smoothing image convolution
Sobel edge extracting operation . . .
Histogram . o« o ¢ ¢ ¢ ¢ o o o o o o &
Rotate 3-D model and extract frontal
surface 4 4 4 e e o o o @
Higher Level Image Processing Operations
Region growing and labelling
Decomposition of rotational and

] () [[L] []
L] L] L] L] . *

translational motion parameters from

optic flow . & ¢« ¢« ¢ ¢ ¢ ¢ ¢ o o &
Other Applications . . ¢« ¢« ¢« ¢ o« « « &
Center of mass o o .
Geocorrection of satelllte 1mages .
Square grid sort o o . .
Real time execution of LISP programs

Simulation of neural networks

Graph processing and semantic networks

EVALUATION AND REDESIGN . & ¢ o o o o o

Introduction e o o o o o e o
Statistical Summary of Algorithms . . .
Discussion of Instruction Set Usage . .
Summary of Findings . . « ¢ « o & .

Other Possible Architectural bnhancements

MEMOLY S1Z€ + v ¢ ¢ o o o o o o &
Power reduction
Faster response count . . « « « &
Expansion of the ALU inputs . . .
Ability to complement ALU inputs . .
Full width interchip communications .

Long distance communications between cells

Vector broadcast registers

Direct selection of individual cells by

the controller

Build chips from 16 cell blocks of
processors . , ., .

. [[] .

L] * . L] * L] L[] L] []

e o o o o

L[] L] L] L[] L] . . . L] * L] * [] L]

204
206
208
214
215
217
219
221
223
228
230
234
245
251

254
262
264

269
288
289
293
299
305
311
313

319

319
321
325
338
341
341
343
344
347
348
349
350
354

355

355

Evaluation of the Proposed Enh
Conservative Second Design . . .

Intermediate Second Design

Advanced Second Design . . .

Dual ported cell memory
Multiple ALU result destinations

Multiple controllers connected to subarrays

Design constraints ., . , . .
Overview of the design
Chip and processing element desig
Design advantages and limitations
Implementation analysis

Comparison to the previous design

* . L 4 L d L

Design constraints . , .

L] * * *

Overview of the design
The new response count mechanism
Design advantages and limitations
Implementation analysis
Comparison to the previous designs
Design constraints . .,
Overview of the design

Chip and processing element design fea

Chip and processing element design featu

Design advantages and limitations
Implementation analysis

VII.

VIII.

Comparison to the
CONCLUSIONS &

FURTHER RESEARCH . .

previous designs

BIBLIOGRAPHY .« o o . .

APPENDIX A:

A HISTORICAL REVIEW OF

ancements .

feature
ture
ture

ASSOCIATIVITY . .

Early Conceptions of Associativity . .

MEMEX . ¢ o o o « o
Cryotron Catalog Memo
Associative Processor
GAP or the RADC 2048
NEBULA . « ¢« ¢« o o
ASP . . ¢ ¢ ¢ .
STARAN .« « o« o o o
RADCAP or SIMDA o
General Comments .

XY o .
and APP
word CAM

xi

[] . . L[]

L[] L] L] L] e *
.

S

L]
L)
L 2
S
L]
>
L
S

356
358
358
363
368
368
369
369
377
378
381
381
381
382
383
388
392
393
395
397
397
398
399
402
404

404

408

416

420
431

431
433
433
436
438
441
444
449
454
456

t

e

I i N

T TOETT g BT £ T

o

E— B E

g

APPENDIX B:

A HISTORICAL REVIEW OF
PROCESSORS L] * L] L] L] L] ° L] L d L L]

von Neumann's Cellular Computer

The Spatial Computer . . « o . .
Holland's Machine
The Orthogonal Computer
SOLOMON I ¢ o ¢ ¢ ¢ o o o o o o
SOLOMON II « o ¢ « o o o« o o o &
ILLIAC III o v o o o o o o o o @
ILLIAC IV . ¢ ¢ ¢ o o o o o o
PEPE ¢ ¢ ¢ ¢ o 4 o o o o o o o »
OMEN o ¢ ¢« o ¢ o ¢ o o o o o o o
CLIP 3 ¢ ¢ ¢ o« o o ¢ o o o o o s
CLIP 4 . ¢ & ¢ 4 o o o o o o o @
Massively Parallel Processor . .
MIT Connection Machine
Other Machines . + « ¢« ¢ & &« +
SUMMALY o o o o o o o o o o o o

xii

SIMD PARALLEL

L] L] L] L] [* L] * L] L] L] L] L] L]

L] L] L] L * L) L] L] L] * L] * L] [] . L]

L] *] L] L[] L[] L] [L) L) L] L)] L] L] L[]

L] * L[] L] L] L] L] L] L] L] L] L] L] * L] L[]

L] ® L] . L] L ® L] * L] L] L] L[]

] * L] L] L] [] L] L] L] L] L] L[] L] . [] L]

L] L L] L] * L] L] L] . * * L] L] * . L]

460

460
461
462
464
465
474
474
472
474
478
480
482
485
489
491
492

19.
11.
12,
13.

14.
15.
16.
17.
18.
19.
20.
21.
22,
23.
24.
25.
26.
27.
28.
29.
30.
31l.
32.
33.
34.
35.
36.
37.
38.
39.

40.
41.
42.

- Overview of the CAAPP System

LIST OF FIGURES

Array Topology for all Edge Treatments

Off-Chip Communications Network . . .
Organization of One Processing Element
On-Chip Response Count Logic .
CAAPP Chip Floorplan
Test Chip Floorplan
Processing Element Floorplan
Super Buffer Circuit
Checkplot of Super Buffer . .
Checkplot of Super Buffer Column
Address Select Timing Generation Circuit .
Checkplot of Boundary Between Instruction and
Address Decoders . . . e o o o o o o o o o
Sample Section of Address Decoder Logic
Sample Section of Address Decoder Stick Diagram
Sample Section of Instruction Decoder Logic . .
High Power Buffer Circuit
Checkplot of High Power Buffer
Some/None LOogicC + & ¢ o & o o o o o &
External Neighbor Preselect Circuit .
Checkplot of External Neighbor Preselec
Memory Cell and Driver Circuits . . .
Checkplot of a Pair of Memory Cells
Checkplot of Memory Driver
XOR-Select Section Circuits
Checkplot of XOR-Select Section . .
Neighbor Select Circuit
On-Chip Neighbor Network Cell Segments
Off-Chip Neighbor Network Cell Segments
Off-Chip Neighbor Network Termination .

