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Abstract

This paper presents an approach to heuristic reasoning about uncertainty, called
the theory of endorsements. In the first part of the paper, we describe an
implementation of the theory — a program called SOLOMON. In the second half we
concentrate on the problem of combining evidence in the theory of endorsements.
1. Introduction

In the theory of endorsements, uncertainty is represented, not as a numerical
and passive comment on the credibility of beliefs, but as a body of richly structured
knowledge abowt uncertain situations; including, but not limited to, reasons for
believing and disbelieving. For example, we know whether evidence is currently
available, whether it will become available and whether its “time of arrival” is
predictable; we know when active seeking will produce evidence, and when passive
waiting is most expeditious; we know the costs of obtaining evidence, and its
diagnostic worth; we know what our evidence will be used for; we know the
assumptions upon which the credibility of our evidence is based; we have a rich
source of heuristic strategies (some summarized in the statistical literature on
experimental design) for collecting and arranging evidence for maximum effect.
Remarkably, in a world in which nothing is certain, we use our knowledge about
uncertainty to behave as if almost nothing is uncertain.

We base the theory of endorsements on the assumption that numerical
subjective degrees of belief (e.g., Shortliffe and Buchanan, 1975; Duda, Hart, and
Nilsson, 1976; Shafer, 1976; Lowrance, 1982) are summaries of one’s knowledge about

uncertain situations: that they are constructed by intellectual effort from this



knowledge (Shafer and Tversky, 1983). The fundamental contributions of the theorg
of endorsements are to make explicit this knowledge about uncertainty and evidence
that would otherwise be summarized in a number, and to show how to reason with
this knowledge directly, instead of indirectly through a numerical calculus. We
believe that numbers are generally poor representations of our knowledge about
uncertain situations, and that their semantics are often unclear. This position is
argued at length in Cohen (1983); here we focus on an alternative approach.

2. SOLOMON - Ap Implementation of the Theory of Endorsements.

The theory of endorsements was initially developed in the context of rule-based
systems, and was tested with expert heuristics from the domain of portfolio
management (gleaned from a program called FOLIO; see Cohen and Lieberman,
1983). Our implementation of the theory of endorsements, a program called
SOLOMON, reasoned about the uncertainty associated with these heuristics and their
use. All such reasoning was mediated by structures called endorsements that
represented reasons to believe and disbelieve their associated propositions.
Endorsements are frame-like knowledge structures representing reasons to believe —
(positive endorsements) and disbelieve (negative endorsements). They are associated
with propositions and inference rules at various times during reasoning. Five classes
of endorsements appeared important for reasoning about uncertainty in rule-based

systems:



Rule endorsements. Reasons to believe and disbelieve inference rules
(eg, a clause in a premise may be endorsed as maybe-too-restrictive,
that is, the premise might occasionally fail due to this clause when the
conclusion is in fact valid.)

Data endorsements. Reasons to believe and disbelieve raw data (eg., a
statement about one’s own tolerance of risk is often conservative)

Task endorsements. Arguments about the evidence that executing tasks

are likely to produce, used to schedule the tasks (e.g., a task is worth

doing because it may produce a corroborating conclusion.)

Conclusion endorsements. Reasons to believe and disbelieve conclusions.

These are combinations of a priori rule endorsements and detected

relationships — such as corroboration — between conclusions (eg., a

conservative conclusion about one’s risk tolerance is corroborated by

other evidence.) —

Resolution endorsements.  Records of the application of metho‘t;;— to

resolve uncertainty (e.g., no rules conclude a desired goal, but after

eliminating a maybe-too-restrictive clause from a rule, we achieved the
desired conclusion.)

The style of reasoning mediated by these endorsements is, by design, similar to
the goal-directed reasoning of many expert systems: SOLOMON starts by trying to
conclude a goal, usually the value of a parameter, such as risk-tolerance in the
domain of investments. It then backchains through its rulebase, directed by this goal
and its subgoals. As it proceeds, SOLOMON develops bodies of endorsements —
reasons to believe and disbelive its conclusions. These provide justifications for the
conclusions, and also play a role in the control of SOLOMON"s reasoning.