L] L] L) L] .
[) [] [. L] [] L[] L] . [[]

L] [] . L[] . . [] . L] L] . L[]
L] L] L] L[] L] L . * L] L] L[] .

e o o o o (T e e o *

e o o o s e o X'e 6 o o e ¢ ¢ o s e e & o
S e o 6 s o ¢ o e & o 6 s o o s e e e o s

ALU Function Selector and Neighbor Networks
ALU Circuit .+ & o o o o o o o o o o o &« .
Checkplot of ALU and Function Selector . .
Register Driver Circuit . . « « o « o & .
Register Circuit Part One . . « « « o & .
Register Circuit Part TwWOo . .« « « o o & .
Checkplot of Registers . . .« « o « o o« o .
Checkplot of Regyister Driver
Photomicrograph of Memory Cell and Driver fro

Test Fabrication . . . ¢« ¢« ¢ « o« o &
Weight values for the Sobel Operation . . .
Sample Flow Field e o .
Difference Field for Sample Flow Fleld .

.

.
L] L] L[] L]
. . . L]

xiii

] L[] L] L] . L]] . L) L) L] L] L) * . . L] L] . . .

. L] L] . * L] L]] L[] L]] L]

L] L] * L]

O
(=)

193
108
117
119
137
139
142
145
146
147
149

150
153
154
155
156
158
159
160
161
165
166
168
169
170
172
174
175
176
178
179
180
182
183
184
185
186

193
246
276
277

E—“—\g“"’-l

E“""\

e S

QH‘W

g———-—,. g-“ﬁ E“‘—* g"““‘l g“‘""!

&

43.
44,
45,

46.
47.

48.
49,
50.

51.
52.
53.

54.
55.
56.
57.
58.
59.

Rotational Template Selected by the Algorithm .
Translational Template Selected by the Algorithm
Sample Flow Field With Rotational Template
Subtracted 4 4 i 4 e e e e e e e .
Response to Poorly Matched Translation Template
Translation Template Generating Example of
POOL RESPONSE ¢ ¢ & 4 o « « o o o « o o o o
Sample Flow Field With Random Spike Noise Added
Difference Field for Sample Flow Field With Noise
Sample Noisy Flow Field With Rotational Template
Subtracted i 4 4 e e e e e e e e
Multicontroller Processing Array . . . o
Floorplan of Conservative Second Design Chip . .
Communication Network for Conservative Second
Design Chip . . ¢ ¢ ¢ v ¢ ¢ ¢ 4 o o o o o .
Conservative Second Design Processing Element
Intermediate Second Design Processing Element
Intermediate Second Design Instruction Set
Intermediate Second Design Response Count
Advanced Second Design Processing Element
Advanced Second Design Instruction Set

L] .

Xiv

279
280

281
282

283
284
285

286
361
371

372
373
387
389
390
491
493

l.
2.
3.
4.
5.
6.
7.
8.
9.
19.
11.

12.
13.
14.
15.
l6.
17.
18.

19.
20.

21.
22.

LIST OF TABLES

Semionics REM Instruction Set . . . e o o o
Summary of Findings from REM Case Study o .
Summary of Design Constraints
Summary of Design Goals . . .
CAAPP Chip Instruction Set . .
Circuit Board Connections . .
CAAPP Chip Pin Assignments . .
Instruction Decoder Patch Table
Summary Statistics for Test Chip o« o
Algorithms Developed for the CAAPP Evalua
Instruction Occurrence Counts for Sample

Algorithms . . . e o o o o o s o o e o
Algorithm Count for Each Instruction
Percent of Algorithms Using Each Instruction .
Average Number of Occurrences Per Algorithm .
Macro Usage Statistics e o e o o .
Enhancements Ranked by Speed Werlt o e e o e e
Conservative Second Design Instruction Set . . .
Pin List for Conservative Chip and Circuit

Board I/O LiNES v v o « o o o o o o o o o o
Intermediate Chip Pin List o v ¢ v o o o o o o «
Intermediate Second Design Circuit Board

Connections « o ¢« v ¢« 4 ¢ ¢ ¢ ¢ o o o o o o
Advanced Chip Pin List « o ¢ ¢ 4 ¢ ¢ o ¢ o o o &
Advanced Second Design Circuit Board Connections

n

L]
L]
L]
*
L]
(o]

i

Xv

L] . L[] . L] [] . .

5¢
79
87
99
123
133
136
151
187
196

322
323
324
326
365
366
376

380
394

396
405
406

£

Preface

"Consensus is a necessary condition for a successful political system."

---Enid Bak

L

"Any system is characterized by action or behavior that is oriented toward specific
goals."

-—--Talcott Parsons

L
High quality service at the front line has to start with a concept of
service that starts with top management and finds its way into the structure
L’ and operation of the organization. The role of management is to build and
maintain the culture, set expectations of quality, provide a motivating climate,
furnish the necessary resources, help solve problems, remove obstacles and
make sure high-quality job performance pays off.

e S e B B s B

3 S

E R

E £

g—"?

E B B BT

CHAPTER I

INTRODUCTION AND OVERVIEW

"And generally it is good to commit the
beginnings of all great actions to Argus with his
hundred eyes, and the ends to Briareus with his
hundred hands; first to watch and then to
speed..." -- Francis Bacon: Of Delays

The focus of this dissertation is the design of a highly
parallel computer architecture for image processing and
computer vision. There are three basic problem areas that
must be integrated in order to produce an effective machine
design. These three areas are: Computer vision, computer
architecture and engineering. From the computer vision area
it is necessary to determine what is required of a machine
that can be wused to facilitate the solution of the vision
problem. From the computer architecture area it must be
determined what machine structures should be selected to
meet the requirements set forth by the vision area. The
engineering problems that must be addressed are the
limitations of current fabrication technology, and what can
actually be built within those limitations. This involves
not only VLSI circuit design, but also integrated circuit
packaging technology, circuit board fabrication technology,

power and signal distribution techniques, heat dissipation

problems, radio frequency electrical shielding, circuit

board and integrated circuit connector technology, and even
mechanical mounting technology for housing the completed

system.

The Vision Problem

Returning to the first of the problem areas, computer
vision, a close examination will reveal that specifying the
processing requirements is not a simple task. The
difficulty is that the computer vision problem itself is far
from being solved, and is currently a rapidly evolving area
of research. At this point in~ time, nobody can give a
detailed algorithmic specification for a general vision
interpretation system, Rather than a set of specific
processing requirements, then, it is only possible to give a
list of general features that must be present in any machine
that is to be used to significantly advance the vision
problem. It is believed that if such machines are built,
they will greatly facilitate research and define many issues

in machine vision development.

In the discussions that follow, there will be little
direct reference to image processing which, usually, refers
to the enhancement and classification of images. In

general, the computer vision problem subsumes the tasks

£ B

E 7 BT

E \ E Al E 1 g—“}

performed in normal image processing. The computer vision
problem can be summarized as the automatic transfogmation of
an image to a symbolic form that represents a description
and an understanding of the content of the image. This

process may be referred to as an iconic to symbolic

transformation.

From our perspective, the computer vision problem will
be described as involving three levels of processing. These
are referred to as the low, intermediate and high levels.
The low level consists mainly of operations on pixels and
neighborhoods of pixels, similar to the types of operations
performed in standard image processing tasks. 4 The
intermediate level provides an interface between the low and
high levels of representation, that 1is, between an iconic
pixel-based representation and the symbolic elements
representing visual knowledge. 1In the UMASS VISIONS system
(84, 85], which is the environment in which most of this
research was conducted, the intermediate level consists of a
symbolic description of the two dimensional image in terms
of regions and line segments, and their associated
attributes. 1In some systems this level would consist of
representations of surfaces, or more generally, "intrinsic"

features of the physical environment that are in

registration with the image.

The high 1level processing relates the symbolic
two-dimensional representations of the intermediate level to
object descriptions, stored in a knowledge base of
information about the three-dimensional world. The result
is a symbollic representation of the content of a specific
image in terms of the general stored knowledge of the object
classes and the physical environment. Communication between
these levels is by no means unidirectional. 1In most cases,
recognition of an object or part of a scene at the high
level will establish a strategy for further processing and
probing at the low and intermediate levels, in order to pull

out additional features under the guidance of a partial

interpretation.

Based on this general view of the vision problem, a key
requirement is a flow of communication and control both up
and down through all levels of visual representation. 1In
the upward direction, the communication consists of summary
{nformation and statistics that allow processes at the
higher 1levels to evaluate the success‘ of 1lower level
operations, and also the passing of actual symbols. In the
downward direction the communication consists of commands
for selecting subsets of the image for specifying further
processing in particular portions of the image, and requests

for information in terms of the intermediate

E

N N

€

E"——W g E i

representation.

The long range goal, of course, is for all of this to be
done in "real time". Real time can best be defined as
whatever time the processing may take without causing the
system to fail to meet its time dependent goals. By this
definition, real time is purely application dependent. For
example, vehicle navigation in a dynamic environment
requires control decisions to be made roughly once each
second. This, however, depends upon the speed of the
vehicle and the speeds of independently moving objects in
the environment. If the vehicle is being visually guided,
then several frames may need to bpe processed in one second
in order to determine parameters of motion. Therefore, many

of the low level operations necessary to achieve this must

1,

.be performed at video rate. Specifically, the time for

scanning one video frame (one thirtieth of a second) will be
used as a basis for speed comparisons. It should be noted
that this was simply chosen as a convenient time period for
discussion and comparison of operating speeds in relation to

real time. Many applications will, as mentioned above, not

impose such strong time restrictions.

It is obvious that many applications require some form
of massive parallel processing. Consider a serial machine,

with a one microsecond instruction time, processing a 512 by

512 image (roughly a quarter of a million pixels). Even if
an image operation can be performed in 20 instructions for
each pixel, the total time will be five seconds for the
operation. Vision processing might require hundreds of such
operations, so it is quite obvious that a serial processor
will take too long to generate a result even for an
application that requires far less than video rate

processing. This is due to the well known "von Neumann

bottleneck", in which a large memory must be accessed and

processed one cell at a time.

From the above description of the computer vision
problem, a set of general requirements for a computer vision
architecture can be deduced. Not the least of these is the
ability to process images in real time, preferrably with a
series of many operations being performed in a frame time.
As a separate point, this implies that the machine must be
able to 1load (and possibly dump) a complete image in well
less than a frame time (or in parallel with the actual
processing of a previous frame). Loading a 512 by 512 by 16
bit image in under one frame time represents a rather high
data transfer rate. Since a great number of 1low level
operations will be needed to support processing at the
higher levels, the speed requirement would tend to indicate

the need for a pixel per element class, mesh connected

L.

F g E F

O

cellular array processor. It is generally recognized that
these provide the greatest speed in performing 1low level

image operations.

Most important of the architectural requirements,
however, is that a general vision machine should provide
mechanisms for communicating information and control both up
and down through the three levels of representation. The
machine must be able to provide the necessary summary
information quickly, so that it can try a variety of
processing approaches to produce the best results. This
type of communication will be necessary to permit the
autonomous transformation of an image to a set of meaningful
symbols. For this reason, the mechanisms that provide the

summary information must be applicable to both pixel and

symbol data.

A key issue 1in achieving an effective architecture, is
the ability to maintain the low and intermediate
representations, pixels and symbolic region, line and
surface representations simultaneously in the same machine.