It is important that endorsements should affect control of processing in
SOLOMON, because the theory of endorsements is oriented towards the effects of
uncertainty on behavior. In SOLOMON these effects were two: First, SOLOMON

used endorsements to decide whether a proposition was certain enough for the task at
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hand. It would ask whether the endorsements of a subgoal conclusion were good
enough to warrant using the conclusion to assert its parent goal. This is similar to
setting a threshold on the numeric degree of belief that a conclusion must accrue in
a backchaining system (eg., MYCIN set a global threshold of 02) However, the
“threshold” is determined dynamically for each goal and applied to its subgoals”
endorsements; and the threshold is not a quantity but a boolean combination of
desirable and undesirable endorsements. Importantly, a proposition that is not certain
enough for one task may serve for another; for example, the word of a used-car
salesman might barely suffice if you want to know who won last night’s football
game, but is perilously untrustworthy where the salesman’s self-interest is concerned.

The second effect of uncertainty on behavior is achieved, in SOLOMON, by
resolution tasks. The principle of these tasks is that negative endorsements are viewed
as problems to be solved. SOLOMON will attempt to improve the endorsement of an
important proposition. It has available general and domain-specific rules for resolving
uncertainty. For example, when it is unable to derive a desired conclusion from its
available rules, it can make small modifications to the premises of the rules, such as
dropping clauses. Clauses to drop are selected by their endorsements; SOLOMON will
not drop clauses endorsed as criterial. Dropping clauses results in additional
endorsements noting the uncertainty that it introduces (see Cohen, 1983, pp. 148-158,
for a detailed example).

In addition to rules to decide when a proposition is certain enough for a task,
and rules for resolving uncertainty, SOLOMON had a simple rule to combine

endorsements and propagate them over inferences. This was that a conclusion inherits



all endorsements of its premise, plus any that result from posting the conclusiog
(such as a contradiction between the conclusion and another). In fact, this rule was
doubly flawed: First, reasons to believe or disbelieve a premise are nror always
endorsements of the conclusion; and, second, the rule led to large bodies of
endorsements after only a few inferences. The remainder of this paper reports
recent work on the problem of combining endorsements. |
3. Combining Endorsements

Combining evidence is something that numerical approaches to uncertainty do
very well, because they represent uncertainty as a quantity increased or diminished
by evidence. We do not represent uncertainty as a quantity: We represent it in terms
of knowledge about evidence, and we do not summarize this knowledge in a degree
of belief. Thus, it is not as easy to combine evidence in the theory of endorsements
as it is in quantitative theories. If there is evidence from niore than one source for
a proposition, we must “calculate” a body of endorsements for the proposition by
combining the endorsements of each piece of evidence. Simple syntactic union of
the endorsements leads to the problems mentioned above: Large bodies of
endorsements result, and not all endorsements remain relevant for all uses of their
associated propositions. We are exploring semantic combining rules for endorsements --
so called because the combination of endorsements is mediated by rules that reflect
what the endorsements mean.

A related problem is ramking endorsements. Again, quantitative approaches can
rank the credibility of hypotheses easily, and again, it is more difficult with

endorsements. However, endorsements can be ranked on an ordinal scale, if not an



interval one, and so schemes for ranking endorsements can be designed. This is mZ
subject of a research note in preparation.

The domain in which we are exploring issues of combining endorsements is
plan recognition. In this task, a person types instructions to accomplish plan steps,
and we try to determine which of several known plans the person has in mind, given
knowledge about the plans and about the person. (A more sophisticated plan
recognition system, called POISE, is the model for the the tasks we describe here. It
is discussed in Carver, Lesser, and McCue, 1984.) Plan recognition is uncertain
because an instruction may suggest more than one plan, and it may be a mistake.
For example, imagine only two simple plans, each composed of just three steps:

plan I: a b ¢
plan 2: bd e

If the first input is a, this results in a strong reason to believe that the most
likely explanation (MLE) of a is plan 1, namely, there is no other explanation of a.
Note, however, that a might have been a mistake. The endorsements of .the
statement MLE(a, planl) are thus

MLE(a, plan 1)
1. no other explanation of a — positive
2. a may be a mistake — negative.
The next input is b. A possible explanation (PE)! is that b starts plan 2.