The necessity of dumping an image out, for evaluation by a

sequential program, must be avoided at all cost, It is

simply too time consuming to transfer the volume of

information contained in an image. Even if it took no time

to dump the information, the time required for serial

evaluation would still be too great. Dumping an image for

outside evaluation simply defeats the entire purpose of
having a special parallel processor for computer .vision.
Instead, the computer vision machine must be able to provide
enough feedback to the controlling processor to allow all of

the operations to take place within the vision machine

itself.

The Architecture Problem

The problem facing the computer architect is to design a
machine that 1is specialized for vision processing but. which
is sufficiently general that new approaches, to the various
aspects of vision, can be implemented on it. It is quite
simple to build special purpose machines that implement
particular image processing algorithms with great speed.
However, as mentioned above, computer vision research is a
dynamic, rapidly changing area. New algorithms are
constantly under development and experimentation. At this
stage of our understanding of the problem, for a wvision
architecture to be considered a contribution, it must be
sufficiently fast and general to allow complex

experimentation up to the interpretation level.

The basic architectural issues to be addressed for

e

?‘—!

E

vision stem from the requirements of the problem: the
ability to process both pixel and symbol data, a fast
processing rate, the ability to select particular subsets of
the pixels for special processing, feedback mechanisms that
allow focussing of attention and data-directed processing
(without having to dump the image for external evaluation),
and the ability to transform an image into a set of

meaningful symbols that describe it.

The general solution that we have developed and which
will be presented in this dissertation is a machine that is
a fusion of mesh connected cellular array processors and
associative or content addressable parallel processing
capabilities. The review chapter will more fully explaiﬁ
the benefits of combining these two sets of capabilities.
To briefly summarize, however, previous research has shown
that a mesh connected‘cellular array is a structure that is
extremely well suited to performing basic 1local image
érocessing tasks. With one processing element per pixel,
such a machine can perform very quickly many of the basic
image processing operations, including both the pixel and
local neighborhood classes of operations. The problem with
the cellular arrays that have been proposed is that they

generally do not provide for selective processing of pixel

subsets (such as collections of regions or line segments

10

based on location or particular .attributes of color,
texture, size, shape, etc.), nor do they supply feedback to
the controller. 1In other words, they do not provide the
necessary bidirectional communication between symbolic
processing and pixel processing. An image is simply loaded,
some operations aré applied to it, and then the image is

returned for external sequential processing or human

presentation,

Research on content addressable parallel processors
(CAPP), on the other hand, has always emphasized selecting
and processing arbitrary subsets of the data elements,
providing feedback to the controller and doing whatever is
necessa?y to keep from having to move data in and out of the
processor. This is because the time required for loading
.the data, which 1is roughly equivalent to the time to
serially process the data with one operation, must be
included in the total processing time. In order to claim
any significant speed increase over a serial processor, a
CAPP must be able to average the data load time with a large
number of parallel operations. One way of achieving this is

to reduce the number of times that the data must De

transferred in and out, by eliminating the need to

externally evaluate the results of processing. This can be

done by providing global Ssummary mechanisms that feed back

e .

r—' g——j - | E‘—« 1

g

E g B b £ £

Y B E E E E

11

to the controlling processor, to allow it to perform the
evaluation of the processing without removing the data from
the processor. It will be seen that the combination of
features provided by cellular arrays and associative
brocessors is exactly what 1is dictated by the requirements
of the wvision problem. Thus, the end result of this
particular bit of research is the design of a Content

Addressable Array Parallel Processor (CAAPP) for computer

vision.

The decision to build a computer vision machine based on
a CAAPP architecture does not solve all of the architectural
problems, however. It would be quite easy to build a CAAPP
that is not well suited for vision. Therefore, deteramining
the fundamental operations and processing element
characteristics required to produce a good vision processor

is the basis for much of the research that will be presented

here.

The Engineering Problem

This essentially boils down to: Given what is desirable

in a wvision machine, how much of it can actually be built.

It would be desirable, for example, to give each Ccaapp

processing element the full power of a -minicomputer.

12
Realistically, however, this simply isn't feasable in a
processor per pixel machine. Besides the prohibitive cost,
the complexity that such a design would entail will lead to

very unreliable hardware.

The approach that has been taken, in the course of this
research, has been to develop sets of constraints on the
designs which keep them within the 1limits of buildability
for particular given technologies, The technologies
involved are integrated circuit fabrication (vLsI),
integrated circuit packaging, circuit board construction,
connectors for wiring between circuit boards, backing
storage, image displays, and so on. For all but one of the
designs presented here, the technology employed is mature
and reliaﬁle. The guiding philosophy has been that it is
dangerous to both push the 1limits of architecture and

technology at the same time. To do so is a sure formula for

failure.

Thus, it is the engineering problems which will temper
the potential solutions for the vision and architecture
problems with realism. Throughout this dissertation the
vision, architecture and engineering problems are
continually being played off against each other to produce a

good set of tradeoffs in the final design.

E E"

o

13

Some of the specific engineering problems that must be
addressed are: number of componenents on a VLSI chip, heat
dissipation, number of connections on chips and circuit

boards, size of circuit boards, 1lengths of wires, signal

propagation times, switching times, interfacing, power
distribution, reliability, and cost. Proper evaluation of a
design with respect to these can only be done through actual
construction. Thus, it will be noted that part of this

research involved actually designing VLSI chips to permit

this evaluation to be done.

The Experience Problem

There is one more problem area which encompasses all of
these three areas. This is the general lack of experience
in designing real architectures for vision. Because no one
has yet built a true, general vision machine, the initial
foray into this realm is highly speculative. For this
reason, the approach taken with this research nas been to go
through several iterations of design and evaluation in order
to build a base of expertise on which the final conclusions
can ' rest. This has included experimentation on, and

evaluation of, an actual hardware system, as well as the use

of several simulators.