However, our system knows some rudimentary facts about people that it uses as

endorsements of interpretations of user actions. One such fact is that people prefer

! We use the predicate PE, instcad of MLE, to indicate that we haven’t yet decided which is the
most likely explanation of the input.
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to do one thing at a time. This is an argument against the plan 2 explanation of b,
because plan 1 is already believed to be underway. Note that the same fact is used

as a positive endorsement of the plan 1 explanation of b:

PE(b, plan 1)
1. people prefer to do one thing at a time — positive

2. there is another explanation of b — negative
3. b may be a mistake — negative

PE(b, plan 2)

1. people prefer to do one thing at a time - negative
2. there is another explanation of b — negative

3. b may be a mistake — negative

Since b can continue plan 1, it is further evidence that the user has plan 1 in
mind. We now consider how to combine the endorsements of plan 1 thus far, with
the endorsements of the plan 1 explanation of b. The former endorsements are

MLE(a, plan 1)
1. no other explanation of a —~ positive
2. a may be a mistake — negative.

We invoke a semantic combining rule:

SCR-1: If an explanation of a step is negatively
endorsed by “may be a mistake,” and
the successor of the step is the next input
Then drop the endorsement.

In other words, since we got b immediately after a, we no longer believe that a
could have been a mistake. The endorsements of plan 1 are thus

plan 1

1. no other explanation of a — positive

2. people prefer to do one thing at a time — positive

3. there is another explanation of b — negative

4. b may be a mistake — negative

Consider what happens if the next input is d. Now it appears that plan 1 has
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been suspended or was never intended (ie., @ was a mistake). Since d supports the
interpretation that the user intends plan 2, we must ask how the endorsements of the
plan 2 interpretation of b combine with the endorsements of d. These endorsements

are:

PE(b, plan 2)

1. people prefer to do one thing at a time — negative
2. there is another explanation of b — negative

3. b may be a mistake — negative

MLE(d, plan 2)

1. no other explanation of d — positive

2. people prefer to do one thing at a time — positive

3. d may be a mistake — negative

To combine these endorsements we invoke SCR-1 to eliminate the concern that

b might be a mistake. We also use a similar rule to eliminate the “people prefer to
do one thing at a time” endorsement:

SCR-2: If an explanation of a step is negatively endorsed

by “people prefer to do one thing at a time,” and

the successor of the step is the next input
Then drop the endorsement.

That is, we may have disbelieved that b started plan 2, since plan 1 was
already open and people prefer to do one thing at a time. But since d continues
plan 2, we believe that plan 2 was the intent of b, and the negative endorsement is
erased. Thus, the combined endorsement of plan 2 is:

plan 2 - -
1. there is another explanation of b — negative

2. no other explanation of d — positive

3. people prefer to do one thing at a time — positive

4. d may be a mistake — negative

We have not yet considered how an input such as d could constitute evidence
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against the interpretation that the user intends plan 1. Evidence for one plan is, in

this domain, evidence against another, but we are eager to see whether endorsements
of opposing interpretations can be combined. This is for the all-important reason that
we want to reason about evidence in domains where the hypotheses are mnot
necessarily mutually exclusive and exhaustive. Consider this example of how such
reasoning might proceed: One of the positive endorsements of plan 1 is that people
prefer to do one thing at a time; this results from the interpretation of b as
following a in plan 1. But if plan 2 is, in fact, the intended plan, then b was
intended as part of it, and the positive endorsement just mentioned is invalid. Thus,
the strength of the positive endorsement depends on how much we believe plan 2
was intended. And so, the endorsement of plan 1 can be changed, but only by
combination with the endorsements of the competing interpretation. It is this
condition — that of including endorsements of competing interpretations — that makes
calculating the negative import of evidence more complicated that calculating its
positive impact.

Finally, we note that semantic combining rules that drop endorsements will
occasionally produce curious bodies of endorsements. SCR-1 dropped the possibility
that @ was a mistake, which, if it still existed, we could use as further support for
the plan 2 interpretation of the user’s actions. We could “tune” the combining rules
to avoid this kind of situation, but we prefer not to: Our goal is a plausible theory
of heuristic reasoning about uncertainty, and so we are just as interested in plausible

errors as other behaviors.
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4. Summary

The theory of endorsements represents uncertainty in terms of statements about
evidence, particularly reasons to believe and disbelieve evidence. These statements,
called endorsements, can be used to justify beliefs, and to control problem solving.
The latter is desirable because the theory is intended as a model of how uncertainty
affects behavior. A program, SOLOMON, explored some aspects of the theory of
endorsements. More recently, we have explored the problem of combining

endoresements in the plan recognition task.
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