14

The Contributions of this Research

This research began by addressing the experience
problem. Before designing a CAAPP system of our own, it was
felt that the best course of action would be to spend
several months developing expertise by programming a
previously existing CAPP system. 1In this case, a Semionics
REM provided the hardware environment. The REM and the
results of our experience with it, as well as several local
hardware modifications are described in chapter three. It
was this experience that heavily influenced the details of
the design work that followed. Let us consider the most
important of the conclusions from this case study. The
some/none and response count report mechanisms are very
important because they provide a way for a controlling
processor to quickly get a summary of the global state of
the processing array. Specifically, some/none indicates
whether any or none of the processing elements is in a given
state, and the response count is an integer representing the
number of processing elements in a given state. Other
conclusions include the desirability of having more
processing elements with smaller memories in order to
increase parallelism, that nearest neighbor connections were

valuable both because they allow certain types of algorithms

L

e g B

2]

&3

15

to be performed and because, given smaller memories in the
cells, they provide a means of simulating larger memories,

and finally that bit serial processing elements are more

cost effective than bit parallel elements.

From these findings an initial design for a CAAPP was
developed. The machine was designed as a 512 by 512 array
of processing elements, connected by a four way mesh, with
hardware some/none, response count, and response resolution
(the ability to select a single element for processing when
several have responded to a query). Other global report
mechanisms were developed in software, including maximum and
minimum value, mean, standard deviation, and center of

mass. The response count mechanism is particularly

innovative in that it is reasonably fast (about 10660 times

_faster than a serial count) but requires very little special

hardware. This is because it takes advantage of the square
grid communications network. The processing element design
was kept very simple in order to enhance reliability, and

consisted of five single bit registers, 32 bits of memory, a

simple ALU and some data routing logic.

After designing the machine architecture, it was

necessary to show that it could be built. This involved a

VLSI design effort that resulted in a one-quarter size test

chip with sixteen processing elements. (The eventual goal

l6

was to put 64 processing elements on a single chip.)
Although the chip was never fabricated, due to problems of
obtaining access to the foundry for which it was designed,
various electrical simulations indicate a high probability
that it will work. This exercise also addressed the
experience problem, giving us a good background in VLSI
design, and a solid feel for what could and could not be
done with mature fabrication technology. The first CAAPP
design, the VLSI implementation of the test chip, and an

analysis of the chip are presented in chapter four.

Besides showing that the first design could be cast in
silicon and evaluated from a hardware viewpoint, it was
decided that a software simulator should also be built that
would allow various applications to be developed in order to
also evaluate the architecture from a software viewpoint.
Roughly 30 such applications were then programmed for the
CAAPP, ranging from simple arithmetic macro operations to
image enhancement processes. Each of these was evaluated
for timing and instruction set usage. These are presented
in chapter five. An algorithm for extracting rotational and
translational motion parameters from an optic flow field is

particularly interesting.

From the instruction set usage statistics an analysis of

weak points, delays and bottlenecks in the architecture is

| T e B o S e B et A A A - B

E

17

developed in chapter six. This chapter also presents a
variety of solutions, forming a shopping list of potential
hardware enhancements. The effectiveness of each of these
enhancements is then evaluated by developing a figure of
merit based on the speed increase that each would provide
for a set of frequently used instruction sequences (weighted
by frequency of use for each macro), versus a cost measure

based on difficulty of implementation for each of the

enhancements.

In the 1last part of chapter six, three sets of design
constraints are presented to guide the design of three more
advanced CAAPP architectures. One of these is identical to
the original set of constraints imposed on the firsﬁ
design. fhe resulting machine is in some sense the best
that we could have done with the original design, given more
experience. The second set of constraints is slightly
relaxed to take into account three years of progress in what
is considered mature technology. The resulting machine
design represents what we would build now if jdiven the
opportunity. The third set of constraints is even further
relaxed to permit the use of the best available technology.
The resulting design is probably impractical to build today,
but may be buildable in a few years time. The set of

enhancements chosen for inclusion in each design is based

18

upon the speed and cost evaluations discussed in the
preceding paragraph. The result is a set of designs that
are well tuned for three different levels of tecﬁnological
constraints, to best serve the needs of vision processing.
Thus, the final result of this research is a CAAPP
architecture that has been carefully tuned to serve as a
general computer vision machine, providing the necessary
processing power, communication paths, and control
mechanisms to bridge the gap between the low, intermediate,

and symbolic levels of image representation.

£

L] E___

T B OFE B B B E BT BT BT OETOE e

CHAPTER II

A REVIEW OF ASSOCIATIVE AND PARALLEL PROCESSING

Introduction

This chapter presents the basic concepts of associative
and parallel processing. .It also examines some existing
architectures in order to give the reader a feel for what is
currently the state of the art. For readers that are
interested, appendices a and B provide a broader
presentation of the litera;ure review from which this

chapter is extracted.

The emphasis here will be oriented more towardé
associative processing than parallel processing because most
people are more aware of the basic concepts of parallel
processing than they 'are of associativity. The purpose of
this chapter is to give the reader a feel for what each of
éhese areas has to contribute to the vision problenm. In
general it will be seen that in associativé processors what
has been emphasized are control and feedback mechanisms,
while parallel processors have tended to emphasize the
topology of the communications network that links the
processing elements. By combining the strengths of these

two lines of research, a new architecture can be formed

19

20

which does a much better job of satisfying the needs of
computer vision processing than either a pure associative

machine or a pure parallel array machine.

It is also the purpose of this chapter to show how
associativity can be used to perform in-cell operations that
would require, on a typical parallel processor, special
logic in each processing element. Thus, associativity can
also be considered as a means of reducing the circuit
complexity of processing elements without reducing their
computational power. This is very important, since reducing
circuit complexity will allow more processing elements to be
built for a given cost, and therefore permit greate;

parallelism. Of course, simplified circuitry also enhances

reliability.

Definitions of Associativity

The glossary of the 1International Federation for
Information Processing defines an "associative store" as: "a
store whose registers are not identified by their name or
position but by their content [64]." The glossary also gives
a clarifying example in which it is noted that the retrieval

of any item in such a store would be accomplished by

performing a content search on all of its registers in

g“—" g““—ﬂ %""“‘ﬁ

ol -oun B cons B s

21

parallel with a single operation.

In a normal computer memory a pattern of bits, called
the address, is presented to the memory. This activates
logic circuits which "decode" the address and select one of
the cells in the memory. Data bits can then be read from or
written to that cell depending upon a control bit (usually

called the read/write or R/W control line).

By contrast a Content Addressable Memory ({CaM),
sometimes called an Associative Memory, is accessed by
broadcasting a data value to all of the cells in the
memory. This activates logic in each of the cells which
compares the data bits stored in the cell to the bit pattern
being broadcast. If the values match, then the cell is
selected. 1In a typical CaM, however, selecting a cell does

not usually make it possible to read or write its contents.

What CAM's are Used For

At this point, the logical question that arises is "What

good is the ability to select a memory cell if you already

know what's in it?" 1The answer lies in the other name for

CAM: Associative Memory. A typical CAM cell is larger than a

normal memory cell and is also divided into fields. The

22

fields contain "associated" pieces of data. The data that
is broadcast to all of the CAM cells is compared against
only a subset of these fields. Matches, however, select the
entire cell. Thus the main use of a CAM is to search a list
of records, by a key field; in order to extract associated

data. In fact, CAMs are also referred to as '"search

memories",

The next question that is usually asked is "What good is
having a record selected if you can't read or write " the
contents?" In fact it is possible to read the contents (and
sometimes also to write into the cell) but not directly.
The reason for this is based in the underlying nature of
searching lists of data. The problem is that a list may
contain m&re than one element with identical key fields.
Because each cell in a CAM has its own comparison logic and
selection status register (called the "response store"), all
of the matching cells will be selected at once. This makes
it impossible to then simply read the contents of the
selected cells -- which one of the cells would the data
value be taken from? Before the data can be read out,
another operation must be performed to choose one of the
selected cells. This 1is called the "find first" operation
because it usually just selects the "first" of the selected

data cells. The operation is also called "select first" and

E

L

E 4

B E |

E“""\

g

E

EE B E

FE EF ' E

23

is sometimes referred to as "response resolution". Once
this is done, the cell's contents can be read. Qf course,
if only one cell is selected by the initial search, then its
contents could be read directly. Determining the number of

cells that have been selected is an operation that is often

available in CAM systems.

Although many CAM's do provide a mechanism for counting
the number of cells selected by a comparison, the operation
is usually either very slow or, if fast, requires very
expensive hardware, A less expensive alternative that
almost all CAM's have is a single status bit that indicates
whether any or none of the cells was selected. This is
usually called the some/none bit. It is most frequently
used to test for completion of processing of all of the
selected cells. This takes the form of a "while" loop that
saves the response bits in a set of holding bits (called the
"candidate" store), then finds the first responder,
processes it, turns off the corresponding candidate bit and
loads the remaining candidates back into the response
store. The loop ends when the some/none bit indicates that

there are no more responders -- all of them having been

processed.

This essentially encompasses the basic features of a

typical CAM. Almost every CAM ever designed has the

24

components and operations described above in one form or
another as a part of it. The only detail yet to be
mentioned is the mechanism by which the subset of fields is
selected for comparison. This depends upon the overall
organization of the memory. The actual CAM memory cells may
be either bit parallel or bit serial. 1In the bit parallel
memory, every bit of every cell contains logic for comparing
against broadcast bits as well as logic for combining the
results of the comparisons to set the response bits. 1In bit
serial memory, there is only one set of logic elements for
comparison in each cell. = The search value is then
broadcast, one bit at a time, to the cells. As each bit is
broadcast, the comparison logic in the cells checks that bit
against the corresponding bit in the cells memory. The
result of all of the comparisons is accumulated so that if
all of the bits match then the response store bit is set.
In a bit parallel memory then, the fields are selected by
storing a bit pattern in a register called the "mask"
register. The mask is then broadcast along with‘the search
value (which is often called the "comparand") and only the
comparison logic for bits that are not masked is activated
to produce a response value. In the bit serial memory, bits
that are not to be included in the comparison are simply
never fetched up by the comparison logic, and thus they do

not contribute to the response value.

FE~ o E EC ET O EFET EC ET B oE

%’mﬁ

25

The reason for the two different memory organizations is
cost. Bit serial CAMs are much less expensive than bit
parallel CAMs because the bit parallel CAM requires several
times as many logic elements for the same number of storagev
bits. The bit serial CAM can use standard memory elements
with the addition of only one set of comparison logic for
each memory cell. The bit parallel CAM must have a set of
comparison logic elements for each bit of every memory cell
Plus logic for combining the results of all of the bit
comparisons in each cell. The result 1is that if a bit
parallel CAM has N bits in each memory cell, it will contain
roughly N times as many logic elements as a bit serial CAM
with the same number of cells. On the other hand, the bit

serial CAM will be N times slower than the bit parallel CAM

. for operations that can be applied to an entire field or

cell at once. We will see, however, that many CaM
algorithms are inherently bit serial in nature. 1In the case
of these operations, the bit parallel CAM has no advantage
and may, in fact, be slightly slower than a bit serial caM,
due to the necessity of changing the mask for every
operation, Even less expensive and still slower CaAM
implementations exist in which the cells are processed
serially as well. Such CAMs are no faster than general

purpose computers but are useful as pre-prototype design

26

test beds in the development of parallel CAMs.

In summary, we can take a 1look at a list of the typical
elements of an associative memory that was given by Minker

[81] in his 1971 survey of papers on CAMs:

1) the memory array, which provides the data storage

itself;

2) the comparand register, which contains the data to be
compared against the contents of the memory array for
searches; it may provide a shifting register for some
input/output operations, and it can play an intermediate
role in the transfer of data between the memory array and a
generél purpose computer, depending upon the configuration

in which the processor is employed;

3) the mask register, which is used to contain data

specifying portions of words for operations involving only

word portions;

4) the resolver, which is used to determine the location

of response bits in the response store;

5) the search logic, which causes the search commands
received by the memory to be executed properly -- search
operations are generally accomplished in a bit serial, word

parallel fashion starting at the most significant bit; and

e

F P [F T F T T F T OFET BT T g £ e

27

6) the response store, which receives vectors indicating

which data satisfy a given search criterion and which can
execute logical operations (such as shifting and Boolean

operations on these vectors).

A Database Search Example

To illustrate the use of CAM in a common area of

application, we will examine an example of a database query

system.

Suppbse we have a database stored in a CAM that
represents a catalog of astronomical objects. Each entry in
the databése will consist of the designation of the object,
its type, subtype, celestial coordinates, distance, proper
motion and system association. Not all of the fields will

contain entries for all of the objects.

The simplest query would be to recall all of the
information about a particular object. Because each object
has a unique designation, we could simply broadcast the
object's designation thus selecting the record that contains

information pertaining to it and read it out directly.

Another query that we could make would be to ask the

28

designation 0of an object located at particular celestial
coordinates. 1In this case we would broadcast values for two
fields (right ascension and declination). Celestial
coordinates do not always specify a unique object, however,

so we will have to use a some/none bounded loop to read out

all of the responders.

It is possible that the preceding query could give no
response. This would occur if the coordinates we broadcast
were not quite accurate and thus gave a position in the sky
where no object is present. We can solve this through the
use of an inexact matching criterion. One simple way to
achieve this is to compare against just the high order bits
of the stored naumbers. By ignoring some of the low order
bits, we reduce the exactitude of the matching operation and
are thus checking a range of acceptable values. Doing this
in the above example would essentially increase the size of
the "window" in space where we are searching for the
object. If the search fails again, the precision of the
comparison could be further reduced (increasing the size of
the window) and another search performed. The process could

then be repeated until an object is found.

Often we make conjunctive queries to databases. For
example, we might ask for a list of all stars that have high

proper motion and are either white dwarfs or K class stars

E*‘_‘ﬂ

E B

E—""ﬁ

29

that are in binary systems. This is a fairly complex query
but is easily handled in a CAM. First we set all of the
response bits to one. Next we perform a set of queries,
each of which will turn off response bits for cells that
don't match but will leave the response bits for matching
cells unchanged. 1In this case we would first query for all
objects that are stars, then for all objects that have high
proper motion. This would give us a 1list of all stars that
have high proper motion. Next we store a copy of the
response bits in the candidate store. Now we query for all
white dwarfs, giving us a list of all white dwarf stars that
have high proper motion. Then we exchange the candidate and
response bits. Again we have a 1list of stars with high
proper motion. To this list we apply the query for K class
and then the query for membership in a binary system. We
now have a 1list of ' binary K class stars with high proper
motion in the response store, and a 1list of white dwarf
stars with high proper motion in the candidate store. The
last step uses some logic that we haven't discussed
previously but which is usually present in CAMs --
candidate-response combinational logic. In addition to
operations for exchanging and copying values between the
candidate and response stores, operations are usually
provided for combining the stores through logical AND and OR

operations and for inverting, setting or clearing the bits

30

in either store. Thus the last step is to combine the two
lists with a logical OR operation, putting the result in the

response store; which gives us the desired list of records.

Because any conjunctiQe query can be written as a
boolean expression it can thus be put into canonical form.
This allows us to compute it with just the AND, OR and NOT
operations between the candidate and response stores. Note

that although the two stores and combinational logic are

sufficient for computing any query, they are not necessarily
the most efficient means. Some compound gqueries could
require that certain searches be repeatedly performed. With
multiple candidate bits, these search 1lists could be
temporarily saved and then recalled when needed. Of course
this is only important in bit serial CAMs where searches
. take time proportional to the length of the fields being
compared against. In bit parallel CAMs, the search time
would be exactly the same as the time to transfer bits
between candidates and responders. Thus bit serial CaMs
often have additional hardware for multiple response bits
or, alternatively, a mechanism for storing and retrieving
response bits from the cell's memory. Using memory bits to
store temporary response patterns does reduce the amount of
memory available for data storage but bit serial CAMs can

usually afford to have more bits per cell because the memory

e

E

L e - E— b

E(

£

—

€ € € € E E

~

e £

31

cells are less expensive than those used in bit parallel

CAMs.

Finding Greatest and Least

Another type of query that can readily be done in CAM is
a search for records which Ahave the greatest value in some
field. For example, we might want to know what object (or
objects) have the greatest proper motion. To do this we
begin by testing the high order bit of the field to see if
it is set to one. If the some/none response bit indicates
that some of the records match this comparison, then we know
that the highest value must have that bit set (if none of
the records have the high order bit set, then we know the
converse is true). We then set the high order bit of the
comparand to match what we have discovered to be true of the
greatest value and the next highest bit to one. We then
compare against the two high order bits of the field. 1If
there are some responders then we know that the highest
value has its two high order bits matching the combination
in the comparand. If there are no responders, then we know
that the second highest bit must be zero. We set the
comparand correspondingly and then set the next highest bit

to one and repeat the comparison. This goes on for all of

32

the bits in ;he field. Upon completidn, the comparand will
hold the greatest value in that field and all of the records
which have that value will be selected. Note that this
operation is inherently bit serial -- even on a bit parallel

CAM, the mask would be used to add one bit at a time to the

comparison.

In addition to finding the greatest value, the CAM can
also be wused to find the least value, all values greater
than a given value, all values less than a given value, and
(by combining the latter two) all values within a specified
range. This last type of query could be applied to the
astronomical data base to find all of the objects in a given
rectangular section of the sky. (First we would select a

range in one dimension and then apply a range selection in

.the other dimension.) If a CAM is also provided with a

mechanism for quickly counting the number or responders, it
can easily be queried for counts of data elements, mean,
median and mode values, and so on. Foster [40] outlines

these algorithms in his book.

Some Drawbacks of CAM's

The point of the foregoing discussion is to show that a

CAM is a very versatile searching machine and that under the

L

E

£ £ .. ¢ b &

L .

E“—W E“—‘"\ E“‘““‘

E & B g7

33

right conditions it can perform those searches far faster
than a general purpose computer, What are the right
conditions? The main condition is that the entire database
must fit in the CAM at one time and that it must be allowed
to remain there through a large number of searches. The
reason for this is that the time required to serially load
the CaM is essentially the same as that required for a
general purpose computer to serially search the database.
Thus the CAM is advantageous only if the overhead of loading
time can be averaged with many fast search operations. The
report back mechanisms, such as some/none and response
count, are an outgrowth of this need to keep a data set in
memory for long periods of time. Except in the case where
the entire data set cannot fit into the CAM at one time, the
major reason for unloading a CAM is fo allow the controlling
processor to gather some overall statistical information
about it (such as a count of the number of responding
cells). With the inclusion of hnardware mechanisms that
provide global summary information about the data set, it
becomes possible to leave the data in memory until

processing has been completed. This will be further

discussed in another section, later on.

Another drawback of the CAM is that although it is a

parallel architecture in that it searches all of the records

34

contained in it at once, it does not provide for processing
records in parallel once they have been selected. Each
selected record must be serially read out and processed
individually. The CAM is essentially a parallel search Read
Only Memory (ROM). In fact, the addition of one simple
operation, the ability to write in parallel to all of the
selected cells, is all that is needed to make a CAM capable

of processing a database in parallel as well as searching

it.

Content Addressable Parallel Processors

Many CAMs have been designed with the feature of being
able to write data into all of the cells selected by the
response store. This "multiwrite" operation, (Bird [1d])
considerably extends the capabilities of an associative
memory. By proper use of the mask register (to achieve bit
serial operation in a bit parallel CAM) with the multiwrite
operation, it is possible, for example, to perform bit
serial addition of a constant to all of the memory locations
selected by the response store. The increase in
computational power is so significant that Foster [40]
distinguishes such CAMs as a separate class of devices,

called Content Addressable Parallel Processors (CaPP) .

35

The CAPP is a Single 1Instruction stream Multiple Data
stream (SIMD) parallel processor under Flynn's (36]
classification system. A single control unit broadcasts
commands to all of the memory cells, each of which may be
considered to be a simple processor. The cells then act in
unison on the data that they contain. Because the cells may
be individually disabled by not being selected by the
response store, "local control" can be simulated to a
certain extent. This takes the form of the central control
unit sequentially selecting each group of cells that require
different operations to be performed on them and issuing the
appropriate commands to perform those operations. The
simulation of local control is limited to situations where
there are only a few distinct groups of cells. 1If the
number of groups grows too large, the speedup gained from
parallelism 1is quickly 1lost Abecause each group must be
processed sequentially by the global controller. In the
limiting case, the CAPP is reduced to processing all of the
cells sequentially. Thus a CAPP can be applied to problems

which require a limited amount of independent processing

within the cells.

36

Some CAPP Operations

To illustrate how a CAPP may be used as an SIMD parallel
processor, several algorithms will be presented that perform
operations commonly found in SIMD architectures. These
algorithms are paraphrased from Foster [40] and the reader
is encouraged to examine this reference for descriptions of

additional algorithms and applications of CAPPs.

One of the simplest operations found in most large
parallel processors is the increment, or add one,
operation. This adds one to all or a selected subset of the
data elements in memory. On the CAPP, this can also be done
in parallel on all (or a subset) of the data values, but bit
serially. The algorithm works as follows: Every cell has a
field which is to be incremented and one extra bit
designated to hold the carry (this carry bit is just another
bit of the cell memory that isn't being used for anything
élse). We begin by setting the carry bit to one and then
copy the lowest order bit of the data fieid to the response
store. If the bit is one, the situation is that the carry
and the bit are one, so the result is that the bit becomes
zero and the carry remains one -- thus we multiwrite these
values into the appropriate bits of the selected cells.

Next we invert the bits in the response store, thus

E . B EBE_

b

L

E ' B E

g‘__—\

37

selecting all of the cells with the data bit equal to zero.
In this case, the carry will become zero and the data bit
will become one -- which is what we write into the cell's
memory. Those cells for which the carry has become zero
will not require any further processing., For the next bit
we thus select all cells that have the carry bit equal to
one and for these we 1load the next higher order data bit
into the response store. The same combination of values
(bit=08, carry=1l) are again written into the cells. Instead
of simply inverting the response store values, however, we
must directly select the cells that have carry equal to one
and the data bit equal to zero (inverting the response store
would select all of the cells that have carry=g or bit=0).
Into these we set the carry bit to zero and the data bit to
one, just as we did for the lowest order bit. This process
repeats until all of the carry bits are zero or until all of
the bits in the field have been processed. (If some carry
bits remain set after all of the bits have been processed,

then overflow has occurred and can be handled in whatever

manner is appropriate.)

The Add Comparand Algorithm

The above algorithm can be generalized to allow addition

38

of any value to all of the cells at once. Again we start
with the low order bit of the cells and also of the value to
be added. 1In this case the carry bit is cleared to zero in
all of the cells, then we enter a loop to perform the bit
serial addition. 1In the case where the current data bit
from the value to be added is zero, we first select all
cells with their current data bits also equal to zero. Into
these we write a zero for the carry and a one for the data
bit. Next we select all cells which have both the current
data bit and carry bit equal to one. For these, we simply
change the data bit to zero (and leave the carry equal to
one). For the case where the current bit of the value being
added is equal to one, we would instead select cells that
have a data bit of one and a carry of zero. These would
then be set so that the data bit is zero and the carry bit
is one. Next, cells with both bits equal to zero would be
selected and their data bits changed to one. The process is
repeated for all of the bits in the values proceeding from

lowest order to highest order.

The Add Fields Algorithm

We can further generalize this to perform addition of

two fields within the cells. For example, if one field

W“)

E

)
L
L
L

e~ & £ - & B BT

39

contains some integer value and another field contains a
second integer, we could add these fields together in all of

the cells (or a subset). The algorithm adds the two numbers
together, placing the result back into one o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>